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We consider a quasi-linear parabolic system with respect to unknown functions u and v
on a bounded domain of n-dimensional Euclidean space. We assume that the diffusion
coefficient of u is a positive smooth function A(u), and that the diffusion coefficient of
v is a positive constant. If A(u) is a positive constant, the system is referred to as so-
called Keller-Segel system. In the case where the domain is a bounded domain of two-
dimensional Euclidean space, it is shown that some solutions to Keller-Segel system blow
up in finite time. In three and more dimensional cases, it is shown that solutions to so-
called Nagai system blow up in finite time. Nagai system is introduced by Nagai. The
diffusion coefficients of Nagai system are positive constants. In this paper, we describe
that solutions to the quasi-linear parabolic system exist globally in time, if the positive
function A(u) rapidly increases with respect to u.

Copyright © 2006 T. Senba and T. Suzuki. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Our purpose is to show the well-posedness of a system of parabolic equations proposed
in mathematical biology. Its origin is in Keller and Segel [9], describing the chemotac-
tic aggregation of cellular slime molds which move preferentially toward relatively high
concentrations of a chemical secreted by the amoebae themselves. Here, we study the
simplified system,

u =V - (Au)Vu—yuVv) inQx(0,00),

™ =dAv—av+bu inQ x(0,0),

ou ov
5 = 3 =0 ondQx(0,00),

u(-,0) =up, v(-,0)=vo inQ,

(1.1)
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2 A quasi-linear parabolic system of chemotaxis

where Q C RN (N = 1,2,3,...) is a bounded domain with smooth boundary 9Q. uy and
vp are smooth non-negative functions on Q satisfying
dug _ dvo _ dAwg

uy#0 1inQ, 3 "3, " 5y =0 onodQ. (1.2)

7, X> d, a and b are positive constants, and A(-) is a smooth function defined on [0, o).

If A(-) is a positive constant, this system describes the mean field of many
self-gravitating particles, and the cases 7 > 0 and 7 = 0 are referred to as Keller-Segel sys-
tem and Nagai system, respectively. In this case, if N = 2, there is a threshold of the initial
value in L' norm for existence of the solution globally in time, denoted by cy, so that if
llugll1 < cx, then the solution exists globally in time and is bounded ([2, 5, 11, 14]), while
blowup of the solution occurs in finite time in the case of || ugll1 > ¢« ([8, 11, 12, 17]). This
phenomenon was conjectured by [4] and gave a motivation of our previous works on the
mass quantization of collapses in the blowup solution. See [19, 20] for more details. On
the other hand, in [13, 16], Nagai and the first author studied

u =V - (Vu—yuVe¢(v)) inQx(0,0), 3

0=dAv—av+bu inQx(0,0), (1.3)
and gave necessary and sufficient conditions for the existence of the solution globally in
time, assuming that the sensitivity function ¢ = ¢(v) takes the form ¢(v) = v? for p >0
or ¢(v) = logv. Also, Biler [3] studied the same problem for more general ¢. However,
system (1.1) has not been studied so much and in this paper, we show that the solution
exists globally in time if

infA() >0, liminf 2% 59 (1.4)

U— 00 u

hold for some y > max((N — 2)/N,0). Those conditions imply
Aw)zau+ (u=0) (1.5)

for some a >0, >0, y € (max(0,(N — 2)/N),min(y,1)). Henceforth, we put 1 =d =
a = b =1 for simplicity.

To state the main theorem, we need a few notations. First, given T € (0, 0], we set
Qr = Q% (0,T) and take the function spaces H*(Q) and H?(Qr) as in [10], where € is
a non-integral positive number. That is, H¢(Q) denotes the Banach space of continuous
functions {w(x)} defined on Q, provided with continuous derivatives up to order [¢] and
the finite

[€] 5 5 ’ [€]
© _ ;10 G | Diw(x) = Ddw(x') | 5
Iwlg = (w)g +Z(W)Q = Z sup E3 Ix—x’\"f’i[f] +Z ZAsup|wa(x)|,
j=0 |81=[] X' +€Q j=0 15]=j*€4

