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Many analytical problems can be reduced to determining the number of roots of a poly-
nomial in a given disc. In turn, the latter problem admits further reduction to the gener-
alized Rauss-Hurwitz problem of determining the number of roots of a polynomial in a
semiplane. However, this procedure requires complicated coefficient transformations. In
the present paper we suggest a direct method to evaluate the number of roots of a poly-
nomial with complex coefficients in a disc, based on studying a certain equation in the
algebra of polynomials. An application for computing the rotation of plane polynomial
vector fields is also given.

Copyright © 2006 E. Muhamadiev. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Functional equations: basic properties of solutions

Let

f (z)= a0 + a1z+ ···+ anz
n, an �= 0, (1.1)

F(z)= b0 + b1z+ ···+ bnz
n + bn+1z

n+1, b0 �= 0, bn+1 �= 0, (1.2)

be polynomials with complex coefficients a0,a1, . . . ,an and b0,b1, . . . ,bn+1 of degree n and
n+ 1, respectively. Assume the polynomials f and F to satisfy the functional equation

(a+ bz) f (z) + (c+dz) f ∗(z)= F(z), (1.3)

where a, b, c, d are certain complex numbers and the polynomial f ∗ is defined by

f ∗(z)= ā0z
n + ā1z

n−1 + ···+ ān = zn f
(

1
z̄

)
. (1.4)
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2 On a certain functional equation in the algebra of polynomials

Consider along with (1.3) the following functional equation:

g(z) · f (z)= (āz+ b̄)F(z)− (c+dz)F∗(z), (1.5)

where

g(z)= αz2 +βz+ ᾱ, α= āb− c̄d, β = |a|2 + |b|2−|c|2−|d|2, (1.6)

F∗(z)= b̄0z
n+1 + b̄1z

n + ···+ b̄n+1. (1.7)

Lemma 1.1. If the polynomials f and F satisfy the functional equation (1.3), then they also
satisfy the functional equation (1.5).

Conversely, if at least one of the numbers α, β is different from zero and f , F satisfy (1.5),
then they satisfy (1.3) as well.

Proof. Let polynomials (1.1) and (1.2) satisfy (1.3). By the definition of f ∗ and F∗, one
has

(āz+ b̄) f ∗(z) + (c̄z+ d̄) f (z)= F∗(z). (1.8)

Multiplying (1.3) (resp., (1.8)) by (āz+ b̄) (resp., by (c+dz)) and taking the difference
of the obtained expressions, one obtains (1.5), where the coefficients α and β are defined
by (1.6). Thus the first implication is established.

Conversely, assume that f and F satisfy (1.5), and at least one of α, β is different from
zero. Since the coefficient β of g is real (cf. [4]), one has

z2g
(

1
z̄

)
= g(z). (1.9)

Therefore, it follows from (1.5) that

g(z) f ∗(z)= (a+ bz)F∗(z)− (c̄z+ d̄)F(z). (1.10)

Multiplying (1.5) (resp., (1.10)) by (a+ bz) (resp., by (c + dz)) and summing up the
obtained expressions, one arrives at the following equality:

g(z)
[
(a+ bz) f (z) + (c+dz) f ∗(z)

]= g(z)F(z). (1.11)

Since g(z) �≡ 0 and the algebra of polynomials does not contain zero divisors, it follows
that f and F satisfy (1.3).

The lemma is completely proved. �

Assume that the polynomials f and F satisfy (1.3). It follows from (1.1)–(1.3) that
(1.3) is equivalent to the following system:

aak + cān−k + bak−1 +dān−k+1 = bk, k = 0,1, . . . ,n+ 1, (1.12)

where we put ak = 0 for k < 0 and k > n.
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Similarly, (1.5) is equivalent to the following system:

ᾱak +βak−1 +αak−2 = ābk−1−db̄n−k+2 + b̄bk − cb̄n−k+1, k = 0,1, . . . ,n+ 2, (1.13)

where ak = bk = 0 for k < 0 and ak = bk+1 = 0 for k > n.
Thus, under the assumption that a, b, c, and d satisfy the condition |α|+ |β| > 0, sys-

tem (1.3) is equivalent to (1.12) as well as to (1.13).
Below we will list some properties of solutions to (1.3).

