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The main theme in this paper is an initial value problem containing a dynamic version of
the transport equation. Via this problem, the delay (or shift) of a function defined on a
time scale is introduced, and the delay in turn is used to introduce the convolution of two
functions defined on the time scale. In this paper, we give some elementary properties
of the delay and of the convolution and we also prove the convolution theorem. Our
investigation contains a study of the initial value problem under consideration as well as
some results about power series on time scales. As an extensive example, we consider the
q-difference equations case.
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1. Introduction

As is known, the methods connected to the employment of integral transformations are
very useful in mathematical analysis. Those methods are successfully applied to solve dif-
ferential and integral equations, to study special functions, and to compute integrals. The
main advantage of the method of integral transformations is the possibility to prepare
tables of direct and inverse transformations of various functions frequently encountered
in applications (the role of those tables is similar to that of derivative and integral tables
in calculus).

One of the more widely used integral transformations is the Laplace transform. If f is
a given function and if the integral

F(z)=
∫∞

0
f (t)e−ztdt (1.1)
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exists, then the function F of a complex variable is called the Laplace transform of the
original function f . The operation which yields F from a given f is also called the Laplace
transform (or Laplace transformation). The original function f is called the inverse trans-
form or inverse of F.

A discrete analogue of the Laplace transform is the so-called Z-transform, which can
be used to solve linear difference equations as well as certain summation equations being
discrete analogues of integral equations. If we have a sequence {yk}∞k=0, then its Z-trans-
form is a function Y of a complex variable defined by

Y(z)=
∞∑
k=0

yk
zk
. (1.2)

The Laplace transform on time scales (note that time scales analysis unifies and ex-
tends continuous and discrete analysis, see [1, 2]) is introduced by Hilger in [3], but in
a form that tries to unify the (continuous) Laplace transform and the (discrete) Z-trans-
form. For arbitrary time scales, the Laplace transform is introduced and investigated by
Bohner and Peterson in [4] (see also [1, Section 3.10]).

An important general property of the classical Laplace transform is the so-called con-
volution theorem. It often happens that we are given two transforms F(z) and G(z) whose
inverses f and g we know, and we would like to calculate the inverse h of the product
H(z)= F(z)G(z) from those known inverses f and g. The inverse h is written f ∗ g and
is called the convolution of f and g. The classical convolution theorem states that H is
the Laplace transform of the convolution h of f and g defined by

h(t)= ( f ∗ g)(t)=
∫ t

0
f (t− s)g(s)ds. (1.3)

The main difficulty which arises when we try to introduce the convolution for functions
defined on an arbitrary time scale T is that, if t and s are in the time scale T, then it does
not necessarily follow that the difference t− s is also an element of T so that f (t− s), the
shift (or delay) of the function f , is not necessarily defined if f is defined only on the
time scale T. In [4], this difficulty is overcome in case of pairs of functions, in which one
of the functions is an “elementary function.” In the present paper, we offer a way to define
the “shift” and hence the convolution of two “arbitrary” functions defined on the time
scale T. The idea of doing so is the observation that the usual shift f (t− s) = u(t,s) of
the function f defined on the real line R is the unique solution of the problem (for the
first-order partial differential equation)

∂u(t,s)
∂t

=−∂u(t,s)
∂s

, t,s∈R, u(t,0)= f (t), t ∈R. (1.4)

This suggests to introduce the “shift” f̂ (t,s) of the given function f defined on a time
scale T as the solution of the problem

f̂ Δt
(
t,σ(s)

)=− f̂ Δs(t,s), t,s∈ T, f̂
(
t, t0
)= f (t), t ∈ T, (1.5)
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where t0 ∈ T is fixed and where Δ means the delta differentiation and σ stands for the
forward jump operator in T. We will call this problem the shifting problem. It can be
considered as an initial value problem (with respect to s) with the initial function f at

s = t0. The solution f̂ of this problem gives a shifting of the function f along the time
scale T. Then we define the convolution of two functions f ,g : T→R by

( f ∗ g)(t)=
∫ t

t0
f̂
(
t,σ(s)

)
g(s)Δs, t ∈ T. (1.6)

The reasonableness of such a definition is justified by the fact, as we prove in this paper,
that the convolution theorem holds for convolutions on time scales defined in this way.

The paper is organized as follows. In Section 2, we introduce shifts and convolutions
while the convolution theorem is proved in Section 3. In Section 4, the theory of power
series on time scales is developed, and the shifting problem is studied in Section 5. Finally,
in Section 6, we investigate the presented concepts in the special case of quantum calculus.

2. Shifts and convolutions

Let T be a time scale such that supT=∞ and fix t0 ∈ T.

Definition 2.1. For a given f : [t0,∞)T→ C, the solution of the shifting problem

uΔt
(
t,σ(s)

)=−uΔs(t,s), t,s∈ T, t ≥ s≥ t0,

u
(
t, t0
)= f (t), t ∈ T, t ≥ t0,

(2.1)

is denoted by f̂ and is called the shift (or delay) of f .

Example 2.2. In the case T=R, the problem (2.1) takes the form

∂u(t,s)
∂t

=−∂u(t,s)
∂s

, u
(
t, t0
)= f (t), (2.2)

and its unique solution is u(t,s)= f (t− s+ t0). In the case T= Z, (2.1) becomes

u(t+ 1,s+ 1)−u(t,s+ 1)=−u(t,s+ 1) +u(t,s), u
(
t, t0
)= f (t), (2.3)

and its unique solution is again u(t,s) = f (t − s + t0). For the solution of the problem
(2.1) in the case T= qN0 , see Section 6.

Example 2.3. Let r ∈ T. Then, for any regressive constant λ (see (5.21)),

̂eλ(·,r)(t,s)= eλ(t,s) ∀t,s∈ T, independent of r (2.4)

and, for k ∈N0 (see (5.4)),

̂hk(·,r)(t,s)= hk(t,s) ∀t,s∈ T, independent of r. (2.5)
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Lemma 2.4. If f̂ is the shift of f , then f̂ (t, t)= f (t0) for all t ∈ T.

