CHARACTERIZATIONS OF METRIC PROJECTIONS
IN BANACH SPACES AND APPLICATIONS

JEAN-PAUL PENOT AND ROBERT RATSIMAHALO

ABSTRACT. This paper is devoted to the study of the metric projection onto
a nonempty closed convex subset of a general Banach space. Thanks to a
systematic use of semi-inner products and duality mappings, characteriza-
tions of the metric projection are given. Applications to decompositions of
Banach spaces along convex cones and variational inequalities are presented.

1. INTRODUCTION

A number of problems can be reformulated as best approximation prob-
lems in some normed vector spaces. In several instances, the choice of the
norm is imposed by the nature of the problem, so that one does not always
dispose of an Hilbertian structure. It is the purpose of the present paper to
describe characterizations of the solutions (which are not necessarily unique)
of such problems in case the feasible set is convex. Such characterizations
are known under restrictive assumptions such as Gateaux-differentiability of
the norm off 0, or strict convexity of the norm (see [16], [22], [2], [3]). Here,
we dispense with such assumptions by making a strong use of the concepts
of duality mapping and of semi-inner product. These notions are recalled
in section 2. Section 3 presents the characterization we have in view. In
sections 4 and 5, some applications in the field of ordered Banach spaces
and variational inequalities are presented. Applications to sensitivity analy-
sis will be considered elsewhere. We thank Professor A Seeger for providing
us with reference [32]. We are grateful to Professor Y. Al’ber for a careful
reading of our manuscript which led us to improve its presentation and for
pointing out to us several references on projections and generalized projec-
tions which complete our bibliography ([1], [3], [4]), in particular reference
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[2] which is related to Section 5 of the present paper. We are also thankful
to Professor C. Zalinescu for calling our attention on the formulation of
Proposition 5.1 of the present paper.

2. PRELIMINARIES

In the sequel, X is a Banach space with topological dual X*, and (.,.)
is the usual duality pairing between X* and X. We set k(z) = 3 || z [,
n(z) = ||z|| 5, and we denote by F(X) (resp. C(X)) the set of nonempty
closed subsets (resp. closed convex subsets) of X. The duality mapping (or

rather multimapping) J is defined by
Jw)={a" e X*: (a",2) = |la|®, "] = l|ll} -

It is monotone (see for example [11]), as it coincides with the subdifferential
of the convex function k. Here we identify a multimapping with its graph:

(" —y* e —y) >0,V (x,27), (y,y") € J.

The duality mapping J is also homogeneous. As this correspondence will
be of fundamental use in this paper, let us recall some of its properties.
Since the function k (resp. n) is convex, continuous at each point, its radial
derivative exists. Using classical notations (see for example [17], [11], [24],
[22]), we set:

: + tyl* — =
= kl _ l ||ZU
<‘T7 y>+ (:1:7 y) t*l>%l+ 2%

- _ i e tyll =l
(resp. [z,yly i=n'(z,y) = Jim .

).
The bracket (.,.); (resp. [,.],) is called the semi-inner product (resp. the
normalized semi-inner product) (see [17]). Moreover, the subdifferential J =
Ok (resp. S = 0n) of k (resp. of n) is related to the semi-inner product
through the relation
(5,9)4 = max {(z*,) : " € J (x)}

(resp. [z, 9], =max{(z",y): 2" € §(2)},

(see for example [24], [11]), which is a special case of the relation

f (@ y) = max {(a",y) : 2" € Of ()},

for f a continuous convex function. Thus, one sees easily that

(@, v < =l [lyll and (z,y)4 = |l=[| [z, 4], -

The map which sends z to (x,y), for a given y, is positively homogeneous.
The map which sends y to (z,y)4+ (resp. [z,y],), for a given x # 0, is
sublinear continuous. If k is Gateaux-differentiable, J is single-valued, and
S is single-valued on X \ {0}. Also, J (0) = {0}, S (0) = Bx-, and for = # 0,

(@, y)+ = (J (2),y) = (K (x),y) and [z,9], = (S (2),y) = (W' () ,y).
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Let us recall that the semi-inner product is symmetric if, and only if, the
mapping J is linear if, and only if, the space X is Hilbertian (see [30]). In this
case, it coincides with the inner product of X, and if the space X is identified
with its topological dual X*, the mapping J is the identity mapping on X.
Now, let us give some examples of duality mappings which will be used later
on.

