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We prove the global existence and study decay properties of the solutions to the wave
equation with a weak nonlinear dissipative term by constructing a stable set in H1(Rn).

1. Introduction

We consider the Cauchy problem for the nonlinear wave equation with a weak nonlinear
dissipation and source terms of the type

u′′ −∆xu+ λ2(x)u+ σ(t)g(u′)= |u|p−1u in R
n× [0,+∞[,

u(x,0)= u0(x), u′(x,0)= u1(x) in R
n,

(1.1)

where g : R→ R is a continuous nondecreasing function and λ and σ are positive func-
tions.

When we have a bounded domain instead of Rn, and for the case g(x) = δx (δ > 0)
(without the term λ2(x)u), Ikehata and Suzuki [8] investigated the dynamics, they have
shown that for sufficiently small initial data (u0,u1), the trajectory (u(t),u′(t)) tends to
(0,0) inH1

0 (Ω)×L2(Ω) as t→ +∞. When g(x)= δ|x|m−1x (m≥ 1, λ≡0, σ ≡ 1), Georgiev
and Todorova [4] introduced a new method and determined suitable relations between
m and p, for which there is global existence or alternatively finite-time blow up. Precisely
they showed that the solutions continue to exist globally in time if m ≥ p and blow up
in finite time if m < p and the initial energy is sufficiently negative. This result was later
generalized to an abstract setting by Levine and Serrin [12] and Levine et al. [11]. In these
papers, the authors showed that no solution with negative initial energy can be extended
on [0,∞[, if the source term dominates over the damping term (p > m). This generaliza-
tion allowed them also to apply their result to quasilinear wave equations (see [1, 17]).
Quite recently, Ikehata [7] proved that a global solution exists with no relation between
p and m by the use of a stable set method due to Sattinger [18].

For the Cauchy problem (1.1) with λ ≡ 1 and σ ≡ 1, when g(x) = δ|x|m−1x (m ≥ 1)
Todorova [21] (see [16]) proved that the energy decay rate is E(t)≤ (1 + t)−(2−n(m−1))/(m−1)
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for t ≥ 0. She used a general method introduced by Nakao [14] on condition that the data
have compact support. Unfortunately, this method does not seem to be applicable in the
case of more general functions λ and σ .

Our purpose in this paper is to give a global solvability in the class H1 and energy decay
estimates of the solutions to the Cauchy problem (1.1) for a weak linear perturbation and
a weak nonlinear dissipation.

We use a new method recently introduced by Martinez [13] (see also [2]) to study the
decay rate of solutions to the wave equation u′′ −∆xu+ g(u′)= 0 in Ω×R+, where Ω is a
bounded domain of Rn. This method is based on a new integral inequality that generalizes
a result of Haraux [6]. So we proceed with the argument combining the method in [13]
with the concept of modified stable set on H1(Rn). Here the modified stable set is the
extended Rn version of Sattinger’s stable set.

2. Preliminaries and main results

λ(x), σ(t), and g satisfy the following hypotheses.
(i) λ(x) is a locally bounded measurable function defined on Rn and satisfies

λ(x)≥ d
(|x|), (2.1)

where d is a decreasing function such that limy→∞d(y)= 0.
(ii) σ : R+ →R+ is a nonincreasing function of class C1 on R+.
Consider g : R→ R a nondecreasing C0 function and suppose that there exist Ci > 0,

i= 1,2,3,4, such that

c′3|v|m ≤
∣∣g(v)

∣∣≤ c′4|v|1/m if |v| ≤ 1, (2.2)

c1|v| ≤
∣∣g(v)

∣∣≤ c2|v|r ∀|v| ≥ 1, (2.3)

where m≥ 1 and 1≤ r ≤ (n+ 2)/(n− 2)+.
We first state two well-known lemmas, and then we state and prove two other lemmas

that will be needed later.

Lemma 2.1. Let q be a number with 2 ≤ q < +∞ (n = 1,2) or 2 ≤ q ≤ 2n/(n− 2)(n ≥ 3).
Then there is a constant c∗ = c(q) such that

‖u‖q ≤ c∗‖u‖H1(Rn) for u∈H1(
R

n
)
. (2.4)

Lemma 2.2 (Gagliardo-Nirenberg). Let 1≤ r < q ≤ +∞ and p ≥ 2. Then, the inequality

‖u‖p ≤ C
∥∥∇m

x u
∥∥θ

2‖u‖1−θ
r for u∈�

(
(−∆)m/2)Lr (2.5)

holds with some constant C > 0 and

θ =
(

1
r
− 1

p

)(
m

n
+

1
r
− 1

2

)−1

(2.6)

provided that 0 < θ ≤ 1 (assuming that 0 < θ < 1 if m−n/2 is a nonnegative integer).
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Lemma 2.3 [10]. Let E : R+ → R+ be a nonincreasing function and assume that there are
two constants p ≥ 1 and A > 0 such that∫ +∞

S
E(p+1)/2(t)dt ≤ AE(S), 0≤ S < +∞, (2.7)

then

E(t)≤ cE(0)(1 + t)−2/(p−1) ∀t ≥ 0, if p > 1,

E(t)≤ cE(0)e−ωt ∀t ≥ 0, if p = 1,
(2.8)

where c and ω are positive constants independent of the initial energy E(0).

Lemma 2.4 [13]. Let E : R+ →R+ be a nonincreasing function and φ : R+ →R+ an increas-
ing C2 function such that

φ(0)= 0, φ(t)−→ +∞ as t −→ +∞. (2.9)

Assume that there exist p ≥ 1 and A > 0 such that∫ +∞

S
E(t)(p+1)/2(t)φ′(t)dt ≤AE(S), 0≤ S < +∞, (2.10)

then

E(t)≤ cE(0)
(
1 +φ(t)

)−2/(p−1) ∀t ≥ 0, if p > 1,

E(t)≤ cE(0)e−ωφ(t) ∀t ≥ 0, if p = 1,
(2.11)

where c and ω are positive constants independent of the initial energy E(0).

