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1. Introduction

Consider 


−ε2∆u+ V (y)u = up−1, y ∈ RN ,

u > 0, y ∈ RN ,

u → 0, as |y| → +∞,

(1.1)

where V (y) is a smooth bounded function with positive lower bound, ε > 0
is a small number, 2 < p < 2N

N−2 if N > 2 and 2 < p < +∞ if N = 2.
Many works have been done on problem (1.1) recently. See for example

[6, 7, 8, 16, 21, 22, 23]. One of the results in the papers just mentioned is that
if x1, x2, . . . , xk are k different strictly local minimum points of V (y), then
(1.1) has a k-peak solution uε, that is, solution with exactly k local maximum
points, such that uε has exactly one local maximum point in a neighbourhood
of xj , j = 1, . . . , k. The same conclusion is also true if x1, x2, . . . , xk are k
different strictly local maximum points of V (y). Actually, it is proved in
[23] that (1.1) has a multipeak solution with all its peaks near an isolated
maximum point of V (y). Thus a natural question is what will happen if V (y)
attains its local minimum or local maximum on a connected set. Especially,
if V (y) attains its local minimum on a connected set which contains infinitely
many points, it is interesting to study whether (1.1) has a multipeak solution
concentrating on this set. Generally, this is not true as shown by example
(1.6).
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The main results of this paper consist of three parts. Firstly, we study
how the topological structure of the local minimum set of the potential V (y)
affects the existence of multipeak solutions for (1.1). We will show that if
the minimum set of V (y) has nontrivial reduced homology, then for each
k ≥ 1, (1.1) has at least one k-peak solution such that each local maximum
point of this solution tends to a point in this minimum set as ε → 0.

Secondly, we construct solutions with their peaks near a connected maxi-
mum set of V (y). Unlike the the case of minimum sets, we show that for any
connected maximum set of V (y) and for any positive integer k ≥ 2, (1.1)
always has at least N different solutions with all their peaks tending to this
maximum set as ε → 0.

Suppose that M1 and M2 are two disjoint connected sets such that V (y)
attains a local minimum or a local maximum on M1 and on M2. The third
problem studied in this paper is to construct a (k1 + k2)-peak solution uε
such that uε has exactly ki local maximum points near Mi, i = 1, 2.

Before we state our results precisely, we give some notation first.
For any constant V̄ > 0, let UV̄ (y) be the unique solution of



−∆u+ V̄ u = up−1, y ∈ RN ,

u > 0, y ∈ RN ,

u ∈ H1(RN ),
u(0) = maxy∈RN u(y).

(1.2)

Let w be the unique solution of


−∆u+ u = up−1, y ∈ RN ,

u > 0, y ∈ RN ,

u ∈ H1(RN ),
u(0) = maxy∈RN u(y).

(1.3)

Then UV̄ (y) = V̄
1

p−2w(V̄ y). Denote Uε,z,V̄ (y) = UV̄
(y−z
ε

)
.

For any fixed integer k > 0 and Vj > 0, j = 1, · · · , k, we denote

(1.4)
Eε,x,k =

{
v ∈ H1(RN ) :

〈
Uε,xj ,Vj , v

〉
ε
=
〈∂Uε,xj ,Vj

∂xji
, v
〉
ε
= 0,

j = 1, . . . , k, i = 1, . . . , N
}
,

where 〈u, v〉ε =
∫
RN ε2DuDv+V (y)uv.We also denote ‖v‖2ε =

∫
RN ε2|Du|2+

V (y)v2.

Definition 1.1. Let M be a connected compact set in RN . M is said to
be a local minimum (maximum) set of V (y) if there are constants γ > 0
and VM , such that V (y) = VM for y ∈ M , V (y) > VM (V (y) < VM ) for
y ∈ Mγ \M , where Mγ = {z : z ∈ RN , d(z,M) ≤ γ}.

Throughout this paper, all the homologies are with Z2-coefficients. Now
we are ready to state our main results.
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Theorem 1.2. Suppose that M is a connected compact local minimum set
of V (y) such that ∂Mγ is a C1 manifold of dimension N − 1 for each γ >
0 small. Moreover, we assume that for any γ > 0 small, the following
conditions hold:

V (y) ≤ VM + ad(y,M)h, |DmV (y)| = O(d(y,M)h−m),(1.4)

for m = 1, . . . , [h], y ∈ Mγ,

〈DV (y), n〉 ≥ c0γ
h−1,∀ y ∈ ∂Mγ ,(1.5)

where a, c0 and h ≥ 2 are some positive constants, n is the outward unit
normal of ∂Mγ at y. If the reduced homology of M is nontrivial, then for
each integer k ≥ 2, there is an ε0 > 0, such that for every ε ∈ (0, ε0], (1.1)
has at least one k-peak solution of the form

uε =
k∑
j=1

αε,jUε,xε,j ,VM
+ vε,(1.6)

where vε ∈ Eε,x,k and as ε → 0,

(1.7) αε,j → 1,
|xε,i − xε,j |

ε
→ ∞, xε,j → xj ∈ M, ‖vε‖2ε = o(εN ),

for i, j = 1, · · · , k and i �= j. Moreover, if k = 2, (1.1) has at least
cuplength(M) distinct solutions of the form (1.6) satisfying (1.7).

For any set M , denote

Ak =
(
Mγ × · · · ×Mγ︸ ︷︷ ︸

k

\
⋃
i�=j

{|xi − xj | < d}
)
/σk,

where d > 0 and γ > 0 are small constants, σk is the group of permutations
of k letters acting on Mγ × · · · ×Mγ︸ ︷︷ ︸

k

\⋃i�=j{|xi − xj | < d}.

Theorem 1.3. Suppose that M is a connected compact local maximum set
of V (x). Then for each positive integer k ≥ 2, there is an ε0 > 0, such that
for every ε ∈ (0, ε0], (1.1) has at least CatAk

(Ak) solutions of the form

uε =
k∑
j=1

αε,jUε,xε,j ,VM
+ vε,(1.8)

where vε ∈ Eε,x,k and as ε → 0,

(1.9) αε,j → 1,
|xε,i − xε,j |

ε
→ ∞, xε,j → xj ∈ M, ‖vε‖2ε = o(εN ).

for i, j = 1, · · · , k and i �= j.

Theorem 1.4. Let M1, . . . ,Ml be disjoint connected compact sets such that
∂Mi,γ is a C1-manifold of dimension N − 1 for each γ > 0 small and i =
1, · · · , l. Suppose that the following conditions hold: there are constants
h ≥ 2, c1 ≥ c0 > 0 such that
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(1.10)VMi ≤ V (y) ≤ VMi + c1d(y,Mi)h, |DmV (y)| = O(d(y,Mi)h−m),
(1.11) ∀ y ∈ Mi,γ ,m = 1, . . . , [h], i = 1, . . . , l1,

〈DV (y), n〉 ≥ c0γ
h−1, ∀ y ∈ ∂Mi,γ , i = 1, . . . , l1,(1.12)

c0d(y,Mi)h ≤ VMi − V (y) ≤ c1d(y,Mi)h,(1.13)

|DmV (y)| = O(d(y,Mi)h−m),(1.14)

∀ y ∈ Mi,γ ,m = 1, . . . , [h], i = l1 + 1, . . . , l.(1.15)

(i) If each Mi, i = 1, . . . , l1, has nontrivial reduced homology, then for any
positive integers ki, i = 1, . . . , l, there is an ε0 > 0 such that for each
ε ∈ (0, ε0], (1.1) has at least one solution of the form

uε =
l∑
i=1

ki∑
j=1

αε,i,jUε,xε,i,j ,VMi
+ vε,(1.16)

where vε ∈ E
ε,x,
∑l

i=1 ki
and as ε → 0,

αε,i,j → 1, ‖vε‖2ε = o(εN ),(1.17)

|xε,i,j − xε,i,m|
ε

→ ∞, xε,i,j → xi,j ∈ Mi(1.18)

for i = 1, · · · , l, j,m = 1, · · · , ki and j �= m.
(ii) If some of the minimum sets Mi1 , . . . ,Mit have trivial reduced homol-

ogy, then the conclusion in (i) holds for kij = 1, j = 1, . . . , t.

