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For differential games of fixed duration of linear dynamical systems with non-
quadratic payoff functionals, it is proved that the value and the optimal strate-
gies as saddle point exist whenever the associated pseudo-Riccati equation has
a regular solution P(f,x). Then the closed-loop optimal strategies are given by
u(t) = =R'B*P(t,x(t)), v(t) = =S"'C*P(t,x(t)). For differential game problems
of Mayer type, the existence of a regular solution to the pseudo-Riccati equa-
tion is proved under certain assumptions and a constructive expression of that
solution can be found by solving an algebraic equation with time parameter.

1. Introduction

The theory of differential games has been developed for several decades. The
early results of differential games of a fixed duration can be found in [2, 3, 5],
and the references therein. For linear-quadratic differential and integral games of
distributed systems, the closed-loop syntheses have been established in various
ways and cases in [6, 8, 10], and most generally in terms of causal synthesis
[12, 14].

In another relevant arena, the synthesis results for nonquadratic optimal con-
trol problems of linear dynamical systems have been obtained in [11, 13], and
some of the references therein. The key issue is how to find and implement non-
linear closed-loop optimal controls with nonquadratic criteria, which have been
solved with the aid of a quasi-Riccati equation.

In this paper, we investigate nonquadratic differential games of a finite-di-
mensional linear system, with a remark that the generalization of the obtained
results to infinite-dimensional distributed systems has no essential difficulty.
Here the primary objective is to explore whether the linear-nonquadratic
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differential game problem has a value and whether a saddle point of optimal
strategies exists and can be found in terms of an explicit state feedback.

Since the players’ sets of choices are not compact for such a differential game
of fixed duration and (unlike the quadratic optimal control problems) its payoff
functional has no convexity or concavity in general, the existences of a value,
a saddle point, and most importantly a feedback implementation of optimal
strategies in a constructive manner for this type of games are still open issues.
We will tackle these issues with a new idea of pseudo-Riccati equation.

Let T > 0 be finite and fixed. Consider a linear system of differential equa-
tions:

% =Ax+Bu(t)+Cv(t), x(0) = xo, (1.1)

where the state function x(t) and initial data x, take values in R”, u(t) as the
control of the player (I) takes value in R” and governed by a strategy (which is
denoted simply by u), and v(¢) as the control of the player (IT) takes value in R¥
and governed by a strategy (which is denoted simply by v). The inner products
in R”, R™, and R* will be denoted by (-,-), which will be clear in the context.
Define function spaces X = L(0, T;R"), X, = C([0, T;R"), U = L2(0, T;R™),
and V = L2(0, T;R¥). Assume that A, B, and C are, respectively, nx n, nx m, and
nxk constant matrices. Any pair of strategies {1, v} € UxV is called admissible
strategies.
Set a nonquadratic payoff functional

T
T (x0r s v) = M(x(T)) +f0 [Q(x(T)) + %(Ru(t), u(t))
(1.2)

1
+ E(Sv(t),v(t))] dt,

where M and Q are functions in C?>(R"), R is an m x m positive definite matrix,
and S is a k x k negative definite matrix. The game problem is to find a pair of
optimal strategies {i, 7} € UxV in the following sense of saddle point:

](Xo, ﬁ’ V) S](XO; fl, 1,\/) S]<x0> u, 1;'); (13)
for any admissible strategies u € Uand v € V. If

supinfJ (xo, u,v) = inf supJ (xo, u, v), (1.4)

then the number given by (1.4) is denoted by J*(xp) and called the value of this
game. It is seen that whenever a pair of optimal strategies exists, the game has a
value and indeed J*(xo) = J (xo, @1, ).
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We denote by L(E;, E;) the space of bounded linear operators from Banach
space E; to Banach space E, with the operator norm. If E; = E,, then this oper-
ator space is denoted by L(E;). Any matrix with superscript * means its trans-
posed matrix and any bounded linear operator with superscript * means its ad-
joint operator. Here, we mention the following relation between a Fréchet dif-
ferentiable mapping f defined in a convex, open set of a Banach space and its
Fréchet derivative D f,

1

flx+h)—f(x) = L Df(x+sh)hds. (1.5)

All the concepts and results in nonlinear analysis used in this paper, such as
gradient operator and proper mapping, can be found in [1, 9].

2. Pseudo-Riccati equations

To study the solvability of the nonquadratic differential game problem described
by (1.1), (1.2), and (1.3), we consider the following pseudo-Riccati equation as-
sociated with the game problem:

Pi(t,x)+ Py (t,x)Ax+A*P(t,x)
—P,(t,x)(BR'B*+CS'C*)P(t,x)+ Q' (x) (2.1)

=0, for(t,x)e[0,T]xR"
with the terminal condition
P(T,x) =M'(x), forxeR" (2.2)

The unknown of the pseudo-Riccati equation is a nonlinear mapping P(t,x) :
[0, T] x R" — R". We use P; and P, to denote the partial derivatives of P with
respect to t and x, respectively. This pseudo-Riccati equation (2.1) with deter-
mining condition (2.2) will be denoted by (PRE).

Definition 2.1. A mapping P(t,x) : [0, T] x R" — R" is called a regular solution
of the (PRE) if P satisfies the following conditions:

(1) P(t,x) is continuous in (¢, x) and continuously differentiable, respectively,
in t and in x, and P satisfies (2.1) and condition (2.2);
(ii) for 0< ¢t < T, P(t,-) : R" — R" is a gradient operator;
(iii) the initial value problem

% =Ax— (BR'B*+CS'C*)P(t,x), x(0)=xo, (2.3)

has a unique global solution x € X, for any given x, € R".
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Suppose P is a regular solution of the (PRE). According to the definition of
gradient operators (cf. [1]), for any ¢ € [0, T] there exist anti-derivatives ®(t,x)
of P(t,x), which are nonlinear functionals ®(t,x) : [0, T] x R"” — R such that

O, (t,x) =P(t,x), (t,x)€[0,T]xR" (2.4)

Since anti-derivatives may be different only up to a constant, we can set the fol-
lowing condition to fix the constant:

O(t,0)=M(0), 0<t<T. (2.5)

LEMMA 2.2. Let x(-) be any state trajectory corresponding to an initial state x, and
any admissible strategies {u,v}. If P(t,x) is a regular solution of the (PRE) given
by (2.1) and (2.2), and O(t,x) is the anti-derivative of P(t,x) with (2.5) being
satisfied, then ®(-,x(-)) is an absolutely continuous function on [0, T], which is
denoted by ©(-,x(-)) € AC([0, T;R).