(1.6)

where & = (81,85,...,0n), 18] = 8 + 8 + -+ + 8y, and D? = DID% - - DX, Next,
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H%Y2(Qr) denotes the Banach space of continuous functions {w(x,t)} defined on Qr,
provided with continuous derivatives {D{D,‘gw(x, t)} for 2r + |8| < € and the finite

[€]
(4 I4 /2 i)
wlg) = ()i, + Wi + > (w)g)
j=0

=S ap | DiDw(x, 1) — DiDiw(x',1) |
2r+[8]=[£] (¥s0): (1) €Qr |l — x" |6~ 18]
/ 1.7
_—_— sup | D;D2w(x,t) — DD3w(x,t') | (1.7)
(ot L(xD)EQr |t — ¢ |(e~LeD/2
2+ | 8] =le]
(2]
+2, 2 sup |DiDiw(xt)l.
j=02r+18|=j (61 EQr
Then, the first theorem guarantees the local well-posedness of (1.1).
THEOREM 1.1 (time-local solution). If (1.2) holds and
infA(u) = >0 (1.8)

in (1.1), then there is T >0 such that (1.1) has a unique classical solution (u,v) in Qr
satisfying

|u|é§9<+00, IVIZQJ;0<+oo (1.9)

for some 8 € (0,1).

The main theorem is now stated as follows.
THEOREM 1.2 (time-global solution). If (1.2) and (1.4) hold in (1.1), then it has a unique
classical solution (u,v) in Qo satisfying

|u|%{f<+oo, |v|6;9<+oo (1.10)

for some 8 € (0,1).

In Section 2, we consider some linear system related to (1.1). By using some estimates
of the solutions and a standard contraction mapping principle, we show Theorem 1.1.

In Section 3, we introduce Lyapunov function of (1.1). By using the Lyapunov func-
tion, a maximal regularity in [6] and Moser’s technique in [1], we show Theorem 1.2.

2. Time local solution

Wetake T >0, p>N+2,and € € (0,1 — (N +2)/p). Given

ue H*2(Qr) = {w € H2(Qr) | Vou € HAY? (@)N}) (2.1)



4 A quasi-linear parabolic system of chemotaxis
we apply [10, Theorem IV.5.3] and get the unique solution
(U,v) € H3+e,(3+e)/z(@)2 (2.2)
to the system
U =V-(Aw)VU-UVv) inQr,

vw=Av—v+u inQrp,

2.3)
U v (
> "3 =0 ondQx(0,T),
U(-,0) =up, v(-,0)=vy inQ.
Thus, we can introduce the operator % on {w € H'*%“2(Qr) | w = 0 in Qr} by
Fu="U. (2.4)
Let
B(M,T) = {u € H'"%2(Qr) n C([0,T]; W>(Q)) | u=0in Qr,
) (2.5)
ou/dv =0 on 0Q x [0,T], 0mtaxT(||Au||§.|_ lulb)"” ﬁM}
for
1/p
M =27 ([|Auo| [+ |luo|[5) (2.6)

where || - |l and || - [|;n,4 denote the standard norms in LP(Q2) and W"?(Q)), respectively.
Henceforth, C; (i = 1,2,3,4,5) denote positive constants determined by M and T,
which are monotone increasing in 7. First, we show the following.

LEmMA 2.1. Ifu € B(M,T), then the solution v to

v=Av—v+u inQr, %=0 on dQ x (0,T) (2.7)
satisfies that
max (|[VAv( 0], +lv(0ll,) < C. (2.8)

Proof. Let Ay, be the Laplacian with homogeneous Neumann boundary condition, re-
alized as an m-accretive operator in L1(Q)), where g € (1, 0). Its domain is given by

D(Axy) = {w e W(Q) | aa—”: ~0 on ao}, (2.9)

and henceforth we will write it as Ay for simplicity. Then, —Ay + 1 generates the analytic
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semi-group {e®~V}, 4 ([7]), and it holds that

t
V(1) = e Dty +J eIy (L 6)ds. (2.10)
0
On the other hand, we have

I(=An +1)*?wl], < G (2.11)

from the assumption, and if u € B(M, T'), then it holds that u(-,t) € D(Ay) and

(=an+ D0, < (lauC, 012+ [luc-ol2) " < m (2.12)

for t € [0, T]. Thus, we have from (2.10), (2.11), and (2.12) that

t
(= an+1)"*v(, 1)), < c2+j (= Ay +1) 20D (= Ay +1)u(-,5)]|, ds
0

t
Cs 1
< chrJ0 des <C+ 2ﬁcSM,
(2.13)
and in particular,
IVAv(, 0], < Ca (2.14)
follows for t € [0, T]. It also holds that
llv(,0ll, = Cs (2.15)
and the proof is complete. O
Now, we show the following.
LEMMA 2.2. There exists T, > 0 such that
%B(M,T) Cc B(M,T) (2.16)

holds for any T € (0, Ty ].

