THE EFFECT OF THE GRAPH TOPOLOGY ON THE
EXISTENCE OF MULTIPEAK SOLUTIONS FOR
NONLINEAR SCHRODINGER EQUATIONS

E. N. DANCER, K. Y. LAM AND S. YAN

1. INTRODUCTION

Consider
—2Au+V(y)u=uP~t, ye RN,
(1.1) u >0, y € RN,
u— 0, as |y| = +oo,

where V (y) is a smooth bounded function with positive lower bound, € > 0
isasmallnumber,2<p<%ifN>2and2<p<+ooifN:2.

Many works have been done on problem (1.1) recently. See for example
6,7, 8,16, 21, 22, 23]. One of the results in the papers just mentioned is that
if x1,x9,..., 2 are k different strictly local minimum points of V(y), then
(1.1) has a k-peak solution u., that is, solution with exactly k local maximum
points, such that u. has exactly one local maximum point in a neighbourhood
of xj, j = 1,...,k. The same conclusion is also true if x1,z2,..., 2 are k
different strictly local maximum points of V(y). Actually, it is proved in
[23] that (1.1) has a multipeak solution with all its peaks near an isolated
maximum point of V' (y). Thus a natural question is what will happen if V' (y)
attains its local minimum or local maximum on a connected set. Especially,
if V'(y) attains its local minimum on a connected set which contains infinitely
many points, it is interesting to study whether (1.1) has a multipeak solution
concentrating on this set. Generally, this is not true as shown by example
(1.6).
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The main results of this paper consist of three parts. Firstly, we study
how the topological structure of the local minimum set of the potential V (y)
affects the existence of multipeak solutions for (1.1). We will show that if
the minimum set of V(y) has nontrivial reduced homology, then for each
k> 1, (1.1) has at least one k-peak solution such that each local maximum
point of this solution tends to a point in this minimum set as ¢ — 0.

Secondly, we construct solutions with their peaks near a connected maxi-
mum set of V(y). Unlike the the case of minimum sets, we show that for any
connected maximum set of V(y) and for any positive integer k > 2, (1.1)
always has at least N different solutions with all their peaks tending to this
maximum set as € — 0.

Suppose that M; and My are two disjoint connected sets such that V(y)
attains a local minimum or a local maximum on M; and on Ms. The third
problem studied in this paper is to construct a (ki + k2)-peak solution u.
such that u. has exactly k; local maximum points near M;,i =1, 2.

Before we state our results precisely, we give some notation first.

For any constant V' > 0, let Uy (y) be the unique solution of

—Au+Vu=uPt y € RN,
u>0, yeRNa
u € HY(RN),

u(0) = max, ey u(y).

(1.2)

Let w be the unique solution of

—Au+u=uPl, y € RN,
0 N
(1.3) u > ,1 . y e RY,
ue HY(RY),
u(0) = max,c gy u(y).
Then Uy (y) = Vp%w(f/y) Denote U, , +(y) = U ( %).
For any fixed integer k > 0 and V; > ,j=1,- k: we denote
oU; . v,
— 1rpNy . &%, —
(1.4) E.pr={ve H(RY): (Uew,;v;;v). = 833; 2,v)_ =0,

j=1,...,ki=1,...,N},

where (u, v)e = [py e2DuDv+V (y)uv. We also denote ||v||2 = [pn €2|Dul>+
V(y)v*.

Definition 1.1. Let M be a connected compact set in RY. M is said to
be a local minimum (maximum) set of V(y) if there are constants v > 0
and Vs, such that V(y) = Vs for y € M, V(y) > Vi (V(y) < Vi) for
y € M, \ M, where M, = {z: 2z € RN d(z, M) < ~}.

Throughout this paper, all the homologies are with Zs-coefficients. Now
we are ready to state our main results.
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Theorem 1.2. Suppose that M is a connected compact local minimum set
of V(y) such that OM., is a C1 manifold of dimension N — 1 for each v >
0 small. Moreover, we assume that for any v > 0 small, the following
conditions hold:

(14)  V(y) < Vi +ad(y, M)",  |D™V(y)| = O(d(y, M)"™™),
form=1,...,[h], y € My,
(1.5) (DV(y),n) > coy" ™,V y € OM,,

where a, cy and h > 2 are some positive constants, n is the outward unit
normal of OM,, at y. If the reduced homology of M is nontrivial, then for
each integer k > 2, there is an g9 > 0, such that for every € € (0,e0], (1.1)
has at least one k-peak solution of the form

k
(1-6) Ue = Z as,jUE,ﬂEs,j,VM + Ve,
j=1

where v € E; ;1 and as e — 0,
|m5,i - xs,j|
€

fori,j = 1,---k and i # j. Moreover, if k = 2, (1.1) has at least
cuplength(M) distinct solutions of the form (1.6) satisfying (1.7).

)

(1.7) e — 1, Ny

— 00, Tej — x5 € M, vaHg =o(e

For any set M, denote
A= (M x - x M\ (i — 5] < d}) Jo,
— %
where d > 0 and v > 0 are small constants, oy is the group of permutations
of k letters acting on My x -+ x My \ U,z {|zi — x5 < d}.
—_——
k

Theorem 1.3. Suppose that M is a connected compact local maximum set
of V(x). Then for each positive integer k > 2, there is an gy > 0, such that
for every € € (0,e0], (1.1) has at least Cata, (Ay) solutions of the form

k

(18) Ue = Z Oés,jUa,mE,j,VM + e,
j=1

where v € E; ;1 and as € — 0,
|5175,i _xs,j|
€

fori,g=1,--- k and i # j.

(1.9) e — 1, M.