(1) (a) The coefficients a, b, c, d along with the polynomial f determine the polyno-
mial F uniquely.
(b) If the polynomials f and F are defined by (1.1) and (1.2) and satisfy (1.3),
then the coefficients a, b, c, d satisfy the conditions

|a|+ |c| > 0, |b|+ |d| > 0. (1.14)

(c) If a collection (a,b,c,d, f ,F) of numbers a, b, c, d, and polynomials f , F sat-
isfy (1.3), then so is the collection (λa,λb, λ̄c, λ̄d, f /λ,F) for any complex number
λ �= 0.

(2) Given a polynomial F and numbers a, b, c, and d, satisfying |α|+ |β| > 0, there
exists a unique f satisfying (1.3). Indeed, if α �= 0, then the first n+ 1 equations
of system (1.13) completely determine the coefficients a0,a1, . . . ,an of the poly-
nomial f . If, however, α = 0 and β �= 0, then all the coefficients a0,a1, . . . ,an of
the polynomial f are completely determined by n+ 1 equations of system (1.13)
starting with the second one.

(3) It follows from (1.5) that the roots of g(z) turn out to be the roots of G(z) =
(āz + b̄)F(z)− (c + dz)F∗(z). Also, if α �= 0 and β2 �= 4|α|2, then z0,z1 = 1/z̄0,
where

z0 =
−β+

√
β2− 4|α|2
2α

, (1.15)

are the roots of g(z). Therefore, F and the coefficients a, b, c, d are connected by the
following relations:

(
āz j + b̄

)
F
(
zj
)− (c+dzj

)
F∗
(
zj
)= 0, j = 0,1. (1.16)

If α �= 0 and β2 = 4|α|2, then z1 = z0 is a multiple root of g(z), and, therefore,

(
āz0 + b̄

)
F
(
z0
)− (c+dz0

)
F∗
(
z0
)= 0,(

āz0 + b̄
)
F′
(
z0
)

+ āF
(
z0
)− (c+dz0

)
F∗

′(
z0
)−dF∗

(
z0
)= 0.

(1.17)

Finally, if α= 0 and β �= 0, then the linear function g(z)= βz has the only root z0 = 0.
Hence it follows from (1.5) (see also (1.10)) that

b̄F(0)− cF∗(0)= 0,

d̄F(0)− aF∗(0)= 0.
(1.18)
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2. Functional equations: solubility conditions

Given the polynomial (1.2), consider the solubility problem for the functional equation
(1.3) with respect to unknown coefficients a, b, c, d and a polynomial f . To treat the
above problem, we will use the necessary conditions for the solubility of (1.3) given by
(3.1)–(3.8) (depending on whether the root z0 of g(z) satisfies 0 < |z0| < 1, |z0| = 1, or
z0 = 0).

Assume z0 and z1 to be given and consider system (1.16) with respect to unknown a,
b, c, d. We will try to find a solution to (1.16) in such a way that (1.3) will have a solution
with respect to f . Also, given z0, we will follow the same way regarding system (1.17).

To describe the solubility conditions for the functional equation (1.3), it is convenient
to introduce the notion of a regular point.

A point z is called regular with respect to the polynomial F if the following conditions
are satisfied:

F(z) ·F∗(z) �= 0,
∣∣F(z)

∣∣ �= ∣∣F∗(z)
∣∣, for |z| �= 1,

(n+ 1)
∣∣F(z)

∣∣2 �= 2�[F(z)F
′
(z)z

]
, for |z| = 1.

(2.1)

Observe that the notion of a regular point is introduced with respect to the unit circle.
It follows immediately from the definition of a regular point that if z0 is regular, then so
is z1 = 1/z̄0 and vice versa.

According to the definition of polynomial F∗, the rational function

A(z)= F∗(z)
F(z)

(2.2)

satisfies the identity

A(z) ·A
(

1
z̄

)
≡ 1. (2.3)

In addition, |A(z)| �= 1 for all regular points z,|z| �= 1.
Assume that z0 is a regular point of F, A0 = A(z0), A1 = 1/Ā0, and σ0, σ1 are arbitrary

complex numbers. Consider the linear system

āz0 + b̄ = σ0A0, ā+ b̄z̄0 = σ1A1,

c+dz0 = σ0, cz̄0 +d = σ1,
(2.4)

with unknown a, b, c, and d. It should be pointed out that any solution to system (2.4) is
also a solution to (1.16) for z0 �= 0, as well as a solution to (1.18) for z0 = 0.