Proof of Lemma 2.4. Let f : R+ → R+ be defined by f (x) := E(φ−1(x)), (we remark that
φ−1 has a sense by the hypotheses assumed on φ). f is nonincreasing, f (0)= E(0), and if
we set x := φ(t), we obtain∫ φ(T)

φ(S)
f (x)(p+1)/2dx =

∫ φ(T)

φ(S)
E
(
φ−1(x)

)(p+1)/2
dx =

∫ T

S
E(t)(p+1)/2φ′(t)dt

≤AE(S)= A f
(
φ(S)

)
, 0≤ S < T < +∞.

(2.12)

Setting s := φ(S) and letting T → +∞, we deduce that∫ +∞

s
f (x)(p+1)/2dx ≤ A f (s), 0≤ s < +∞. (2.13)

Thanks to Lemma 2.3, we deduce the desired results. �

Before stating the global existence theorem and decay property of problem (1.1), we
will introduce the notion of the modified stable set. Let

K(u)= ∥∥∇xu
∥∥2

2 +‖u‖2
2−‖u‖p+1

p+1 if λ≡ 1,

I(u)= ∥∥∇xu
∥∥2

2−‖u‖
p+1
p+1 if λ �≡ const,

(2.14)
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for u∈H1(Rn). Then we define the modified stable set �̃∗ and �̃∗∗ by

�̃∗ ≡ {u∈H1(
R

n
)\K(u) > 0

}∪{0} if λ≡ 1,

�̃∗∗ ≡ {u∈H1(
R

n
)\I(u) > 0

}∪{0} if λ �≡ const .
(2.15)

Next, let J(u) and E(t) be the potential and energy associated with problem (1.1), respec-
tively:

J(u)= 1
2

∥∥∇xu
∥∥2

2 +
1
2

∥∥λ(x)u
∥∥2

2−
1

p+ 1
‖u‖p+1

p+1 for u∈H1(
R

n
)
,

E(t)= 1
2
‖u′‖2

2 + J(u).
(2.16)

We get the local existence solution.

Theorem 2.5. Let 1 < p ≤ (n+ 2)/(n− 2) (1 < p <∞ if n= 1,2) and assume that (u0,u1)

∈ H1(Rn)× L2(Rn) and u0 belong to the modified stable set �̃∗. Then there exists T > 0
such that the Cauchy problem (1.1) has a unique solution u(t) on Rn× [0,T) in the class

u(t,x)∈ C
(
[0,T);H1(

R
n
))∩C1([0,T);L2(

R
n
))

, (2.17)

satisfying

u(t)∈ �̃∗, (2.18)

and this solution can be continued in time as long as u(t)∈ �̃∗.

When λ �≡ const, we use the following theorem of local existence in the space H2×H1,
and the decay property of the energy E(t) is necessarily required for the local solution to

remain in �̃∗∗ as t→∞; this fact of course guarantees the global existence in H2 ×H1

and by approximation, we obtain global existence in H1×L1.

Theorem 2.6 [15]. Let (u0,u1)∈H2×H1. Suppose that

1≤ p ≤ n

n− 4
(1≤∞ if N ≤ 4). (2.19)

Then under the hypotheses (2.1), (2.2), and (2.3), problem (1.1) admits a unique local solu-
tion u(t) on some interval [0,T[, T ≡ T(u0,u1) > 0, in the classW2,∞([0,T[;L2)∩W1,∞([0,
T[;H1)∩L∞([0,T[;H2), satisfying the finite propagation property.

Proof of Theorem 2.5 (see [15, 18]). Since the argument is standard, we only sketch the

main idea of the proof. Let (u0,u1)∈H1×L2 and u0 ∈ �̃∗. Then we have a unique local
solution u(t) for some T > 0. Indeed, taking suitable approximate functions f j such that
(see [20])

f j(u)= f (u) if |u| ≤ j,
∣∣ f j(u)

∣∣≤ ∣∣ f (u)
∣∣,

∣∣ f j(u)
∣∣≤ cj|u|, (2.20)

problem (1.1) with f (u) ≡ |u|p−1u replaced by f j(u) admits a unique solution uj(t) ∈
C([0,T);H1(Rn))∩C1([0,T);L2(Rn)). Further, we can prove that uj(t)∈ �̃∗, 0 < t < T ,
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for sufficiently large j, and there exists a subsequence of {uj(t)} which converges to a
function ũ(t) in certain senses. ũ(t) is, in fact, a weak solution in C([0,T);H1(Rn))∩
C1([0,T);L2(Rn)) (see [19, 20]) and such a solution is unique by Ginibre and Velo [5]
and Brenner [3]. We can also construct such a solution which meets moreover the finite
propagation property, if we assume that the initial data u0(x) and u1(x) are of compact
support:

suppu0∪ suppu1 ⊂
{
x ∈R

n, |x| < L
}

, for some L > 0. (2.21)

Applying [9, Appendix 1] of John, then the solution is also of compact support: supp uj(t)
⊂ {x ∈Rn,|x| < L+ t}. So, we have supp ũ(t)⊂ {x ∈Rn,|x| < L+ t}. �

We denote the life span of the solution u(t,x) of the Cauchy problem (1.1) by Tmax.
First we consider the case λ(x) ≡ const (λ(x) ≡ 1 without loss of generality). And con-
struct a stable set in H1(Rn).

Setting

C0 ≡ K
{

2(p+ 1)
(p− 1)

}(p−1)/2

, (2.22)∫∞
0
σ(τ)dτ = +∞ if m= 1, (2.23)∫∞

0
(1 + τ)−n(m−1)/2σ(τ)dτ = +∞ if m> 1. (2.24)

Theorem 2.7. Let u(t,x) be a local solution of problem (1.1) on [0,Tmax) with initial data

u0 ∈ �̃∗, u1 ∈ L2(Rn) with sufficiently small initial energy E(0) so that

C0E(0)(p−1)/2 < 1. (2.25)

Then Tmax =∞. Furthermore, the global solution of the Cauchy problem (1.1) has the fol-
lowing energy decay property. Under (2.22), (2.3), and (2.23),

E(t)≤ E(0)exp
(

1−ω
∫ t

0
σ(τ)dτ

)
∀t > 0. (2.26)

Under (2.2), (2.3), and (2.24),

E(t)≤
(

C
(
E(0)

)∫ t
0(1 + τ)−n(m−1)/2σ(τ)dτ

)2/(m−1)

∀t > 0. (2.27)

Secondly, we consider the case λ(x) �≡ const and we assume that

n+ 4
n

≤ p ≤ n

n− 2
. (2.28)

(1) If σ(t)= �(d̃(t)), where d̃(t)= d(L+ t).
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If m= 1, we suppose that

∫∞
0
σ(τ)dτ = +∞ (2.29)

with

(
d̃(t)

)−(4−(n−2)(p−1))/2
exp

(
1−ω

∫ t

0
σ(τ)dτ

)(p−1)/2

<∞,

(
d̃(t)

)−1
exp

(
1
2
− ω

2

∫ t

0
σ(τ)dτ

)
<∞.