— 00, Tej — x5 € M, ”UEHE =o(e

Theorem 1.4. Let My,..., M; be disjoint connected compact sets such that
OM;  is a C'-manifold of dimension N — 1 for each v > 0 small and i =
1,---,1. Suppose that the following conditions hold: there are constants
h>2,c > co>0 such that
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(1.10) Vag, < V(y) < Vi, + cad(y, My)", [D™V (y)| = O(d(y, M;)" ™),

(1.11) VyeM,,,m=1,...[h,i=1,...,1,
(1.12) (DV(y),n) > coy" 1, Vy € OM; i =1,...,1,
(1.13) cod(y, Mi)" < Vi, = V(y) < exd(y, My)",
(1.14) |D™V ()] = O(d(y, M;)"™™),

(1.15) Vye M;y,m=1,...,[h],i=0L+1,...,L

(i) If each M;,i=1,...,1l1, has nontrivial reduced homology, then for any
positive integers k;, 1 = 1,...,1, there is an 9 > 0 such that for each
e € (0,e0], (1.1) has at least one solution of the form

Ik
(1-16) Ue = Z Z af,i,jUE,xs,imVMi + v,
i=1j=1
where v. € E& 722:1 ks and as € — 0,
(1.17) i =1, Juell2 = o(e™),
(1.18) W — 00,  Teij —* Tij € M;
fori=1,--- 1, jm=1,--- ki and j # m.
(ii) If some of the minimum sets M;,, ..., M;, have trivial reduced homol-

ogy, then the conclusion in (i) holds for k;; =1, =1,...,t

The basic idea to prove Theorem 1.2 can also be used to obtain the fol-
lowing result.

Theorem 1.5. Let M be a connected compact local minimum or maximum
set. Then there is an o > 0, such that for each € € (0,e¢], (1.1) has at least
Catyr (M) single peak positive solutions of the form:

Ue = asUa,xE,VM + v,
where, v; € Ez 4.1, and ase — 0, ac — 1, 2. — 19 € M and ||v:||2 = o(eV).
The assumption that M has nontrivial topology is essential in Theo-
rem 1.2, as shown by the following example.

Ezample 1.6. Let V(y) = V(]y|) be a smooth function satisfying V(y) =1
for |y| <1, and V(|y|) is strictly increasing in |y| > 1. Then we see that the
minimum set of V(y) is the unit ball in RY. By the moving plane method
of Gidas, Ni and Nirenberg [19], we know that every solution of (1.1) is
radially symmetric and strictly decreasing. Therefore the solution has a
unique maximum point, and thus is a single peak solution.
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Ezample 1.7. A typical example of V(y) satisfying the conditions in Theo-
rem 1.4 is that V(y) = V(|y|) and V(r) attains its local minimum or max-
imum at r; > --- > ry > 0 with V”(r;) # 0, ¢ = 1,--- ,[. In this case,
M;={y:|yl=ri}, h=2.

Remark 1.8. If M is an N-dimensional smooth manifold without bound-
ary, tubular neighbourhoods of M are useful for verifying the conditions in
Theorem 1.4.

Remark 1.9. By Proposition C.3, we know that the lower bound for Cat 4, Ay,
is N. So (1.1) has at least N different k-peak solutions concentrating on the
connected compact local maximum set of V (y).

Since the work by Bahri and Coron [2], the effect of the domain topology
on the existence and multiplicity of the solutions is one of the subjects which
attract much attention. See for example [2, 3, 4, 10, 11, 12, 14, 15]. In [3],
the category of the domain was used to estimate the number of the single
peak solutions, while in [12, 14, 15], the effect of the domain topology on the
existence of multipeak solutions was studied. The domain in problem (1.1)
has trivial topology, so our results here emphasize the effect of the topology
of the level set of the potential V(y) on the existence and multiplicity of
multipeak solutions for (1.1).

Finally, let us point out that the idea in this paper works for the singularly
perturbed Neumann problem:

—2Au+u=uP"t, inQ,
(1.19) u >0, in Q,
gu =0, in 69,

where Q is a bounded domain in R . The role of the mean curvature function
of the boundary 9 in (1.19) is similar to that of the potential V(x) in (1.1).
The estimates in Appendix C can be used to improve the multiplicity results
in [13, 25]. For example, as a direct corollary of Proposition C.3 and the
results in [13, 25], we have

Corollary 1.10. For each integer k > 2, there is g > 0 such that for each
e € (0,e0],
(i) (1.19) has at least N boundary k-peak solutions with all their local mazi-
mum points near the global minimum set of the mean curvature function
of 0%);
(ii) (1.19) has at least N interior k-peak solutions.

This paper is arranged as follows. In section 2, we reduce the problem
of finding a multipeak solution for (1.1) to a finite dimensional problem.
Theorem 1.2 is proved in section 3. Section 4 is devoted to the proof of
Theorems 1.3 and 1.5. In section 5, we prove Theorem 1.4. Some basic
estimates and topological results needed in the proof of the main results are
presented in the appendices.
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2. REDUCTION TO FINITE DIMENSIONAL PROBLEM

First we define

DE - {(O[,l’,’[)) |Oé] B 1‘ S 67 v E EE,.’EJm HUHE S 5€N/27

|z

(2'1) xr = ($1, c ,l‘k),$j S RN, ;x]’ > R,
e

ij=1,....ki#j},

where 0 > 0 is a fixed small constant and R > 0 is a fixed large constant.
We also define

k
(2.2) J(a, x,v) Za] ;v T ), V(s z,v) € Dy,
7=1

where

I(u) = ;/RN (2| Dul? + V (y)u?) — ;/RN .

It is well known now (see [1, 24]) that if § > 0 is small enough and R > 0
is large enough,
k
U= Z a;jUe o; v, + 0,
j=1
is a positive critical point of I(u) if and only if («, x,v) is a critical point of
J(a,z,v) in D.. So we need to solve the following system:

oJ
2.3 — =0 =1,...,k;
( ) aa] Y -.7 ) ) )

o Y . 5. v,
2.4 — = Gpi{ —=22 =1,....,k,l=1,...,N
24 ale hz; h]<8xjh8x'l’v>€’ IT e ey
(2.5) ZB st]’V+ZZGﬂ Uea,,v; ,

7j=11=1

for some constants B;,Gj; € R, j=1,...,k,l=1,...,N.
In this section, we reduce the problem of solving the system (2.3)—(2.5)
to a finite dimensional problem. We need the following proposition.