For |z0| < 1 system, (2.4) has the unique solution

ā
(

1−∣∣z0
∣∣2
)
= σ1A1− z̄0σ0A0, b̄

(
1−∣∣z0

∣∣2
)
= σ0A0− z̄0σ1A1,

c
(

1−∣∣z0
∣∣2
)
= σ0− z0σ1, d

(
1−∣∣z0

∣∣2
)
= σ1− z̄0σ0.

(2.5)
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With the above a, b, c, and d on hands, the coefficients α, β from formula (1.6) satisfy
the equalities

α
(

1−∣∣z0
∣∣2
)
= z̄0

(∣∣A1
∣∣2− 1

)(∣∣σ0A0
∣∣2−∣∣σ1

∣∣2
)

, (2.6)

β
(

1−∣∣z0
∣∣2
)
=−

(∣∣A1
∣∣2− 1

)(∣∣σ0A0
∣∣2−∣∣σ1

∣∣2
)
. (2.7)

Theorem 2.1. Let z0 with |z0| < 1 be a regular point of the polynomial F, and assume the
numbers σ0 and σ1 to satisfy the condition

∣∣σ0A0
∣∣ �= ∣∣σ1

∣∣. (2.8)

Let, further, a, b, c, and d be defined by (2.5). Then the functional equation (1.3) admits
a solution f (z).

Proof. To begin with, consider the case z0 �= 0. It follows from (2.8) and (2.6) that α �= 0.
Formulae (2.4) and (2.3) provide that z0 and z1 = 1/z̄0 are the roots of the polynomial
g(z) (1.6):

g
(
z0
)= (a+ bz0

)(
āz0 + b̄

)− (c+dz0
)(
c̄z0 + d̄

)= σ̄1Ā1σ0A0− σ0σ̄1 = σ̄1σ0− σ0σ̄1 = 0,

g
(
z1
)= z2

1g
(
z0
)= 0.

(2.9)

On the other hand, the numbers z0 and z1 are the roots of the polynomial

G(z)= (āz+ b̄)F(z)− (c+dz)F∗(z). (2.10)

Therefore, by the Bezout theorem, the rational function

f (z)= G(z)
g(z)

(2.11)

is, in fact, a polynomial satisfying the functional equation (1.5). Now the statement of the
theorem in the considered case follows from Lemma 1.1.

Assume now z0 = 0. The condition (2.8) and equalities (2.6), (2.7) yield α= 0 and β �=
0, that is, g(z)= βz is a linear function. In addition, z = 0 is a root of the polynomial G(z).
Therefore, f (z) = G(z)/g(z) is a polynomial satisfying (1.5), and again the statement of
the theorem in the considered case follows from Lemma 1.1.

Theorem 2.1 is completely proved. �

Assume now that a regular point z0 of the polynomial F belongs to the unit circle
|z| = 1. Given numbers c and d, consider system (1.18) with unknown a, b. By solving
system (1.18) one obtains

āF2 = Δ · c+
(
FF∗ + zΔ

)
d, b̄F2 = (FF∗ − zΔ

)
c− z2Δd, (2.12)
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where

Δ= znΔ0, Δ0 = (n+ 1)|F|2− 2�[F̄F′z],

F = F(z), F′ = F′(z), F∗ = F∗(z), z = z0.
(2.13)

Take the coefficients a, b, c, and d satisfying (2.12) and define the polynomial g(z) by
means of formula (1.6). Formula (2.12) provides the following relations for α and β:

zα|F|4 = Δ0
[|F|2(|c|2−|d|2)−Δ0|c+ zd|2], (2.14)

β|F|4 = 2Δ0
[
Δ0|c+ zd|2−|F|2(|c|2−|d|2)]. (2.15)

Theorem 2.2. Let z0,|z0| = 1 be a regular point of the polynomial F and let the numbers c,
d satisfy the condition:

Δ0
∣∣c+ z0d

∣∣2 �= ∣∣F(z0
)∣∣2(|c|2−|d|2). (2.16)

If the coefficients a, b, c, and d satisfy relation (2.12), then the functional equation (1.3) has
the unique solution (a,b,c,d, f ).