Proof. From the expression of any state trajectory,

t
x(t) = e*xg +J‘ A [Bu(s)+Cv(s)] ds, tel[0,T], (2.6)
0

it is seen that x € AC([0, T;R) N Cyip ([0, T];R). From (1.5), (2.4), and (2.5) it
follows that

O(t,x(t)) = j: (P(t,sx(t)),x(t))yds+M(0), te[0,T]. (2.7)

Let Q) be a closed and convex set defined by
Q=Cl conv. {sx(¢) |0<s<1, te[0,T]}, (2.8)

where x is a trajectory as above. According to Definition 2.1, P(t,x), P;(t,x), and
P,(t,x) are all uniformly bounded in their norms over the convex, compact set
[0, T] x Q). By the mean value theorem, it follows that P(¢, x) satisfies the uniform
Lipschitz condition with respect to (¢,x) € [0, T] x Q.

These facts imply that ®(-,x(-)) € AC([0, T];R) by the following straightfor-
ward estimation based on (2.7):

| D (8, x() - D(7,x(1))]

1 1
= U (P(t,sx(t)),x(t))ds—j (P(1,5x(1)), x(7) ) ds
0 0

1
< I (Pe(& sx(1)) (t—1) + Py(7, s17) (x(t) — (7)), x(t) ) ds (2.9)
0

+

Il (P(7,5x(1)), x(t)—x(1)) ds
0
<K(|t=7]+|x(t)-x(1)]),
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for any t, 7 € [0, T], where & is between ¢ and 7, # is between x(t) and x(7),
and K is a constant only depending on {xo, u, v, T'}. Since we have shown earlier
that x € Cj;p([0, T];R), this implies that ®(-,x(-)) € AC([0, T];R). The proof is
completed. O

Now we prove a key lemma which addresses the connection of the (PRE) and
the concerned differential game problem.

LemMA 2.3. Under the same assumptions as in Lemma 2.2, it holds that

D 0(1,x(0) = Q) ~Q(x(1)) + (Bult) + Cv(e), P(6:x(1)

1 (2.10)
+I (Py(t,sx(t)) (BR'B*+CS™'C*) P(t,sx(t)),x(t)) ds,
0

for almost every t € [0, T].

Proof. As a consequence of Lemma 2.2, ®(t,x(t)) is a.e. differentiable with re-
spect to t in [0, T]. On the other hand, from the proof of Lemma 2.2 it is seen
that the integrand function (P(¢,sx(¢)), x(¢)) in (2.7) is uniformly Lipschitz con-
tinuous with respect to t and a Lipschitzian constant can be made independent
of the integral variable s € [0, 1].

According to the differentiation theorem for Lebesgue integrals with param-
eters, we can differentiate two sides of (2.7) to obtain

1
Lo x0) - fo 4 (Pt sx(), x(0) ds
1
= fo [(Pt(t, sx(t)), x())
+ <Px(t, sx(t)) %,sx(t)> + <P(t, sx(t)), %>] ds

1
_ f [(Py(5x(1)),x(8)) + Py (1, sx(8)) Ase (), x(8))
0
+(A*P(t,sx(t)),x(t))] ds

+Il (P (t,sx(t)) (Bu(t) + Cv(1)), x(t))sds
0
1
+ <I P(t,sx(t)) ds, Bu(t) +Cv(t)>
0
_ f L (Pu(b5x(6)) (BR-B* + CS™ C*)P (1, 5x(8)), x(1)) ds
0

1
_,[o (Q'(sx(1)),x(t)) ds
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1
+ <Bu(t)+Cv(t),f [Px(t, sx(t))sx(£) +P(t,5x(1))] ds>
0
1
= J’ (Py(t,sx(t)) (BR'B*+CS™'C*)P(t,sx(t)), x(t)) ds
0
-Q(x(1)) +Q(0) + <Bu(t) +Cv(t),
1
j [Px(t,sx(t))sx(t)+P(t,sx(t))]ds>,
0
(2.11)
where in the penultimate equality we used the pseudo-Riccati equation (2.1)
and the fact that P,(t,x) is a selfadjoint operator (symmetric matrix), Py (t,x) =
P, (t,x)*, because P(t, x) is a gradient operator with respect to x (cf. [1, Theorem
2.5.2]).

Then using the integration by parts to treat the term at the end of (2.11), we
have

1
<Bu(t) +Cv(t), I Py (t,sx(t))sx(t) ds>
0

= <Bu(t) +Cv(t), <Ist(t, ox(t))x(t) d0-5>

0

s=1

s—0>

- <Bu(t) +Cv(1), fl js P, (t,0x(t))x(t) dads> (2.12)
0Jo

1

= <Bu(t)+Cv(t),I

0

Py (t,sx(t))x(t) ds>

- <Bu(t) +Cv(t), J: I;Px(t, ox(t))x(t) dods>

and by (1.5) the inner integral in the last term of (2.12) can be rewritten as
follows:

J‘S Py(t,0x(t))x(t) do = Jd Py (t,nsx(t))sx(t)dn  (let o = ps)
0 0

= P(t,sx(t)) = P(t,0).