(2.30)

If m> 1, we suppose that

∫∞
0

(1 + τ)−n(m−1)/2σ(τ)dτ =∞ (2.31)

with

(
d̃(t)

)−(4−(n−2)(p−1))/2(∫ t
0(1 + τ)−n(m−1)/2σ(τ)dτ

)(p−1)/(m−1) <∞,

(
d̃(t)

)−1(∫ t
0(1 + τ)−n(m−1)/2σ(τ)dτ

)1/(m−1) <∞.

(2.32)

(2) If d̃(t)= �(σ(t)).
If m= 1, we suppose that for some 0≤ α < 1,

∫∞
0

d̃2(τ)
σα(τ)

dτ = +∞ (2.33)

with

(
d̃(t)

)−(4−(n−2)(p−1))/2
exp

(
1−ω

∫ t

0

d̃2(τ)
σα(τ)

dτ
)(p−1)/2

<∞,

(
d̃(t)

)−1
exp

(
1
2
− ω

2

∫ t

0

d̃2(τ)
σα(τ)

dτ
)
<∞.

(2.34)

If m> 1, we suppose that for some 0≤ α < 1,

∫∞
0

(1 + τ)−n(m−1)/2σ−((1+α)(1+m)−2)/2(τ)d̃m+1(τ)dτ =∞ (2.35)
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with (
d̃(t)

)−(4−(n−2)(p−1))/2(∫ t
0(1 + τ)−n(m−1)/2σ−((1+α)(1+m)−2)/2(τ)d̃m+1(τ)dτ

)(p−1)/(m−1) <∞,

(
d̃(t)

)−1(∫ t
0(1 + τ)−n(m−1)/2σ−((1+α)(1+m)−2)/2(τ)d̃m+1(τ)dτ

)1/(m−1) <∞.

(2.36)

We have the following theorem.

Theorem 2.8. Let (u0,u1) ∈H1 × L2, u0 ∈ �̃∗∗, and let the initial energy E(0) be suffi-
ciently small. The following cases are considered.

(i) σ(t)= �(d̃(t)).
Suppose (2.2), (2.3), (2.29), and (2.30) or (2.2), (2.3), (2.31), and (2.32). Then problem

(1.1) admits a unique solution u(t)∈ C([0,∞);H1)∩C1([0,∞);L2) and has the same decay
property as Theorem 2.7.

(ii) d̃(t)= �(σ(t)).
Suppose (2.2), (2.3), (2.33), and (2.34) or (2.2), (2.3), (2.35), and (2.36). Then prob-

lem (1.1) admits a unique solution u(t)∈ C([0,∞);H1)∩C1([0,∞);L2). Furthermore, the
global solution of the Cauchy problem (1.1) has the following energy decay property:

E(t)≤ E(0)exp
(

1−ω
∫ t

0

d̃2(τ)
σα(τ)

dτ
)

∀t > 0 if m= 1, (2.37)

E(t)≤
(

C
(
E(0)

)∫ t
0(1 + τ)−n(m−1)/2σ−((1+α)(1+m)−2)/2(τ)d̃m+1(τ)dτ

)2/(m−1)

∀t > 0 if m> 1.

(2.38)

Remark 2.9. In Theorem 2.7, the global existence and energy decay are independent, but
in Theorem 2.8, we need the estimation of the energy decay for a local solution to prove
global existence.

Examples 2.10. (1) If σ(t)= 1/tθ , by applying Theorem 2.7 we obtain

E(t)≤ E(0)e1−ωt1−θ
if m= 1,

E(t)≤ C
(
E(0)

)
(1 + t)−(2−n(m−1)−2θ)/(m−1) if 1 <m < 1 +

2− 2θ
n

, 0 < θ < 1,

E(t)≤ C
(
E(0)

)
(ln t)−2/(m−1) if m= 1 +

2− 2θ
n

, 0 < θ < 1.

(2.39)

(2) If σ(t)= 1/tθ ln t ln2 t ··· lnp t, by applying Theorem 2.7, we obtain

E(t)≤ E(0)
(

lnp t
)−ω

if m= 1, θ = 1. (2.40)

For example, if n(m− 1)/2 + θ = 1, that is, 1 <m < 1 + 2/n,

E(t)≤ C
(
E(0)

)(
lnp t

)−2/(m−1)
. (2.41)
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(3) If σ(t)= 1/tθ and d(r)= 1/rγ with θ ≥ γ by applying Theorem 2.8, we obtain

E(t)≤ C
(
E(0)

)
(1 + t)−(2−n(m−1)−2θ)/(m−1) if 1 <m < 1 +

2− 2θ
2γ+n

, 0 < θ < 1,

E(t)≤ C
(
E(0)

)
(ln t)−2/(m−1) if m= 1 +

2− 2θ
2γ+n

, 0 < θ < 1.
(2.42)

In order to show the global existence, it suffices to obtain the a priori estimates for E(t)
and ‖u(t)‖2 in the interval of existence.

To prove Theorem 2.7 we first have the following energy identity to problem (1.1).

Lemma 2.11 (energy identity). Let u(t,x) be a local solution to problem (1.1) on [0,Tmax)
as in Theorem 2.5. Then

E(t) +
∫

Rn

∫ t

0
σ(s)u′(s)g

(
u′(s)

)
dsdx = E(0) (2.43)

for all t ∈ [0,Tmax).

Next we state several facts about the modified stable set �̃∗.