Proof. By putting F(t)= f̂ (t, t), we find F(t0)= f̂ (t0, t0)= f (t0) due to the initial condi-

tion in (2.1) and FΔ(t)= f̂ Δt (t,σ(t)) + f̂ Δs(t, t)= 0 due to the dynamic equation in (2.1),
where we have used [5, Theorem 7.2]. �

In this and the next section, we will assume that the problem (2.1) has a unique solu-
tion f̂ for a given initial function f and that the functions f , g, and the complex number
z are such that the operations fulfilled in this and the next section are valid. Solvability of
the problem (2.1) will be considered in Section 5.

Definition 2.5. For given functions f ,g : T→R, their convolution f ∗ g is defined by

( f ∗ g)(t)=
∫ t

t0
f̂
(
t,σ(s)

)
g(s)Δs, t ∈ T, (2.6)

where f̂ is the shift of f introduced in Definition 2.1.

Theorem 2.6. The shift of a convolution is given by the formula

( ̂f ∗ g)(t,s)=
∫ t

s
f̂
(
t,σ(u)

)
ĝ(u,s)Δu. (2.7)

Proof. We fix t0 ∈ T. Let us put F(t,s) equal to the right-hand side of (2.7). First, we have

F
(
t, t0
)=

∫ t

t0
f̂
(
t,σ(u)

)
ĝ
(
u, t0

)
Δu=

∫ t

t0
f̂
(
t,σ(u)

)
g(u)Δu= ( f ∗ g)(t). (2.8)

Next, we calculate

FΔt
(
t,σ(s)

)
+FΔs(t,s)=

∫ t

σ(s)
f̂ Δt
(
t,σ(u)

)
ĝ
(
u,σ(s)

)
Δu+ f̂

(
σ(t),σ(t)

)
ĝ
(
t,σ(s)

)

+
∫ t

s
f̂
(
t,σ(u)

)
ĝΔs(u,s)Δu− f̂

(
t,σ(s)

)
ĝ
(
s,σ(s)

)

=−
∫ t

σ(s)
f̂ Δs(t,u)ĝ

(
u,σ(s)

)
Δu+

∫ t

s
f̂
(
t,σ(u)

)
ĝΔs(u,s)Δu

+ f
(
t0
)
ĝ
(
t,σ(s)

)− f̂
(
t,σ(s)

)
ĝ
(
s,σ(s)

)
.

(2.9)
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The first integral after the last equal sign above can be evaluated using integration by
parts:

∫ t

σ(s)
f̂ Δs(t,u)ĝ

(
u,σ(s)

)
Δu

= f̂ (t,u)ĝ
(
u,σ(s)

)∣∣u=t
u=σ(s)−

∫ t

σ(s)
f̂
(
t,σ(u)

)
ĝΔt
(
u,σ(s)

)
Δu

= f
(
t0
)
ĝ
(
t,σ(s)

)− f̂
(
t,σ(s)

)
g
(
t0
)

+
∫ t

σ(s)
f̂
(
t,σ(u)

)
ĝΔs(u,s)Δu.

(2.10)

Putting these calculations together, we arrive at

FΔt
(
t,σ(s)

)
+FΔs(t,s)

= f̂
(
t,σ(s)

)
g
(
t0
)

+
∫ σ(s)

s
f̂
(
t,σ(u)

)
ĝΔs(u,s)Δu− f̂

(
t,σ(s)

)
ĝ
(
s,σ(s)

)

= f̂
(
t,σ(s)

)
g
(
t0
)

+μ(s) f̂
(
t,σ(s)

)
ĝΔs(s,s)− f̂

(
t,σ(s)

)
ĝ
(
s,σ(s)

)

= f̂
(
t,σ(s)

)
g
(
t0
)

+ f̂
(
t,σ(s)

)[
ĝ
(
s,σ(s)

)− ĝ(s,s)
]− f̂

(
t,σ(s)

)
ĝ
(
s,σ(s)

)

= 0,

(2.11)

which completes the proof of (2.7). �

Theorem 2.7 (associativity of the convolution). The convolution is associative, that is,

( f ∗ g)∗h= f ∗ (g ∗h). (2.12)

Proof. We use Theorem 2.6. Then

(
( f ∗ g)∗h

)
(t)

=
∫ t

t0
( ̂f ∗ g)

(
t,σ(s)

)
h(s)Δs

(2.7)=
∫ t

t0

∫ t

σ(s)
f̂
(
t,σ(u)

)
ĝ
(
u,σ(s)

)
h(s)ΔuΔs

=
∫ t

t0

∫ u

t0
f̂
(
t,σ(u)

)
ĝ
(
u,σ(s)

)
h(s)ΔsΔu

=
∫ t

t0
f̂
(
t,σ(u)

)
(g ∗h)(u)Δu

= ( f ∗ (g ∗h)
)
(t).

(2.13)

Hence the associative property holds. �
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Theorem 2.8. If f is delta differentiable, then

( f ∗ g)Δ = f Δ∗ g + f
(
t0
)
g (2.14)

and if g is delta differentiable, then

( f ∗ g)Δ = f ∗ gΔ + f g
(
t0
)
. (2.15)

Proof. First note that

( f ∗ g)Δ(t)=
∫ t

t0
f̂ Δt
(
t,σ(s)

)
g(s)Δs+ f̂

(
σ(t),σ(t)

)
g(t). (2.16)

From here, since f̂ (σ(t),σ(t))= f (t0) by Lemma 2.4, and since

f̂ Δ(t,s)= f̂ Δt (t,s), (2.17)

the first equal sign in the statement follows. For the second equal sign, we use the defini-

tion of f̂ and integration by parts:

( f ∗ g)Δ(t)=−
∫ t

t0
f̂ Δs(t,s)g(s)Δs+ f

(
t0
)
g(t)

=−
∫ t

t0

((
f̂ (t,·)g)Δ(s)− f̂

(
t,σ(s)

)
gΔ(s)

)
Δs+ f

(
t0
)
g(t)

=− f̂ (t, t)g(t) + f̂
(
t, t0
)
g
(
t0
)

+
∫ t

t0
f̂
(
t,σ(s)

)
gΔ(s)Δs+ f

(
t0
)
g(t)

= ( f ∗ gΔ)(t) + f (t)g
(
t0
)
.