Let X = LP(Q, R), with 1 < p < 400, where (2,4, 1) is a measured
space. In this case, X* ~ L1(Q, IR) with % + % = 1. One has for x # 0

J(x) = al|*7P 2P~ sgn @,

Here ||z|| = (fq |=(s)[” du(s))%, and sgn x = ;0] — lz<0). Hence, one has

(J(2),y) = (x,9)+ = H%HH’/Q ()2 (s)y(s)du(s).

If p = 1, identifying X* with L*°(Q, IR), then for x # 0, J (z) is the set
of y* = ||z|| =* where z* satisfies 2* = 1 on [z > 0], z* = —1 on [z < 0],
|z*| <1 on [z = 0] (see for example [10], [31]). Thus, we obtain that

@,9)+ = 2l (Siomoy ¥ () dit () = floc) 9 () dia () + fiagy Iy ()] dis (5)) -
Example. Given a compact topological space T, let us consider X = C (T,

the space of continuous functions from 7" into IR equipped with the norm of
uniform convergence, ||z|| :=sup {|z(t)| : t € T}. For y € X, we set

T(y)={teT:ly®]=Illyll}
It is also known (see [11]) that
(e, y)+ = max {a(t) y(t) s t € T(2)}.

Example. Let  be a bounded open subset of IR? and let X = H{(Q), the
closure of C§° (2) in H'(f2) for the norm induced by H'(f2) which is given

by
227 (/u )P du >).

If we choose on X' the norm |[.[| 1 (g deﬁned above, then, identifying
X = H}(Q) with its topological dual X* = H~(Q), it is easily seen that .J
is the identity mapping on X. However, let us consider the following norm

on X
1
d 3
12/ 1 0y = <._1 (t)> ;

which is equivalent to the norm ||. [ ;1 (¢ (see for example [9]), since the open
subset () is bounded. The square of this norm being differentiable, for all
x € H} (), there exists a unique J(z) € H~1(Q) such that for all y € H(Q):

D i (1)

%
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It follows that

d Qx
J(e) = _; 8t2(t)

in the sense of distributions. Moreover, if x € H}(Q) N H%(Q), J(z) = — Az
in L? (Q), where A is the usual Laplacian calculated at z.

More properties of semi-inner products can be given thanks to the follow-
ing extension to infinite dimensions of a result of Rockafellar (see [27]).

Proposition 2.1. Let f be a convex function from X into IR U {0}, finite
and continuous on an open subset U of X. The function df from U x X
into IR given by df (x,y) = f'(x,y) is upper semicontinuous for the strong
topology on U x X . In particular, the map which sends (z,y) to (x,y)+ is
upper semicontinuous for the strong topology. Moreover, if f is Gateaux-
differentiable on U, then df is continuous on U x X for the strong topology.

Proof. 1) Let (z,y) € U x X and let (zn)nev — = and (yn)nev — y. For
all » > f/(x,y), there exists g > 0 such that for all ¢ € ]0, to]:

r >t (fe o+ ty) — f(2).