Proposition 2.1. There is an g9 > 0, such that for each ¢ € (0,eq], there
evists a unique Ct-map (ae(z),v-(x)) + RV¥ \ Uizi{lzi — zj| < eR} —
Rﬁ x HY(RN) such that v- € E. 2k, (2.3) and (2.5) hold for some constants
Bj and Gj;. Moreover, we have

(2.6) ve(opz) = ve(x), opas(opzr) = a:(x),
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N/2

o= 1e™/2 + o],
k N [h} N
2 =0 (V) = Vil + X e2 D™V (xy)]))
) j=1 m=1
1er @y —
—i—O(aN/Q;w (e )
and
EB]', G]’l
k [A]
03 =0(e X (IV(w)) = Vil + Y ™ D"V (2))]))
. j=1 m=1
yr |z —
+o(g;w : (fﬂ)),

where T > 0 is a fized small constant and [h] is the integer part of h.

Proof. We can follow the same procedure as in [5] to prove the existence
part. (2.6) is a direct consequence of the fact J(o,x,v) = J(ope, o)z, v)
and the uniqueness of (aq(z),v:(z)) satisfying (2.3) and (2.5). To get the
estimate (2.7), we just need to use Lemma A.3. We can solve a system as
in [24], pp 22-23 and use Lemma A.4 to get the estimate (2.8). Since the
procedure is quite standard, we omit the details. m

Let (a:(x),v:(z)) be the map obtained in Proposition 2.2. Define
K(z) = J(a:(x),z,v:(x)).
In order to solve (2.3)—(2.5), we only need to find a critical point for K (z)

in a suitable domain. So we need the following propositions.

Proposition 2.2. Suppose that F(x) is a C? function defined in a bounded

domain Q of R*N. If F satisfies either F(x) > ¢ or 81;7(56) > 0 at each

x € 0N), where n is the outward unit normal of O at x, then
#{x:DF(x)=0,2 € F} > Catpe(F°),

where F¢ = {x : x € Q,F(z) < ¢}. In particular, F(x) has at least one
critical point in F°.

Proof. Notice that our assumption implies that the following flow:

(2.9 { S = —DF((t),

z(0) = xo € F°
does not leave 2. In fact, suppose that z(¢) touches the boundary at some
time to. Since F' is decreasing along x(t), we see F(z(tp)) < c¢. Thus,
by assumption, % > 0, which implies that —DF(z(t)) points into
Q. So z(t) moves into 2. Then Proposition 2.2 follows directly from the
Ljusternik-Schnirelman theory. =
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Proposition 2.3. Suppose that F(z) is a C? function defined in a bounded
domain ) of REN | Let ¢y > ¢ be two constants such that neither 02 nor ¢y

is a critical value of F(x). If F satisfies either F(xz) < ¢ or 87(1 >0 for
each © € 0L}, then

#{x: DF(z) =0,z € F2\ F} > Catpex (F, F).
In particular, if 2 cannot be deformed into F, F' has at least one critical
point in F2\ Fe.

Proof. Similar to Proposition 2.2, our assumption implies that the following
flow:

dwgt) = —DF(x(t)),
(2.10) { le()) =zx9 € F*

does not leave 2 before it reaches F“'. So Proposition 2.2 follows directly
from the Ljusternik-Schnirelman theory. m

3. MULTIPEAK SOLUTIONS CONCENTRATING ON THE MINIMUM SET

Suppose that M is a connected compact local minimum set of V (y) and
M, ={y:d(y, M) <~}. For k > 2, let

sz{x:(xl,-'-,xk):ijMv,jzl,...,k,M

Define

>R,Vi#j}

p N j2 N
cen =eN(RVYT? TA-TeN), coq =NV 2P A+,
where T' > 0 is a large constant and « € (0, 1) is a fixed constant close to 1.
We also let
Ke={x:2 € Qe,K(x) <c}
In this section, we shall apply Proposition 2.3 to prove that for ¢ > 0
small, K (x) has a critical point in K2\ K. First, we prove

Lemma 3.1. For each x € 0Qzo, we have either K(x) < ce1, or 818(2’”) > 0.

Proof. We divide the proof of this lemma into two steps.

Step 1. Suppose that Ingixj\ = R for some i # j. We claim z € K%,
In fact, by using Proposition 2.1 and Lemma A.2, we obtain

k
K(z) = I} Ueavar) + OV |ae — 112 + [0 |2)
=1
k p -1
:EN Z V]\Z72 2 A— Z / Z Ug T, VM) Ua,;t,',VM
Jj=1 j=i+1

(3.1) .

- o(f:( NIV (@) = Vil + Y VDV (1))
=1 m=1
—I—O(aNl ]w1+T L 5 x]|>)

~
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_ N _
z RS (3 G e
(3.1) g=atl
+O0(eNt 4Ny w1+f(7’ — mily),
i)
From (3.1), we have
(3.2) K(z) < 5N(kvﬂff2 Al cw(R)) + O (M) < e y.

Thus x € K%,

Step 2. Suppose that x; € M.« for some i. Without loss of generality,
we assume ¢ = 1. We claim that either K (z) < c.1, or % > 0, where n is
the outward unit normal of dM,.« at x7.