(2.18)

This completes the proof. �

Corollary 2.9. The following formula holds:
∫ t

t0
f̂
(
t,σ(s)

)
Δs=

∫ t

t0
f (s)Δs. (2.19)

Proof. This follows from Theorem 2.8 by using g = 1. �

Theorem 2.10. If f and g are infinitely often Δ-differentiable, then for all k ∈N0,

( f ∗ g)Δ
k = f Δ

k ∗ g +
k−1∑
ν=0

f Δ
ν(
t0
)
gΔ

k−1−ν

= f ∗ gΔ
k

+
k−1∑
ν=0

f Δ
ν
gΔ

k−1−ν(
t0
)
,

( f ∗ g)Δ
k(
t0
)=

k−1∑
ν=0

f Δ
ν(
t0
)
gΔ

k−1−ν(
t0
)
.

(2.20)
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Proof. We only prove the first equation as the proof of the second equation is similar and
as the third equation clearly follows from the first equation as well as from the second
equation. The statement is obviously true for k = 0. Assuming it is true for k ∈ N0, we
use the first equation in Theorem 2.8 to find

( f ∗ g)Δ
k+1 = ( f Δk ∗ g

)Δ
+

k−1∑
ν=0

f Δ
ν(
t0
)
gΔ

k−ν

= f Δ
k+1 ∗ g + f Δ

k(
t0
)
g +

k−1∑
ν=0

f Δ
ν(
t0
)
gΔ

k−ν

= f Δ
k+1 ∗ g +

k∑
ν=0

f Δ
ν(
t0
)
gΔ

k−ν
,

(2.21)

so that the statement is true for k+ 1. �

We conclude this section with the following extension of Lemma 2.4.

Theorem 2.11. If f̂ has partial Δ-derivatives of all orders, then for all k ∈N0,

f̂ Δ
k
t (t, t)= f Δ

k(
t0
)
, (2.22)

where f̂ Δt indicates the Δ-derivative of f̂ with respect to its first variable.

Proof. Let k ∈N0. Our assumptions and the initial condition in (2.1) imply that f Δ
k
(t)=

f̂ Δ
k
t (t, t0). Hence, by putting F(t)= f̂ Δ

k
t (t, t), we find F(t0)= f Δ

k
(t0) as well as

FΔ(t)= f̂ Δ
k
t Δt
(
t,σ(t)

)
+ f̂ Δ

k
t Δs(t, t)= f̂ ΔtΔ

k
t
(
t,σ(t)

)
+ f̂ ΔsΔ

k
t (t, t), (2.23)

where we have used [5, Theorem 7.2], the dynamic equation in (2.1), and the equality of
mixed partial derivatives (under our assumptions) from [5, Theorem 6.1]. �

3. The convolution theorem

Note that below we assume that z ∈� (the set of regressive functions), that is, 1 +μ(t)z �=
0 for all t ∈ T (where μ is the graininess on T). Then (	z)∈� and therefore e	z(·, t0) is
well defined on T.

Definition 3.1. Assume that x : T→ R is a locally Δ-integrable function, that is, it is Δ-
integrable over each compact interval of T. Then the Laplace transform of x is defined
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by

�{x}(z)=
∫∞
t0
x(t)e	z

(
σ(t), t0

)
Δt for z ∈�{x}, (3.1)

where �{x} consists of all complex numbers z ∈� for which the improper integral exists.

Theorem 3.2 (convolution theorem). Suppose f ,g : T→ R are locally Δ-integrable func-
tions on T and their convolution f ∗ g is defined by (2.6). Then,

�{ f ∗ g}(z)=�{ f }(z) ·�{g}(z), z ∈�{ f }∩�{g}. (3.2)

Proof. We have

�{ f ∗ g} =
∫∞
t0

( f ∗ g)(t)
ez
(
σ(t), t0

)Δt

=
∫∞
t0

1
ez
(
σ(t), t0

)
∫ t

t0
f̂
(
t,σ(s)

)
g(s)ΔsΔt

=
∫∞
t0

g(s)
ez
(
σ(s), t0

)
{∫∞

σ(s)

f̂
(
t,σ(s)

)
ez
(
σ(t),σ(s)

)Δt
}
Δs

=
∫∞
t0

g(s)
ez
(
σ(s), t0

)Ψ(σ(s)
)
Δs,

(3.3)

where

Ψ(s)=
∫∞
s

f̂ (t,s)
ez
(
σ(t),s

)Δt. (3.4)

According to the following lemma, Ψ(s) is independent of s. Then we can evaluate

Ψ
(
t0
)=

∫∞
t0

f̂
(
t, t0
)

ez
(
σ(t), t0

)Δt =
∫∞
t0

f (t)
ez
(
σ(t), t0

)Δt =�{ f }, (3.5)

and we can conclude that �{ f ∗ g} =�{g} ·�{ f }. �
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Lemma 3.3. The function Ψ defined in (3.4) is constant.

Proof. In order to show that Ψ is independent of s, we will show that ΨΔ(s)≡ 0. We use
[1, Theorem 1.117(ii)] and Lemma 2.4 to find

ΨΔ(s)=
∫∞
s

f̂ Δs(t,s)ez
(
σ(t),s

)− (	z)(s)ez
(
σ(t),s

)
f̂ (t,s)

ez
(
σ(t),s

)
ez
(
σ(t),σ(s)

) Δt− f̂
(
s,σ(s)

)
ez
(
σ(s),σ(s)

)

=
∫∞
s

{− f̂ Δt
(
t,σ(s)

)
ez
(
σ(t),σ(s)

) +

(
z/(1 +μ(s)z)

)
f̂ (t,s)

ez
(
σ(t),σ(s)

)
}
Δt− f̂

(
s,σ(s)

)

= zΨ(s)−
∫∞
s

f̂ Δt
(
t,σ(s)

)
ez
(
σ(t),σ(s)

)Δt− f̂
(
s,σ(s)

)

= zΨ(s)−
∫ σ(s)

s

f̂ Δt
(
t,σ(s)

)
ez
(
σ(t),σ(s)

)Δt−
∫∞
σ(s)

f̂ Δt
(
t,σ(s)

)
ez
(
σ(t),σ(s)

)Δt− f̂
(
s,σ(s)

)