The basic idea to prove Theorem 1.2 can also be used to obtain the fol-
lowing result.

Theorem 1.5. Let M be a connected compact local minimum or maximum
set. Then there is an ε0 > 0, such that for each ε ∈ (0, ε0], (1.1) has at least
CatM (M) single peak positive solutions of the form:

uε = αεUε,xε,VM
+ vε,

where, vε ∈ Eε,xε,1, and as ε → 0, αε → 1, xε → x0 ∈ M and ‖vε‖2ε = o(εN ).

The assumption that M has nontrivial topology is essential in Theo-
rem 1.2, as shown by the following example.

Example 1.6. Let V (y) = V (|y|) be a smooth function satisfying V (y) = 1
for |y| ≤ 1, and V (|y|) is strictly increasing in |y| > 1. Then we see that the
minimum set of V (y) is the unit ball in RN . By the moving plane method
of Gidas, Ni and Nirenberg [19], we know that every solution of (1.1) is
radially symmetric and strictly decreasing. Therefore the solution has a
unique maximum point, and thus is a single peak solution.
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Example 1.7. A typical example of V (y) satisfying the conditions in Theo-
rem 1.4 is that V (y) = V (|y|) and V (r) attains its local minimum or max-
imum at rl > · · · > r1 > 0 with V ′′(ri) �= 0, i = 1, · · · , l. In this case,
Mi = {y : |y| = ri}, h = 2.

Remark 1.8. If M is an N -dimensional smooth manifold without bound-
ary, tubular neighbourhoods of M are useful for verifying the conditions in
Theorem 1.4.

Remark 1.9. By Proposition C.3, we know that the lower bound for CatAk
Ak

is N . So (1.1) has at least N different k-peak solutions concentrating on the
connected compact local maximum set of V (y).

Since the work by Bahri and Coron [2], the effect of the domain topology
on the existence and multiplicity of the solutions is one of the subjects which
attract much attention. See for example [2, 3, 4, 10, 11, 12, 14, 15]. In [3],
the category of the domain was used to estimate the number of the single
peak solutions, while in [12, 14, 15], the effect of the domain topology on the
existence of multipeak solutions was studied. The domain in problem (1.1)
has trivial topology, so our results here emphasize the effect of the topology
of the level set of the potential V (y) on the existence and multiplicity of
multipeak solutions for (1.1).

Finally, let us point out that the idea in this paper works for the singularly
perturbed Neumann problem:


−ε2∆u+ u = up−1, in Ω,
u > 0, in Ω,
∂u
∂n = 0, in ∂Ω,

(1.19)

where Ω is a bounded domain inRN . The role of the mean curvature function
of the boundary ∂Ω in (1.19) is similar to that of the potential V (x) in (1.1).
The estimates in Appendix C can be used to improve the multiplicity results
in [13, 25]. For example, as a direct corollary of Proposition C.3 and the
results in [13, 25], we have

Corollary 1.10. For each integer k ≥ 2, there is ε0 > 0 such that for each
ε ∈ (0, ε0],
(i) (1.19) has at least N boundary k-peak solutions with all their local maxi-

mum points near the global minimum set of the mean curvature function
of ∂Ω;

(ii) (1.19) has at least N interior k-peak solutions.

This paper is arranged as follows. In section 2, we reduce the problem
of finding a multipeak solution for (1.1) to a finite dimensional problem.
Theorem 1.2 is proved in section 3. Section 4 is devoted to the proof of
Theorems 1.3 and 1.5. In section 5, we prove Theorem 1.4. Some basic
estimates and topological results needed in the proof of the main results are
presented in the appendices.
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2. Reduction to finite dimensional problem

First we define

(2.1)

Dε = {(α, x, v) :|αj − 1| ≤ δ, v ∈ Eε,x,k, ‖v‖ε ≤ δεN/2,

x = (x1, . . . , xk), xj ∈ RN ,
|xi − xj |

ε
≥ R,

i, j = 1, . . . , k, i �= j },
where δ > 0 is a fixed small constant and R > 0 is a fixed large constant.

We also define

J(α, x, v) = I(
k∑
j=1

αjUε,xj ,Vj + v), ∀(α, x, v) ∈ Dε,(2.2)

where

I(u) =
1
2

∫
RN

(
ε2|Du|2 + V (y)u2

)− 1
p

∫
RN

|u|p.

It is well known now (see [1, 24]) that if δ > 0 is small enough and R > 0
is large enough,

u =
k∑
j=1

αjUε,xj ,Vj + v,

is a positive critical point of I(u) if and only if (α, x, v) is a critical point of
J(α, x, v) in Dε. So we need to solve the following system:

∂J

∂αj
= 0, j = 1, . . . , k;(2.3)

∂J

∂xjl
=

N∑
h=1

Ghj
〈∂2Uε,xj ,Vj

∂xjh∂xjl
, v
〉
ε
, j = 1, . . . , k, l = 1, . . . , N,(2.4)

∂J

∂v
=

k∑
j=1

BjUε,xj ,Vj +
k∑
j=1

N∑
l=1

Gjl
∂Uε,xj ,Vj

∂xjl
,(2.5)

for some constants Bj , Gjl ∈ R, j = 1, . . . , k, l = 1, . . . , N .
In this section, we reduce the problem of solving the system (2.3)–(2.5)

to a finite dimensional problem. We need the following proposition.

Proposition 2.1. There is an ε0 > 0, such that for each ε ∈ (0, ε0], there
exists a unique C1-map (αε(x), vε(x)) : RNk \ ∪i�=j{|xi − xj | ≤ εR} →
Rk+ ×H1(RN ) such that vε ∈ Eε,x,k, (2.3) and (2.5) hold for some constants
Bj and Gjl. Moreover, we have

vε(σkx) = vε(x), σkαε(σkx) = αε(x),(2.6)
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|α− 1|εN/2 + ‖v‖ε

=O
( k∑
j=1

(
ε

N
2 |V (xj) − Vj | +

[h]∑
m=1

ε
N
2 +m|DmV (xj)|

))

+O
(
εN/2

∑
i�=j

w
1+τ
2
( |xi − xj |

ε

))
(2.7)

and
εBj , Gjl

=O
(
ε
k∑
j=1

(
|V (xj) − Vj | +

[h]∑
m=1

εm|DmV (xj)|
))

+O
(
ε
∑
i�=j

w
1+τ
2
( |xi − xj |

ε

))
,

(2.8)

where τ > 0 is a fixed small constant and [h] is the integer part of h.