Lemma 2.12. Suppose that

1 < p ≤ n+ 2
n− 2

. (2.44)

Then

(i) �̃∗ is a neighborhood of 0 in H1(Rn),

(ii) for u∈ �̃∗,

J(u)≥ p− 1
2(p+ 1)

(∥∥∇xu
∥∥2

2 +‖u‖2
2

)
. (2.45)

Proof of Lemma 2.12. (i) From Lemma 2.1 we have

‖u‖p+1
p+1 ≤ K‖u‖p+1

H1 ≤ K‖u‖p−1
H1

(‖u‖2
2 +
∥∥∇xu

∥∥2
2

)
. (2.46)

Let

U(0)≡
{
u∈H1(

R
N
)∖‖u‖p−1

H1 <
1
K

}
. (2.47)

Then, for any u∈U(0)\{0}, we deduce from (2.46) that

‖u‖p+1
p+1 < ‖u‖2

2 +
∥∥∇xu

∥∥2
2, (2.48)

that is, K(u) > 0. This implies U(0)⊂ �̃∗.
(ii) By the definition of K(u) and J(u), we have the identity

(p+ 1)J(u)= K(u) +
(p− 1)

2

(∥∥∇xu
∥∥2

2 +‖u‖2
2

)
. (2.49)



A. Benaissa and S. Mokeddem 943

Since u ∈ �̃∗, we have K(u) ≥ 0. Therefore from (2.44) we get the desired in-equality
(2.45). �

Lemma 2.13. Let u(t) be a solution to problem (1.1) on [0,Tmax). Suppose (2.44) holds. If

u0 ∈ �̃∗ and u1 ∈ L2(Rn) satisfy

C0E(0)(p−1)/2 < 1, (2.50)

then
(i) u(t)∈ �̃∗ on [0,Tmax),
(ii) ‖u(t)‖2 ≤ I0 on [0,Tmax).

Proof of Lemma 2.13. Suppose that there exists a number t∗ ∈ [0,Tmax[ such that u(t)∈
�̃∗ on [0, t∗[ and u(t∗) �∈ �̃∗. Then we have

K
(
u
(
t∗
))= 0, u

(
t∗
) �= 0. (2.51)

Since u(t)∈ �̃∗ on [0, t∗[, it holds that

p− 1
2(p+ 1)

(∥∥∇xu
∥∥2

2 +‖u‖2
2

)≤ J(u)≤ E(t); (2.52)

it follows from the nonincreasing of the energy that

∥∥∇xu
∥∥2

2 +‖u‖2
2 ≤

2(p+ 1)
p− 1

E(0)≡ I2
0 . (2.53)

Hence, we obtain

‖u‖2
2 ≤

2(p+ 1)
p− 1

E(0)≡ I2
0 on [0, t∗]. (2.54)

Next, from Lemma 2.1 and (2.54) we have

‖u‖p+1
p+1 ≤ K

∥∥u(t)
∥∥p+1
H1(Rn)

≤ K
∥∥u(t)

∥∥p−1
H1(Rn)

(∥∥∇xu
∥∥2

2 +‖u‖2
2

)
≤ KI

p−1
0

(∥∥∇xu
∥∥2

2 +‖u‖2
2

)
≤ C0E(0)(p−1)/2(∥∥u(t)

∥∥2
2 +
∥∥∇xu(t)

∥∥2
2

)
(2.55)

for all t ∈ [0, t∗], where C0 is the constant defined by (2.22). Note that from (2.55) and
our hypothesis

η0 ≡ C0E(0)(p−1)/2 < 1, (2.56)

it follows that ∥∥u(t)
∥∥p+1
p+1 ≤

(
1−η0

)(∥∥u(t)
∥∥2

2 +
∥∥∇xu(t)

∥∥2
2

)
. (2.57)
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Therefore, we obtain

K
(
u
(
t∗
))≥ η0

(∥∥u(t∗)∥∥2
2 +
∥∥∇xu

(
t∗
)∥∥2

2

)
(2.58)

which contradicts (2.51). Thus, we conclude that u(t)∈ �̃∗ on [0,Tmax[. The assertion
(ii) can be obtained by the same argument as for (2.54). This completes the proof of
Lemma 2.13. �

Lemma 2.14. Under the same assumptions as in Lemma 2.13, there exists a constant M2

depending on ‖u0‖H1 and ‖u1‖2 such that∥∥u(t)
∥∥2
H1 +

∥∥u′(t)∥∥2
2 ≤M2

2 (2.59)

for all t ∈ [0,Tmax[.

Proof of Lemma 2.14. It follows from Lemma 2.13 that u(t)∈ �̃∗ on [0,Tmax[. So Lemma
2.12(ii) implies that

J(u)≥ p− 1
2(p+ 1)

(∥∥u(t)
∥∥2

2 +
∥∥∇xu(t)

∥∥2
2

)
on [0,Tmax[. (2.60)

Hence, from Lemma 2.11 and (2.60) we get

1
2

∥∥u′(t)∥∥2
2 +

p− 1
2(p+ 1)

(‖u‖2
2 +
∥∥∇xu(t)

∥∥2
2

)≤ E(t)≤ E(0). (2.61)

So we get ∥∥u(t)
∥∥2
H1 +

∥∥u′(t)∥∥2
2 ≤M2

2 , (2.62)

for some M2 > 0.
The above inequality and the continuation principle lead to the global existence of the

solution, that is, Tmax =∞. �

Proof of the energy decay. From now on, we denote by c various positive constants which
may be different at different occurrences. We multiply the first equation of (1.1) by Eqφ′u,
where φ is a function satisfying all the hypotheses of Lemma 2.4. We obtain

0=
∫ T

S
Eqφ′

∫
Rn
u
(
u′′ −∆u+u+ σ(t)g(u′)−|u|p−1u

)
dxdt

=
[
Eqφ′

∫
Rn
uu′dx

]T
S
−
∫ T

S

(
qE′Eq−1φ′ +Eqφ′′

)∫
Rn
uu′dxdt− 2

∫ T

S
Eqφ′

∫
Rn
u′2dxdt

+
∫ T

S
Eqφ′

∫
Rn

(
u′2 + |u|2 + |∇u|2− 2

p+ 1
|u|p+1

)
dxdt+

∫ T

S
Eqφ′

∫
Rn
σ(t)ug(u′)dxdt

∫ T

S
Eqφ′

∫
Rn

(
2

p+ 1
− 1

)
|u|p+1dxdt.