Proof. It follows from (1.6) and (2.15)–(3.1) that β = −2αz0 �= 0. Since the coefficient β
is real and z0z̄0 = 1, one obtains the equality ᾱ = αz2

0, that is, g(z) ≡ α(z− z0)2. At the
same time, z0 is a multiple root to the polynomial G(z) = (āz + b̄)F(z)− (c + dz)F∗(z).
Therefore, the rational function f (z) = G(z)/g(z) is, in fact, a polynomial satisfying the
functional equation (1.5). To complete the proof of Theorem 2.1 it remains to apply
Lemma 1.1. The theorem follows. �

Combining Theorems 2.1 and 2.2 with property (2) of solutions to (1.3) one can effec-
tively compute the numbers a, b, c, d and the coefficients a0,a1, . . . ,an of the polynomial
f . Indeed, assume, for instance, that z = 0 is a regular point of the polynomial F. Then
the regularity condition for the point z = 0 along with condition (2.8) take the form

b0 · bn+1 �= 0,
∣∣b0

∣∣ �= ∣∣bn+1
∣∣,

∣∣cbn+1
∣∣ �= ∣∣db0

∣∣; (2.17)

also, the equalities (2.6) and (2.7) take the form

ābn+1 = db̄0, b̄b0 = cb̄n+1. (2.18)

In this case the leading coefficient α of the polynomial g(z), that is determined by a,
b, c, d, is equal to zero. Hence, in order to determine unknown coefficients a0,a1, . . . ,an
from system (1.13), one has

0= b̄b0− cb̄n+1,

βa0 = āb0−db̄n+1 + b̄b1− cb̄n,

βak−1 = ābk−1−db̄n−k+2 + b̄bk − cb̄n−k+1, k = 2, . . . ,n,

βan = ābn−db̄1 + b̄bn+1− cb̄0,

0= ābn+1−db̄0.

(2.19)
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Observe that the first and the last equations in (2.19) coincide with (2.18). According to
(2.17) and (2.18), one obtains the following relation for the coefficient β of the polyno-
mial g(z):

β =
(∣∣bn+1

∣∣2−∣∣b0
∣∣2
)⎛⎝ |c|2∣∣b0

∣∣2 −
|d|2∣∣bn+1

∣∣2

⎞
⎠ �= 0. (2.20)

Thus the coefficients a0,a1, . . . ,an of the polynomial f can be uniquely determined from
system (2.19).

It follows from Theorems 2.1 and 2.2 that the existence of a regular point for the poly-
nomial F is a sufficient condition for the existence of a solution to the functional equation
(1.3).

It turns out that the existence of a regular point for the polynomial F is intimately
connected to the linear (in)dependence of the polynomials F and F∗ in the complex
linear space of (complex) polynomials. To be more precise, there exists a regular point for
F if and only if F and F∗ are linearly independent. This statement is a direct consequence
of the following lemma.

Lemma 2.3. The following conditions are equivalent:
(a) F and F∗ are linearly independent in the complex linear space of (complex) polyno-

mials;
(b) the identity |F(z)| ≡ |F∗(z)| is satisfied;
(c) the identity

2Re
[
F(w)F

′
(w)w

]≡ (n+ 1)
∣∣F(w)

∣∣2 ∀|w| = 1 (2.21)

is satisfied.

Proof. Assume (a) is satisfied: F∗ = C ·F for some nonzero complex number C. Then, ac-
cording to the definition of the polynomial F∗, one has the following equality for the co-
efficients b0,bn+1 : b̄0 = Cbn+1, b̄n+1 = Cb0, from which it follows that |C| = 1, and there-
fore, |F∗(z)| ≡ |F(z)|.

Thus (a) implies (b).
Assume, further, |F(z)| ≡ |F∗(z)|. Applying to this identity the change of coordinates

z = rw, r ≥ 0, |w| = 1 and using the definition of F∗, one obtains

r2n+2F
(
r−1w

)
F
(
r−1w

)≡ F(rw)F(rw). (2.22)

Differentiating the last identity with respect to the real argument r at the point r = 1 we
obtain (c).

Thus (b) implies (c).
Finally, assume that (c) is satisfied and show that F and F∗ are linearly dependent.