Since f is continuous, there exists ng € IN so that for n > ng

r> tal(f(xn + to yn) - f(xn))
Hence for n > ng and t € ]0, ¢g], one has, thanks to the convexity of f:

T > til(f($n + tyn) - f(xn)) > f/(fxnayn)~
Thus df is upper semicontinuous on U x X.
2) Suppose that f is Gateaux-differentiable at x. Then for each y € X,
f'(x,y) = —f'(x, —y). Using the upper semicontinuity of df,
lim sup f/(xna _yn) é f,(xv _y)
nelN
which may be rewritten, as —f/(xn, —yn) < ' (@n, Yn),
lim sup —f'(zn, yn) < —f'(2,y).
nelN
It follows that
lim inf f'(z,yn) > f'(2,y) > lim sup f'(2n, yn)-
nelN nelN
Thus df is continuous at (z,y). =

Under a stronger assumption, the conclusion of Proposition 2.1 can be rein-
forced as follows.

Proposition 2.2. Let f be a convex function from X into IR U {oo} finite
and continuous on an open subset U of X. If f is Fréchet-differentiable
at some x € U, then for each y € Y, the function df from U x X into
R given by df(u,v) = f'(u,v) is upper semicontinuous at (z,y) for the
product of the strong topology and the bounded weak topology. In particular,
when k is Fréchet-differentiable the map which sends (x,y) to (x,y) is upper
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semicontinuous for the product of the strong topology and the bounded weak
topology.

Proof. Let € U and let (z;)ier — = and (y;)ier — y weakly, with (y;)ier
bounded. Let r > (f’ (x),y). For all i and x} € f (z;) such that (z},y;) =
J' (x4, yi) (such an z} exists by a result of Moreau), one has

(@l ) < l2f = £ @) lyll + (£ @) v = v) +(F (@), 9)-

Since the function f is Fréchet-differentiable at x, ||z} — f' (z)|| — 0 (see [5],
[23]), hence for i large enough r > (z}, y;); thus df is upper semicontinuous. =

The following property of semi-inner products will be useful. (see [19], [29]).
Lemma 2.3. Let w € X and x € C. The following assertions are equiva-
lent:
(i) (x —w,y —x)y >0, VyeC.
(it) (y —w,y —x)4 20, VyeC.
Proof. Assertion (i) implies (ii) because the multimapping J is monotone,
hence for all v* € J(z —w) and all v* € J(y — w), (u*,y —x) > (v*',y — x).
It follows that

max {(u*,y —z) :u* € J(x —w)} <max{(v',y —x):v* € J(y—w)},
that is

0<(z-—w,y—z)1 <(y—wy—2)4.

Conversely, assertion (ii) implies (i). Indeed, by replacing y by ty + (1 —t)z

with ¢ € ]0,1[ in (ii), the upper semi-continuity of the semi-inner product
enables us to write that

1
(x —w,y—x)y >limsup —((1 —t)z+ty—w,t(y—x))+ >0.m=
t—04

3. CHARACTERIZATIONS OF METRIC PROJECTIONS

In this section we study the metric projection onto a nonempty closed
convex subset C' of the Banach space X. The characterizations we present
generalize those which are known in Euclidean and Hilbertian spaces. They
are more general than the one obtained in [16] and [22], since no special
geometrical property on the space is assumed.

For w € X, P(C,w) is the set of solutions to the programming problem:

(P): min{; Hx—szzaceC} =min{k(z —w):z € C}.

It is also the set of minimizers of the distance function d¢o on C' given by

do(w) =inf{||z —w| :z € C}.
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In the following, it is always assumed that the metric projection operator
P(C,.) is nonempty valued. Let us recall that for C' € F (X), the (upper)
tangent cone to C' at x € C is given by

T (C,z) =lim sup t 1 (C — x).

t—04

When C' is convex, it is the closure of the radial tangent cone
T"(C,x) =Ry (C —x).
The normal cone to C at z is the polar cone of the tangent cone:
N(C,z)=(T(C,z))’ ={2a"e X" : (z",2) <OVz eT(C,x)}.
For C convex,
N(Cyz)=(T(Cix))° ={a*e X*: (a2"y—xz) <0VyeC}.

Now, we are in a position to give fundamental characterizations of metric
projections in general Banach spaces.