(2.13)

Substituting (2.12) with (2.13) into (2.11), we obtain

Lo (5,x0) = 00 -Q(x(0)

1
+I (Px(t,5x(1)) (BR'B*+CS™' C*)P(t,sx(1)), x(t)) ds
0



Yuncheng You 67

+{ Bu(t)+Cv(t), J‘P (t,sx(t))x (t)ds>

1

{
—<Bu( )+ Cu(t), fo [P(t,5x(1)) - P(1,0)] ds>
{

1
+( Bu(t)+Cv(t), f P(t,sx(t)) ds>
=Q(0)-Q(x(1))

+jl (Py(t,5x(t)) (BR™B* +CS™ C*) P (8, sx(1)), x(1)) ds
0

+(Bu(t)+Cv(t), P(t,x(t)) = P(,0))

<Bu )+ Cv(t), J‘l [P(t,sx(t))—P(t,0)] ds>

0

+<Bu )+ Cv(t), f P(t,sx(t)) ds>
=Q(0)-Q(x(1))

1

+| (Pe(t,sx(t)) (BR'B*+CS™'C*)P(t,sx(1)),x(t)) ds
0

+(Bu(t)+Cv(t),P(t,x(t))), forae. tel[0,T]. (2.14)

Therefore, (2.10) is satisfied for a.e. t € [0, T']. O

3. Closed-loop optimal strategies

Under the assumption that there is a regular solution of the pseudo-Riccati equa-
tion (2.1), (2.2), we can show the existence, uniqueness, and closed-loop expres-
sions of a pair of optimal strategies as well as the existence of the value of this
differential game. It is one of the main results of this work.

THEOREM 3.1. Assume that there exists a regular solution P(t,x) of the (PRE).
Then, for any given xo € R", the differential game described by (1.1), (1.2), and
(1.3) has a value and a unique pair of optimal strategies in the saddle-point sense.
Moreover, the optimal strategies are given by the following closed-loop expressions,

u(t)=-R'B*P(t,x(t)), »(t)=-S"'C*P(t,x(t)), te[0,T], (3.1)
where x stands for the corresponding state trajectory of (1.1).

Proof. Let O(¢,x) be the anti-derivative of P(t, x) such that (2.5) is satisfied. For
any given x, and any admissible strategies {u, v}, from Lemma 2.3 we have
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%d)(t,x(t)) +Qx()) + %(Ru(t),u(t)>+ %(sm), V(1))
= Q0)+ 3 (Ru(t) u(t)) + 3 (Sv(2),v(1)) + (Bu(t) + Co(0), P(t,x(1)))
+j01 (Po(t,sx(1)) (BR™'B* + CS™ C*)P (£, sx(1) ), x(1)) ds. (32)
Let 3(t,x) be the function defined by
Bltx) = 3 [(RBP(tx), BP(5 ) + (57 C'P(60), CP(b )] (33)
Then we have

%(t,x) =P,(t,x)(BR'B*+CS™'C*) P(t, x). (3.4)

From (3.2) and (3.4), we can get
%d)(t,x(t)) +Qx(0) + %(Ru(t),u(t)>+ %(sm), V(1))

—Q0)+ %(Ru(t), u()) + %(sm), V(1)) + (Bu(r) + Cv(t), P(1,x(1)))

+fol <%(t’”‘(t))’x(t)>ds

= QUO)+ 5 (Ru(t),ulb))
+ % (Sv(1),v(t))+ (Bu(t)+Cv(t), P(t,x(t)) ) + B (¢, x(t)) - f(t,0)

= QUO)~B(t,0)+ 3 (R[u(t)+ R B*P(1.x(1)],
u(t)+R'B*P(t,x(1)))
+2(S[V(D+5 CP(Ex(D)], v+ CP (D).
(3.5)

Now integrating the expressions at the two ends of equality (3.5) in ¢ over [0, T],
since (-, x(+)) is an absolutely continuous function, we end up with

T
o(T,x(t))-oD(o,xo)+J0 [Q(x(t))+%<Ru(t),u(t)>+%($v(t), v(0)| dr

T
- Q(O)T—fo B(1,0)dt

(3.6)

T
+ %j (R[u(t)+ RB*P(t,x(1))], u(t) + R B*P(1,x(1))) dt
0

T
+ %j (S[v(1)+ 87 C*P(t,x(1))], v(1) + S C*P (1, x(1))) d.
0
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Note that (2.2) and (2.5) imply ®(T,x) —O(T,0) = M(x)-M(0) and
O(T,x)=M(x), VxeR" (3.7)

Then, with (3.7) substituted, (3.6) can be written as
T
T (x0r s v) = M(x(T)) +f0 [Q(x(t)) +2 (Ru(t),u(0) + 3 (Sv(1), v(1) | d

T
=W(x,T)+ %f (R[u(t)+R'B*P(t,x(1))],
0

(3.8)
u(t)+R'B*P(t,x(1))) dt
+ % LT (S[V(t) + S C*P(6,x(0)], (1) + S C*P(,x(1)) ) i,
where
W (30, T) = D (0,%) +Q(0>T-LT B(1,0)dt. (3.9)

Note that (3.8) holds for any admissible strategies {u, v}.

According to Definition 2.1, the initial value problem (2.3) has a global so-
lution x(-) € X, over [0, T]. Hence, the strategies given by the state feedback
expressions in (3.1) are admissible strategies. And (3.8) shows that

J (x0, 8, 9) = W (x0, T), (3.10)

which depends on x and T only. For any other admissible strategies {u, v}, (3.8)
implies

T
T (xr i v) = W (30, T + %f (S[v(0)+5 CP(6x(D)],
0

v(t)+STCP(L,x(1)) ) dt

< W (x0, T) =] (x0, 4, V) (3.11)

T
<W (w0 T)+3 L (R[u(t)+ RB*P(t,x(1))] u(t)

+R'B*P(t,x(t))) dt
=] (x0,u, V),
since R is positive definite and S is negative definite. This proves that there exists

a unique pair of optimal strategies {i, ¥}, given by (3.1), and that the value of
this game exists. In fact, the value is J*(xo) = J(xo, &, 7) = W (x0, T). |

Remark 3.2. In the above argument which goes from (3.8) to (3.11), it is impor-
tant to clearly distinguish the following two concepts: one is the strategy u and
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v used by each player, and the other is the control function u(#) and v(t) of the
time variable t € [0, T]. The strategy is a pattern like the feedback shown in (3.1)
or any other admissible feedback. When a strategy is implemented, then u and
v become concrete functions of time variable, which are usually called control
functions for the players.