Consider the function F(w)/F(w) on the unit circle |w| = 1, where F(w) �= 0, and show
that this function has a continuous extension over the unit circle. Assume that F vanishes
at some point w0 belonging to the unit circle. Then we have the following representation:
F(z)= (z−w0)kF1(z), where k ≥ 1 is an integer, F1(w0) �= 0.
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The conditions

lim
w→w0

w̄− w̄0

w−w0
=− 1

w2
0

, |w| = 1, (2.23)

yield

lim
w→w0

F(w)
F(w)

= (−1)kw−2k
0

F1
(
w0
)

F1
(
w0
) , |w| = 1, (2.24)

providing the continuity of the function F(w)/F(w).
Differentiating the function wn+1F(w)/F(w), w = exp(it) with respect to t at the points

where F(w) �= 0 and using condition (c), one obtains

d

dt

wn+1F(w)
F(w)

= iwn+1

{
(n+ 1)F(w)−F′(w)w

F(w)
− F(w)F′(w)w

F2(w)

}
= 0. (2.25)

The above equality along with the continuity of the function wn+1F(w)/F(w) on the unit
circle yield that the latter function is, in fact, constant, that is wn+1F(w) = C · F(w) or,
equivalently, F∗(w) = C · F(w), |w| = 1. Therefore, the coefficients of the polynomials
C ·F and F∗ coincide. The linear dependence of the polynomials F and F∗ is established
and the proof of Lemma 2.3 is complete. �

3. An algorithm for computing the number of roots in the unit circle

In what follows we will be interested in the case when the coefficients a, b, c, d satisfy the
following additional condition:

|a+ bw| ≥ |c+dw|, |w| = 1. (3.1)

Lemma 3.1. Linear functions a+ bz, c+dz satisfy condition (3.1) if and only if the numbers
α= āb− c̄d, β = |a|2 + |b|2−|c|2−|d|2 satisfy the inequality

2|α| ≤ β. (3.2)

Proof. The equality

|a+ bz|2−|c+dz|2 = |a|2 + 2�(ābz) + |b|2|z|2−|c|2− 2�(c̄dz)−|d|2|z|2 (3.3)

yields, for z = eit, t ∈ [0,2π],

|a+ bz|2−|c+dz|2 = β+ 2�[αeit]. (3.4)

Combining this with the equality

min
t
�[αeit]=−|α|, (3.5)

one obtains the equivalence of conditions (3.1) and (3.2). The lemma is proved. �
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Observe that Lemma 3.1 allows one to verify effectively the validity of condition (3.1)
for the coefficients a, b, c, d determined by regular points of the polynomial F.

Lemma 3.2. Let z0,|z0| ≤ 1, be a regular point of the polynomial F. Assume that the numbers
a, b, c, d are determined by equalities (2.5) with

(∣∣A0
∣∣− 1

)(∣∣σ0A0
∣∣−∣∣σ1

∣∣) > 0,
∣∣z0

∣∣ < 1, (3.6)

or that they satisfy (2.12) with

Δ0

[
Δ0
∣∣c+ z0d

∣∣2−∣∣F(z0
)∣∣2(|c|2−|d|2)] > 0,

∣∣z0
∣∣= 1. (3.7)

Then a, b, c, d satisfy (3.1).

The statement following below provides an important property of solution (a,b,c,d, f )
to the functional equation (1.3).

Theorem 3.3. Assume that the polynomial F does not contain roots on the unit circle |z| =
1. Suppose, further, that the coefficients a, b, c, d satisfy condition (3.1) and

|ad− bc|+β > 0, β = |a|2 + |b|2−|c|2−|d|2. (3.8)

Then the polynomial f as well as any polynomial of the parameterized family

Gλ(z)= (a+ bz) f (z) + λ(c+dz) f ∗(z), 0≤ λ≤ 1, (3.9)

does not contain roots on the unit circle |z| = 1.

Proof. Arguing indirectly, one obtains the existence of numbers w,|w| = 1, and λ∈ [0,1]
such that

Gλ(w)= (a+ bw) f (w) + λ(c+dw) f ∗(w)= 0. (3.10)

Since w̄w = 1, one has

f ∗(w)=wn f
(

1
w̄

)
=wn f (w), (3.11)

from which it follows that

(a+ bw) f (w) + λ(c+dw)wn f (w)= 0. (3.12)

By condition,

G1(w)= (a+ bw) f (w) + (c+dw)wn f (w)= F(w) �= 0, (3.13)

therefore, f (w) �= 0 and 0≤ λ < 1. Now, using the equality (3.12), we obtain

|a+ bw| = λ|c+dw|, (3.14)
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from which it follows (see Lemma 3.1) that |a+ bw| = 0, |c+ dw| = 0. The latter equal-
ities yield |a| = |b|, |c| = |d|, ad− bc = 0 that contradicts condition (3.8) and the result
follows. �

Denote by κ(F) the number of roots of the polynomial F (counted according to their
multiplicity) belonging to the open unit disc |z| < 1. As noted, the computing κ(F) maybe
a reduction to the generalized Rauss-Hurwitz problem of determining the number of
roots of a polynomial in a semiplane (see, for instance, [1–3]). The above results allow us
to construct an iterative process for computing κ(F), namely, the following theorem.