Proof. Henceforth, C; (i = 6,7,8,...,20) denote positive constants depending only on M.
We have W2P(Q) ¢ Wh*(Q) and it holds that

Osups(||u(-,t)||l)oo+||v(-,t)||1)w) <G (2.17)
<t<

for u e B(M,S) if S € (0,1].
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From the first equation of (2.3), we obtain that

pdtj |U|de—J V- (A(u)VU-UVY)|U|P2Udx
=—(p—1)f A(u)IUIP’ZIVUlzdx+(p—1)J |UIP2UVy - VUdx
Q Q
s—ﬁ(p—l)J IUIP‘ZIVUIde+(p—1)J \U1P1|9v] |V U | dx
Q Q

<= 2B(p=1) [ 1UIP2IVUPdx+ G [ [VrPIUIPdx
Q Q
(2.18)

We have W>?(Q) c H'*¢(Q), and hence Lemma 2.1 implies the boundedness of Vv.
Therefore, it follows that

ij IUIdesCSJ \UIPdx. (2.19)
dt Q Q

The first equation of (2.3) implies also that

2 —l)dt,[ |A UIde——J |AU|P72AU - AU, dx

J VU, V(|AU[P2AU) dx

(2.20)
—L)VUt - (JAUP=2AVU)dx

- —L) [V(V - (A@)VU - UVv)) - VAU]IAU|P-2dx.

Here, we have
V{V- (A(W)VU - UVv)}
= A(W)VAU + (AU)VA(u) + V(VA(u) - VU)
—V(VU-Vv)— (Av)VU — UVAy
N OVA(u) oU
A(u)VAU + (AU)VA(u) Z % o (221)

0A(1) VU < 9VU oy < 9U aVv
Z ox; ox; ; ox; ox; ax, 8x1

—(AV)VU - UVAv

=I1+II+111+1V -V -VI-VII-VIII
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and those terms are estimated as follows:

—L}(I- VAU)|AU P 2dx < —ﬁJQWAUlzIAUIP’de,
- L(n- VAU)|AUP-2dx

= —JQ (VA(u) - VAU)|AU|P2AU dx

< Col|A =001 - JQ IVAU| AU Ldx

< %L IVAURIAUP2dx + Co JQ |AU|Pdx,

—J (II1 - VAU)|AU|P2dx
Q

N
<14l o Jo S
i,j=

#1147 = ooy | I VHPIVUIIV AU 1P 2

*u ,2
IVU||IVAU||AU|P*dx

1 ax,‘axj

< Cro(lAully + 1ull®) P 1V U

1/2
: {j VAUIZIAUIPde} AU P
Q

1/2
+cmc§||VU||p” IVAUIZIAUIP’zdx} AU~
Q
< %L IVAU2|AUIP 2dx+ Cyi (IAU S + U 15),

—J (IV - VAU)|AU|P~2dx
Q

N

22U
<[IA ||~ v VAU||AUP%d
<Al ([O,CGDJQ| u|<ijz1 ax,»aij' IAU|P2dx
N p 1/p
U
< CellA" |1 d
< CellA'lly (lo,CG]){JQ<ijZ_I ax,-axj') x}

172
H IVAUIZIAUIP‘zdx} AUy
Q
< £ [ \vavriavias cotiauig +1ui),

—I (-V -VAU)IAU|P2dx
Q

N

SL;'VVl(L.Z_

U
axiaxj

’) IVAU||AU|P2dx
1

7

(2.22)
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<af ], (% )pdx}”p

1/2
: U IVAUlzlAUIPde} IAU|P~>"
Q

*U
ax,»axj

< 1%[0 VAU RIAUIP2dx + Co (IAUTS + 1U11),

—J (—VI-VAU)|VAU|P2dx
Q

N
sj |VU|( s
Q ij=1

1/2
sc14|\v||2,p||VUHwHQ|VAU|2|AU|P*2dx} 1au| P2

2

v

0
0x;0x;