When a pair of strategies {u, v} is different from the pair {#, 7}, certainly the
state trajectories x(t, xo, &, v), x(t, xo, 4, ¥), and x(¢, xo, u, ) are different functions
in general, but as long as the optimal strategy patterns are shown by (3.1), then
we have

T
f (R[i(t) + R B*P (6, x(1))], () + R B*P (1, x(1)) ) dt = 0,
0 (3.12)

T
j (S[P()+S7'C*P(t,x(1))], () + S C*P(t,x(1)) ) dt = 0
0

in the derivation of (3.11).

4. Mayer problem: solution to the pseudo-Riccati equation

In this section, we assume that Q(x) = 0. Then the payoff functional reduces to

T
J (%0, ,v) = M (x(T)) + % f [(Ru(t), u(t)) +(Sv(t), v(t))] dt. (4.1)
0

This type of differential games described by (1.1), (4.1), and (1.3) can be re-
ferred to as the Mayer problem, according to its counterpart in optimal control
theory and in calculus of variations. Since a general problem (1.1), (1.2) can be
reduced to a Mayer problem by augmenting the state variable with additional
one dimension, it is without loss of generality to consider Mayer problems only.

Associated with this Mayer problem, we will consider a nonlinear algebraic
equation with one parameter 7, 0 < 7 < T, as follows:

y+G(T-1)M'(y) = ATy VxeR" (4.2)

where
T *
G(t) =I e(BR'B*+CS'C*)e’*ds, te(0,T). (4.3)
0
Here, (4.2) has an unknown y € R” and a parameter 7 € [0, T]. Equation (4.2)
can also be written as

y+G(t)M'(y) = e*'x, for any x e R", (4.4)

with t = T—7,0 <t < T. Note that G(¢) is a symmetric matrix for each t € [0, T].
However, unlike the optimal control problems, here G(t) is in general neither
nonnegative, nor nonpositive due to the assumptions on R and S.
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First consider a family of differential games defined over a time interval [z, T],
where 0 < 7 < T is arbitrarily fixed. We use (DGP); to denote the differential
game problem for the linear system

dx
I =Ax+Bu(t)+Cv(t), x(1)=x0, (4.5)
with respect to the payoff functional
1 (T
Je (x0,,v) = M(x(T)) + 3 f [(Ru(t), u(t))+(Sv(t), v(t))] dt (4.6)
in the sense of saddle point, that is,

J= (%0, 4, v) < Jr (30, 2, V) < Jr (30, 1, 9), (4.7)

where A, B, C, M, R, and S satisfy the same assumptions made in Section 1.

We first investigate the solution of (4.2) and then find out its connection to
a regular solution of the pseudo-Riccati equation (PRE). The entire process will
go through several lemmas as follows.

AssUMPTION 4.1. Assume that for every T € [0, T}, there exists a pair of saddle-
point strategies to (DGP), defined by (4.5), (4.6), and (4.7).

LemMA 4.2. Under Assumption 4.1, there exists a solution of (4.2) for any given
x € R" and for every T € [0, T'].

Proof. Suppose that {4, 7} is a pair of saddle-point strategies with respect to
(DGP),. Then one has

Jr (%0, 4, ¥) = min {J; (x5, 4, ¥) | admissible u}, (4.8)

Jr (%0, 4, ) = max {J; (xo, &, v) | admissible v}. (4.9)

In other words, # is the minimizer of J;(xo, 4, 7) subject to constraint (4.5) with
v =7, and 7 is the maximizer of J;(xo, &, v) subject to constraint (4.5) with u =
it. Thus one can apply the Pontryagin maximum principle (cf. [7]). Since the
Hamiltonians in these two cases are, respectively,

H' (x, 9,u) = (Ax-+ Bu+C, @) + = [(Ru,u) + (59, )],
: (4.10)
H*(x, y,u) = (Ax+Bi+Cv,y) + 3 [(Ré, &ty +(Sv,v)],

the co-state function ¢ associated with the optimal control # in (4.8) satisfies the
following terminal value problem:

(4.11)
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and the co-state function y associated with the optimal control ¥ in (4.9) sat-
isfies the same terminal value problem (4.11), with the same value x(T) that
corresponds to the control functions {7, ¥}. Therefore, one has

() =y(t) =" TIM (2(T)), T<t<T (4.12)

By the maximum principle, the saddle-point strategies can be expressed as the
following functions of the time variable ¢:

u(t) = -R'B*¢(t) = —-R'B*e" T M (x(T)),
te(r,T], (4.13)
v(t) =-S'Cy(t) = =S C* e T M (x(T)).

Hence the state trajectory x corresponding to the saddle-point strategies
{1, 7} satisfies the following equation, for t € [1, T],

t
x(t) = A —j AU (BRTIB* +CSIC) e M (x(T)) ds

T

=1
— eA(t—T)xO_'[ eA(t—T—S) (BR—IB*+C8—1 C*) (414)

0
x et T=729) dsM' (x(T)).