= zΨ(s)−
∫∞
σ(s)

f̂ Δt
(
t,σ(s)

)
ez
(
σ(t),σ(s)

)Δt− f
(
t0
)

= zΨ(s)−
∫∞
σ(s)

f̂ Δt
(
t,σ(s)

)
e	z
(
σ(t),σ(s)

)
Δt− f

(
t0
)

= zΨ(s)− f
(
t0
)−

∫∞
σ(s)

{[
f̂
(
t,σ(s)

)
e	z
(
t,σ(s)

)]Δt

− (	z)(t)e	z
(
t,σ(s)

)
f̂
(
t,σ(s)

)}
Δt

= zΨ(s)− z
∫∞
σ(s)

f̂
(
t,σ(s)

)
e	z
(
σ(t),σ(s)

)
Δt

= zΨ(s)− zΨ
(
σ(s)

)

=−zμ(s)ΨΔ(s)

(3.6)

so that (1 +μ(s)z)ΨΔ(s)= 0, and therefore ΨΔ(s)= 0. �

We may use Lemma 3.3 once again to prove the following important theorem. In there,
we make use of the function ua defined by ua(b)= 0 if b < a and ua(b)= 1 if b ≥ a.

Theorem 3.4. Let s, t0 ∈ T with s≥ t0. If f̂ is the delay of f , then

�
{
us f̂ (·,s)}(z)= e	z

(
s, t0
)
�{ f }(z). (3.7)
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Proof. We have

�
{
us f̂ (·,s)}(z)=

∫∞
t0
us(t) f̂ (t,s)e	z

(
σ(t), t0

)
Δt

=
∫∞
s

f̂ (t,s)e	z
(
σ(t), t0

)
Δt

= e	z
(
s, t0
)∫∞

s
f̂ (t,s)e	z

(
σ(t),s

)
Δt

= e	z
(
s, t0
)
Ψ(s),

(3.8)

where Ψ is defined in (3.4) in Theorem 3.2. In Lemma 3.3, it was shown that Ψ is in fact
a constant, namely, Ψ(t)≡Ψ(t0)=�{ f }(z), and this concludes the proof. �

4. Power series on time scales

Let T be a time scale. Following Agarwal and Bohner [6] (see also [1, Section 1.6]), let us
introduce the generalized monomials hk : T×T→R, k ∈N0, defined recursively by

h0(t,s)= 1, hk(t,s)=
∫ t

s
hk−1(τ,s)Δτ ∀k ∈N, s, t ∈ T. (4.1)

Then

hΔt

k = hk−1 ∀k ∈N. (4.2)

The definition (4.1) obviously implies

h1(t,s)= t− s, h2(t,s)=
∫ t

s
(τ − s)Δτ ∀t,s∈ T, (4.3)

and finding hk for k > 1 is not easy in general. For the case T=R, we have

hk(t,s)= (t− s)k

k!
∀k ∈N0, t,s∈R, (4.4)

while for the case T= Z we have

hk(t,s)= (t− s)(k)

k!
∀k ∈N0, t,s∈ Z, (4.5)

where

t(0) = 1, t(k) =
k−1∏
i=0

(t− i) for k ∈N. (4.6)

For the functions hk in the case T= qN0 for some q > 1 (the quantum calculus case), see
Section 6.

Returning to the arbitrary time scale T, we present the following useful property of
monomials hk.
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Theorem 4.1. For all k,m∈N0,

∫ t

t0
hk
(
t,σ(s)

)
hm
(
s, t0
)
Δs= hk+m+1

(
t, t0
)
. (4.7)

Proof. Setting

ϕ(t)=
∫ t

t0
hk
(
t,σ(s)

)
hm
(
s, t0
)
Δs (4.8)

and using the differentiation formula [1, Theorem 1.117]

kΔ(t)= K
(
σ(t), t

)
+
∫ t

t0
KΔt (t,s)Δs, k(t)=

∫ t

t0
K(t,s)Δs, (4.9)

we easily find that

ϕΔk+m+1
t (t)= 1, ϕ

(
t0
)= ϕΔt

(
t0
)= ··· = ϕΔk+m

t
(
t0
)= 0. (4.10)

Hence the statement follows. �

Now let n∈N and suppose f : T→ C is n times Δ-differentiable on Tκn . Let α∈ Tκn−1
,

t ∈ T, and the functions hk defined by (4.1). Then we have the formula (Taylor’s formula)

f (t)=
n−1∑
k=0

hk(t,α) f Δ
k
(α) +

∫ t

α
hn−1

(
t,σ(τ)

)
f Δ

n
(τ)Δτ. (4.11)

In order to get an estimation for the remainder term

Rn(t,α)=
∫ t

α
hn−1

(
t,σ(τ)

)
f Δ

n
(τ)Δτ (4.12)

of Taylor’s formula (4.11), we have to estimate the functions hk. This estimate is taken
from Bohner and Lutz [7, Theorem 4.1] and reads as follows.

Theorem 4.2. For all k ∈N0 and t,s∈ T with t ≥ s, then

0≤ hk(t,s)≤ (t− s)k

k!
. (4.13)

Using Theorem 4.2, we can now present the following estimate for Rn.

Theorem 4.3. For t ∈ T with t ≥ α, set

Mn(t)= sup
{∣∣ f Δn

(τ)
∣∣ : τ ∈ [α, t]T

}
. (4.14)

Then

∣∣Rn(t,α)
∣∣≤Mn(t)

(t−α)n

(n− 1)!
. (4.15)
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Proof. If τ ∈ [α, t)T, then α≤ σ(τ)≤ t, and applying (4.13) gives

0≤ hn−1
(
t,σ(τ)

)≤
(
t− σ(τ)

)n−1

(n− 1)!
≤ (t− τ)n−1

(n− 1)!
≤ (t−α)n−1

(n− 1)!
. (4.16)

Therefore, we have, from (4.12),

∣∣Rn(t,α)
∣∣≤Mn(t)

(t−α)n−1

(n− 1)!