Proof. We can follow the same procedure as in [5] to prove the existence
part. (2.6) is a direct consequence of the fact J(α, x, v) = J(σkα, σkx, v)
and the uniqueness of (αε(x), vε(x)) satisfying (2.3) and (2.5). To get the
estimate (2.7), we just need to use Lemma A.3. We can solve a system as
in [24], pp 22–23 and use Lemma A.4 to get the estimate (2.8). Since the
procedure is quite standard, we omit the details.

Let (αε(x), vε(x)) be the map obtained in Proposition 2.2. Define

K(x) = J(αε(x), x, vε(x)).

In order to solve (2.3)–(2.5), we only need to find a critical point for K(x)
in a suitable domain. So we need the following propositions.

Proposition 2.2. Suppose that F (x) is a C2 function defined in a bounded
domain Ω of RkN . If F satisfies either F (x) > c or ∂F (x)

∂n > 0 at each
x ∈ ∂Ω, where n is the outward unit normal of ∂Ω at x, then

#{x : DF (x) = 0, x ∈ F c} ≥ CatF c(F c),

where F c = {x : x ∈ Ω, F (x) ≤ c}. In particular, F (x) has at least one
critical point in F c.

Proof. Notice that our assumption implies that the following flow:{
dx(t)
dt = −DF (x(t)),

x(0) = x0 ∈ F c
(2.9)

does not leave Ω. In fact, suppose that x(t) touches the boundary at some
time t0. Since F is decreasing along x(t), we see F (x(t0)) ≤ c. Thus,
by assumption, ∂F (x(t0))

∂n > 0, which implies that −DF (x(t0)) points into
Ω. So x(t) moves into Ω. Then Proposition 2.2 follows directly from the
Ljusternik-Schnirelman theory.
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Proposition 2.3. Suppose that F (x) is a C2 function defined in a bounded
domain Ω of RkN . Let c2 > c1 be two constants such that neither c2 nor c1
is a critical value of F (x). If F satisfies either F (x) < c1 or ∂F (x)

∂n > 0 for
each x ∈ ∂Ω, then

#{x : DF (x) = 0, x ∈ F c2 \ F c1} ≥ CatF c2 (F c2 , F c1).

In particular, if F c2 cannot be deformed into F c1, F has at least one critical
point in F c2 \ F c1.
Proof. Similar to Proposition 2.2, our assumption implies that the following
flow: {

dx(t)
dt = −DF (x(t)),

x(0) = x0 ∈ F c2
(2.10)

does not leave Ω before it reaches F c1 . So Proposition 2.2 follows directly
from the Ljusternik-Schnirelman theory.

3. Multipeak solutions concentrating on the minimum set

Suppose that M is a connected compact local minimum set of V (y) and
Mγ = {y : d(y,M) ≤ γ}. For k ≥ 2, let

Ωγ =
{
x = (x1, · · · , xk) : xj ∈ Mγ , j = 1, . . . , k,

|xi − xj |
ε

≥ R,∀ i �= j
}
.

Define

cε,1 = εN (kV
p

p−2− N
2

M A− Tεαh), cε,2 = εN (kV
p

p−2− N
2

M A+ η),

where T > 0 is a large constant and α ∈ (0, 1) is a fixed constant close to 1.
We also let

Kc = {x : x ∈ Ωεα ,K(x) ≤ c}.
In this section, we shall apply Proposition 2.3 to prove that for ε > 0

small, K(x) has a critical point in Kcε,2 \Kcε,1 . First, we prove

Lemma 3.1. For each x ∈ ∂Ωεα, we have either K(x) < cε,1, or ∂K(x)
∂n > 0.

Proof. We divide the proof of this lemma into two steps.
Step 1. Suppose that |xi−xj |

ε = R for some i �= j. We claim x ∈ Kcε,1 .
In fact, by using Proposition 2.1 and Lemma A.2, we obtain

K(x) = I(
k∑
l=1

Uε,xl,VM
) +O

(
εN |αε − 1|2 + ‖v‖2ε

)

=εN
k∑
j=1

V
p

p−2− N
2

M A−
k−1∑
i=1

∫
RN

( k∑
j=i+1

Uε,xj ,VM

)p−1
Uε,xi,VM

+O
( k∑
l=1

(
εN |V (xl) − VM | +

[h]∑
m=1

εN+m|DmV (xl)|
)

+O
(
εN
∑
i�=j

w1+τ (
|xi − xj |

ε
)
)

(3.1)
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=εN
k∑
j=1

V
p

p−2− N
2

M A−
k−1∑
i=1

∫
RN

( k∑
j=i+1

Uε,xj ,VM

)p−1
Uε,xi,VM

+O
(
εN+αh + εN

∑
i�=j

w1+τ (
|xi − xj |

ε
)
)
.

(3.1)

From (3.1), we have

K(x) ≤ εN (kV
p

p−2− N
2

M A− cw(R)) +O
(
εN+αh) < cε,1.(3.2)

Thus x ∈ Kcε,1 .
Step 2. Suppose that xi ∈ ∂Mεα for some i. Without loss of generality,

we assume i = 1. We claim that either K(x) < cε,1, or ∂K
∂n > 0, where n is

the outward unit normal of ∂Mεα at x1.
For any xj ∈ Mεα and m ≥ 2, we have

|V (xj) − VM | = O(εαh)

and

|DmV (xj)|εm = O
(
d(xj ,M)h−mεm

)
= O

(
εα(h−m)εm

)
= O(εαh+2(1−α)).

So, by Proposition 2.1 and Lemma A.4, we have

(3.3)

∂K

∂x1l
=

∂J

∂x1l
+
〈∂J
∂v

,
∂v

∂x1l

〉
ε

=
∂J

∂x1l
+

k∑
j=1

N∑
h=1

Ghj
〈∂Uε,xj ,VM

∂xjh
,
∂v

∂x1l

〉
ε

=
∂J

∂x1l
−

N∑
h=1

G1h
〈∂2Uε,x1,VM

∂xh1∂x1l
, v
〉
ε

=
∂J

∂x1l
+O

(
εN−1

∑
i�=j

e−(1+τ)
|xi−xj |

ε + εN+αh)

=c1εNDlV (x1) − (p− 1)
k∑
j=2

∫
RN

Up−2
ε,x1,VM

Uε,xj ,VM

∂Uε,x1,VM

∂x1l

+O
(
εN−1

∑
i�=j

e−(1+τ)
|xi−xj |

ε + εN−1+αh+2(1−α)).
Denote η = minj �=i |xi − xj |. We distinguish two cases.
(i) Suppose that U(ηε ) > Lεαh, where L > T is a large constant. In this

case, we claim that K(x) < cε,1. In fact, it follows from (3.1) that

K(x) ≤εNkV
p

p−2− N
2

M A− c′εNw
(η
ε

)
+O(εN+αh)

≤εNkV
p

p−2− N
2

M A− c′LεN+αh + CεN+αh < cε,1,

(3.4)

if L > T is large enough.
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(ii) Suppose that U(ηε ) ≤ Lεαh. In this case, we prove that ∂K(x)
∂n > 0,

where n is the outward unit normal of ∂Mεα at x1. Since for any j �= 1,∫
RN

Up−2
ε,x1,VM

Uε,xj ,VM

∂Uε,x1,VM

∂x1l
= (c+ o(1))εN−1w(

|xj − x1|
ε

)
xjl − x1l
|xj − x1| ,

and for small β > 1 − α,〈 xj − x1
|xj − x1| , n

〉 ≤ εβ, ∀ xj ∈ Mεα ∩Bεα(x1),

we see that ∫
RN

Up−2
ε,x1,VM

Uε,xj ,VM

∂Uε,x1,VM

∂n

≤εβ(c+ o(1))εN−1w
( |x1 − xj |

ε

)
≤εβ(c+ o(1))εN−1Lεαh, ∀ xj ∈ Mεα ∩Bεα(x1).