D |IVAU||AU|P2dx

< l%j IVAU2|AUIP 2dx+ Cis (AU + 1 US),
Q (2.23)
—J (=VII-VAU)|AU|P2dx
Q
sj \AVI|VU||VAU||AU|P-2dx
Q

1/2
_ =2)/
< il 19U | [ 1vavPIaUIP2ax] javiy "

< L[ \vavriaviars o (lauig +1uih),
—JQ(—VHI-VAU)IAUIP*Z
< L) UIVAY||VAU||AUP-2dx
(p-2)2

1/2
s{JQ|VAU|2|AU|P-2dx} 19 AvI IAUIE 22U

< 1%[0 VAURIAUIP2dx + Cis (IAU S + U 1),

Those inequalities are summarised as

1 d

3
T JQ |AU|Pdx + 1_[5 L} IVAURIAUIP2dx < Cio (IAU IS + 1UIS),  (2.24)

and therefore, we have

d
S IAUIZ+11U15) < Cuo(I1AUIG + 1UIIE) (2.25)
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by (2.19). Taking
T, = min (logZ’S)) (2.26)
C
we have for T € (0, T ] that

1
sup. (AU CDIE+UCBIE) < eT (11Augllh + lluollf) < SMPeT < MP,
O<t=<

(2.27)
and the proof is complete. O
Next, we show the following.
LemMA 2.3. Thereis T, € (0, T:] satisfying
1
Fur (- 1) = Fur (. DIIF < = D —w (- DlP
0132)7{2||J*’MI( 1) = Fup (-, 1] < ZOgngul( 1) = (-], (2.28)

for any uy,uy € B(M, T).

Proof. Wetake T € (0,T,] and u; € B(M, T) for i = 1,2. Let U; and v; be the solutions to
(2.3) for u = u;. Then, it holds that

va(t) —vi(s,t) = re(sft)m”fl)(ul(us) —u(+,5))ds (2.29)
0
and we have
[|V (va (1) _Vl('>t))||p < Czlx/zosup |ua(-,s) — Ul(',5)||p- (2.30)
<s<t

Next, we note
GO0 = U0 = [ (U= V) U= U317 (s = Ur)
— [ A7 [(AG) = A(0) VU] + 9 - [4 () V (U - 1)
—V - [(U=U) V0] = V- [UiV (2 = v) [} | Uz = U1 | P72 (U, - Uy ) dx
= ~(p=1) | (Alw) = A@)[VU - V(U= U)] [Us = Uy | s
(P [ AG) V(U= V)PV - 0] P
+(p- 1)L)[W2 V(U = U] Uz = U P72 (Us — Uy ) dx

+(p— I)JQUl[V(Vz—Vl) V(U= U] | Uz = Uy [P dx

= —IX-X+XI+XIIL
(2.31)
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Those terms are estimated by Lemmas 2.1 and 2.2 in the following way:

X < (p— DIA lz=(o,copl 42 _”1Hp||VU2||w
1/2
. {L) |V(U,—-Uy) |2\U2— U, |P—2dx} [|U; - U1||;p—2)/2
_1 )
SMJQ|V(U2_U1)|2|U2—U1|‘D 2.
+C22(HU2 - U1||§+||u2_ul||§)’

-X< —ﬁ(p—l)L) |V(U2— U1) |2|U2— U1|P72dx,

1/2
|XI|5(P—1)||VV2||OO{J V(-0 U -0 PR [l )

ﬁ(P J |V Uz—Ul | |U2—U1|P 2dx+C23||U2 U1||
1/2
|XII|§(p—1)||U1||m{J |v(U2—U1)|2|UZ—U1|P‘2dx}

2)/2
lw-uill ™"

< (p_l)ﬁj |V(U2—U1)|2|U2—U1|de
4 Q

[V (2=l

+Cau (U2 = GG+ 119 (v =) 2).