∫ t

α
Δτ =Mn(t)

(t−α)n

(n− 1)!
, (4.17)

which completes the proof. �

If a function f : T→R is infinitely often Δ-differentiable at a point α∈ T∞ =⋂∞n=1T
κn

(i.e., it has Δ-derivatives at α of all orders), then we can formally write for it the series

∞∑
k=0

hk(t,α) f Δ
k
(α)= f (α) +h1(t,α) f Δ(α) +h2(t,α) f Δ

2
(α) + ··· , (4.18)

called Taylor’s series for the function f at the point α. For given values of α and t, it can
be convergent or divergent. The case when Taylor’s series for the function f is convergent
to that function is of particular importance; in this case, the sum of the series is equal to
f (t). Taylor’s series (4.18) is convergent to f (t) if and only if the remainder of Taylor’s
formula

f (t)=
n−1∑
k=0

hk(t,α) f Δ
k
(α) +Rn(t,α) (4.19)

tends to zero as n→∞, that is, limn→∞Rn(t,α) = 0. It may turn out that with a given
function f we can formally associate its Taylor series, at a point α, of the form (4.18) (in
other words, this means the Δ-derivatives f Δ

k
(α) make sense for this function for any

k ∈ N0) and that the series (4.18) is convergent for some values of t but its sum is not
equal to f (t).

Let us consider Taylor series expansions for some elementary functions. First we prove
the following lemma.

Lemma 4.4. For all z ∈ C and t ∈ T with t ≥ α, the initial value problem

yΔ = zy, y(α)= 1 (4.20)

has a unique solution y that is represented in the form

y(t)=
∞∑
k=0

zkhk(t,α) (4.21)

and satisfies the inequality

∣∣y(t)
∣∣≤ e|z|(t−α). (4.22)
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Proof. The initial value problem (4.20) is equivalent to finding a continuous solution of
the integral equation

y(t)= 1 + z
∫ t

α
y(τ)Δτ. (4.23)

We solve (4.23) by the method of successive approximations setting

y0(t)= 1, yk(t)= z
∫ t

α
yk−1(τ)Δτ for k ∈N. (4.24)

If the series
∑∞

k=0 yk(t) converges uniformly with respect to t ∈ [α,R]T, where R∈ T with
R > α, then its sum will be obviously a continuous solution of (4.23). It follows from
(4.24) that

yk(t)= zkhk(t,α) ∀k ∈N0. (4.25)

Therefore, using Theorem 4.2, for all k ∈N0 and t ∈ T with t ≥ α, we have

∣∣yk(t)
∣∣= |z|khk(t,α)≤ |z|k (t−α)k

k!
. (4.26)

It follows that (4.23) has a continuous solution y satisfying y(t)=∑∞
k=0 z

khk(t,α) for all
t ≥ α, and for this solution (4.22) holds.

To prove uniqueness of the solution, assume that (4.23) has two continuous solutions
y and x for t ≥ α. Setting u= y− x, we get that

u(t)= z
∫ t

α
u(τ)Δτ for t ∈ T with t ≥ α. (4.27)

Next setting

M = sup
{∣∣u(t)

∣∣ : t ∈ [α,R]T
}

, (4.28)

we have from (4.27)

∣∣u(t)
∣∣≤ |z|M(t−α) ∀t ∈ [α,R]T. (4.29)

Using this in the integral in (4.27), we get

∣∣u(t)
∣∣≤M|z|2

∫ t

α
(τ −α)Δτ =M|z|2h1(t,α). (4.30)

Repeating this procedure, we obtain

∣∣u(t)
∣∣≤M|z|khk(t,α) ∀t ∈ [α,R]T, k ∈N0. (4.31)

Hence by Theorem 4.2,

∣∣u(t)
∣∣≤M|z|k (t−α)k

k!
∀t ∈ [α,R]T, k ∈N0. (4.32)
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Passing here to the limit as k →∞, we get u(t) = 0 for all t ∈ [α,R]T. Since R was an
arbitrary point in T with R > α, we have that u(t)= 0 for all t ∈ T with t ≥ α. �

Note that from (4.20) we have that

yΔ
k
(α)= zk ∀k ∈N0. (4.33)

Therefore, (4.21) is a Taylor series expansion for y(t) when t ∈ T and t ≥ α.
Since ez(t,α) coincides with the unique solution of the initial value problem (4.20) for

t ∈ T with t ≥ α, we get, applying Lemma 4.4, that

ez(t,α)=
∞∑
k=0

zkhk(t,α) for t ∈ T with t ≥ α, (4.34)

and that
∣∣ez(t,α)

∣∣≤ e|z|(t−α) for t ∈ T with t ≥ α. (4.35)

Using (4.34), for t ∈ T with t ≥ α, we have

coshz(t,α)= ez(t,α) + e−z(t,α)
2

=
∞∑
k=0

z2kh2k(t,α),

sinhz(t,α)= ez(t,α)− e−z(t,α)
2

=
∞∑
k=0

z2k+1h2k+1(t,α),

cosz(t,α)= eiz(t,α) + e−iz(t,α)
2

=
∞∑
k=0

(−1)kz2kh2k(t,α),

sinz(t,α)= eiz(t,α)− e−iz(t,α)
2i

=
∞∑
k=0

(−1)kz2k+1h2k+1(t,α).

(4.36)

Definition 4.5. Assume that supT=∞ and t0 ∈ T is fixed. A series of the form

∞∑
k=0

akhk
(
t, t0
)= a0 + a1h1

(
t, t0
)

+ a2h2
(
t, t0
)

+ ··· , (4.37)

where ak are constants for k ∈N0 (which may be complex in the general case) and t ∈ T, is
called a power series on the time scale T, the numbers ak being referred to as its coefficients.
We denote by � the set of all functions f : [t0,∞)T→ C of the form

f (t)=
∞∑
k=0

akhk
(
t, t0
)
, t ∈ [t0,∞)T, (4.38)

where the coefficients ak satisfy
∣∣ak∣∣≤MRk ∀k ∈N0 (4.39)

with some constants M > 0 and R > 0 depending only on the series (4.38).
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Note that under the condition (4.39), the series (4.38) converges uniformly on any
compact interval [t0,L]T of T, where L ∈ T with L > t0. Indeed, using Theorem 4.2 and
(4.39), we have

∣∣akhk(t, t0)∣∣≤M

[
R
(
t− t0

)]k
k!