(3.5)

On the other hand, if |xj − x1| > εα, then

∫
RN

Up−2
ε,x1,VM

Uε,xj ,VM

∂Uε,x1,VM

∂n
= O

(
εN−1e− 1

ε1−α
)

(3.6)

Combining (3.3), (3.5)–(3.6), we obtain

∂K(x)
∂n

≥c1εN 〈DV (x1), n〉 − εβL(c+ o(1))εN−1+αh

+O
(
εN−1+αh+2(1−α))

≥c′εN+α(h−1) − L(c+ o(1))εN−1+αh+β > 0.

(3.7)

Combining Steps 1 and 2, we complete the proof of this lemma.

We are now ready to prove Theorems 1.2.

Proof. [Proof of Theorems 1.2]
In view of Lemma 3.1 and Proposition 2.3, we see

(3.8) #{x : DK(x) = 0, x ∈ Kcε,2 \Kcε,1 } ≥ CatΩεα (Kcε,2 ,Kcε,1).

It is easy to check that
Kcε,2 = Ωεα .

On the other hand, we claim

Tc′ε ln ε−1 \ TεR ⊂ Kcε,1 ⊂ TCε ln ε−1 \ TεR,
where Tτ = ∪i�=j{|xi − xj | ≤ τ, xi, xj ∈ Mεα}, C > c′ > 0 are some suitable
constants.

In fact, it follows from Lemma A.2 that

cε,1 =εNkV
p

p−2− N
2

M A− TεN+αh

>K(x) = εNkV
p

p−2− N
2

M A−
∑
i�=j

∫
RN

Up−1
ε,xi,VM

Uε,xj ,VM
+O(εN+αh),
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which implies |xi − xj | ≤ Cε ln 1
ε for some i �= j if T > 0 is large enough.

Thus,
Kcε,1 ⊂ TCε ln ε−1 \ TεR.

On the other hand, it is easy to check

Tc′ε ln ε−1 \ TεR ⊂ Kcε,1 ,

if c′ > 0 is small enough. So the claim follows.
Since the TCε ln ε−1 \ TεR can be deformed into Tc′ε ln ε−1 \ TεR, we have

CatΩεα (Kcε,2 ,Kcε,1) = CatΩεα (Ωεα , Tc′ε ln ε−1 \ TεR).
As a result, we have

#{x : DK(x) = 0, x ∈ Kcε,2 \Kcε,1 }
≥CatΩεα (Ωεα , Tc′ε ln ε−1 \ TεR),(3.9)

On the other hand, it follows from the definition that

CatΩεα (Ωεα , Tc′ε ln ε−1 \ TεR) ≥ CatMk
εα
(Mk

εα , Tc′ε ln ε−1).

So we have

(3.10) #{x : DK(x) = 0, x ∈ Kcε,2 \Kcε,1 } ≥ CatMk
εα
(Mk

εα , Tc′ε ln ε−1).

By Proposition B.4, we know thatMk
εα can not be deformed into Tc′ε ln ε−1 .

Hence the right hand side of (3.10) is greater than or equal to 1, and thus
we have proved the first part of Theorem 1.2.

By Proposition B.5, we know that if k = 2,

#{x : DK(x) = 0, x ∈ Kcε,2 \Kcε,1 } ≥ CatM2
εα
(M2

εα , Tc′ε ln ε−1)

≥2cuplength(Mεα) = 2cuplength(M).

Thus, the number of two-peak solutions for (1.1) is at least
1
2
#{x : DK(x) = 0, x ∈ Kcε,2 \Kcε,1 } ≥ cuplength(M).

So we complete the proof of Theorem 1.2.

4. Multipeak solutions concentrating on the maximum set

In this section, we assume that M is a local compact maximum set of
V (y). Let

Ωδ =
{
x = (x1, . . . , xk) : xj ∈ Mδ, j = 1, . . . , k,

|xi − xj |
ε

≥ R,∀ i �= j
}
,

Ak,δ = Ωδ/σk.
Define

K1([x]) = J(αε(x), x, vε(x)), ∀ [x] ∈ Ak,δ.

By (2.6) of Proposition 2.1, K1([x]) is well defined in Ak,δ. It is not
difficult to prove that Ak,δ is a covering space of Ωδ. As a result, [x] ∈ Ak,δ
is a critical point of K1 if and only if x ∈ Ωδ is a critical point of K.
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Proof. [Proof of Theorem 1.3]
First, fix δ > 0 small such that

γ1 =: VM − max
∂Mδ

V (x) > 0.

Then take a small positive constant γ satisfying γ < min(γ1, w(R)). Let
δ1 > 0 small enough such that

V (x) > VM − τγ, ∀ x ∈ Mδ1 ,

where τ > 0 is a small constant.
Define

cε = εN
(
kV

p
p−2− N

2
M − γ

)
.

Then it follows from Lemma A.2 that

J(αε(x), x, vε(x)) < cε,k,

if d(xi,M) = δ for some i, or |xi − xj | = εR for some i �= j. That is

K1([x]) < cε,k, ∀ [x] ∈ ∂(Ak,δ).

Applying Proposition 2.2 to −K1, we obtain
#{[x] : [x] ∈ Ak,δ, DK1([x]) = 0,K1([x]) ≥ cε,k}

≥CatAk,δ
({K1([x]) ≥ cε,k}).(4.1)

On the other hand, it is easy to check from (3.1) that

A′
k,δ1 =:

(
Mδ1 × · · · ×Mδ1︸ ︷︷ ︸

k

\
⋃
i�=j

{ |xi − xj |
ε

≥ 1
ε1/2

})
/σk

⊂ {K1([x]) ≥ cε,k}.
(4.2)

Combining (4.1) and (4.2), we obtain

#{[x] : [x] ∈ Ak,δ, DK1([x]) = 0,K1([x]) ≥ cε,k} ≥ CatAk,δ
(A′

k,δ1).

But Ak,δ and A′
k,δ1

are homotopically equivalent, so we see

#{[x] : [x] ∈ Ak,δ, DK1([x]) = 0,K1([x]) ≥ cε,k}
≥CatAk,δ

(A′
k,δ1) = CatAk,δ

(Ak,δ).

Thus we have completed the proof of Theorem 1.3.

Proof. [Proof of Theorem 1.5]
Suppose that M is a connected compact local minimum set. Let

(αε(x), vε(x)) be the map obtained in Proposition 2.1 (k = 1). Define

K3(x) = J(αε(x), x, vε(x)),∀ x ∈ Mγ ,

c′ε = εNV
p

p−2− N
2

M A+ εNη,

where η > 0 is a small constant satisfying η < min∂Mγ V (x) − VM . Then it
is easy to check that

K3(x) > c′ε, ∀ x ∈ ∂Mγ ,
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M ⊂ K
c′ε
3 .