(2.63)
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Since

(
1− 2

p+ 1

)∫
Rn
|u|p+1dx ≤ (1−η0

) p− 1
p+ 1

∥∥u(t)
∥∥2
H1(Rn)dx

≤ (1−η0
) p− 1
p+ 1

2(p+ 1)
p− 1

E(t)

= 2
(
1−η0

)
E(t),

(2.64)

we deduce that

2η0

∫ T

S
Eq+1φ′dt ≤−

[
Eqφ′

∫
Rn
uu′dx

]T
S

+
∫ T

S

(
qE′Eq−1φ′ +Eqφ′′

)∫
Rn
uu′dxdt

+ 2
∫ T

S
Eqφ′

∫
Rn
u′2dxdt−

∫ T

S
Eqφ′

∫
Rn
σ(t)ug(u′)dxdt

≤−
[
Eqφ′

∫
Rn
uu′dx

]T
S

+
∫ T

S

(
qE′Eq−1φ′ +Eqφ′′

)∫
Rn
uu′dxdt

+ 2
∫ T

S
Eqφ′

∫
Rn
u′2dxdt+ c(ε)

∫ T

S
Eqφ′

∫
|u′|≤1

g(u′)2dxdt

+ ε
∫ T

S
Eqφ′

∫
Rn
u2dxdt+

∫ T

S
Eqφ′

∫
|u′|≥1

σ(t)ug(u′)dxdt

(2.65)

for every ε > 0. Also, applying Hölder’s and Young’s inequalities, we have

∫ T

S
Eqφ′

∫
|u′|>1

σ(t)ug(u′)dxdt

≤
∫ T

S
Eqφ′σ(t)

(∫
Ω
|u|r+1dx

)1/(r+1)(∫
|u′|>1

∣∣g(u′)
∣∣(r+1)/r

dx
)r/(r+1)

dt

≤ c
∫ T

S
E(2q+1)/2φ′σ1/(r+1)(t)

(∫
|u′|>1

σ(t)u′g(u′)dx
)r/(r+1)

dt

≤
∫ T

S
φ′σ1/(r+1)(t)E(2q+1)/2(−E′)r/(r+1)dt

≤ c
∫ T

S
φ′
(
σ1/(r+1)(t)E(2q+1)/2−r/(r+1)

)(
(−E′)r/(r+1)Er/(r+1)

)
dt

≤ c(ε′)
∫ T

S
φ′(−E′E)dt+ ε′

∫ T

S
φ′σ(t)E(r+1)((2q+1)/2−r/(r+1))dt

≤ c(ε′)E(S)2 + ε′σ(0)E(0)(2rq−r−1)/2
∫ T

S
φ′Eq+1dt

(2.66)
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for every ε′ > 0. Choosing ε and ε′ small enough, we obtain

∫ T

S
Eq+1φ′dt ≤−

[
Eqφ′

∫
Rn
uu′dx

]T
S

+
∫ T

S

(
qE′Eq−1φ′ +Eqφ′′

)∫
Rn
uu′dxdt

+
∫
|u′|≥1

σ(t)ug(u′)dxdt+ c
∫ T

S
Eφ′

∫
Rn
u′2dxdt

≤ cE(S) + c
∫ T

S
Eφ′

∫
Rn
u′2dxdt.

(2.67)

Since xg(x)≥ 0 for all x ∈R, it follows that the energy is nonincreasing, locally absolutely
continuous and E′(t)=−∫

Rn σ(t)u′g(u′)dx a.c. in R+. �

Proof of (2.26). We consider the case m= 1, that is,

c3|v| ≤
∣∣g(v)

∣∣≤ c4|v| for all |v| ≤ 1. (2.68)

Then we have

u′2 ≤ c13

σ(t)
u′ρ(t,u′) ∀t ∈R, ∀x ∈R

n, (2.69)

where ρ(t,s)=σ(t)g(s) for all s∈R. Therefore we deduce from (2.67) (applied with q = 0)
that ∫ T

S
E(t)φ′(t)dt ≤ CE(S) + 2C

∫ T

S
φ′(t)

∫
Rn

1
σ(t)

u′ρ(t,u′)dxdt. (2.70)

Define

φ(t)=
∫ t

0
σ(τ)dτ. (2.71)

It is clear that φ is a nondecreasing function of class C2 on R+. The hypothesis (2.23)
ensures that

φ(t)−→ +∞ as t −→ +∞. (2.72)

Then we deduce from (2.70) that∫ T

S
E(t)φ′(t)dt ≤ CE(S) + 2C

∫ T

S

∫
Rn
u′ρ(t,u′)dxdt ≤ 3CE(S), (2.73)

and thanks to Lemma 2.4 we obtain

E(t)≤ E(0)e(1−φ(t))/(3C). (2.74)
�

Proof of (2.27). Now we assume that m> 1 in (2.2). Define φ by (2.71). We apply Lemma
2.4 with q = (m− 1)/2.
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We need to estimate ∫ T

S
Eqφ′

∫
Rn
u′2dxdt. (2.75)

For t ≥ 0, consider

Ω1 =
{
x ∈R

n, |u′| ≤ 1
}

, Ω2 =
{
x ∈R

n, |u′| > 1
}
. (2.76)

First we note that for every t ≥ 0,

Ω1∪Ω2 =R
n. (2.77)

Next we deduce from (2.2) and (2.3) that for every t ≥ 0,

(i) if x ∈Ω1, then u′2 ≤ ((1/σ(t))u′ρ(t,u′))2/(m+1),
(ii) if x ∈Ω2, then u′2 ≤ (1/σ(t))u′ρ(t,u′).

Hence, using Hölder’s inequality, we get that∫ T

S
Eqφ′

∫
Rn
u′2dxdt

≤ 2
∫ T

S
Eqφ′

∫
Rn

1
σ(t)

u′ρ(t,u′)dxdt+ 2
∫ T

S
Eqφ′

∫
Rn

(
1

σ(t)
u′ρ(t,u′)

)2/(m+1)

dxdt

≤ 2
∫ T

S
Eqφ′

∫
Rn

1
σ(t)

u′ρ(t,u′)dxdt+ 2
∫ T

S
Eqφ′

∫
{|x|≤(L+t)}

(
u′g(u′)

)2/(m+1)
dxdt

≤ 2
∫ T

S
Eqφ′

∫
Rn

1
σ(t)

u′ρ(t,u′)dxdt

+ 2
∫ T

S
Eqφ′(1 + t)n(m−1)/(m+1)

(∫
Rn
u′g(u′)dx

)2/(m+1)

dt

≤ cE(S)1+q + c′
∫ T

S
Eqφ′(1 + t)n(m−1)/(m+1)

(−E′
σ(t)

)2/(m+1)

dt

≤ cE(S)1+q + c′
∫ T

S
Eqφ′(1 + t)n(m−1)/(m+1)σ−2/(m+1)(t)(−E′)2/(m+1)dt.