For any x; € Mca and m > 2, we have

[V (zj) — V| = O(*")
and
|D™V (7)™ = O(d(zj, M)'"me™) = O(s‘”(h—m)sm) — O(eehH201-a)y,
So, by Proposition 2.1 and Lemma A.4, we have

oK _ 01 0 00,
dry  Oxy ov’ Oxq'c

o0J kN 8Ue,xj,VM ov

“ory ]E: Z Ghj< a$jh ’ 81‘1[

>£

h=1
(3.3) o.J N—1 N+ah
— 4+ O Z e )
83011 i#j
oU; 2, v,
=C1€ DlV $1 - 1 Z/ 611,VM an,V]\IW
1 Z 6_(1+ )‘zl ] N—1+ah+2(1—0¢))'

7]
Denote 1 = min;; |z; — x;|. We distinguish two cases.
(i) Suppose that U(Z) > Le®", where L > T is a large constant. In this
case, we claim that K(x) < c. 1. In fact, it follows from (3.1) that

P _N
) K(z) <eMkVy? 2 A—de w( )+ O(eN Tl
3.4

_p _ N
<NV T A- dLeNtoh L geNtal < ¢

if L > T is large enough.
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(ii) Suppose that U(Z) < Le®". In this case, we prove that BLT(;B) > 0,

where n is the outward unit normal of M.« at x1. Since for any j # 1,

_ U, 2, v 1 g =] T — 2
UP™2 Uy vy —220M — (04 o(1))eN (2 J ,
o Vi Ve iy g = e o) o2 L
and for small 3 > 1 — qa,
ri — I
<m,n> SEB, Va:j EMEamBsa(xl),
J
we see that
_ oU,
2 e,x1,V,
/FBN Ugﬁl,VMUeijyvhf 8,,; H
(3.5) |1 — ;]

<eB(e+ (1))=Y )
<e®(c+0(1)eN T Le, Y z; € Meo N Bea(31).
On the other hand, if |z; — x1| > €, then

- Uz 2,.v; o -1
(3.6) [ U2 Uy S0t = O(N e )
Combining (3.3), (3.5)—(3.6), we obtain
0K
87(;7) >c1eM(DV (z1),n) — e°L(c+ o(1))eN~1Hah

(3.7) +0(e N71+ah+2(17a))

>Cl N+a(h—1) _ L(C+ 0(1>)€N—1+ah+ﬁ > 0.
Combining Steps 1 and 2, we complete the proof of this lemma. =
We are now ready to prove Theorems 1.2.

Proof. [Proof of Theorems 1.2]
In view of Lemma 3.1 and Proposition 2.3, we see

(3.8) #{z:DK(x) =0,z € K2\ K=} > Cato_, (K2, K“").
It is easy to check that
K? = Qea.
On the other hand, we claim
Toeipet \TER CK*=!'C Toeinet \T€R7

where T = Ujzj{|z; — x| < 7,25, € Mea}, C > ¢ > 0 are some suitable
constants.
In fact, it follows from Lemma A.2 that

_r__N
ceq =eNkV P P A TeNTR

( ) - 5NM/J\Z 2 2 A— Z/ 5$“VM 5% VM +O( N—l—ah)’
i#]
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which implies |z; — z;| < Ce ln% for some i # j if T' > 0 is large enough.
Thus,

K C Toene1 \T€R~
On the other hand, it is easy to check

Tc’51n€*1 \TaR - ch’la

if ¢ > 0 is small enough. So the claim follows.
Since the T -1 \ Ter can be deformed into T 1, .1 \ Tzr, we have

CatQEa (KCa,2’ Kcs,l) = Catﬂga (an s TC’E Ine—1 \ TER)

As a result, we have

#{zx:DK(z) =0,z € K2\ K%'}
>Catq o (Qea, Toreine—1 \ Ttr),
On the other hand, it follows from the definition that
Cata.o (Qea, Teine—1 \ Ter) = Catypn (ME, Tcrne).

(3.9)

So we have

(3.10) #{x:DK(x) =0,z € K>\ K} > Catyp (M5, Toopy o).
By Proposition B.4, we know that M~ can not be deformed into 7,1, 1.

Hence the right hand side of (3.10) is greater than or equal to 1, and thus

we have proved the first part of Theorem 1.2.
By Proposition B.5, we know that if k = 2,

#{z: DK(z) =0,z € K2\ K%'} > Caty (MZ, Tuepme)
>2cuplength(Mca) = 2cuplength(M).

Thus, the number of two-peak solutions for (1.1) is at least

1

5#{x :DK(z) =0,z € K2\ K%'} > cuplength(M).
So we complete the proof of Theorem 1.2. »

4. MULTIPEAK SOLUTIONS CONCENTRATING ON THE MAXIMUM SET

In this section, we assume that M is a local compact maximum set of

V(y). Let

|z; — 2]

Qs ={x=(x1,...,2x) 1 xj € Ms,j=1,...,k, > RVi#j},

Ao = Qs/ 0.
Define
Kl([l‘]) = J(ae(x),x,vs(x)), v [:B] € Ak,é-
By (2.6) of Proposition 2.1, Ki([z]) is well defined in Ags. It is not

difficult to prove that Ay ;s is a covering space of 5. As a result, [x] € Ay s
is a critical point of K7 if and only if € Qj is a critical point of K.
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Proof. [Proof of Theorem 1.3]
First, fix 6 > 0 small such that

v =V — %1]\2}?‘/(3;) > 0.

Then take a small positive constant v satisfying v < min(vy1,w(R)). Let
01 > 0 small enough such that

V(z)>Vy —1y, VaoelMs,
where 7 > 0 is a small constant.