As a result, we have

#{x : x ∈ Mγ , DK3(x) = 0, x ∈ K
c′ε
3 } ≥ CatMγ (M).

The case that M is a maximum set can be treated in a similar way. So we
complete the proof of Theorem 1.5.

5. Multipeak solution concentrating on different sets

Suppose that M1 and M2 are two disjoint minimum or maximum sets of
V (y). The aim of this section is to construct solution u for (1.1) such that
u has ki peaks near Mi, i = 1, 2.

Proof. [Proof of Theorem 1.4]
For the simplicity of the notation, we only prove Theorem 1.4 for l = 2.
For any γ > 0, define

Ω1,γ = {(x1, . . . , xk1) : xi ∈ M1,γ ,
|xi − xj |

ε
≥ R,∀ i �= j},

Ω2,γ = {(xk1+1, . . . , xk1+k2) : xi ∈ M2,γ ,
|xi − xj |

ε
≥ R,∀ i �= j},

Ω∗
γ = Ω1,γ × Ω2,γ .

For any x ∈ Ω∗
γ , let (αε(x), vε(x)) be the map obtained in Proposition 2.1.

Define

K(x) = J(αε(x), x, vε(x)).

Since the interaction between the peaks near M1 and the peaks near M2
is exponentially small, we have

(5.1)

K(x) =εN
2∑
i=1

kiV
p

p−2− N
2

i A+ εNB
k1∑
j=1

(V (xj) − VM1)V
2

p−2− N
2

M1

+ εNB
k1+k2∑
j=k1+1

(V (xj) − VM2)V
2

p−2− N
2

M2

−
k1−1∑
i=1

∫
RN

( k1∑
j=i+1

Uε,xj ,M1

)p−1
Uε,xi,M1

−
k1+k2−1∑
i=k1+1

∫
RN

(k1+k2∑
j=i+1

Uε,xj ,M2

)p−1
Uε,xi,M2
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(5.1)

+O
(k1+k2∑
j=1

[h]∑
m=1

εN+m|DmV (xj)|
)

+O
(
εN

∑
1≤i<j≤k1+k2

w1+τ (
|xi − xj |

ε
)
)

+O
(
εN

k1∑
j=1

|V (xj) − VM1 |2 + εN
k1+k2∑
j=k1+1

|V (xj) − VM2 |2
)
.

Case 1. Suppose that both M1 and M2 are maximun sets. In this case,
similar to the proof of Theorem 1.3, using (5.1), we can check

max
x∈∂Ω∗

δ

K(x) < max
x∈Ω∗

δ

K(x).

As a result, the maximum point xε of K(x) in Ω∗
δ is an interior point of Ω∗

δ ,
and thus a critical point of K(x).

Case 2. Suppose that both M1 and M2 are minimum sets with nontrivial
topology. Let

c′ε,1 = εN
2∑
i=1

V
p

p−2− N
2

Mi
kiA− TεN+αh,

c′ε,2 = εN
( 2∑
i=1

V
p

p−2− N
2

Mi
kiA+ η

)
,

Kc = {x : x ∈ Ω∗
εα ,K(x) ≤ c},

where α ∈ (0, 1) is a fixed constant close to 1.
Using (5.1), we see that K(x) < c′ε,1 if |xi − xj | = εR for some xi, xj ∈

M1,εα or xi, xj ∈ M2,εα .
Suppose that x1 ∈ ∂M1,εα . Define η1 = min1≤i<j≤k1+k2 |xi − xj |. Then,

similar to Lemma 3.1, we have K(x) < c′ε,1 if w
(η1
ε

)
> Lεαh, and ∂K(x)

∂n > 0
if w

(η1
ε

) ≤ Lεαh. So, in order to prove that K(x) has critical point in
Kc2,ε \ Kc1,ε , we just need to prove that Kcε,2 can not be deformed into
Kcε,1 .

It is easy to check Kcε,2 = Ω∗
εα .

Since

Ω1,εα × (
T2,c′ε ln ε−1 \ T2,εR

) ∪ (T1,c′ε ln ε−1 \ T1,εR
)× Ω2,εα

⊂Kcε,1 ⊂ Ω1,εα × (
T2,Cε ln ε−1 \ T2,εR

) ∪ (T1,Cε ln ε−1 \ T1,εR
)× Ω2,εα ,

where Tl,c = ∪i�=j{|xi − xj | ≤ c, xi, xj ∈ Ml,εα}, l = 1, 2, C > 0 is a large
constant and c′ > 0 is a small constant, we see that if Kcε,2 could be de-
formed into Kcε,1 , then Mk1

1,εα × Mk2
2,εα could be deformed into T1,c′ε ln ε−1 ×

Mk2
εα,2 ∪Mk1

εα,1 × T2,c′ε ln ε−1 . This is a contradiction to Propostion B.2, since
H∗(Mi,εα , Ti,c′ε ln ε−1) �= 0, i = 1, 2. So we have completed the proof of (i) of
Theorem 1.4. Using Proposition B.4, we can prove part (ii) of Theorem 1.4
in a similar way.
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Case 3. Suppose that M1 is a minimum set and M2 is a maximum set.
We only consider the case that M1 has nontrivial topology. Let

c′ε,1 = εN
2∑
i=1

V
p

p−2− N
2

Mi
kiA− TεN+αh,

c′ε,2 = εN
( 2∑
i=1

V
p

p−2− N
2

Mi
kiA+ η

)
.

Denote

Ω′
εα = Ω1,εα × Ω2,δ,

Kc = {x : x ∈ Ω′
εα ,K(x) ≤ c},

where α ∈ (0, 1) is a fixed constant close to 1.
From (5.1), we have K(x) < c′ε,1 for x ∈ Ω1,εα × ∂Ω2,δ ∪ ∂T1,εR × Ω2,δ.
We claim that if K(x) ≥ c′1,ε, then

d(xj ,M2) ≤ Cεα,(5.2)

(5.3)
∑

1≤i<j≤k1
w
( |xi − xj |

ε

)
+

∑
k1+1≤i<j≤k1+k2

w
( |xi − xj |

ε

) ≤ Cεαh.

In fact, suppose that K(x) ≥ c′1,ε. Then we get from (5.1)

∑
1≤i<j≤k1

w
( |xi − xj |

ε

)
+

∑
k1+1≤i<j≤k1+k2

w
( |xi − xj |

ε

)

+
k1+k2∑
j=k1+1

(
VM2 − V (xj)

)

+O
( k1+k2∑
j=k1+1

[h]∑
m=1

εmd(xj ,M2)h−m) ≤ Cεαh.

(5.4)

But by assumption, VM2 − V (xj) ≥ Cd(xj ,M2)h. Thus, (5.4) implies (5.3).
Using (5.4) again, we deduce (5.3).

Assume x1 ∈ ∂M1,εα and K(x) ≥ c′1,ε. Similar to Lemma 3.1, using (5.2)
and (5.3), we can prove ∂K(x)

∂n > 0. So we conclude that if K(x) has no
critical point in Kcε,2 \Kcε,1 , then Kcε,2 can be deformed into Kcε,1 .