Theorem 3.4. Assume that the polynomial F does not have roots on the unit circle |z| = 1.
If the polynomials F and F∗ are linearly dependent, then

κ(F)= n+ 1
2

, (3.15)

otherwise

κ(F)= κ
(
G0
)
, (3.16)

where G0(z) = (a+ bz) f (z) and the collection (a,b,c,d, f ) satisfying (3.1), (3.8) is a solu-
tion to the functional equation (1.3).

Proof. Assume the polynomials F and F∗ to be linearly dependent, that is F∗(z)≡ CF(z).
Then the following presentation takes place:

F(z)= bn+1
(
z− z1

)α1 ···(z− zm
)αm(z− 1

z̄1

)α1

···
(
z− 1

z̄m

)αm
, (3.17)

where

∣∣zs∣∣ < 1, s= 1, . . . ,m, 2
(
α1 + ···+αm

)= n+ 1. (3.18)

From this it follows that the number n+ 1 is even and

κ(F)= α1 + ···+αm = (n+ 1)
2

. (3.19)

Assume now the polynomials F and F∗ to be linearly independent. Then, by
Lemma 2.3, F admits a regular point z0,|z0| ≤ 1. Therefore, by Lemmas 1.1, 2.3, and 3.2,
there exists a collection (a,b,c,d, f ) satisfying conditions (3.1), (3.8) and being a solution
to the functional equation (1.3). Combining Theorem 3.3 and the Rouche theorem one
obtains κ(F)= κ(G0), where G0(z)= (a+ bz) f (z).

The proof of Theorem 3.4 is complete. �

It is easy to see that the number κ(G0) satisfies the equality

κ
(
G0
)= κ( f ) + ε, (3.20)

where ε = 1 for |a| < |b| and ε = 0, otherwise. A simple argument shows that if the num-
bers a, b, c, d are determined by a regular point z0, then ε can be evaluated according to
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the formulae

ε = 1 + sign
(∣∣F∗(z0

)∣∣−∣∣F(z0
)∣∣)

2
,

∣∣z0
∣∣ < 1, ε = 1− sign

(
Δ0
)

2
,

∣∣z0
∣∣= 1.

(3.21)

Thus, under the assumptions of Theorems 2.1 and 2.2, one has

κ(F)= 1 + sign
(∣∣F∗(z0

)∣∣−∣∣F(z0
)∣∣)

2
+ κ( f ),

∣∣z0
∣∣ < 1, (3.22)

κ(F)= 1− sign
(
Δ0
)

2
+ κ( f ),

∣∣z0
∣∣= 1. (3.23)

Formulae (3.22) and (3.23) give rise to a recurrent procedure for the computation of κ.
Indeed, they allow one to compute κ(F), where F is a polynomial of degree n+ 1, based on
κ( f ), where f is a polynomial of degree n and its coefficients are completely determined
by coefficients of F.

Observe that if z0 = 0, then formula (3.22) takes the form

κ(F)= 1 + sign
(∣∣bn+1

∣∣−∣∣b0
∣∣)

2
+ κ( f ). (3.24)

Here the coefficients of f can be determined from system (2.19).

4. Criterion for the absence of roots on the unit circle

Given the coefficients of the polynomials F and F∗, one can construct the following (2n+
2)× (2n+ 2) matrix:

MF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0 b1 · bn+1 · 0
b̄n+1 b̄n · b̄0 · 0

0 b0 · bn · 0
0 b̄n+1 · b̄0 · 0
· · · · · ·
0 0 · b1 · bn+1

0 0 · b̄n+1 · b̄0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.1)

The matrix MF coincides with the Sylvester matrix of F and F∗ (up to a permutation
of its lines). Therefore, det(MF) coincides (up to a sign) with the resultant R(F,F∗) of
the polynomials F and F∗. Let zs, s= 1, . . . ,n+ 1 be all the roots of F (counted according
to their multiplicities). By condition, F(0) = b0 �= 0, therefore, all the roots are different
from zero. By definition of the polynomial F∗, the numbers z̄−1

s , s= 1, . . . ,n+ 1, are roots
of F∗. Hence (cf. [5]), R(F,F∗) can be represented as follows:

R
(
F,F∗

)= b̄n+1
0 bn+1

n+1

∏
s,t

(
zs− 1

z̄t

)
. (4.2)

Formula (4.2) gives rise to the following criteria for the polynomial F to have no roots
on the unit circle.
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Theorem 4.1. Let det(MF) be different from zero. Then F does not have roots on the unit
circle |z| = 1.