Thus, we obtain
pdt”Uz—U1||PSC25(||Uz—U1||p+||“2—u1||P+||V V2= ||p>

and hence it follows from (2.30) that

sup [[U2(-0) = Ui(-, )]}

0<t<T
p p
< pCasT (sup [U2(-,6) = U (- 0], + sup [|ua(-,1) — ,t)llp)
0<t<T 0<t<T
TP/2 +1pC25C§1 sup ||M2 —u1 ',t)”P.
0<t<T

Therefore, for T, >0 in

1
T, <Ti, pC25T2 + T(p/z)HpC C21 < Z

(2.32)

(2.33)

(2.34)

(2.35)
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it holds that
1
sup [[Ux(,8) = Uil = 5 sup [fun(0) =m0l (2.36)
0<t<T, 0<t<T,
and the proof is complete. O

Now, we can give the following.

Proof of Theorem 1.1. By Lemma 2.2 (with T = T,) and Lemma 2.3, we have a positive
constant Cy4 such that

Ul < [|JA@AU]|, +[|A" (w)Vu- VU,

(2.37)
+ VU - Vo, + IlUAV], < Cag

for u € B(M, T>). Then [10, Lemma 3.3] guarantees the existence of £ € (0,1) such that
Fulg), +|VFul§), < Cy (2.38)
for u € B(M,T,). Because the set
% = JueB(M,T) | 1Full) +IVFull), < Cyl, (2.39)
is compact in X = C([0,T2];LP(Q2)), we can apply the standard contraction mapping
principle and get a unique fix point of & on B = B(M, T>) C X. This fixed point induces
the classical solution (u,v) € H1"2(Qr,)? to (1.1) on Qr,. Conversely, if (u,v) is a
classical solution to (1.1) and if T, > 0 is taken smaller, then, we can regard (u,v) as a
fixed point of & on B(M,T,). This implies the uniqueness of the classical solution to

(1.1) in Qr,, and the proof is complete. O

3. Time global solution

To prove Theorem 1.2, we take
W(u,v)=J {B(u)—uv+%(|Vv|2+v2)}dx (3.1)
o
for

Blu) = Lub(s)ds with b(u) = J @ds (3.2)

1
and show the following.

LemwMmA 3.1. If (u,v) is the classical solution to (1.1), then it holds that

%W(u,vHL(|vt|2+u|v(b(u)—v)|2)dx:o. (3.3)
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Proof. From the first equation of (1.1) we have

d

' J;) (B(u) — uv)dx+ JQ uvdx = J;) u; (b(u) —v)dx

(3.4)
=—J u| V(b(w) —v) | dx =0,

and the second equation implies that

J uvtdx=J (v — Av+v)vidx —J |vt| dx+ = Ld J (IVv|* +v?)dx. (3.5)
Q Q 2dt
Thus, the conclusion follows from (3.4) and (3.5). O
We have
b(u)= S (u —1) +flogu  (u=>1)
! (3.6)
b(u) < ;(uy —1)+Blogu (0<u<l)
for a, 3, y given in (1.5), and hence it follows that
= ® v
B(u) = By(u) = y(1+y)( (1+y)u+y)+p(ulogu—u+1) (3.7)

for u € (0, 00). Therefore, we have Wy (u,v) < W (u,v) for Wy = Wy(u,v) defined by

Wo(u,v) = L} {Bo(u) —uv+ - (IVVI2 +v )}dx. (3.8)

Henceforth, Ty denotes the maximal existence time of the classical solution (u,v) to
(1.1), and C; (i = 28,29,30,...,40) are positive constants independent of Ty,x. We have

[u(-, 0], = lluolly (3.9)

and the following lemma is a consequence of the estimate on the fundamental solution
to the heat equation, described in [21]. The proof is immediate and is omitted.

LemMa 3.2. Ifpisin [1,N/(N —2)) and [1,00) for N = 3 and N = 1,2, respectively, then it
follows that

sup [|v(- )y < Cas. (3.10)

0=<t<Tmax
Now, we show the following.

Lemma 3.3. If (u,v) is the classical solution to (1.1), then it holds that

sup WO(u('ﬁt)>V(';t)) SC29

0<t<Tmax

sup ([luC0lL 0+ vC0I,) < Co.