It is easy to check

Kcε,2 = Ω′
εα ,

Ω1,εα × ∂Ω2,δ ∪ (T1,c′ε ln ε−1 \ T1,εR
)× Ω2,δ ⊂ Kcε,1 .
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On the other hand, if K(x) ≤ c′1,ε, then∑
1≤i<j≤k1

w
( |xi − xj |

ε

)
+

∑
k1+1≤i<j≤k1+k2

w
( |xi − xj |

ε

)

+
k1+k2∑
j=k1+1

(
VM2 − V (xj)

)

+O
( k1+k2∑
j=k1+1

εmd(xj ,M2)h−m) ≥ cεαh,

(5.5)

which implies

∑
1≤i<j≤k1

w
( |xi − xj |

ε

)
+

∑
k1+1≤i<j≤k1+k2

w
( |xi − xj |

ε

)

+ C
k1+k2∑
j=k1+1

d(xj ,M2)h ≥ cεαh,

(5.6)

Thus, we obtain

Kcε,1 ⊂ A =:
(
T1,Cε ln ε−1 \ T1,εR

)× Ω2,δ ∪ Ω1,εα ×B,

where
B ={x′ = (xk1+1, . . . , xk1+k2) ∈ Ω2,δ : d(xj ,M2) ≥ c′εα, for some j}

∪ (T2,Cε ln ε−1 \ T2,εR
)
.

But A can be deformed into Ω1,εα ×∂Ω2,δ ∪∂T1,εR×Ω2,δ, so we see that Ω′
εα

can be deformed into Ω1,εα ×∂Ω2,δ∪∂T1,εR×Ω2,δ. ButH∗(Ω1,εα , ∂T1,εR) �= 0,
H∗(Ω2,δ, ∂Ω2,δ) �= 0. Thus we get a contradiction.

Remark 5.1. If both M1 and M2 are local maximum sets of V (y), using the
same technique as that in section 4, we see that the number of the solutions
with ki peaks near Mi, ki ≥ 2, i = 1, 2, is at least

CatA1,k1×A2,k2
(A1,k1 ×A2,k2),

where

Al,k1 =
(
Ml,γ × · · · ×Ml,γ︸ ︷︷ ︸

ki

\
⋃
i�=j

{|xi − xj | < d}
)
/σkl

, l = 1, 2.

We have CatA×B(A × B) ≥ cuplength(A × B) + 1. On the other hand, it
follows the Künneth’s formula that cuplength(A × B) ≥ cuplength(A) +
cuplength(B) (We stress here that all the homologies in this paper are
with Z2-coefficients.). Moreover, by the estimates in Appendix C, we have
cuplength(Ai,ki

) ≥ N − 1. Thus we see (1.1) has at least 2N − 1 different
solutions with ki peaks near Mi, i = 1, 2. Similarly, if M1, · · · ,Ml are dis-
joint connected compact local maximum sets of V (x), then the number of
the solutions with kj peaks near Mj , kj ≥ 2, is least l(N − 1) + 1.
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Remark 5.2. Suppose that M is a connected compact local minimum set of
V (x). Using similar technique as that in section 4, we can prove that ifM has
nontrivial reduced homology, then the number of the k-peak solutions with
all the peaks near M is at least CatAk

(
Ak, ∂Td/σk

)
, where Td = ∪i�=j{|xi −

xj | ≤ d, xi, xj ∈ Mγ} and d > 0 is a small constant.

Appendix A. Basic estimates

Lemma A.1. We have

I(Uε,z,V̄ ) =ε
N V̄

p
p−2− N

2 A+ εN
(
V (z) − V̄

)
V̄

2
p−2− N

2 B

+ εNO
( [h]∑
m=1

|DmV (z)|εm + ε[h]+1
)
,

where A =
(1
2 − 1

p

) ∫
RN wp and B = 1

2
∫
RN w2.

Proof. First, noting that Uε,z,V̄ = V̄
1

p−2w
(
V̄

1
2
y−z
ε

)
, we have

I(Uε,z,V̄ ) =ε
N V̄

p
p−2− N

2 A+
1
2

∫
RN

(V (z) − V̄ )U2
ε,z,V̄

+
1
2

∫
RN

(V (y) − V (z))U2
ε,z,V̄ ,

(A.1)

But

|V (y) − V (z)| = O
( [h]∑
m=1

|y − z|m|DmV (z)| + ε[h]+1
)
,

and thus

(A.2)
∫
RN

(V (y) − V (z))U2
ε,z,V̄ = εNO

( [h]∑
m=1

|DmV (z)|εm + ε[h]+1
)
.

So the result follows from (A.1)–(A.2).

Lemma A.2. We have

I(
k∑
j=1

Uε,zj ,Vj )

=A
k∑
j=1

εNV
p

p−2− N
2

j +B
k∑
j=1

εN
(
V (zj) − Vj

)
V

2
p−2− N

2
j

−
k−1∑
i=1

∫
RN

Uε,zi,Vi

( k∑
j=i+1

Uε,zj ,Vj

)p−1

+ εNO
( k∑
j=1

(
|V (zj) − Vj |2 +

[h]∑
m=1

|DmV (zj)|εm
)
+ ε[h]+1

)

+ εNO
(∑
i�=j

w1+τ ( |zi − zj |
ε

))
.
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Proof. We have

(A.3)

I(
k∑
j=1

Uε,zj ,Vj )

=
k∑
j=1

I(Uε,zj ,Vj ) +
1
2

∑
i�=j

∫
RN

(
V (y) − Vj

)
Uε,zi,ViUε,zj ,Vj

+
∑
i�=j

∫
RN

Up−1
ε,zi,Vi

Uε,zj ,Vj +
1
p

∫
RN

(( k∑
j=1

Uε,zj ,Vj

)p −
k∑
j=1

Upε,zj ,Vj

)
.

On the other hand, we also have
(A.4) ∑

i�=j

∫
RN

(
V (y) − V (zj)

)
Uε,zi,ViUε,zj ,Vj

=O
(
εN
(|V (zj) − Vj | +

[h]∑
m=1

|DmV (zj)|εm + ε[h]+1)∑
i�=j

w
( |zi − zj |

ε

))
,

and

(A.5)

∫
RN

(( k∑
j=1

Uε,zj ,Vj

)p −
k∑
j=1

Upε,zj ,Vj

)

=p
∑
i�=j

∫
RN

Up−1
ε,zi,Vi

Uε,zj ,Vj + p
k−1∑
i=1

∫
RN

Uε,zi,Vi

( k∑
j=i+1

Uε,zj ,Vj

)p−1

+ εNO
(∑
i�=j

w1+τ ( |zi − zj |
ε

))
.

Combining (A.3)–(A.5) and Lemma A.1, we get the desired estimate.