Assume that a collection (a,b,1,1, f ) of the numbers a,b,c = d = 1 and a polynomial
f satisfy the functional equation (1.3) and the condition α≡ āb− 1= 0. Using a, b define
the following square matrix of order 2n+ 2:

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · 0 0 0 0
−b̄ 1 −ā 1 · 0 0 0 0
1 −a 1 −b · 0 0 0 0
0 0 −b̄ 1 · 0 0 0 0
0 0 1 −a · 0 0 0 0
· · · · · · · · ·
0 0 0 0 · −b̄ 1 −ā 1
0 0 0 0 · 1 −a 1 −b
0 0 0 0 · 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.3)

It is easy to see that det(P) satisfies the following condition:

detP = (−1)n−1βn−1(1−|a|2), (4.4)

where β = |a|2 + |b|2− 2.
Let Mf be a square matrix of order 2n determined by the polynomial f . Using the

matrices MF , Mf , and P one can express a connection between the coefficients of poly-
nomials F and f , given in system (2.19), by the following matrix equality:

PMF =

⎛
⎜⎜⎜⎜⎜⎜⎝

b0 b1 b2 · 0
0 0
0 βMf 0
· ·
0 · b̄2 b̄1 b̄0

⎞
⎟⎟⎟⎟⎟⎟⎠
. (4.5)

Consider the matrix written in the right-hand side of (4.5) more intently: (i) its first
and last lines coincide with the corresponding lines of the matrix MF ; (ii) the remaining
entries (except for zeros related to the first and the last column) are filled out by the
elements of the matrix β ·MF . Therefore, equality (4.5) connects det(MF) and det(Mf )
as follows.

Theorem 4.2. Let c = d = 1 and assume that the numbers a, b along with coefficients
a0, . . . ,an of the polynomial f satisfy (2.19), β �= 0. Then one has

detMF = (−1)n+1
(∣∣bn+1

∣∣2−∣∣b0
∣∣2
)
βn detMf . (4.6)

Proof. Combining equality (4.5), the above formula for det(P) with the standard deter-
minant properties yields

detMF =
∣∣b0

∣∣2
det

(
βMf

)
detP

= (−1)n+1
(∣∣bn+1

∣∣2−∣∣b0
∣∣2
)
βn detMf . (4.7)
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Assume a collection (a,b,1,1, f ,F) of the numbers a,b,c = d = 1 and polynomials f , F
to satisfy the functional equation (1.3) and the condition α≡ āb− 1= 0. Consider a se-
quence of collections (ak,bk,1,1,Fk) of numbers ak,bk,ck = dk = 1 and polynomials

Fk(z)= b0k + b1kz+ ···+ bkkz
k, b0k �= 0, bkk �= 0, (4.8)

of degree k, satisfying the functional equation

(
ak + bkz

)
Fk(z) + (1 + z)

(
Fk
)∗

(z)= Fk+1(z), k = n,n− 1, . . . ,1, (4.9)

and the condition

αk ≡ akbk − 1= 0, (4.10)

where an = a, bn = b Fn = f , Fn+1 = F. By Theorem 2.1, if z = 0 is a regular point of the
polynomial

Fk+1(z)= b0k+1 + b1k+1z+ ···+ bk+1,k+1z
k+1, (4.11)

that is,

b0k+1 · bk+1,k+1 �= 0,
∣∣b0k+1

∣∣ �= ∣∣bk+1,k+1
∣∣, (4.12)

then the system of (4.9), (4.10) has the unique solution (ak,bk,Fk). Moreover,

ak = b0k+1

bk+1,k+1
, bk = 1

ak
. (4.13)

This along with formula (3.24) justify the following relation:

κ(F)=
n+1∑
k=1

1 + sign
(∣∣bkk∣∣−∣∣b0k

∣∣)
2

. (4.14)

�

5. Application for computing the rotation of a plane vector field

(1) Consider a vector field Φ(x, y)= {p(x, y),q(x, y)}, where

p(x, y)=
∑
k, j

ak jx
k y j , q(x, y)=

∑
k, j

bk jx
k y j (5.1)

are polynomials in real variables x and y with real coefficients. Assume that Φ(x, y) �= 0,
(x, y)∈ S= {(x, y) : x2 + y2 = 1}. We are interested in computing the rotation γ(Φ,S).