Let t = T in (4.14) and change variable in the integral by renaming T—7—s as s.
Then we obtain

x(T)+G(T-1)M' (x(T)) = ATy, (4.15)

Equation (4.15) shows that, since xy € R” is arbitrary, for any given x = x, € R”
on the right-hand side of (4.2), there exists a solution y to (4.2), which is given by

vy =x(T;x0,7) = (simply denoted by) x(T), (4.16)
where x(T;x, T) represents the terminal value of the saddle-point state trajec-
tory with the initial status x(7) = xo. O

It is, however, quite difficult to address the issue of the uniqueness of solutions
to (4.2). Now we will exploit a homotopy-type result in nonlinear analysis for
this purpose, based on a reasonable assumption below. For each 7 € [0, T], define
a mapping K; : R" — R” by

K:(y)=y+G(T-1)M'(y), (4.17)

where G(-) is given by (4.3). Actually, K, (y) is the left-hand side of (4.2). Also let
K(y,1) = K:(y). We make another assumption here.

AssuMPTION 4.3. Assume that M is an analytic function on R", and K is uniformly
coercive in the sense that | K(y, T)|| — oo uniformly in T, whenever || y|| — oo.
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An instrumental homotopy result for parametrized nonlinear operators is de-
scribed in the following lemma, which was first established by R. Caccioppoli in
1932 (cf. [4, Theorem 6.3, page 41] and [9, Theorem 16.3, page 176]). The proof
of Lemma 4.4 is shown in [4] and here it is omitted.

LemMA 4.4 (Caccioppoli). Let X and Y be Banach spaces and let Z be a con-
nected, compact metric space. Suppose that f : X x Z — Y is a mapping and we
write f(x,A) = fi(x) where (x,1) € X xZ. Assume that the following conditions are
satisfied:

(a) for every x € X, there is an open neighborhood O(x) in X such that f,(O(x))
isopenin 'Y and f) : O(x) — fL(O(X)) is isomorphic;

(b) the mapping f is proper;

(¢) for some A = Ay € Z, the mapping f, is a homeomorphism.

Then fy is a homeomorphism for every A € Z.

Note that a continuous mapping is called proper if the inverse image of any
compact set in the range space is compact in the domain space. The following
lemma is a corollary of [1, Theorem 2.7.1].

LemMA 4.5. Let f be a continuous mapping from X to Y, where X and Y are both
finite dimensional. Then the following statements are equivalent:

(i) f is coercive in the sense that || f (x)|| — oo whenever ||x|| — oo;
(i) f is a closed mapping, and the inverse image set f~1(p) is compact for any
fixed peY;
(iii) f is proper.

Using the above two lemmas, we can study the uniqueness of solutions of
(4.2) and the properties of the solution mapping based on the aforementioned
assumptions.

LEmMa 4.6. Under Assumptions 4.1 and 4.3, for every T € [0, T], the mapping K,
is a C! diffeomorphism on R".

Proof. We will check all the conditions in Lemma 4.4 and then apply that lemma
to this case by setting X =Y =R",Z=[0,T], f =K, f =K, and (x,4) = (y,7).

First, it is easy to see that K is a continuous mapping. By Lemma 4.5,
Assumption 4.3 implies directly that K : X x [0, T] — Y is coercive and proper.
Hence, condition (b) of Lemma 4.4 is verified.

Second, Lemma 4.2 together with the linear homeomorphism el shows
that the range of K is the entire space R". For any given y, € R", let p = K;(y)
be its image. By the continuity of the mapping K, for any open neighborhood
N(p) of p, the preimage K- (N(p)) is an open set. Also note that by Lemma 4.5,
K:1(p) is a compact set for any fixed p. Since the function M(-) is analytic, K (-)
is an analytic function, so the compactness implies that the preimage set K;!(p)
of this p must have no accumulation points, because otherwise K; would be a

T-1)
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constant-valued function which contradicts Lemma 4.2. As a consequence, each
point in K;!(p) must be isolated.

Therefore, there exists a sufficiently small open neighborhood Ny(p) of p
such that the component of K;!(No(p)) containing yo is an open neighborhood
O(yy) that has no intersection with any other components containing any other
preimages (if any) of p. Moreover, as a consequence of this and the continuity,
K; : O(yy) — K;(O(yy)) is isomorphic. So condition (a) is satisfied.

Third, for T € [0, T], we have Ky = I, the identity mapping on R”, which is
certainly a homeomorphism. Thus, condition (c¢) of Lemma 4.4 is satisfied.

Therefore, we apply Lemma 4.4 to conclude that for every 7 € [0, T], the map-
ping K- is a homeomorphism on R”. Finally, since M is analytic, it is clear that
the mapping K, is a C! mapping. It remains to show that K;! is also a C! map-
ping. Indeed, due to (4.16) and the uniqueness of the solution to (4.2) just shown
by the homeomorphism, we can assert that

KN (p) =x(T;e 4T p, 1), (4.18)
where x(), T <t < T, satisfies (4.14) or equivalently {x, ¢} satisfies the following
differential equations and the initial-terminal conditions:

dx d(p

== = Ax— (BR'B*+CS™'C") g, £ _ A%,

dt ( " Y (4.19)
x() =T, 9(T) =M (x(T)).

By the differentiability of a solution of ODEs with respect to the initial data,
or directly by the successive approximation approach, we can show that for any
T<t<T,

ox(t;e AT p, 1)
9p

exists and is continuous in p. (4.20)

Let t = T, it shows that K;! is a C~! mapping. Thus, we have proved K; is a C!
diffeomorphism on R”. O

CoROLLARY 4.7. Under Assumptions 4.1 and 4.3, for every T € [0, T] and every
y € R", the derivative

DK, (y) =+ G(T-1)M"(y) (4.21)

is a nonsingular matrix.

The inverse matrix of (4.21) will be denoted by [I + G(T — 7)M"(y)]™".
Corollary 4.7 is a direct consequence of Lemma 4.6 and the chain rule (cf. [1]
or [9]). Thanks to Lemma 4.6 and the linear homeomorphism e™4(T=7), there
exists a unique solution y of (4.2) for any given 7 € [0, T'] and any given x € R".