Define

N

_p__
ce =N (kVET? 7 — 7).
Then it follows from Lemma A.2 that
J(ae(z), z,ve()) < o,
if d(x;, M) = 6 for some i, or |z; — ;| = R for some i # j. That is
Ki([z]) <cep, Vz] € O(Ars)-
Applying Proposition 2.2 to —K7, we obtain
#{[e] : [] € Aps, DI ([a]) = 0, Ky ([a]) > c.x)
>Cata, ; (1K1 ([2]) > ek ).
On the other hand, it is easy to check from (3.1) that

(4.1)

T;— T 1
2751:: (M(;IX---XMgl\U{| ! ]|2 12})/0k
~ € et/
(4.2) v it

C{K:([z]) = cep -
Combining (4.1) and (4.2), we obtain
#{lz] : [z] € Aks, DE1([2]) = 0, K1([z]) = ccp} > Cata, ;(Ars,).
But Ay s and A;C’(;l are homotopically equivalent, so we see
#{[x] : [2] € Aps, DK1([z]) = 0, K1([2]) = c i}
ZCatAkyé( 2?51) = Cat g, , (Ags)-
Thus we have completed the proof of Theorem 1.3. =

Proof. [Proof of Theorem 1.5]
Suppose that M is a connected compact local minimum set. Let
(ae(z),ve(z)) be the map obtained in Proposition 2.1 (k = 1). Define

Ks(z) = J(ae(z), z,v:(2)),V & € My,

_p _ N
=NV P A+ Ny,
where 7 > 0 is a small constant satisfying 7 < mingyz, V(z) — V. Then it
is easy to check that

Ks(z) >, VaxedM,,
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C/
M C K5°.

As a result, we have
#{r:2xe M, DK3(x) =0,z € Kg/f} > Catypr, (M).

The case that M is a maximum set can be treated in a similar way. So we
complete the proof of Theorem 1.5. =

5. MULTIPEAK SOLUTION CONCENTRATING ON DIFFERENT SETS

Suppose that M; and Ms are two disjoint minimum or maximum sets of
V(y). The aim of this section is to construct solution u for (1.1) such that
u has k; peaks near M;, 1 =1, 2.

Proof. [Proof of Theorem 1.4]
For the simplicity of the notation, we only prove Theorem 1.4 for | = 2.
For any v > 0, define

|z — ]

Ql,’y: ($1,.~~,$k1)3$i€M1;ya ZvaZ#]}a

|z — 2]

9277:{($k1+1,...,xk1+k2) Il’ieMQ;y, ZR7VZ#3}7

*
Q,y = Ql’«{ X QQ’V.

For any x € 7, let (a-(x),v-(z)) be the map obtained in Proposition 2.1.
Define

K(z) = J(a:(v), z,ve(x)).

Since the interaction between the peaks near M; and the peaks near My
is exponentially small, we have

2 » _N k1 2 N
K(z) =eNY kVi"? PA+eVNBY (V(zg) = V)V °
i=1 j=1
k1+ko 2 N
+eVB Y (Vi) —Vap)Vyg,® °
(5.1) =k
ki—1 ks o1
- Z /RN( Z U‘?vxijl) U&xi,f\/h
i=1 j=i+1
ki+ko—1 ki+ka

o Z /RN(Z U‘vaijQ)p_lU57$i7M2

i=k1+1 Jj=i+1
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ki+ko [R]

+O( Y X MDY (a5)])

j=1 m=1

(5.1) +o@EN Y Wt

1<i<j<ki+ka

|z — 2]

)

€

N k1 N k1+k2
+OENY V() = Van P+ Y V() = Vanl?).
Jj=1 Jj=k1+1

Case 1. Suppose that both M7 and M, are maximun sets. In this case,
similar to the proof of Theorem 1.3, using (5.1), we can check
max K(x) < max K(z).
T€0Q} IS 93
As a result, the maximum point z. of K (z) in Q5 is an interior point of QF,
and thus a critical point of K (z).

Case 2. Suppose that both M; and My are minimum sets with nontrivial
topology. Let

2. p _N
Ay=e"> VP Pk ATV
=1

2. » N
o=V (Do Thid+n),
1=1

Ke={z:ze€ QW K(x)<c},

where o € (0,1) is a fixed constant close to 1.
Using (5.1), we see that K(z) < c_ if [2; — 25| = eR for some z;,z; €
MLgcx or x;,x; € M275a.
Suppose that x1 € dMj co. Define n1 = mini<;<j<i, 4k, |2 — xj|. Then,
0K (x)

similar to Lemma 3.1, we have K (z) < ¢, if w(L) > Le*", and =5 > 0

if w(*) < Le*". So, in order to prove that K(z) has critical point in
K¢e \ K¢ we just need to prove that K°?2 can not be deformed into
Keet,

It is easy to check K2 = Q},.

Since
M co X (Ty,veme—1 \ T2er) U (T1ceme \ Ther) X Qoo
CK1 C Mo X (Tocemet \T2er) U (Th,ceme-1 \ T1er) X Qoca,
where T} . = Uizi{|z: — x| < c,25,25 € Mg}, l = 1,2, C > 0 is a large

constant and ¢ > 0 is a small constant, we see that if K2 could be de-
formed into K%, then Mflaa X Mé”aﬂ could be deformed into T} oppe—1 ¥
Mfﬁa U Mfé,l X T3 ¢rc1ne—1- This is a contradiction to Propostion B.2, since
Hy(M;eo,T; ene—1) # 0,4 =1,2. So we have completed the proof of (i) of
Theorem 1.4. Using Proposition B.4, we can prove part (ii) of Theorem 1.4
in a similar way.
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Case 3. Suppose that M; is a minimum set and M is a maximum set.
We only consider the case that M; has nontrivial topology. Let

2 » N
Ay =N Vi PhiA— TN
=1

/. _ N ﬁ*% )
Ceg =€ (ZVMi sz—i—n).

Denote
/
an = Ql,aa X 92’5,

Ke={r:2€ Qa,K(z) <c},

where o € (0,1) is a fixed constant close to 1.
From (5.1), we have K(z) < 0/5,1 for x € Q1 ca x 0o 5 UOT cr X Qa5.
We claim that if K(z) > ¢} ., then

(5.2) d(xj,Mg) < Cé‘a,

(5.3) Z w(w) + Z w(

1<i<j<hki € k1 +1<i<j <ki+ks ¢

In fact, suppose that K(z) > ¢} .. Then we get from (5.1)

|zi — 4 |zi — 4
> owlntElh oy s
1<i<j<ki k1 +1<i<j<ki+ke

k1+k2
(5.4) + D) (VM2 —V(fﬂj))
j=k1+1
kitke [R]
+ O( Z Z 6md($j,M2)h_m) < Cceh,

j=k1+1m=1

But by assumption, Vas, — V(z;) > Cd(x;, Ma)". Thus, (5.4) implies (5.3).
Using (5.4) again, we deduce (5.3).