0<t<Tmax

(3.11)
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Proof. First, we have

sup W()(u(',t),V(',t)) = sup W(u(,t),v(,t)) = W(u())VO) (312)
0<t<Tmax 0<t<Tmax
with
| wvd < sy Ity (3.13)

Then, Gagliardo-Nirenberg’s inequality is indicated as
% -
lwllq < Kpq (Vw5 +[Iwll3) 2||W||}, o (3.14)

for w € H(Q), where p, g € [1,],and 0 € (0,1) are in

N N
e -(N2) - (1 -0~ 3.15
4 {1-(N/2)} = ( )p (3.15)

In the case of N = 3, we take g = (y +1)/y, 0 = 2y/(y+1) and p = N(1 — y)/(2y) to adjust
(3.15). We have p € [1,N/(N —2)) from the assumption, and (3.14) assures C, > 0 for any
€ > 0 satisfying

1)/
el VvI3 = VI - Ce (3.16)

by Lemma 3.2. The case N = 1,2 is easier to guarantee (3.16). Therefore, we have from
(3.12) that

o 1y L w242 } _ 1
W(”O>VO) = J'Q{72Y(y+1)u 4(| V| v ) dx — C3. (3.17)
This implies the second inequality, and the proof is complete. O

LemMMA 3.4. Ifq = (3+y)/2 and

sup ||u(')t)||q+(y71)/2 = C32) (318)
0<t<Tmax
then it holds that
sup [[u(-,8)[l5,- < Css. (3.19)
0<t<Tmax

Proof. From the first equation of (1.1) we have
J w1 2dx = J V- (A(w)Vu—uVv)u*i2dx
Q Q
<—(2q- Z)J (aw? + B) 12| Vul?dx + (29 — Z)J w7 2Vu - Vvdx
Q Q

=—(29- Z)J (aw? + B) 13| Vul>dx — EJ W T Avdx.
Q 2q—-1Ja
(3.20)
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On the other hand, the second equation of (1.1) implies
(eUy), = (A -1+ 41[]> (e/UDy) + ety (3.21)

and the maximal regularity theorem [6] guarantees

t t 2q
J i (eS/(4‘1)v)s||§st+ J H (A -1+ i) (eUDy)|| ds

’ ’ “ * (3.22)

t 2q t ’
< C34{J (A -1+ l)em““/(“q))}svo ds+f ||e5/(4q)u||§qu}
0 4q 29 0 1
with Cs4 independent of ¢ > 0. This implies
t t
2 2 2

| enaviiids < sl + | e utiiast. (3.23)

We can apply (3.14) for g =r and p =1if 6 = N(1 - (1/r))/(1 + (N/2)) € (0,1), or
equivalently 1 < r < 2N/(N — 2). Putting

k=Q2q+y-1)/2, r=2q/k, (3.24)
we have
4 1-
= ¢ [2,2+—y], (3.25)
2g+y-1 I+y
and therefore, that inequality is applicable to w = u*, g = r and p = 1:
2 2\ 072 1-9
bl = K (1754 1lf13) 1 (3.26)
Here, we have
2N
K = K, < +o0, 0= -1)<2, 3.27
ZSrszg}?y{)/(lw) <re r N+2(r )< ( )

and any ¢ > 0 admits C, > 0 such that

417 < K7 ([0 + ) k1100

1-0)(2/(r0))’

k(12 k)2 Ky (3.28)
< e(I1V a3 +1[u*]]3) + Cel ]I} ’
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where
(3)’_ 2/(r) N+2
@) (2/(r8) -1 (N+2)—-N(r—1)
3(1+y)/(1+3y) ifN=1
< 1d+y)y ifN =2
(N+2)(N-1)/(N-2) ifN=3
=K
with

2\ 2N-(N-2
A= =ra-0)(5) - 555 -

Thus, we have
t 2 t
C35J eS/zllullzzds <(g-1(2q- l)ocJ J 223 V) 2dx ds
0 0Ja
t Hy-1)2 A
+c36Le5/2(||u||3+(§,1)/2+1) ds.
On the other hand, by (3.26), (3.29) and [k " = IIMIIZ, we have