Yuncheng You 75
This solution y can be written as a mapping H(T--,-) : [0, T] xR" — R", namely,
y=H(T-1,x), 7€l[0,T], xeR" (4.22)

This mapping H will be referred to as the solution mapping of (4.2).
We are going to show the properties of the nonlinear mapping H, which will
be used later in proving the main theorem of this section.
LemMA 4.8. Under Assumptions 4.1 and 4.3, the solution mapping y = H(T —t,x)
is continuously differentiable with respect to (t,x) € [0, T] xR". Moreover, we have
Hi(T—-t,x) = [[+G(T-7)M"(H(T -t,x))] AT )
4.23
x [-Ax+ (BR'B*+CS'C") e "M (H(T-t,x))],

H(T-t,x) = [[+G(T-1)M"(H(T -t,x))] """, (4.24)

where Hy and Hy stand for the partial derivatives of H with respect to t and x,
respectively.

Proof. Define a mapping
E(t,y,x) = y+G(T-1)M'(y) - AT Dx = K, (y) -2 Ty, (4.25)

where (t, y,x) € [0, T] x R" x R". Obviously, E is C! mapping and E, = DK, (y)
is invertibly due to Corollary 4.7, for any 7 and y. Note that (4.2) is exactly
E(t, y,x) = 0. Then by the implicit function theorem and its corollary (cf. [1]),
the solution mapping H (T —t,x) of (4.2) (renaming 7 = ¢) is a C' mapping with
respect to (t,x). Its partial derivatives are given by

Hi(T—t,x) = - [E,(t, x, H(T—t,x))] "' E:(t, x, H(T - 1,x)), (4.26)
Ho(T—t,x) = —[E,(t, x, H(T—£,x))] " E<(t, x, H(T — £, x)). (4.27)

Directly calculating E; and E, from (4.25) and (4.3) and then substituting them
into (4.26) and (4.27), we obtain (4.23) and (4.24). O

Before presenting the main result of this section, we need a lemma which pro-
vides some properties of the inverses of some specific types of operators. These
properties will be used to prove the self-adjointness of concerned operators in
the main result.

LemMma 4.9. Let X and Y be Banach spaces and Ay € L(X), By € L(Y,X), Cy €
L(X,Y), and Dy € L(Y). Then the following statements hold:

(a) if Ao, Do, and Dy — CyA;' By are boundedly invertible, then Ay —ByD,' Cy is
boundedly invertible and its inverse operator is given by

(Ag-BoDy'Co) ™' = A"+ A" By (Do — CoAy' By) ™ CoAy's (4.28)
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(b) suppose Py € L(Y,X) and Qy € L(X, Y). If Ix + Py Qy is boundedly invertible,
then Iy + QuPy is also boundedly invertible and the following equality holds:

(Ix + PyQo) ' Py = Po(Iy +QoPo) . (4.29)
Proof. The proof is similar to the matrix case, so it is omitted. O
Now we can present and prove the main result of this section.

TaEOREM 4.10. Under Assumptions 4.1 and 4.3, there exists a regular solution
P(t,x) of the pseudo-Riccati equation (2.1) with the terminal condition (2.2). This
regular solution is given by

P(t,x) = e TOM (H(T-t,x)), (4.30)

where (t,x) € [0, T] xR", and H(T —t,x) is the solution mapping of (4.2) defined
in (4.22).

Proof. Tt is easy to verify that the terminal condition (2.2) is satisfied by this
P(t,x) because

P(T,x) = M'(H(0,x)) = M'(x). (4.31)

Step 1. It is clear that P(t,x) defined by (4.30) is continuous in (#,x) and, due to
Lemma 4.8, P(t,x) is continuously differentiable in ¢ and in x, respectively. Now
we show that this P satisfies the pseudo-Riccati equation (2.1). In fact, by (4.23)
and (4.24) and using the chain rule, we can get

Pi(t,x) = =A*P(t,x) +e* TOM" (H(T - t,x))H/(T - t,x), (4.32)
Po(t,x) = e TOM" (H(T - t,x)) He(T ~t, x). (4.33)
From (4.23), (4.24), (4.32), and (4.33), it follows that
Py(t,x) + Py(t, x) Ax+ A*P(t,x) — P (t,x) (BR"'B*+ CS™' C*) P(t, x)
=M T OM(H(T-t,x))H(T~t,x)
+eV" TOM(H(T -, x))He (T~ t,x) Ax
AT DM (H(T-t,%))Hy (T~ 1, x)
~(BR'B*+CS'C) e TOM (H(T -, %)) (4.34)
=M TOM (H(T-t,x)) [[+G(T-7)M" (H(T-t,x))] '
AeAT D[~ Ax+ (BR'B*+CS'C) e TOM (H(T - t,x))]
+eA T Ax— A0 (BRTIB*+CSICY) M T M (H(T-1,x)) )
=0, for(t,x)e[0, T]xR".
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Equation (4.34) shows that the nonlinear matrix function P(f,x) given by (4.30)
satisfies pseudo-Riccati equation (2.1), with Q(x) = 0 for the Mayer problem.
Step 2. We now prove that for every t € [0, T], P(t,-) : R"” — R" is a gradient
operator. By [1, Theorem 2.5.2] it suffices to show that for every fixed ¢ € [0, T,
P, (t,x) is selfadjoint. From (4.33) and (4.24), we find

Py(t,x) =X TOM"(H(T - 1,x))
I+ G(T-1)M" (H(T~t,x))] AT,

Applying Lemma 4.9(b) to this case with Py = G(T-7) and Qy = M"(H(T -t,x)),
we know that I+ M"(H(T —t,x))G(T - ) is also boundedly invertible. In order
to show that P,(t,x) in (4.35) is selfadjoint, it is enough to show that

(4.35)