Assume x1 € OMj o and K(x) > ¢ .. Similar to Lemma 3.1, using (5.2)
and (5.3), we can prove 8577(;”) > 0. So we conclude that if K(z) has no
critical point in K2\ K1 then K%?2 can be deformed into K.

It is easy to check

!/
KCE,Q — Q5a7

Q4 ga X 09275 U (T17C/51n5—1 \Tl,sR) X 9275 C K1,
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On the other hand, if K(x) < ¢} ., then

2 — z 2 — z
S owlmuh ey sl
1<i<j<ki k1 +1<i<j<ki+ko

k1+k2
(5.5) + > (Vi = V()
j=ki1+1
k1+ka
—i—O( Z f-:md(xj,Mg)h_m) > e,
Jj=k1+1

which implies

> w(\fﬁi—%‘!)Jr T w(\l‘z’—%‘!)

1<i<j<ki € k1 +1<i<j <ki+hs €
(5.6) kit
+C Z d(z;, Ma)" > ceh,
Jj=ki+1

Thus, we obtain
K CA= (Tyceme1 \T1er) X Q256U Qo X B,
where
B ={2' = (Tky41s- - » Thy+hy) € Qa5 1 d(xj, Ma) > ', for some j}
U (To,ceme \ Toer)-

But A can be deformed into Q2 ca X 909 s UOT] g X a5, 0 we see that QL.
can be deformed into Q0 ca x 0N 5UOT cp X Qo 5. But Hy(Q ca, 0T1 cg) # 0,
H,(Q92,5,08%5) # 0. Thus we get a contradiction. m

Remark 5.1. If both M; and My are local maximum sets of V (y), using the
same technique as that in section 4, we see that the number of the solutions
with k; peaks near M;, k; > 2,i = 1,2, is at least

Cata, , xAs p, (A1 X A2k, ),
where

Ay = (Miy x o x M\ Ui — 2] < d}) fon,  1=1,2.
i#]

k;

We have Cataxp(A x B) > cuplength(A x B) 4+ 1. On the other hand, it
follows the Kiinneth’s formula that cuplength(A x B) > cuplength(A) +
cuplength(B) (We stress here that all the homologies in this paper are
with Zs-coefficients.). Moreover, by the estimates in Appendix C, we have
cuplength(A; x,) > N — 1. Thus we see (1.1) has at least 2N — 1 different
solutions with k; peaks near M;,i = 1,2. Similarly, if My, .-, M; are dis-
joint connected compact local maximum sets of V(x), then the number of
the solutions with k; peaks near Mj, k; > 2, is least [(N — 1) + 1.



Remark 5.2. Suppose that M is a connected compact local minimum set of
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V(z). Using similar technique as that in section 4, we can prove that if M has

nontrivial reduced homology, then the number of the k-peak solutions with

all the peaks near M is at least Cat, (Ag, 0Ty/0k), where Ty = U {|z; —
zj| <d,z;,x; € My} and d > 0 is a small constant.

APPENDIX A. BASIC ESTIMATES

Lemma A.1. We have

where A =

N

HUez7) =NVFT R A+ N (V(2) - V)V 2B
(h]
+ ENO( Z |D"V (2)]e™ 4+ é—[lel)7
m=1

(3 - %) Jrx wP and B = % [y w?.

— 1 _
Proof. First, noting that U, , 7 = Vﬁw(V% —2), we have

(A1)

But

and thus

(A.2)

Yy
3
V() =V)UZ, 5

— P _N 1
U...p) ="V 2 a5
1 2
9 RN<V(?J> - V(Z))UE,ZJ‘/,
(h] .
V() = V() =03 ly— 2" D"V (2)] +el+),
m=1
(h]

/RNW@ ~ V), 5 =NO(D ID™V ()™ + ).
m=1

So the result follows from (A.1)—(A.2). =
Lemma A.2. We have

k
I(Z Ue,zj,v])
j=1
k y N »
:AngV;}FQ +BZ€ )V;D p—2 2
7j=1
— Z/ Ua levz Z l']E Z],V7
Jj=i+1
b [h]
+ ENO(Z(‘V(ZJ') -Vl + Z ]DmV(Zj)|5m) + 5[h]+1)
J=1 m=1

(Eialy),

+ ENO(Z wlt” |2
i c
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Proof. We have

k
I(Z Uez;.v;)
j=1
(A3) Z I IS z]’ + Z/ UE Zl,‘/;UE Z], ki
7=1
1 k k
+Z/ szz,% 52]7‘/ + - / ((ZU&ZJ'»VJ')Z)_ZUSZJ%)'
i#] Jj=1 Jj=1
On the other hand, we also have
(A4)
Z/ ]))Ue,zi,Van,Zj,Vj
iz " Y
N d m m [h]+1 |ZZ — zj|
=0(M(IV(z) ~ Vil + 2 ID™V ()™ + M) S w (),
m=1 i#£j

and

k k
/RN ((Zl UEvzij})p - — U‘gZ]?VJ)
j=

J]=

(A5) _pZ/ EZsz szj,V +p2/ Uszz, Vi Z Uez],

j=i+1

+ sNO(Z wHT(i'Zi — Zj')).
i#

3

Combining (A.3)-(A.5) and Lemma A.1, we get the desired estimate. m

Lemma A.3. For any v € E. ), we have

j=1 7R
k k 1
[ (S0 (S ) )]
j=1 J=1
. ]
=0(3 (X (V) = Vil + X 1DV ()le™) +el+) ) ol
j=1 m=1