Theorem 3.1. For a nonempty closed convexr subset C of X and w € X,
the following assertions are equivalent:

(a) x € C is a metric projection of w in C, that is v € P(C,w);
(b) 0 € Ok(x —w) + N(C,x);

(c) v e J(x—w): (vv) >0V veT(C )

(d) Iu* € J(w—2x): (u,v) <0V veT(Cx);

(e) J(w—x)NN(C,x) # 0;

(f) (x —w,v); >0, YoveT(Cx);

(9) (x —w,y —x); 20, Vyel;

(W) {y—w,y—z)4+ 20, VyeC;

(i) (w—z,2—y)y 20, VyeC;

(G) (w—y,z—y)4 20, Vyel.

Proof. Let ic be the indicator function of C' given by ic (z) = 0 if z €
C, ic(x) = 400 otherwise. For a given w € X, let ky be the convex
function given by k,, () = k (x — w). Since the function k,, is finite, convex,
continuous, usual subdifferential calculus rules ensure that

0 € 8 (ko +ic) (x) = Okw(z) + dic(z)

is a necessary and sufficient optimality condition for x to be a minimizer of
ky + ic (see for example [27], [23] and, for recent monographs, [6], [13]).
Since Ok (z) = 0k(x — w), 0 ic (z) = N (C,x), the equivalence of (a) and
(b) follows. Condition (c) is obviously a reformulation of (b) as 0k(zx —w) =
J(x —w). Condition (d) is seen to be equivalent to (c) by setting v* = —u*,
J being odd. Condition (e) is obviously a reformulation of (d) by the very
definition of N(C, x) as the polar cone of T'(C, x). Since (x —w,v)4+ > (v*,v)
for each v* € J(x—w), by a well-known characterization of the subdifferential
J of k in terms of the directional derivatives of k, it is clear that (c) implies
(f) (hence that (e) implies (f)). Condition (f) implies (e) again by applying
subdifferential calculus. Indeed, the subdifferential at 0 of the sublinear
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functional s := p + ¢ defined by p () := (v — w,-)+, ¢(-) := ir(-), with
T :=T(C,z) is given by

s (0) = 9p(0) +9¢(0) = J (x — w) + T,
as easily seen, p being continuous (observe that z* € dq(0) iff * | T < 0).
As C — z is contained in T'(C, x), it is obvious that (f) implies (g). Since p
is sublinear continuous, condition (g) implies (f) by density of 7" (C, x) into
T(C,x). Moreover, Lemma 2.3 yields the equivalence (g)<(h). Finally, as
<—IL', _y>+ = <‘T’y>+v (g)<:>(1) and (h)<:> (.]) .
Example. Let X = LP(Q, IR), with 1 < p < +o0o, where (2, A4,p) is a
measured space. For C' € C(X) and w € X, the vector z € C is the metric
projection of w in C if, and only if,

/Q [2(s) —w(s)I"™" sgn (a(s) —w(s)) (y(s) —x(s)) du(s) 20, Vy € C.

This formula is the same as the one proved in [16] by using specific properties
of LP spaces.

Let also remark that, except if k is Gateaux-differentiable, the character-
ization (g) of Theorem 3.1 cannot be equivalently rewritten as

(w—z,y—x)y <0, VyeC,or (r—w,x—y); <0, VyeCl,
as the following counterexample shows:

Example. Let X = [}(IR) with ||z|| = Y, |7;|. One has (see [11])

(T, )+ = (IIHJ! = (|l — 2 sgn yi)) yll-
i

It is easily seen that the relation (x,y); > 0 is not equivalent to the re-

lation (—z,y)+ < 0 or (x,—y)+ < 0. Indeed, for x # 0 and y # 0, one

has <x,y>+ 7& —<—l’,y>+, and <:L'ay>+ 7é —<I‘, _y>+' In fact, <$, _y>+ =
(~2, )4 = —(z,)-, where

(z,y)- == —(z,—y)y = min{(z",y) : 2" € J(z)}.
When C is a closed convex cone, the preceding characterization takes a

striking form.