(2.78)

Set ε > 0; thanks to Young’s inequality and to our definitions of p and φ, we obtain∫ T

S
Eqφ′

∫
Rn
u′2dxdt

≤ cE(S)1+q + 2
m− 1
m+ 1

ε(m+1)/(m−1)
∫ T

S
E1+q(φ′)(m+1)/(m−1)(1 + t)nσ−2/(m−1)dt

+
4

m+ 1
1

ε(m+1)/2
E(S).

(2.79)

We choose φ′ such that

φ′2/(m−1)(1 + t)nσ−2/(m−1) = 1, (2.80)
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so

φ(t)=
∫ t

0
(1 + s)−n(m−1)/2σ(s)ds. (2.81)

Then we deduce from (2.79) that

∫ T

S
E1+qφ′dt ≤ 2CE(S), (2.82)

and thanks to Lemma 2.4 (applied with c = 0) we obtain

E(t)≤ C

φ(t)2/(m−1)
. (2.83)

�

Proof of Theorem 2.8. First, we see that if u∈ �̃∗∗, then

∥∥∇xu
∥∥2

2 + 2
∫

Rn
F
(
u(t)

)
dx ≥ ∥∥∇xu

∥∥2
2−

2
p+ 1

∥∥u(t)
∥∥p+1
p+1 ≥

p− 1
p+ 1

∥∥∇xu
∥∥2

2. (2.84)

In the proof, we often use the following inequality:

∥∥u(t)
∥∥

2 ≤
1

d̃(t)

∥∥λ(x)u(t)
∥∥

2. (2.85)

Now, we assume that I(u0) > (1/2)
∥∥∇xu0

∥∥2
2. Then

I
(
u(t)

)≥ 1
2

∥∥∇xu(t)
∥∥2

2 (2.86)

for some interval near t = 0. As long as (2.86) holds, we have J(t)≡ I(u(t)). Thus

2η0

∫ T

S
Eq+1φ′dt ≤−

[
Eqφ′

∫
Rn
uu′dx

]T
S

+
∫ T

S

(
qE′Eq−1φ′ +Eqφ′′

)∫
Rn
uu′dxdt

+ 2
∫ T

S
Eqφ′

∫
Rn
u′2dxdt−

∫ T

S
Eqφ′

∫
Rn
σ(t)ug(u′)dxdt

≤−
[
Eqφ′

∫
Rn
uu′dx

]T
S

+
∫ T

S

(
qE′Eq−1φ′ +Eqφ′′

)∫
Rn
uu′dxdt

+ 2
∫ T

S
Eqφ′

∫
Rn
u′2dxdt+ c(ε)

∫ T

S
Eqφ′

∫
|u′|≤1

(
σ(t)
λ(x)

)2

g(u′)2dxdt

+ ε
∫ T

S
Eqφ′

∫
Rn
λ2(x)u2dxdt+

∫ T

S
Eqφ′

∫
|u′|≥1

σ(t)ug(u′)dxdt.

(2.87)

If σ(t) = �(d̃(t)), that is, σ(t) → 0 as t →∞ more rapidly than d̃(t), we find the same
results of asymptotic behaviour as in Theorem 2.7.
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If d̃(t)= �(σ(t)), so, we obtain

∫ T

S
Eq+1φ′dt ≤−

[
Eqφ′

∫
Rn
uu′dx

]T
S

+
∫ T

S

(
qE′Eq−1φ′ +Eqφ′′

)∫
Rn
uu′dxdt∫ T

S
Eqφ′

∫
|u′|≥1

u′2dxdt
∫ T

S
Eqφ′

∫
|u′|≥1

σ(t)ug(u′)dxdt

+ c(ε)
∫ T

S
Eqφ′

∫
|u′|≤1

(
σ(t)
λ(x)

)2

|u′|2dxdt.

(2.88)

We consider the case m= 1. Thus under (2.2) and (2.3), we have

∫ T

S
Eqφ′

∫
Rn

(
σ(t)
λ(x)

)2

u′2dxdt ≤ C
∫ T

S
Eqφ′

∫
Rn

(
σα(t)

d̃2(t)

)
σ(t)u′g(u′)dxdt (2.89)

for all 0≤ α < 1. We choose

φ(t)=
∫ t

0

d̃2(s)
σα(s)

ds. (2.90)

It is clear that φ is a nondecreasing function of class C2 on R+. Hypothesis (2.33) ensures
that

φ(t)−→ +∞ as t −→ +∞. (2.91)

By (2.85), the definition of E, and the Cauchy-Schwartz inequality, we have

−
[
Eqφ′

∫
Rn
uu′dx

]T
S
= Eq(S)φ′(S)

∫
Rn
u(S)u′(S)dx−Eq(T)φ′(T)

∫
Rn
u(T)u′(T)dx

≤ CEq+1(S)
[
φ′(S)

d̃(S)
+
φ′(T)

d̃(T)

]
≤ CEq+1(S),∫ T

S

(
qE′Eq−1φ′ +Eqφ′′

)∫
Rn
uu′dxdt ≤

∫ T

S
q|E′|Eq φ

′(t)
d̃(t)

dt+
∫ T

S
Eq+1

∣∣φ′′(t)∣∣
d̃(t)

dt

(2.92)

when we have (in the case m= 1)

φ′ = d̃2(t)
σα(t)

, φ′′(t)= 2d̃(t)d̃′(t)
σα(t)

−α
σ ′(t)d̃2(t)
σα+1(t)

. (2.93)

So

∣∣∣∣φ′′(t)
d̃(t)

∣∣∣∣≤−2d̃′(t)
d̃α(t)

d̃α(t)
σα(t)

−α
d̃(t)
σ(t)

σ ′(t)
σα(t)

, (2.94)
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d̃(t)/σ(t) is bounded, so we obtain

∫ T

S
Eq+1

∣∣φ′′(t)∣∣
d̃(t)

dt ≤−Eq+1(S)
[
d̃1−α(t) + σ1−α(t)

]T
S

≤ Eq+1(S)
(
d̃1−α(t) + σ1−α(t)

)
≤ CEq+1(S).