—(q—l)(Zq—l)J au2q+”_3|Vu|2dx+(2q—2)J w1V Av|dx
Q Q

-1)(2g—-1 -
<=0 9B + g - 2l vl

1 29-1 2 +(y-1)/2 A
< = Il + 1AV + Cor (il a+1)

From (3.32) and (3.20) we obtain

%IluH;Zj +(qg-1)(2q - l)ocJQ w3 | Vul?dx

<—(g-1(2g- l)ocJQ W3 | Vulldx + (2q - Z)L) W Av|dx

2q-1 2 +y—-1)/2 A
< =S lullago + VIR + Cor (Il +1)

1
2

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

Multiplying e'/? for the above inequality, integrating over [0,¢] and using (3.23) and

(3.31), we now get that

t
IR} + (g - D2q-Da | & | w3 Tuldvds
0 Q

t
2 A
< J;) 65/2 ||A‘VHQZdS + C33€t/2 (Lq+(y—1)/2 + 1)

(3.34)
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or
2g-1 A
||u(.,t)||23,1 < Cyo(Lgr(y-12+1)", (3.35)
where
-1/2
Lysiy-va= sup [lull)7])2. (3.36)
0<t<Tmax
Thus, the proof is complete. O

Now, we show the uniform boundedness of the solution.

PropoSITION 3.5. It holds that

sup ([[u(-, 0l +[[v(-,8)]]) = Cao. (3.37)

0<t<Tmax

Proof. By means of Lemmas 3.3 and 3.4, we have

sup ||u(+,1)[[, <+oo foranyg=1+y. (3.38)

0=<t<Tmax

We have D((—Ayan+1 +1)¥%) € WH*(Q), and hence it holds that

)3/4

IVv(- 0|, < Call(- Ay +1 |1

34
e !

SC41<||(—AN+1) AN Dol

J 1(= Ay + 1) e~ (=9@x =1y (. s)||2N+1ds) (3.39)
t
< C42<|| = Ay +1) " Loy +J (8 =) e u(:, )||2N+‘ds)

< C43<||V0||2,2N+1 +0 sup H”("t)||2N+1> < Cu.

<t<Tmax
Taking q = 1+ y and recalling (3.24), we have

1L d

L 2q-1 _ y 2g-3 2
2q-1dt Qu dx+(2q Z)Jﬂ(au +B) w1 | Vul|*dx

<(2q- Z)JQ W2V y - Vydx

172

1/2
5(2q—2)||Vv||m(J u2q+7’3|Vu|2dx> (J uszfl) (3.40)
Q Q
<a(q—1)J w2173 vu2de+ T Loy J 12971 dx
Q

sa(q—l)jﬂ 2473 Vuldx + L w2 (il + 101),
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or

4 e MJ k|2
gt ).t dx+ 5 Q|Vu | “dx

_q-1@q-1 G4
B o

19912 (52 +191).
Here, we have from (3.24), (3.26) and (3.39) that
(g—1D(2q-1) ) 2
(22wl 1) (1l + 1021

5 r6/2 r(1-6)
< C4442{L2 | Vit | dx+JQ Hdex} . {L ukdx} +Cuq*

= o 1;122q - { JQ | Vuk |2dx+ JQ qudx}

(3.42)

r(1-6)(2/(r0))"
} + C44q2.

+ C45q2(2/(r9))’ { JQ ukdx

In other words,

[44
- MHQ |Vuk|2dx+||u||§;’iﬁ} (3.43)

(=220 gupz 1) (g + 121

k2

T Cus YO { L} S

r(1-6)(2/(r0))’
} + C44q2.

Here and henceforce, C; (i = 41,42,43,...,50) denote positive constants independent of
q=1+yand Tmax-
Combining this with (3.30) and (3.41), we get that

d B A

Nl lullpd < Casg™q | w0 Ddx 1l (3.44)
q a q

dt Q

Because of y € (0,1) and (3.29), we have

A
( sup ||u(-,t)||§Z_}+1>sc47q2“( sup ||u(-,t)||§+1) , (3.45)

0<t<Tax 0<t<Tmax

For g =2/71+1, we put

aj = sup ||u(-,t)||§gj +1, Aj= maX(Z,/N&j), (3.46)