(4.40)

for all t ∈ T with t ≥ t0 and k ∈N0. Therefore, the sum f (t) of the series (4.38) satisfies

∣∣ f (t)
∣∣≤MeR(t−t0) ∀t ∈ T with t ≥ t0. (4.41)

It is easy to see that � is a linear space: if f ,g ∈�, then α f + βg ∈� for any constants α
and β. Note also that any given function f ∈� can be represented in the form of a power
series (4.38) uniquely. Indeed, Δ-differentiating the series (4.38) n times term by term we
get, using (4.2),

f Δ
n
(t)= an + an+1h1

(
t, t0
)

+ an+2h2
(
t, t0
)

+ ··· . (4.42)

This series is convergent for t ∈ [t0,∞)T by (4.13) and (4.39) so that the term-by-term
differentiating is valid. Setting t = t0, we find that

f Δ
n(
t0
)= an. (4.43)

Thus the coefficients of the power series (4.38) are defined uniquely by the formula (4.43).

5. Investigation of the shifting problem

For an arbitrary time scale T, we can prove the following theorem.

Theorem 5.1. Let f ∈� so that f can be written in the form (4.38) with the coefficients
satisfying (4.39) for some constants M > 0 and R > 0. Then the problem (2.1) has a solution
u of the form

u(t,s)=
∞∑
k=0

akhk(t,s), (5.1)

where ak are the same coefficients as in the expansion (4.38) of f . This solution is unique in
the class of functions u for which

Ak(s) := uΔ
k
t (t,s)|t=s, k ∈N, (5.2)

are delta differentiable functions of s∈ T and

∣∣Ak(s)
∣∣≤A|s|k,

∣∣AΔ
k (s)

∣∣≤ B|s|k (5.3)

for all s∈ T, s≥ t0 with some constants A > 0 and B > 0.

Proof. Since (see [6])

hΔt

k (t,s)= hk−1(t,s), hΔs

k (t,s)=−hk−1
(
t,σ(s)

)
, (5.4)
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we have, from (5.1),

uΔt
(
t,σ(s)

)=
∞∑
k=1

akhk−1
(
t,σ(s)

)
, uΔs(t,s)=−

∞∑
k=1

akhk−1
(
t,σ(s)

)
. (5.5)

Note that the differentiation of the series term by term is valid because the series in (5.5)
are convergent for t ≥ s. From (5.5) it follows that u defined by (5.1) satisfies the dynamic
equation in (2.1). We also have

u
(
t, t0
)=

∞∑
k=0

akhk
(
t, t0
)= f (t) (5.6)

so that the initial condition in (2.1) is satisfied as well.
To prove the uniqueness of the solution, assume that u is a solution of (2.1) and has the

properties (5.2), (5.3). Then we can write for u the Taylor expansion series with respect
to the variable t at the point t = s for each fixed s:

u(t,s)=
∞∑
k=0

Ak(s)hk(t,s), (5.7)

where Ak(s) are the Taylor coefficients defined by (5.2). Substituting (5.7) into the dy-
namic equation in (2.1), we get

∞∑
k=1

Ak
(
σ(s)

)
hΔt

k

(
t,σ(s)

)=−
∞∑
k=1

[
AΔ
k (s)hk(t,s) +Ak

(
σ(s)

)
hΔs

k (t,s)
]
, (5.8)

where we did not include the terms in the series with k = 0 since h0(t,s)= 1 and A0(s)=
u(s,s) = f (t0) both have zero derivatives as constant functions. Note also that the term
by term differentiation of the series is valid due to the conditions (5.3). Next we can use
(5.4) to get from (5.8) that

∞∑
k=1

Ak
(
σ(s)

)
hk−1

(
t,σ(s)

)=−
∞∑
k=1

AΔ
k (s)hk(t,s) +

∞∑
k=1

Ak
(
σ(s)

)
hk−1

(
t,σ(s)

)
. (5.9)

Hence,

∞∑
k=1

AΔ
k (s)hk(t,s)= 0, (5.10)

and therefore,

AΔ
k (s)= 0 ∀k ∈N0. (5.11)

This means that Ak(s) does not depend on s for any k ∈N0. On the other hand, setting
s= t0 in (5.1) and using the initial condition in (2.1) and (4.38), we find that

Ak
(
t0
)= ak ∀k ∈N0. (5.12)

Consequently, the solution u coincides with (5.1). �
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Remark 5.2. We can take f given in (4.38), in particular, to be a finite combination of
hk(t, t0) for some values k ∈N0. Then the solution u given by (5.1) will be represented by
a finite sum.

For convenience we are denoting the solution u of the problem (2.1) by f̂ indicating
thus that it depends on the initial function f given in the initial condition in (2.1).

Theorem 5.3. Let f ,g ∈� with

f (t)=
∞∑
k=0

akhk
(
t, t0
)
, g(t)=

∞∑
m=0

bmhm
(
t, t0
)
,

∣∣ak∣∣≤M1R
k
1,

∣∣bm∣∣≤M2R
m
2 .

(5.13)

Then f ∗ g ∈� and

( f ∗ g)(t)=
∞∑
n=0

cnhn
(
t, t0
)
, (5.14)

where

c0 = 0, cn =
n−1∑
k=0

akbn−1−k, n∈N. (5.15)

Proof. Using Theorem 5.1 for f̂ , we have

( f ∗ g)(t)=
∫ t

t0
f̂
(
t,σ(s)

)
g(s)Δs

=
∫ t

t0

{ ∞∑
k=0

akhk
(
t,σ(s)

)}{ ∞∑
m=0

bmhm
(
s, t0
)}

Δs

=
∞∑
k=0

∞∑
m=0

akbm

∫ t

t0
hk
(
t,σ(s)

)
hm
(
s, t0
)
Δs.

(5.16)

Hence, making use of Theorem 4.1, we obtain

( f ∗ g)(t)=
∞∑
k=0

∞∑
m=0

akbmhk+m+1
(
t, t0
)=

∞∑
n=0

{n−1∑
k=0

akbn−k−1

}
hn
(
t, t0
)
, (5.17)

so that (5.14) and (5.15) are proved.
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Next, we have from (5.15) by using (5.13) and setting R3 =max{R1,R2},

∣∣cn∣∣≤
n−1∑
k=0

∣∣ak∣∣ ·∣∣bn−1−k
∣∣≤

n−1∑
k=0

M1R
k
1M2R

n−1−k
2

≤M1M2

n−1∑
k=0

Rk
3R

n−1−k
3 =M1M2R

n−1
3

n−1∑
k=0

1

=M1M2nR
n−1
3 ≤Mε

(
R3 + ε

)n
, ε > 0.