EXISTENCE OF MULTIPEAK SOLUTIONS 311

and

‘Z /RN ]))Ue,wj,‘/}'U€,$i,‘/i
k
’/RN Z € :c], Z Ue 5,V )UE,Ii

,]:

0" (S (Vie V|+§]:1|Dmv )+ i)
FO(N Yt | i — fvg!))

i#]

Proof. The proof of this lemma is similar to that of Lemmas A.1 and A.2,
and thus we omit the details. =

Lemma A.4. Let (az(z),v:(z)) be the map obtained in Proposition 2.1.
Then

J N 2 8U€,Ii7V¢
il =ae" DiViw) = (p -1 Z/ U‘fz” vileas vi =g, oryy
J#
12@ (1 il |
i
(A.6) ko [h
+O0ENTY ST D™V (@) g™ + N
j=1m=2

k (]
O(N 1Y (IVie) = Vi + 3 IV P,
j=1 m=1

where ¢; > 0 is a constant.

oJ

<7 Ug . V; N Ze—(l-i-’r) N+h)
ov’ Z
(A7) . 4]
+O(N (V) = Vil + X 1DV (w))le™)).
j=1 m=1

Proof. We have

e z,.v,

U it LA
&m Z /RN STV By
k
-1 eanvi p-10Uza,,v;
+ Z / € IJv‘/J 81-71 /RN (Z US,CC]',‘/J') awll

=1

(A.8)
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O(N (Y e L SU)
i£]
k (h]
FO(N (V) = Vil + X 1DV ()P )
j=1 m=1
B oU; , v,
- RN V(y)UE,xi,Vi 8$il
(A.8) k
_ U, +. v
_ o 1 y% 2 £7z17 7
(p )jz:;/QUE’Z“V U5 7 81.’”
4 O(EN_1 (Z e (1+7) \zz:zﬂ n 62([h]+1))>
i£]
k (]
+O(N S (V(ay) = Vi + Y [D™V () 2e2m)).
j=1 m=1
But
V() Us g, v —2Vi = = Y
/RN (y) e,xi,Vi Oy 2 RN Oy ,24,V;
(A.9) k
—ClENDlV(IL’Z + O -1 Z Z ‘Dmv ‘6 + €N+[h]+1)
Jj=1m=2

So we see that (A.6) follows from (A.8) and (A.9). (A.7) can be proved
similarly. m

APPENDIX B. SOME TOPOLOGICAL RESULTS

In this section, we give some topological results needed in the proof of our
main results. First, we recall the definition for the relative category. See

18].

Definition B.1. Let Y and A be closed subsets of a topological space X.
Then Catx(A,Y) is the least integer k such that A = U?:OAjv where, for
0 <j <k, Ajis closed and there exists h; € C([0,1] x A;, X) such that

(a) hj(0,z) =z forx € A;, 0 < j <Kk,
(b) ho(l,z) €Y for x € Ay and ho(t,z) =z for z € AgNY and ¢ € [0, 1],

(c) hj(l,z) =z for v € Aj and some z; € X, 1< j < k.

From the definition, we see Catx(A,Y) > 1if A can not be deformed into
a subset of Y within X.

From now on, we assume that all the sets appearing in the propositions
of this section are subsets in R™ for some positive integer m.
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Proposition B.2. Suppose that there are positive integers py and qp such
that Hy, (A, A") #0, Hq, (B,B’) # 0. Then

Hi(Ax B,AxBUAXB')#0

for some positive integer t. In particular, A X B can not be deformed into
A'x BUAx B'.

Proof. Choose the largest positive integers p and ¢ satisfying H,(A, A") # 0
and Hy(B, B’) # 0. Then it follows from Kiinneth formula [17] that

Hy o(Ax B,A'x BUAx B') = H,(A,A") @ Hy(B, B") ® other group.
So, H(Ax BA'xBUAXB')#0.u

Proposition B.3. Let M be a compact n-dimensional manifold with bound-
ary. Then Hyp(M,0M) # 0.

Proof. This result is well known. See for example [20]. =

Proposition B.4. Suppose that M has nontrivial reduced homology. Then
H, (M*,T) #0, where T = U z;{(z1, -+ , o) € M¥ : 2; = z;}.

Proof. For the proof of Proposition B.4, see [15]. =

Proposition B.5. We have

cuplength(M, x M., Ty) > 2cuplength(M) — 1,
where Ty = {z = (x1,22) € M2 : |z — x| < d} and d > 0 is a small
constant. As a result,

Catnr, xar, (My x My, Tz) > 2cuplength(M.,).

Proof. For the proof of Proposition B.5, see [15]. =

APPENDIX C. SOME ESTIMATES OF THE CUPLENGTH

Let B(RY, k) be the configuration space of k distinct unordered points of
RY defined as follows:

B(RN k) = F(RN k) /oy,
where

F(RN k) =R x - x RN\ | J{(z1," -, 2x) € RN 12y = 25}
&

It is not difficult to check that both F(RY k) and B(RY, k) are path con-
nected if N > 2. The geometry of such configuration spaces has been exten-
sively studied by topologists in recent years. For sophisticated techniques in
this respect, the readers can refer to [9]. In this section, we shall give a lower
bound of the category of B(R",k), obtained by elementary considerations
of the cuplength, relying on the fact that the symmetric group o contains
the alternating group 6 as a normal subgroup of index 2. The main result
of this section is the following:
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Proposition C.1. If k = 2 or 3, cuplength(B(RN,k)) > N — 1. Ifk >
4, cuplength(B(RN,k)) > 2' — 1, where t is the smallest positive integer
satisfying 2t > N — 1.

The proof of Proposition C.1 for £k = 2 is quite easy. In fact, since
B(RN, 2) has the same homotopy type as the real projective space RPN-1
we see cuplength(B(R",2)) = cuplength(RPN~1) = N —1. To prove Propo-
sition C.1 for k > 3, we need to do more work.