M"(H(T—1t,x)) [[+G(T-7)M"(H(T-t,x))] "' (4.36)

is selfadjoint. Since G(T-71)* = G(T—71) and M"(H(T-t,x))* = M"(H(T - t,x)),
we have

[M"(H(T 1,20) [1+G(T - )M (H(T-1,))] ")

*

={I+G(T-n)M" (H(T-1,0)] ™} M"(H(T-£,0)"

= [[+M'(H(T-1,%)"G(T-7)"] ' M"(H(T-t,x))" (4.37)
= [I+M"(H(T-t,%))G(T-7)] "' M"(H(T-t,x))

= M"(H(T-t,x)) [I+G(T-7)M"(H(T-t,x))] ",

where the last equality follows from Lemma 4.9(b) and (4.29). Hence, P.(t,x) is
selfadjoint and, consequently, P(,-) is a gradient operator for every t € [0, T].
Step 3. Finally we show the existence of a global solution x(-) € X, to the initial
value problem (2.3) over [0, T], for any given x(, € R”. Indeed, by Lemma 4.2,
there exists a trajectory x(-) € X, corresponding to a saddle-point pair of strate-
gies of (DGP),-y with any given initial state xy. Then by (4.14), the terminal
value of this trajectory satisfies

T
x(T) = e*Tx —f A=) (BRTIB* +CS'C*) A" T 9IM' (x(T)) ds
b (4.38)
- eA(T_t)x(t)—j A=) (BRTIB* +CS1C) e T M (x(T)) ds,
t
which is equivalent to
x(T)+G(T-t)M' (x(T)) = X T Dx(1), (4.39)

and that in turn implies x(T') is a solution to (4.2) with the right-hand side being
eAT-Dx(t). By the uniqueness of (4.2) shown in Lemma 4.6, we have

x(T)=H(T-t,x(t)), fortel[0,T]. (4.40)
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Substituting (4.40) into the constant-of-variation formula and by (4.30), we get

t
x(t) = e*'x —j M9 (BR'B* +CS™' C*) et (1)
0

xM' (H(T-s,x(s)) )ds (4.41)

t
=eflx, —I A=) (BRTIB* +CS'C*)P(s,x(s)) ds,
0
for t € [0, T]. Equation (4.41) shows that the initial value problem (2.3) with
P(t,x) given by (4.30) has a global solution in X, for any given xy € R". Certainly,
since the local Lipschitz condition is satisfied by the right-side function of (2.3)
with this P(, x), this global solution is unique.

Therefore, we conclude that P(¢, x) given by (4.30) is a regular solution of the
(PRE). The proof is completed. O

COROLLARY 4.11. Assume that the following conditions are satisfied:

(a) for every T € [0, T] and every y € R", I + G(T —t)M"(y) is a nonsingular
(i.e., bounded invertible) matrix;
(b) the initial value problem

dx

= = Ax- (BR'B*+CS'C) e TOM (H(T -t,x(1))),

(4.42)
x(0) = xo,

has a unique global solution x € X, for any given xy € R", where H(T —1,x)
defined by (4.22) is the solution mapping of (4.2).

Then there exists a regular solution P(t,x) of the pseudo-Riccati equation (2.1)
with the terminal condition (2.2). This regular solution is given by

P(t,x) =N TOM (H(T-t,x)), (4.43)

where (t,x) € [0, T] xR".

Proof. By condition (a) and the implicit function theorem, (4.2) has a unique
solution for every 7 and x so that the solution mapping H(T — 7,x) in (4.22)
is well defined. Note that Lemma 4.8 depends on the invertibility of I + G(T -
T)M"(y) only, and Lemma 4.9 is independent. Therefore, Steps 1 and 2 in the
proof of Theorem 4.10 remain valid since they depend only on Lemmas 4.8 and
4.9. Since Step 3 is entirely covered by condition (b) in this corollary, we have
the same conclusion as in Theorem 4.10. O

In an example of one-dimensional differential equation we will present in
Section 5, the two conditions in Corollary 4.11 can be verified. Especially con-
dition (b) can be shown by conducting a priori estimates. If one uses Theorem
4.10, then the essential thing is to verify Assumption 4.1, that may involve the
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existence theory of saddle points such as some generalized von Neumann theo-
rems (cf. [15, Section 2.13]).

5. Summary and example

In this paper, we present a new method to study the synthesis issue of non-
quadratic differential games of linear dynamical systems. The new idea is by the
pseudo-Riccati equations approach. In this direction, we have proved two re-
sults.

The first result is Theorem 3.1. It states that under very general conditions,
as long as there exists a regular solution of the (PRE), then the differential game
has a unique pair of optimal strategies in the saddle-point sense and the optimal
strategies can be expressed explicitly as real-time state feedbacks given in (3.1).
Regarding this result, we have the following remarks.

(i) This resultis a substantial generalization of the synthesis of nonquadrat-
ic optimal control via the quasi-Riccati equations (cf. [11, 13]).

(ii) This result can be potentially generalized to nonquadratic differential
games of infinite-dimensional linear dynamical systems. It can also be general-
ized to the nonautonomous cases.

(iii) Since the Hamilton-Jacobi equations are related to the synthesis of op-
timal control problems and the Issac equations are related to the synthesis of
differential game problems, the relationship between the pseudo-Riccati equa-
tions and these two equations is to be explored.

The second result is Theorem 4.10 which is valid for Mayer problems. It states
that under two assumptions, which are reasonable though, there exists a regular
solution of the pseudo-Riccati equation and its solution can be explicitly ex-
pressed as (4.30) in terms of the solution mapping of a parametrized, nonlinear
algebraic equation (4.2). Therefore, the syntheses of the Mayer problems have
been solved. Certainly Corollary 4.11 provides a (short-cut) alternative result
with two different assumptions. Here we have two more remarks.