(5.18)

This shows that f ∗ g ∈�. �

Theorem 5.4. The convolution is commutative and associative, that is, for f ,g,h∈�,

f ∗ g = g ∗ f , ( f ∗ g)∗h= f ∗ (g ∗h). (5.19)

Proof. Since

cn =
n−1∑
k=0

akbn−1−k =
n−1∑
ν=0

bνan−1−ν, (5.20)

it follows from (5.14) and (5.15) that the convolution possesses the commutative prop-
erty. Associativity was established in Theorem 2.7. �

Theorem 5.1 gives solutions of the problem (2.1) in terms of generalized polynomials
hk, k ∈ N0. Noting that for any constant λ, the exponential function eλ satisfies (see [1,
Section 2.2])

eΔt

λ (t,s)= λeλ(t,s), eΔs

λ (t,s)=−λeλ
(
t,σ(s)

)
(5.21)

so that eλ satisfies the dynamic equation in (2.1), we can construct some solutions of the
problem (2.1) in terms of exponential functions eλ. For this purpose, let us take a set
Ω⊂ C and denote by � the set of functions f : [t0,∞)T→ C of the form

f (t)=
∫
Ω
ϕ(λ)eλ

(
t, t0
)
dω(λ), t ∈ [t0,∞)T, (5.22)

where ω is a measure in Ω and ϕ : Ω→ C is a function; ω and ϕ depend on f . Note
that the exponential function eλ is well defined for all complex values of λ if t ≥ t0 (see
Lemma 4.4). The integral on the right-hand side of (5.22) can be understood to be a
Riemann-Stieltjes or Lebesgue-Stieltjes integral. Besides we require that

∫
Ω

∣∣λϕ(λ)eλ(t,s)
∣∣dω(λ) <∞ (5.23)

for all t,s∈ T with t ≥ s≥ t0. By choosing various ϕ and ω, we get according to (5.22) the
elements of �. Obviously, � is a linear space.

If, in particular, ω is a measure concentrated on a finite set {λ1,λ2, . . . ,λn} ⊂ C with

ω
({
λk
})= 1 ∀k ∈ {1,2, . . . ,n} (5.24)
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and if we denote ϕ(λk)= ck, then (5.22) yields a function f of the form

f (t)=
n∑

k=1

ckeλk
(
t, t0
)
. (5.25)

Therefore, the space � contains all exponential, hyperbolic, and trigonometric functions.

Theorem 5.5. Suppose that the function f : [t0,∞)T → C has the form (5.22) and that
(5.23) is satisfied. Then the function

u(t,s)=
∫
Ω
ϕ(λ)eλ(t,s)dω(λ) (5.26)

has first-order partial delta derivatives for t ≥ s≥ t0 and satisfies (2.1).

Proof. We have

u
(
t, t0
)=

∫
Ω
ϕ(λ)eλ

(
t, t0
)
dω(λ)= f (t) (5.27)

so that the initial condition in (2.1) is satisfied. Further, we can take first-order partial
delta derivatives of u in (5.26), and by the condition (5.23) we can differentiate under the
integral sign. Taking into account (5.21), we see that u satisfies the dynamic equation in
(2.1) as well. �

Notice that the solution u of the problem (2.1) with the initial function f of the form
(5.25) has, according to Theorem 5.5, the form

u(t,s)=
n∑

k=1

ckeλk (t,s). (5.28)

Remark 5.6. Solutions of the form (5.26) are in fact of the form (5.1). Indeed, we have
the expansion (see (4.34))

eλ(t,s)=
∞∑
k=0

λkhk(t,s) (5.29)

for all λ∈ C and t,s∈ T with t ≥ s. Substituting this into (5.26) and integrating term by
term, we get

u(t,s)=
∞∑
k=0

akhk(t,s), ak =
∫
Ω
λkϕ(λ)dω(λ). (5.30)

The term-by-term integration is valid if we require that

∫
Ω
|λ|k∣∣ϕ(λ)

∣∣dω(λ)≤MRk (5.31)

for all k ∈N0 with some constants M > 0 and R > 0.
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Now denote by �0 the linear space of all generalized polynomials, with complex coef-
ficients, in the variable t ∈ T. So any element of �0 has the form

f (t)=
N∑
k=0

akhk
(
t, t0
)

(5.32)

for some N ∈ N0 and some coefficients ak ∈ C, 0 ≤ k ≤ N . Note that �0 is a subspace
of the linear space � introduced above in Section 4. Further, denote by �k the set of all
regressive z ∈ C satisfying

lim
t→∞

{
hk
(
t, t0
)
e	z
(
t, t0
)}= 0 (5.33)

and put �=⋂∞k=0 �k. We will assume that � is not empty. It is known [1, 4] that for all
k ∈N0 and z ∈�, we have

�
{
hk
(·, t0)}(z)= 1

zk+1
. (5.34)

Therefore, for the generalized polynomial f of the form (5.32), we obtain

�{ f }(z)=
N∑
k=0

ak
zk+1

. (5.35)

Let us take another element g ∈�0:

g(t)=
M∑

m=0

bmhm
(
t, t0
)
, �{g}(z)=

M∑
m=0

bm
zm+1

. (5.36)

Proceeding as in the proof of Theorem 5.3, we find that

( f ∗ g)(t)=
N∑
k=0

M∑
m=0

akbmhk+m+1
(
t, t0
)
. (5.37)

The last formula shows that f ∗ g ∈�0 and

�{ f ∗ g}(z)=
N∑
k=0

M∑
m=0

akbm · 1
zk+m+2

=
{ N∑

k=0

ak
zk+1

}{ M∑
m=0

bm
zm+1

}

=�{ f }(z) ·�{g}(z).