First, let us recall a general fact in algebraic topology. A two to one
covering map p : B — B between connected spaces B and B gives rise
naturally to a 1-dimensional cohomology class 6, € H'(B). One elegant
way to describe 6, is that for any connected B, H'(B) is identifiable with
the group of homomorphisms from the fundamental group m(B) to Zs.
Another way of description is that 6, is represented by the cocycle whose
value on a loop w in B is zero or one according to whether or not w is the
p-image of a loop @ in B.

For later purpose, we consider here two examples.

Let p; : S¥=1 — RPN~1 be the double covering from a sphere to a real
projective space of dimension N — 1. In this case, 0, is the generator of the
group HY(RPN=1) = Z,. We know that the cuplength of 6, is N — 1, i.e.,

Op, U---Ub, =0
!
if and only if I > N. See for example [17].

For a further example consider B = SV =1 xpSN-1 obtained from SN~1 x
SN=1 by identifyinig each pair (x1,2) with its opposite (—x1, —x2). There
is then a double covering map ¢ : B — B, where B = RPN~1 x RPN-1 ¢

is defined via q(x1,z2) = (p1(z1), p2(z2)) and p1, p2 are the double coverings
for the two individual factors respectively. Now

HYB) = HY (RPN "YY o H (RPN = Z, @ 2o,

with generators denoted by 6, ® 1 and 1 ® 6, respectively. Because of
symmetry, one clearly has

Og = 0py @1+ 110,
in this circumstance.

Consider the iterated cup product:

0L =0,U---U0,.
l

We have

Lemma C.2. The iterated cup product Qé is zero if and only if | > 2, where
2! is the smallest power of 2 strictly exceeding N — 1.

Proof. Remember that we are working mod-2 since Zs is used as coefficient
group for cohomology.
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If | = 2%, then
2t
Oy =(p, @1+ 1©06,,)
2t 2t
=02 ®1+1®02, =0,

since 2¢ > N.

If I < 2, write
with ¢ > 31 > B2 > -+ > [ > 0. Let I} = 2% and Iy = 1 — ;. Then
=1+l withl; < N, I < N and () is odd. Note that (6, @ 1+1®6,,)"
contains, upon binormial expansion, the nonzero term

l l I l
(h) (bp ©1)" V(12 6,,)" = <z1> O ® O

which lies in H'' (RPN 1)@ H'2(RPN~1), a direct summand of H' (RPN ! x
RPN™Y). Thus 6} #0.

We are now ready to prove Proposition C.1.

Proof. [Proof of Proposition C.1] Define B(RN, k) = F(RN, k)/&}, where 6y,
is the alternating group.

Suppose that & > 4. First, we consider the case k = 2h, where h is even.
Construct a continuous map

SNt SN B(RN k),
by sending (a,b) in SV~ x SN~1 to the orbit of
(a,—a,2a,—2a,--- ,(h —1)a,—(h — 1)a, hb, —hd)
under the G;-action on F (RN, k). Tt can be easily checked that because h
is even, f sends (—a, —b) to the same y-orbit. Therefore, it induces a map

fo8N-1xp gN-1 B(RN,k).Bringing in the double coverings p and g,
we form a commutative diagram:

SN-1sr sN-1 Ly B(RN k)

L lr

RPN-1 x RPN-1 L, B(RN k)

where F' is a uniquely induced map. Note once more that for any point u in

RPN-1xRPN~1 and its image point v = F(u) in B(R", k), the restriction of

f maps ¢~ (u) to p~!(v) bijectively. By the natural way 6, and 6, arise from

their respective double coverings, we see that for the induced homomorphism
F*: HY(B(RN,k)) - H'(RPY™! x RPN 1),

F*(6,) naturally equals 6,.

By Lemma C.2, 02 # 0if [ is less than 2, the smallest power of 2 exceeding
N — 1. Since F* is a homomorphism of cohomology rings, the same must
be true for %. Thus we have exhibited in B(R™, k) a nonzero cupproduct
of length 2! — 1, and our claim follows.
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If kK =2h+ j, where his even and 1 < j < 3, we can use the same proof
by modifying the map f into the one which sends (a, b) and (—a, —b) to the
o -orbit of

(a,—a,2a,—2a,--- ,(h—1)a,—(h — 1)a, hb,—hb,c1,- - , ¢j)

instead, where cq,--- ,¢; are j distinct points fixed in RN each having dis-
tance greater than h + 1 from the origin.

Suppose that k& = 3. Define a map f : N1 — B(RN,3) by sending
a € SN~ to the orbit of (a,—a,0) in F(RY,3) under the #3-action. We
have the following commutative diagram:

sv-1 L, B(RN k)
| s
rPN-1 L B(RN k)
where F' is a uniquely induced map. Since the nonzero element 6, ¢
H'(RPN=1) has cuplength N — 1 (see the first example above), we can
prove in a similar way as above that 9;)\[ —1 £ 0. So we have proved Proposi-

tion C.1 for the case k = 3. As we mentioned before, the Proposition C.1 is
quite easy to prove if k =2. m

As a direct consequence of Proposition C.1, we have

Proposition C.3. Ifk > 4, we have Cata, (Ag) > 2¢, where t is the smallest
positive integer satisfying 28 > N — 1. If k = 2,3, we have Cata,(Ax) > N.

Here
Ay = (M M\ U = 5] < ) fo
—_—— T
i#j
k

Proof. Let g € My and let 6 > 0 be so small that Bs(z¢) C M,. We also
let

Vi = (Ba(ro) x - x Bi(eo)\ U{lai — ;] < d}) o
v i#]

Then B(RY, k) and V}, are homotopically equivalent. So
CatAkAk 2 CatB(RN7k)(Vk)
=Catp gy 1) (B(R", k) > cuplength(B(R", k)) + 1.

So Proposition C.3 follows from Proposition C.1. =
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