Corollary 3.2. If C is a closed convex cone, x € C' is a projection of w in C
if, and only if, there exists y* € J (w — z) such that y* € C° and (y*,z) = 0.
If C is a closed vector subspace, the vector x is a projection of w in C if,
and only if, there exists y* € J (w — x) such that (y*,y) =0 for ally € C.

Proof. This follows immediately from Theorem 3.1 (c) since u* € N (C,x)
if, and only if, u* € C° and (u*,z) = 0. =

The following simple consequence deserves some attention since this property
is not necessarily valid when C' is not a convex subset.
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Corollary 3.3. Let C' be a nonempty closed conver subset of a Banach space
X. Let w e X\ C and v € P(C,w). Then, for any r > 0, = is a best
approxzimation of z =z +r (w — x).

Proof. This follows from the equivalence (a)<(c) of Theorem 3.1 and the
positive homogeneity of J.n

A geometrical interpretation of our characterization of metric projections
can be given thanks to the following definition.

Definition 3.4. ([7, p. 71], [24]) The vector x is said to form an obtuse
angle with v if one of the following equivalent conditions holds:

(i) (z,—v)4 = 0.

(ii) There exists x* € J (x) such that (x*,v) <O0.

(iii) The vector x is orthogonal to —v in the sense of Birkhoff:
|z —tv]| > [|z]|, ¥ t>0.

(iv) There exists r > 0 such that for all t € [0,7], ||z — tv]| > ||z||.

(v) The vector x is normal to Y = IR_v at 0 in the sense of Bony or
metrically normal:

Ar>0: dy (04+t(—v)) =t|(-v)||, Vtel0,r].
(vi) The vector x is metrically normal to Z :=[—1,0]v at 0.
By rewriting the equivalence (a)<(g) in Theorem 3.1, one has:

Corollary 3.5. The vector x € C is a projection of w in C if, and only if,
for allv € C, the vector x — w forms an obtuse angle with r — v.

In the particular case of Euclidean and Hilbertian spaces, our extension
obviously coincides with the usual analytic and geometric Kolmogorov char-
acterization. The semi-inner product and the duality mapping are also well-
adapted tools to the characterization of metric projections in Banach spaces.

Let us point out that Corollary 3.2 can be reformulated as a decomposition
theorem of Moreau type in a Banach space (see [20], [21]). It keeps the
main features of the Moreau decomposition in Hilbert spaces, but here the
decomposition is not symmetric.

Corollary 3.6. Let C' be a proximinal closed convexr cone of X (that is,
such that each x € X has a best approximation in C), and let

D = J_l(CO):{yeX: J(y)NC° #£0}.
Then, any w € X can be decomposed as
w=z+y,zeC,yeD, ylx,

where yLx means there exists y* € J (y) with (y*,z) = 0; in fact, one can
also impose x € P (C,w).

Note that D is a closed cone but its convexity is not ensured in general.



CHARACTERIZATIONS OF METRIC PROJECTIONS 93

Example. Let C = IRy (—1,—1) be the closed convex cone generated by
—e = (=1,—1) in the Banach space X = IR%, whose norm is chosen to be
the ! norm: for z = (x,%), ||z|| = || + |y|. Then one has

J(2) = [l2] (@] (2) x 91| (4)) and C° = {(u,v) € B? :v > ~u}.

A simple calculus gives that J ! (C°) = (IR} x IR)U (IR x IR, ) which is not
convex.

We will see that in important cases D := .J~1 (C°) is a closed convex cone,
in particular that D satisfies the equality D = —C'. Let us observe that the
two inclusions we need have been characterized in [32]. We provide a direct
proof of the first one for completeness and for later use.

Lemma 3.7. [32] The norm of a Banach space X is nondecreasing on a
closed convex cone C, in the sense that ||z|| < ||y|| wheneverz € C,y € z+C,
if, and only if, —C C D := J~1(C°).