(5.38)

Thus we have checked the convolution theorem for functions of the class �0.
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6. The quantum calculus case

In this section, we consider T= qN0 with q > 1. We also let t0 = 1. Calculus on this time
scale is called quantum calculus [8]. Note that on this time scale we have σ(t) = qt and
μ(t)= (q− 1)t for all t ∈ T.

Definition 6.1. We use the notation from [8], in particular

[α]= [α]q = qα− 1
q− 1

, α∈R,

[n]!=
n∏

k=1

[k],

[
m
n

]
= [m]!

[n]![m−n]!
, m,n∈N0,

(t− s)nq =
n−1∏
k=0

(
t− qks

)
, t,s∈ T, n∈N0.

(6.1)

Theorem 6.2. The quantum calculus monomials are given by

hn(t,s)= (t− s)nq
[n]!

∀n∈N0. (6.2)

Proof. In [1, Formula (1.19) in Example 1.104] it was shown that

hn(t,s)=
n−1∏
k=0

t− qks∑k
i=0 qi

. (6.3)

Using the notation from Definition 6.1 above, the claim follows. �

Corollary 6.3. The following formula holds:

hn
(
qkt, t

)=
[
k
n

](
μ(t)

)n
qn(n−1)/2 ∀k,n∈N0 with k ≥ n. (6.4)

Proof. We rewrite

(
qkt− t

)n
q =

(
qkt− t

) · (qkt− qt
) · ··· · (qkt− qn−1t

)

= tm · q · q2 · ··· · qn−1 · (qk − 1
) · (qk−1− 1

) · ··· · (qk−n+1− 1
)

= (μ(t)
)n · q(n−1)n/2 · [k] · [k− 1] · ··· · [k−n+ 1]

= [n]!

[
k
n

](
μ(t)

)n
qn(n−1)/2.

(6.5)

Now an application of Theorem 6.2 completes the proof. �
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Theorem 6.4. If f : T→R, then

f Δ
k
(t)
(
μ(t)

)k
qk(k−1)/2 =

k∑
ν=0

(−1)ν

[
k
ν

]
qν(ν−1)/2 f σ

k−ν
(t) ∀k ∈N0. (6.6)

Proof. The statement is true for k = 0. Assuming it is true for k ∈N0, we get

f Δ
k+1

(t)
(
μ(t)

)k+1
q(k+1)k/2

= (μ(t) f Δ
k+1

(t)
)(
μ(t)

)k
qk(k+1)/2

= [ f Δk(
σ(t)

)− f Δ
k
(t)
](
μ(t)

)k
qk(k+1)/2

= f Δ
k(
σ(t)

)(
μ
(
σ(t)

))k
q−kqk(k+1)/2− f Δ

k
(t)
(
μ(t)

)k
qk(k+1)/2

= f Δ
k(
σ(t)

)(
μ
(
σ(t)

))k
qk(k−1)/2− f Δ

k
(t)
(
μ(t)

)k
qk(k−1)/2qk

=
k∑

ν=0

(−1)ν

[
k
ν

]
qν(ν−1)/2 f σ

k−ν(
σ(t)

)− qk
k∑

ν=0

(−1)ν

[
k
ν

]
qν(ν−1)/2 f σ

k−ν
(t)

=
k∑

ν=0

(−1)ν

[
k
ν

]
qν(ν−1)/2 f σ

k−ν+1
(t) + qk

k+1∑
ν=1

(−1)ν

[
k

ν− 1

]
q(ν−1)(ν−2)/2 f σ

k−ν+1
(t)

= f σ
k+1

(t) + qk(−1)k+1qk(k−1)/2 f (t) +
k∑

ν=1

(−1)ν f σ
k−ν+1

(t)qν(ν−1)/2

{[
k
ν

]
+ qk−ν+1

[
k

ν− 1

]}

= f σ
k+1

(t) + qk(−1)k+1qk(k−1)/2 f (t) +
k∑

ν=1

(−1)ν f σ
k−ν+1

(t)qν(ν−1)/2

[
k+ 1

ν

]

=
k+1∑
ν=0

(−1)ν

[
k+ 1

ν

]
qν(ν−1)/2 f σ

k+1−ν
(t),

(6.7)

where we have used [8, Formula (6.3) in Proposition 6.1] to evaluate the expression in
the curly braces. Hence the statement is true for k+ 1, which completes the proof. �

Finally, we are in a position to present a formula for the shift of a function defined on
the quantum calculus time scale.

Theorem 6.5. The shift of f : T→R is given by

f̂
(
qkt, t

)=
k∑

ν=0

[
k
ν

]
tν(1− t)k−ν

q f (qν) ∀k ∈N0. (6.8)
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Proof. We use the results from this and the previous section to obtain

f̂
(
qkt, t

)=
k∑

m=0

hm
(
qkt, t

)
f Δ

m
(1)

=
k∑

m=0

[
k
m

](
μ(t)

)m
qm(m−1)/2 f Δ

m
(1)

=
k∑

m=0

[
k
m

]
tm f Δ

m
(1)
(
μ(1)

)m
qm(m−1)/2

=
k∑

m=0

[
k
m

]
tm

m∑
ν=0

(−1)ν

[
m
ν

]
qν(ν−1)/2 f σ

m−ν
(1)

=
k∑

m=0

m∑
ν=0

[
k
m

]
tm(−1)m−ν

[
m

m− ν

]
q(m−ν)(m−ν−1)/2 f

(
qν
)

=
k∑

ν=0

k∑
m=ν

[
k
m

][
m

m− ν

]
tm(−1)m−νq(m−ν)(m−ν−1)/2 f

(
qν
)

=
k∑

ν=0

k−ν∑
m=0

[
k

m+ ν

][
m+ ν
m

]
tm+ν(−1)mqm(m−1)/2 f

(
qν
)

=
k∑

ν=0

k−ν∑
m=0

[
k
ν

][
k− ν
m

]
tν(−t)mqm(m−1)/2 f

(
qν
)

=
k∑

ν=0

[
k
ν

]
tν
{ k−ν∑

m=0

[
k− ν
m

]
(−t)mqm(m−1)/2

}
f
(
qν
)

=
k∑

ν=0

[
k
ν

]
tν(1− t)k−ν

q f
(
qν
)
,

(6.9)

where we have used [8, Formula (5.5)] to evaluate the expression in the curly braces. �
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