(2.95)

Then we deduce from (2.88) that

∫ T

S
Eφ′dt ≤ CE(S) + 2C

∫ T

S

∫
Rn
σ(t)u′g(u′)dxdt ≤ 3CE(S), (2.96)

and thanks to Lemma 2.4 we obtain

E(t)≤ E(0)e(1−φ(t))/3C. (2.97)

Using the condition that d̃(t)= �(σ(t)) and using Hölder’s inequality, we get that

∫ T

S
Eqφ′

∫
|u′|≤1

σ2(t)
λ2(x)

u′2dxdt

≤ 2
∫ T

S
Eqφ′

∫
Rn

σ2(t)
λ2(x)

(
1

σ(t)
σ(t)u′g(u′)

)2/(m+1)

dxdt

≤ 2
∫ T

S
Eqφ′

∫
{|x|≤L+t}

σ2(t)
λ2(x)

(
1

σ(t)
σ(t)u′g(u′)

)2/(m+1)

dxdt

≤ 2
∫ T

S
Eqφ′

(
σ(t)

d̃(t)

)2

(1 + t)n(m−1)/(m+1)
(∫

Rn
u′g(u′)dx

)2/(m+1)

dt

≤ c′
∫ T

S
Eqφ′

(
σ(t)

d̃(t)

)2

(1 + t)n(m−1)/(m+1)
(−E′
σ(t)

)2/(m+1)

dt

≤ c′
∫ T

S
Eqφ′

(
σ(t)

d̃(t)

)2

(1 + t)n(m−1)/(m+1)σ−2/(m+1)(t)(−E′)2/(m+1)dt

≤ c′
∫ T

S
Eqφ′

σα+1(t)

d̃2(t)
(1 + t)n(m−1)/(m+1)σ−2/(m+1)(t)(−E′)2/(m+1)dt.

(2.98)

Set ε > 0; thanks to Young’s inequality and to our definitions of p and φ, we obtain

∫ T

S
Eqφ′

∫
Rn

(
σ(t)
λ(x)

)2

u′2dxdt

≤ cE(S)1+q+2
m− 1
m+ 1

ε(m+1)/(m−1)

×
∫ T

S
E1+q(φ′)(m+1)/(m−1) σ

(1+α)(m+1)/(m−1)(t)

d̃2(m+1)/(m−1)(t)
(1+t)nσ−2/(m−1)dt+

4
m+ 1

1
ε(m+1)/2

E(S).

(2.99)



A. Benaissa and S. Mokeddem 951

We choose φ such that

φ(t)=
∫ t

0
(1 + τ)−n(m−1)/2σ−((1+α)(m+1)−2)/2(τ)d̃m+1(τ)dτ. (2.100)

It is clear that φ is a nondecreasing function of class C2 on R+. The hypothesis (2.35) en-
sures that φ(t)→ +∞ as t→ +∞. By (2.85), the definition of E, and the Cauchy-Schwartz
inequality we have (2.92) when we have (the case m> 1)

φ′ = (1 + t)−n(m−1)/2σ−((1+α)(m+1)−2)/2(t)d̃m+1(t),

φ′′(t)=−n(m− 1)
2

(1 + t)−n(m−1)/2−1σ−((1+α)(m+1)−2)/2(t)d̃m+1(t)

+ (1 + t)−n(m−1)/2
(
− (1 +α)(m+ 1)− 2

2
σ−(1+α)(m+1)/2(t)σ ′(t)d̃m+1(t)

+ (m+ 1)d̃m(t)d̃′(t)σ−((1+α)(m+1)−2)/2(t)
)
.

(2.101)

Thus ∣∣∣∣φ′′(t)
d̃(t)

∣∣∣∣≤ C
d̃m(t)
σm(t)

σ (1−α)(m+1)/2(t)−C′
d̃m(t)
σm(t)

σ ′(t)
σ ((1+α)(m+1)−2m)/2(t)

−C′′
d̃((1+α)(m+1)−2)/2(t)
σ ((1+α)(m+1)−2)/2(t)

d̃′(t)
d̃((1+α)(m+1)−2m)/2(t)

,

(2.102)

d̃(t)/σ(t) is bounded, so we obtain∫ T

S
Eq+1

∣∣φ′′(t)∣∣
d̃(t)

dt ≤−Eq+1(S)
[
d̃(1−α)(m+1)/2(t) + σ (1−α)(m+1)/2(t)

]T
S

≤ Eq+1(S)
(
d̃(1−α)(m+1)/2(S)+σ (1−α)(m+1)/2(S))

≤ CEq+1(S).

(2.103)

We deduce from this choice ∫ T

S
E1+qφ′dt ≤ 2CE(S), (2.104)

and thanks to Lemma 2.4 (applied with c = 0), we obtain

E(t)≤ C
(
E(0)

)
φ2/(m−1)

. (2.105)

Since u0 ∈ �̃∗∗ and �̃∗∗ is an open set, putting

T1 = sup
{
t ∈ [0,+∞) : u(s)∈ �̃∗∗ for 0≤ s≤ t

}
, (2.106)

we see that T1 > 0 and u(t) ∈ �̃∗∗ for 0 ≤ t < T1. If T1 < Tmax <∞, where Tmax is the
lifespan of the solution, then u(T1)∈ ∂�̃∗∗; that is,

I
(
u
(
T1
))= 0, u

(
T1
) �= 0. (2.107)
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We see from Lemma 2.2 and (2.85) that∥∥u(t)
∥∥p+1
p+1 ≤ C

∥∥u(t)
∥∥(4−(n−2)(p−1))/2

2

∥∥∇xu(t)
∥∥n(p−1)/2

2

≤ (d̃(t)
)−(4−(n−2)(p−1))/2

E(p−1)/2
∥∥∇xu(t)

∥∥2
2

≤ B(t)
∥∥∇xu(t)

∥∥2
2

(2.108)

for 0≤ t ≤ T1, where we have used the assumption p ≥ (n+ 4)/n and

B(t)= C
(
E(0)