(iv) The proof of Theorem 4.10 involves substantial difficulties in compar-
ison with the counterpart result associated with nonquadratic optimal control
problems (cf. [11, 13]). In the optimal control cases since M is assumed to be
convex so that M"(y) is always nonnegative and CS™'C* = 0 so that G(¢) in (4.3)
is always nonnegative too, one can easily claim that DK, (y) = I+ G(T-1)M"(y)
is nonsingular and its inverse has an explicit expression:

[[+G(T-1)M"(y)] !
(5.1)

=1-G(T-1)\/M"(y) [1+\/M"(y)G(T—T)\/M//(y)]’l\/M"(y).

However, the above equality does not hold in the case of differential games,
because none of M"(y) and G(t) can be assumed nonnegative. This difficulty
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is overcome by using a homotopy lemma due to Caccioppoli, Lemma 4.4, and
showing the mapping K is C' diffeomorphism directly.

(v) One can investigate different solution concepts of the pseudo-Riccati
equations, such as the existence and uniqueness of viscosity solutions. But we
did not address this issue since we do not need it for the main results.

Finally, we provide an example to illustrate the synthesis of a Mayer prob-
lem of nonquadratic differential game by using the results of Theorem 3.1 and
Corollary 4.11 in this paper.

Example 5.1. Consider a differential game problem,

% =ax(t)+bu(t)+cv(t), x(0)=xp€R,

1 (T (5.2)
J (%0, u,v) = m|x(T)|4+ 3 1[0 [R|u(t)|2 —S|v(t)|2] dt,
in the saddle-point sense. Here T' > 0 is a fixed number. Suppose that a, b, c,
and m are nonzero constants that R and S are positive constants. We are going to
show that Corollary 4.11 can be applied to this problem, with some restrictions
on these parameters in (5.2). Then we will show that the regular solution of the
corresponding pseudo-Riccati equation and the closed-loop optimal strategies
can be found constructively.
The only condition we impose on the parameters is

m(b* R =c*S71) > 0. (5.3)

In this case, (4.2) takes the form

y+G(T-1)M' () = y+g(1)y* =Ty, (1,x) € [0, T] xR, (5.4)
where
T-1
g(r) = 4mf e (bR =S ) do
0 (5.5)

— 27m(b2R_1 —Czs_l)(ezu(T_T)—l).

Note that under assumption (5.3), since a # 0, we have g(t) > 0 for all t €
[0, T]. This implies that I + G(T — 7)M"(y) = 1+ 3g(7)y? is boundedly invert-
ible, namely,
" -1 1

_ =— < .
0< [I+G(T-1)M"(y)] T30 1, (5.6)

for all (1, y) € [0, T] xR. Therefore, condition (a) of Corollary 4.11 is satisfied.
We use the same notation H(T -7, x) to denote the solution mapping of (5.4).
Then we have to verify condition (b) of Corollary 4.11. Here (4.42) turns out
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to be

% =ax— (DR =281 T (am H(T -1, x)%). (5.7)
Since the right-side function f(t,x) of (5.7) is C' mapping in ¢ and in x, as
shown by Lemma 4.8, the local Lipschitz condition is satisfied by this function
f. Hence, for any initial status x(0) = xy € R, (5.7) has a unique local solution
x(t), t € [0,11], for some 0 < t; < T.. It suffices to prove that this solution will not
blow up, so that t; = T.

Let the maximal interval of the existence of this solution be [0, ¢,). Multiply-
ing both sides of (5.7) by x(t), we can get

1d

2.dt
for t € [0,1,). Since y = H(T —t,x(t)) satisfies (5.4) with 7 = t and x = x(¢) on
the right-hand side, we have

|x(t)|2 = a|x(t) |2 —4m(b*R! —czS’l)e“(T’t)H(T—t,x(t))3x(t), (5.8)

y+g(t)y® =T Dx(t). (5.9)
Since g(t) >0 for all t € [0, T'], it follows that

e T x(¢)

y =H(T—t,x(t)) = W’

te [0, ty). (5.10)

Substituting (5.10) into (5.8), we obtain

d 4a(T-t)
O] = 2a|x(0) - 8m (PR -5 ¢ s lx(5)]".

_ 5.11
(1+g(t)y? ( )

Due to (5.3) and 1+g(¢)y* > 0 for all #, we see that the second term on the
right-hand side of (5.11) is < 0. Hence, we get

%|x(t)|2 §2a|x(t)|2, fort € [0,y). (5.12)
Therefore, this solution x(t) satisfies
|x(t)|2 Sez“t|x0|2, fort € [0,t,). (5.13)

Equation (5.13) confirms that there is no blow-up and the solution x exists glob-
ally on [0, T']. Thus, condition (b) of Corollary 4.11 is satisfied.

Then we can apply Corollary 4.11 and Theorem 3.1 to this problem and reach
the following conclusion. For 0 < ¢t < T, define A, by

T ? 171
A= [— 0 ] +[3g(t)] : (5.14)
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ProrosiTioN 5.2. Under assumption (5.3), the nonquadratic differential game
(5.2) has a unique pair of optimal strategies in the saddle-point sense. The closed-
loop optimal strategies are given by

i(t) = —4mbR™e“ TV H (T -t,x(1))’,
. teloT], (5.15)
v(t) = —4mcS‘1e“(T_t)H(T— t,x(t)),

where H(T —t, x) is given by

13 13
H(T—t,x)z(ﬁe“(T’t)x+\/AT> —<—ﬁe“w’t)x+\/§> . (5.16)

Proof. By Cardan’s formula, the unique real root of (5.4) with 7 = t is provided
by (5.16). Then Corollary 4.11 guarantees that the pseudo-Riccati equation (2.1)
with (2.2) has a regular solution

P(t,x) = 4meTOH(T-t,x(t))°, te[0,T). (5.17)

Finally, Theorem 3.1 is applied here to reach the conclusion of this proposition.
O
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