Recall the definition of rotation. Consider the complex presentation of the field Φ:

p+ iq = exp
(
iθ(t)

)∣∣p+ iq
∣∣, p+ iq = p(cot t, sin t) + iq(cos t, sin t), t ∈ [0,2π],

(5.2)
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where θ(t) is a continuous function. Then (cf. [4])

γ(Φ,S) := 1
2π

(
θ(2π)− θ(0)

)
. (5.3)

The following statement reduces the computation of rotation of a plane vector field to
the computation of the number of roots in the unit disc of some polynomial.

Lemma 5.1. Given a (polynomial) plane vector field Φ, there exists a unique pair (m,F),
where m is an integer and F is a polynomial in complex variable with complex coefficients,
F(0) �= 0, satisfying the following condition:

F(z)= zm
(
p(x, y) + iq(x, y)

)
, z = x+ iy, |z| = 1. (5.4)

Proof. Take a polynomial P(x, y)= p(x, y) + iq(x, y) in real variables x, y. The change of
variables

(x, y)−→
(

1 + z2

2z
,
i
(
1− z2

)
2z

)
(5.5)

determines the rational function in complex variable z:

R(z)= P

(
1 + z2

2z
,
i
(
1− z2

)
2z

)
. (5.6)

The function R(z) can be represented in the form

R(z)= F(z)
zm

, (5.7)

where F(z) is a polynomial satisfying the condition F(0) �= 0 and m is an integer. Since

x = 1 + z2

2z
, y = i

(
1− z2

)
2z

, z = x+ iy, |z| = 1, (5.8)

the pair (m,F) satisfies (5.4).
To complete the proof of Lemma 5.1, it remains to establish the uniqueness of the pair

satisfying (5.4). Suppose that (m1,F1) is another pair satisfying

F1(z)= zm1
(
p(x, y) + iq(x, y)

)
, z = x+ iy, |z| = 1, (5.9)

and F1(0) �= 0. Assuming, without loss of generality, that m1 ≥m, one obtains the follow-
ing equalities for F1 and zm1−mF:

F1(z)= zm1P(x, y)= zm1−mzmP(x, y)= zm1−mF(z) (5.10)

for z = x + iy, |z| = 1. From this it follows that F1 and zm1−mF coincide. Further, by as-
sumption, F(0) �= 0, F1(0) �= 0, hence m1 =m. Thus F1 = F and Lemma 5.1 is completely
proved. �
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Let Φ and F be as in Lemma 5.1. Then γ(Φ,S) and κ(F) satisfy the following relation:

κ(F)=m+ γ(Φ,S). (5.11)

(2) Assume a field Φ to be given in a parametric form: Φ(t)= {p(t),q(t)}, where p(t),
q(t) are real continuous 2π-periodic functions. Suppose Φ(t) �= 0, t ∈ [0,2π]. The field Φ
may be considered as the one defined on the unit circle S, by assigning to each point x =
cos t, y = sin t the vector {p(t),q(t)}. Therefore, the rotation γ(Φ,S) is correctly defined
on S. Assuming the functions p(t), q(t) to be smooth enough, one can assign to the field
Φ the Fourier series of the complex function P(t)= p(t) + iq(t):

P(t)=
∞∑

k=−∞
ck exp(ikt). (5.12)

Since the series (5.12) converges uniformly and Φ does not vanish, there exists an integer
N such that for all t ∈ [0,2π] the following estimate is true:

∣∣∣∣∣P(t)−
N∑

k=−N
ck exp(ikt)

∣∣∣∣∣ <
∣∣P(t)

∣∣. (5.13)

Set m :=max{−k : |ck| > 0, |k| ≤N} and consider the polynomial

F(z)=
N+m∑
k=0

ck−mzk. (5.14)

Using the same arguments as in Section 1 it is easy to check that γ(Φ,S) and κ(F), where
F is defined by (5.14), satisfy (5.11).
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