0<t<Tmax

where IN\J- =A(q) = A7 +1).
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Here, we have Aj <2(1+ Cys27/). In use of Aj = 2, we apply (3.45) as g = 2/~ ! +1 for
j=0,1,2,.... Then, we get that

logaj <logCy7 +2xlog (2/7' +1) + Ajloga;—;

. (3.47)
<logCy7 +2xjlog2 + Ajloga;
or
loga; +2x(j +2)log2 +1logCy7 < Aj(logarj—1 +2x(j +1)log2 +1og Cs7), (3.48)
which implies
J
loga; +2x(j +2)log2 +1logCyy < ( nAi) (logag +4xlog2 +1ogCy7), (3.49)
i=1
or
7oA . _
aj < (Cip2%ap) T (€220 2) 7, (3.50)
Hence, we obtain
T AN/ . 1/
sup |[u(-, )], < (C4724K060)(n[:1AXV(Z]H) (Cyr2%0+3)) VD, (3.51)
0<t<Tmax
Here, we apply
J . i ' ‘
nAi <2/exp <C48 Zzl) <2iebs = 27 Cyo, (3.52)
i=1 i=1
and get that
Cao
2
sup ||u(-, )], < C50< sup ||u(-, 1|5+ 1> . (3.53)
0<t<Tmax 0<t<Tmax
The desired conclusion follows from this inequality and (3.38) with g = 2. O

Let us confirm that Proposition 3.5 says that supy_,.r. _[u(+,t)|le and supy_, .. [[v(,
1)l are estimated from above by constants independent of Tyax. We recall p > N +2 and
€€ (0,1—-(N+2)/p). Then, (3.23) with 2q = p means that

t t
| e navias < o (sl + | euibas) (3.54)
0 ’ 0
and hence we obtain

t
Le“*f’/znmuﬁdsscsz(te*f/zllvOllé’,p+ sup llu(-,t>l|§)- (3.55)
0

<t<Tmax

Here, C; (i = 51,52) are independent of ¢ € [0, Tiax)-
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We take 7 € (0,(1/2) min(Tmax, 1)) in 1 < Tax — T without loss of generality. More-
over, we take T' € [7, Tmax — 1). Henceforce, C; (i = 53,54,55,...,58) denote positive con-
stants independent of T' € [T, Tinayx) and Tiax- In use of the reflection with respect to 0Q),
we have a domain Q) > Q with smooth boundary and the extension (&, V) of (u,v) defined
on Q. Then, we can apply [10, Theorem 3.1] for (%,7), and find 6 € (0,1) such that

~y (6
|u|£2>)<(T,T+1) < Gss. (3.56)

In fact, fﬁ“ IIAvllgdt is estimated from above independent of T'and Tr.x by (3.55), and

this implies (3.56). Then, it holds that
(0)
lulgxr,re1) = Cs3) (3.57)

and the parabolic regularity guarantees that

0
luly) < Css. (3.58)
Then,
vIg? < Css (3.59)

follows from [10, Theorem 5.3].
We take { € C*(R)in0<{<1and

1 ifr<
C(s) = {0 if; OS (3.60)
and set {r(s) = {(s — T). The function W = s{(u) defined by
si(s) = I;A(s’)ds’ (3.61)
satisfies that
Wy =AAW — (Vv - VW + Aulv) (3.62)

and hence we can deduce for W{r that

(Wir), = AN(W{r) = (Vv - V(W{r))

+ (W — AuAv(r) inQx[T,T+1],
P (3.63)
—(W{r)=0 onoQx|[T,T+1],

v
W, T){r(T)=0 inQ.
Here, we regard u and v as coefficients, and apply [10, Theorem 5.3] by (3.58). Then, we
obtain

(2+6) (2+6)
|”|Q><(T+T,T+1) = |u(T Qx(T,T+1) = Cse» (3.64)
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or

2+0
lu E);(T),Tm) < GCsy. (3.65)

On the other hand we have the parabolic regularity locally in time, so that we obtain

(2+6)
Qlmax?

(2+6)
Qfmax

|ll| |V| < ng. (366)
Finally, if Ty < 00, the solution (u,v) is extended after Tray, a contradiction. Hence it
holds that Tiax = 0. We have the uniformly bounded solution globally in time, and the

proof of Theorem 1.1 is complete.
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