)
d̃−(4−(n−2)(p−1))/2(t)(∫ t

0(1 + τ)−n(m−1)/2σ−((1+α)(m+1)−2)/2(τ)d̃m+1(τ)dτ
)(p−1)/(m−1) . (2.109)

Next, we put

T2 ≡ sup
{
t ∈ [0,+∞) : B(s) <

1
2

for 0≤ s < t
}

, (2.110)

and then we see that T2 > 0 and T2 = T1 because B(t) < 1/2 by the condition that E(0) is
small. Then

I
(
u(t)

)≥ ∥∥∇xu(t)
∥∥2

2−B(t)
∥∥∇xu(t)

∥∥2
2 ≥

1
2

∥∥∇xu(t)
∥∥2

2 (2.111)

for 0≤ t ≤ T1. Moreover, (2.107) and (2.111) imply

K
(
u
(
T1
))≥ 1

2

∥∥∇xu
(
T1
)∥∥2

2 > 0, (2.112)

which is a contradiction, and hence, it might be T1 = Tmax. Therefore, (2.105) holds true
for 0 ≤ T ≤ Tmax. To prove global existence in H2∩H1, we need to derive the estimates
for second derivatives of u(t) on the basis of the energy estimate of E(t), we utilize the
differentiated equation

uttt −∆xu
′ + λ2(x)u′ + σ ′(t)g(u′) + σ(t)g(u′)u′′ + f ′(u)u′ = 0, (2.113)

where f (u)= |u|p−1u. Multiplying (2.113) by u′′, we have

d

dt
E2(t) + 2σ(t)

∫
Rn
g′(u′)

∣∣u′′(t)∣∣2
dx

≤ 2
∫

Rn

∣∣ f ′(u)
∣∣∣∣u′(t)∣∣∣∣u′′(t)∣∣dx+ 2

∣∣σ ′(t)∣∣∫
Rn

∣∣g(u′)
∣∣∣∣u′′(t)∣∣dx,

(2.114)

where we set

E2(t)= ∥∥u′′(t)∥∥2
2 +
∥∥∇xu(t)

∥∥2
2 +
∥∥λu′(t)∥∥2

2. (2.115)

By (2.2) and (2.3), we have∫
Rn

∣∣g(u′)
∣∣2

dx ≤ C
∫
|u′|≤1

|u′|2/m dx+C′
∫
|u′|≥1

|u′|2r dx

≤ C(L+ t)n(m−1)/mE1/m +C′E(2−(n−2)(r−1))/2En(r−1)/2
2

(2.116)
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and by Lemma 2.2

2
∫

Rn

∣∣ f ′(u)
∣∣∣∣u′(t)∣∣∣∣u′′(t)∣∣dx ≤ C

∥∥u(t)
∥∥p−1
n(p−1)

∥∥u′(t)∥∥2n/(n−2)

∥∥u′′(t)∥∥2

≤ c
∥∥u(t)

∥∥p−1
n(p−1)

∥∥∇xu
′(t)

∥∥
2

∥∥u′′(t)∥∥2

≤ c
∥∥u(t)

∥∥p−1
n(p−1)E2(t).

(2.117)

Since (n+ 2)/n≤ p ≤ n/(n− 2), then∥∥u(t)
∥∥p−1
n(p−1) ≤ d̃−(2−(n−2)(p−1))/2E(p−1)/2. (2.118)

Thus, we have

d

dt
E2 ≤ d̃−(2−(n−2)(p−1))/2E(p−1)/2E2(t)

+ 2
∣∣σ ′(t)∣∣((L+ t)n(m−1)/mE1/m +CE(2−(n−2)(r−1))/2En(r−1)/2

2

)1/2
E1/2

2 (t).
(2.119)

We have also, applying Young inequality,

E(2−(n−2)(r−1))/2En(r−1)/2
2 ≤ CE(2−(n−2)(r−1))/(2−n(r−1))(t) +E2(t), (2.120)

hence, we deduce that

d

dt
E2(t)≤ C(t)

(
1 +E2(t)

)
. (2.121)

So, we obtain

E2(t)≤ C′e
∫ t

0 C(s)ds. (2.122)

From (2.122) and the first equation of problem (1.1), we also prove easily that∥∥∆xu(t)
∥∥

2 ≤ C′(t) <∞ (2.123)

for all t ≥ 0. Indeed, we have∥∥∆xu(t)
∥∥

2 ≤
∥∥u′′(t)∥∥2 +

∥∥λ2u(t)
∥∥

2 + σ(t)
∥∥g(u′(t))∥∥2 +

∥∥ f (u)
∥∥

2 (2.124)

and also we have ∥∥ f (u)
∥∥2

2 ≤ C
∥∥u(t)

∥∥2p
2p ≤ C

∥∥u(t)
∥∥2(p−1)
n(p−1)/2

∥∥∆xu(t)
∥∥2

2. (2.125)

Here, to check the last inequality of (2.125), we note that if (n+ 4)/n≤ p ≤ (n+ 2)/(n− 2),
then

C
∥∥u(t)

∥∥2(p−1)
n(p−1)/2 ≤ C

∥∥u(t)
∥∥4−(n−2)(p−1)

2

∥∥∇xu(t)
∥∥n(p−1)−4

2

≤ (d̃(t)
)4−(n−2)(p−1)

Ep−1(t) <
1
2
.

(2.126)
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Thus the solution in the sense of Theorem 2.6 exists globally in time t under the assump-
tion (u0,u1)∈H2×H1.

When (u0,u1) ∈ H1 × L2 we approximate (u0,u1) by (uk0,uk1) ∈ H2 ×H1, k = 1,2, . . .,
in the topologies of H1×L2, which satisfy

suppuk0∩ suppuk1 ⊂
{
x ∈R

n | |x| ≤ L
}
. (2.127)

Since limk→∞(uk0,uk1) = (u0,u1) in H1 × L2, then for these initial data problem (1.1) has
global solutions uk ∈W2,∞

loc ([0,∞);L2)∩W1,∞
loc ([0,∞);H1)∩ L∞loc([0,∞);H2), which sat-

isfy (2.122) and (2.123). We can easily see that {uk(t)} converges uniformly on each com-
pact interval [0,T], T > 0. Uniqueness follow from a standard argument. The proof of
Theorem 2.8 is now completed. �
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