Lemma A.3. For any v ∈ Eε,x,k, we have

∣∣∣ k∑
j=1

∫
RN

(V (y) − Vj)Uε,xj ,Vjv
∣∣∣

+
∣∣∣∫
RN

( k∑
j=1

Up−1
ε,xj ,Vj

− ( k∑
j=1

Uε,xj ,Vj

)p−1
)
v
∣∣∣

=O
(
ε

N
2

( k∑
j=1

(
|V (xj) − Vj | +

[h]∑
m=1

|DmV (xj)|εm
)
+ ε[h]+1

))
‖v‖ε

+O
(
ε

N
2
∑
i�=j

w
1+τ
2
( |xi − xj |

ε

))‖v‖ε,
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and ∣∣∣ k∑
j=1

∫
RN

(V (y) − V (xj))Uε,xj ,VjUε,xi,Vi

∣∣∣
+
∣∣∣∫
RN

( k∑
j=1

Up−1
ε,xj ,Vj

− ( k∑
j=1

Uε,xj ,Vj

)p−1
)
Uε,xi

∣∣∣
=O

(
εN
( k∑
j=1

(
|V (xj) − Vj | +

[h]∑
m=1

|DmV (xj)|εm
)
+ ε[h]+1

))

+O
(
εN
∑
i�=j

w
1+τ
2
( |xi − xj |

ε

))
.

Proof. The proof of this lemma is similar to that of Lemmas A.1 and A.2,
and thus we omit the details.

Lemma A.4. Let (αε(x), vε(x)) be the map obtained in Proposition 2.1.
Then

(A.6)

∂J

∂xil
=c1εNDlV (xi) − (p− 1)

∑
j �=i

∫
Ω
Up−2
ε,xi,Vi

Uε,xj ,Vj

∂Uε,xi,Vi

∂x1l

+O
(
εN−1

∑
i�=j

e−(1+τ)
|xi−xj |

ε
)

+O
(
εN−1

k∑
j=1

[h]∑
m=2

|DmV (xj)|εm + εN+h)

+O
(
εN−1

k∑
j=1

(
|V (xj) − Vj |2 +

[h]∑
m=1

|DmV (xj)|2ε2m
))
,

where c1 > 0 is a constant.

(A.7)

〈∂J
∂v

, Uε,xi,Vi

〉
=O

(
εN
∑
i�=j

e−(1+τ)
|xi−xj |

ε + εN+h)

+O
(
εN

k∑
j=1

(
|V (xj) − Vj | +

[h]∑
m=1

|DmV (xj)|εm
))
.

Proof. We have

(A.8)

∂J

∂xil
=

k∑
j=1

∫
RN

(V (y) − Vj)Uε,xj ,Vj

∂Uε,xi,Vi

∂xil

+
k∑
j=1

∫
RN

Up−1
ε,xj ,Vj

∂Uε,xi,Vi

∂xil
−
∫
RN

( k∑
j=1

Uε,xj ,Vj

)p−1∂Uε,xi,Vi

∂xil
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(A.8)

+O
(
εN−1(∑

i�=j
e−(1+τ)

|xi−xj |
ε + ε2([h]+1)))

+O
(
εN−1

k∑
j=1

(
|V (xj) − Vj |2 +

[h]∑
m=1

|DmV (xj)|2ε2m
))

=
∫
RN

V (y)Uε,xi,Vi

∂Uε,xi,Vi

∂xil

− (p− 1)
k∑
j=2

∫
Ω
Up−2
ε,xi,Vi

Uε,xj ,Vj

∂Uε,xi,Vi

∂xil

+O
(
εN−1(∑

i�=j
e−(1+τ)

|xi−xj |
ε + ε2([h]+1)))

+O
(
εN−1

k∑
j=1

(
|V (xj) − Vj |2 +

[h]∑
m=1

|DmV (xj)|2ε2m
))
.

But

(A.9)

∫
RN

V (y)Uε,xi,Vi

∂Uε,xi,Vi

∂xil
=

1
2

∫
RN

∂V (y)
∂yl

U2
ε,xi,Vi

=c1εNDlV (xi) +O
(
εN−1

k∑
j=1

[h]∑
m=2

|DmV (xj)|εm + εN+[h]+1).
So we see that (A.6) follows from (A.8) and (A.9). (A.7) can be proved
similarly.

Appendix B. Some topological results

In this section, we give some topological results needed in the proof of our
main results. First, we recall the definition for the relative category. See
[18].

Definition B.1. Let Y and A be closed subsets of a topological space X.
Then CatX(A, Y ) is the least integer k such that A = ∪kj=0Aj , where, for
0 ≤ j ≤ k, Aj is closed and there exists hj ∈ C([0, 1] ×Aj , X) such that

(a) hj(0, x) = x for x ∈ Aj , 0 ≤ j ≤ k,

(b) h0(1, x) ∈ Y for x ∈ A0 and h0(t, x) = x for x ∈ A0 ∩ Y and t ∈ [0, 1],

(c) hj(1, x) = xj for x ∈ Aj and some xj ∈ X, 1 ≤ j ≤ k.

From the definition, we see CatX(A, Y ) ≥ 1 if A can not be deformed into
a subset of Y within X.

From now on, we assume that all the sets appearing in the propositions
of this section are subsets in Rm for some positive integer m.
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Proposition B.2. Suppose that there are positive integers p1 and q1 such
that Hp1(A,A

′) �= 0, Hq1(B,B
′) �= 0. Then

Ht(A×B,A′ ×B ∪A×B′) �= 0

for some positive integer t. In particular, A × B can not be deformed into
A′ ×B ∪A×B′.

Proof. Choose the largest positive integers p and q satisfying Hp(A,A′) �= 0
and Hq(B,B′) �= 0. Then it follows from Künneth formula [17] that

Hp+q(A×B,A′ ×B ∪A×B′) = Hp(A,A′) ⊗Hq(B,B′) ⊕ other group.

So, H∗(A×B,A′ ×B ∪A×B′) �= 0.

Proposition B.3. Let M be a compact n-dimensional manifold with bound-
ary. Then Hn(M,∂M) �= 0.

Proof. This result is well known. See for example [20].

Proposition B.4. Suppose that M has nontrivial reduced homology. Then
H∗(Mk, T ) �= 0, where T = ∪i�=j{(x1, · · · , xk) ∈ Mk : xi = xj}.
Proof. For the proof of Proposition B.4, see [15].

Proposition B.5. We have

cuplength(Mγ ×Mγ , T2) ≥ 2cuplength(Mγ) − 1,

where T2 = {x = (x1, x2) ∈ M2
γ : |x1 − x2| ≤ d} and d > 0 is a small

constant. As a result,

CatMγ×Mγ (Mγ ×Mγ , T2) ≥ 2cuplength(Mγ).

Proof. For the proof of Proposition B.5, see [15].

Appendix C. Some estimates of the cuplength

Let B(RN , k) be the configuration space of k distinct unordered points of
RN defined as follows:

B(RN , k) = F (RN , k)/σk,

where

F (RN , k) = RN × · · · ×RN︸ ︷︷ ︸
k

\
⋃
i�=j

{(x1, · · · , xk) ∈ RkN : xi = xj}.

It is not difficult to check that both F (RN , k) and B(RN , k) are path con-
nected if N ≥ 2. The geometry of such configuration spaces has been exten-
sively studied by topologists in recent years. For sophisticated techniques in
this respect, the readers can refer to [9]. In this section, we shall give a lower
bound of the category of B(RN , k), obtained by elementary considerations
of the cuplength, relying on the fact that the symmetric group σk contains
the alternating group σ̂k as a normal subgroup of index 2. The main result
of this section is the following:
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Proposition C.1. If k = 2 or 3, cuplength(B(RN , k)) ≥ N − 1. If k ≥
4, cuplength(B(RN , k)) ≥ 2t − 1, where t is the smallest positive integer
satisfying 2t > N − 1.

The proof of Proposition C.1 for k = 2 is quite easy. In fact, since
B(RN , 2) has the same homotopy type as the real projective space RPN−1,
we see cuplength(B(RN , 2)) = cuplength(RPN−1) = N−1. To prove Propo-
sition C.1 for k ≥ 3, we need to do more work.

First, let us recall a general fact in algebraic topology. A two to one
covering map p : B̃ → B between connected spaces B̃ and B gives rise
naturally to a 1-dimensional cohomology class θp ∈ H1(B). One elegant
way to describe θp is that for any connected B, H1(B) is identifiable with
the group of homomorphisms from the fundamental group π1(B) to Z2.
Another way of description is that θp is represented by the cocycle whose
value on a loop ω in B is zero or one according to whether or not ω is the
p-image of a loop ω̃ in B̃.

For later purpose, we consider here two examples.
Let p1 : SN−1 → RPN−1 be the double covering from a sphere to a real

projective space of dimension N − 1. In this case, θp1 is the generator of the
group H1(RPN−1) = Z2. We know that the cuplength of θp1 is N − 1, i.e.,

θp1 ∪ · · · ∪ θp1︸ ︷︷ ︸
l

= 0

if and only if l ≥ N . See for example [17].
For a further example consider B̃ = SN−1×T S

N−1, obtained from SN−1×
SN−1 by identifyinig each pair (x1, x2) with its opposite (−x1,−x2). There
is then a double covering map q : B̃ → B, where B = RPN−1 × RPN−1, q
is defined via q(x1, x2) = (p1(x1), p2(x2)) and p1, p2 are the double coverings
for the two individual factors respectively. Now

H1(B) = H1(RPN−1) ⊕H1(RPN−1) = Z2 ⊕ Z2,

with generators denoted by θp1 ⊗ 1 and 1 ⊗ θp2 respectively. Because of
symmetry, one clearly has

θq = θp1 ⊗ 1 + 1 ⊗ θp2

in this circumstance.
Consider the iterated cup product:

θlq = θq ∪ · · · ∪ θq︸ ︷︷ ︸
l

.

We have

Lemma C.2. The iterated cup product θlq is zero if and only if l ≥ 2t, where
2t is the smallest power of 2 strictly exceeding N − 1.

Proof. Remember that we are working mod-2 since Z2 is used as coefficient
group for cohomology.
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If l = 2t, then
θlq =

(
θp1 ⊗ 1 + 1 ⊗ θp2

)2t

=θ2
t

p1 ⊗ 1 + 1 ⊗ θ2
t

p2 = 0,

since 2t ≥ N .
If l < 2t, write

l = 2β1 + 2β2 + · · · + 2βs

with t > β1 > β2 > · · · > βs ≥ 0. Let l1 = 2β1 and l2 = l − l1. Then
l = l1+ l2 with l1 < N , l2 < N and

( l
l1

)
is odd. Note that

(
θp1 ⊗ 1+1⊗ θp2

)l
contains, upon binormial expansion, the nonzero term(

l

l1

)(
θp1 ⊗ 1

)l1 ∪ (1 ⊗ θp2
)l2 =

(
l

l1

)
θl1p1 ⊗ θl2p2 ,

which lies in H l1(RPN−1)⊗H l2(RPN−1), a direct summand of H l(RPN−1×
RPN−1). Thus θlq �= 0.

We are now ready to prove Proposition C.1.

Proof. [Proof of Proposition C.1] Define B̃(RN , k) = F (RN , k)/σ̂k, where σ̂k
is the alternating group.

Suppose that k ≥ 4. First, we consider the case k = 2h, where h is even.
Construct a continuous map

f̂ : SN−1 × SN−1 → B̃(RN , k),

by sending (a, b) in SN−1 × SN−1 to the orbit of(
a,−a, 2a,−2a, · · · , (h− 1)a,−(h− 1)a, hb,−hb)

under the σ̂k-action on F (RN , k). It can be easily checked that because h
is even, f̂ sends (−a,−b) to the same σ̂k-orbit. Therefore, it induces a map
f̃ : SN−1 ×T SN−1 → B̃(RN , k).Bringing in the double coverings p and q,
we form a commutative diagram:

SN−1 ×T S
N−1 f̂−→ B̃(RN , k)�q �p

RPN−1 ×RPN−1 F−→ B(RN , k)

where F is a uniquely induced map. Note once more that for any point u in
RPN−1×RPN−1 and its image point v = F (u) inB(RN , k), the restriction of
f̃ maps q−1(u) to p−1(v) bijectively. By the natural way θp and θq arise from
their respective double coverings, we see that for the induced homomorphism

F ∗ : H1(B(RN , k)) → H1(RPN−1 ×RPN−1),

F ∗(θp) naturally equals θq.
By Lemma C.2, θlq �= 0 if l is less than 2t, the smallest power of 2 exceeding

N − 1. Since F ∗ is a homomorphism of cohomology rings, the same must
be true for θlp. Thus we have exhibited in B(RN , k) a nonzero cupproduct
of length 2t − 1, and our claim follows.
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If k = 2h+ j, where h is even and 1 ≤ j ≤ 3, we can use the same proof
by modifying the map f̂ into the one which sends (a, b) and (−a,−b) to the
σ̂k-orbit of(

a,−a, 2a,−2a, · · · , (h− 1)a,−(h− 1)a, hb,−hb, c1, · · · , cj
)

instead, where c1, · · · , cj are j distinct points fixed in RN , each having dis-
tance greater than h+ 1 from the origin.

Suppose that k = 3. Define a map f̂ : SN−1 → B̃(RN , 3) by sending
a ∈ SN−1 to the orbit of (a,−a, 0) in F (RN , 3) under the σ̂3-action. We
have the following commutative diagram:

SN−1 f̂−→ B̃(RN , k)�p1 �p
RPN−1 F−→ B(RN , k)

where F is a uniquely induced map. Since the nonzero element θp1 ∈
H1(RPN−1) has cuplength N − 1 (see the first example above), we can
prove in a similar way as above that θN−1

p �= 0. So we have proved Proposi-
tion C.1 for the case k = 3. As we mentioned before, the Proposition C.1 is
quite easy to prove if k = 2.

As a direct consequence of Proposition C.1, we have

Proposition C.3. If k ≥ 4, we have CatAk
(Ak) ≥ 2t, where t is the smallest

positive integer satisfying 2t > N − 1. If k = 2, 3, we have CatAk
(Ak) ≥ N .

Here
Ak =

(
Mγ × · · · ×Mγ︸ ︷︷ ︸

k

\
⋃
i�=j

{|xi − xj | < d}
)
/σk.

Proof. Let x0 ∈ Mγ and let δ > 0 be so small that Bδ(x0) ⊂ Mγ . We also
let

Vk =
(
Bδ(x0) × · · · ×Bδ(x0)︸ ︷︷ ︸

k

\
⋃
i�=j

{|xi − xj | ≤ d}
)
/σk,

Then B(RN , k) and Vk are homotopically equivalent. So
CatAk

Ak ≥ CatB(RN ,k)(Vk)

=CatB(RN ,k)(B(RN , k)) ≥ cuplength(B(RN , k)) + 1.

So Proposition C.3 follows from Proposition C.1.
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