Proof. Suppose the function k is nondecreasing on C. Then, for any z,v in
C, we get

Thus, one has

ic (1) —l—k,(l‘,.) >0=1ic(0) +k,($70).
The sum rule for subdifferentials ensures there exists z* € dic (0) = C° such
that —z* € J (x) = 0k (z). Thus —x € J~! (2*) C D. Conversely, suppose
that —C' C D. Whenever z,v are in C, by taking z* € J (z) N (—C°), one
sees that k' (z,v) > (z*,v) > 0. Thus, by the Mean Value Theorem, the
function k is nondecreasing on C. =

As k' (z,y) = (z,y)+, Lemma 3.7 can be reformulated as follows.

Lemma 3.8. The norm of a Banach space X is nondecreasing on a closed
convez cone C if, and only if, for all z, y in C, (x,y)4+ > 0.

Notice that if the norm of X is nondecreasing on the closed convex cone
C, one also has (z,—y);+ <0, for all (z,y) € intC x C as easily seen in [25].

The reverse inclusion J~!(C°) C —C is also interesting since it shows
that whenever C is proximinal, any w € X can be written as w = z —y with
xeC,yeC,ylx. Let us give some conditions to ensure this inclusion.

Proposition 3.9. [32, 1.3] Let C be a closed convex cone of a Banach space
X. Then,

JHCHYc - Ce{zeX: do(—z)=|z|}cCeVzeC,0eP(-C,zx).

Example. Let X = L'(, IR), where (2, A, ;1) is a measured space. Let
C := LY(Q, IR}) be the cone of nonnegative integrable functions on Q. If
satisfies do (—x) = ||z or

[la)duts) < [ fo(s)+y ()] du(s).
Q Q
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for all y € C, then by taking y = 27, one has z (s) > 0 a.e. s € , hence
x € C. Thus Proposition 3.9 applies. An alternative proof of the inclusion
J~1(C°) € —C consists in using the characterization of the duality mapping
J given in a preceding example which ensures that

reJ N C)eu(z>0)=0zc —C.

Proposition 3.10. [32, 1.5] Let C' be a closed convex cone of a reflexive
and strictly convexr Banach space X. The dual norm of X is nondecreasing

on C* := — (C°) if, and only if J~1(C°) c —C.

Example. Let X = LP(Q, IR), where 1 < p < 400 and (2, A, 1) is a mea-
sured space. Let C' := LP(Q, IR;) be the cone of nonnegative p-integrable
functions on . The norm of X is nondecreasing on LP(Q2, IRy), and the
norm of X* is nondecreasing on L4(2, IR} ), with % + % = 1, thus Propo-
sition 3.10 applies. An alternative proof of the inclusion J~!(C°) ¢ —C
consists in using the characterization of the duality mapping J given in a
preceding example which ensures that

reJ N C)esgmr <0 pu(z>0)=0s2¢c —C.

The following result is a partial extension of Proposition 3.10 as reflexivity
is not supposed here.

Proposition 3.11. Let C be a closed convexr cone of a Banach space X .
Suppose the dual norm of X is smooth off 0 and nondecreasing on C* =
—(C®). Then J~1(C°) Cc —C.

Proof. Let x € D := J~1(C°): there exists z* € J(x) N C°. Then x €
J* (z*), where J* is the duality mapping of X*. Since the dual norm of
X* is smooth off 0, J* (z*) is a singleton. Moreover, since the dual norm is
nondecreasing on C*, we have by Lemma 3.7

C°=-C*C (J)TH((C)) = = (J) (™),
hence z = J* (z*) € (C*)° = —C°° (bipolar in X**), thus —z € C°NX =
C.m

Gathering Corollary 3.2, Lemma 3.7 and Proposition 3.11, we obtain the
following decomposition.

Corollary 3.12. Suppose X is a normed vector space whose dual norm is
smooth off 0 and suppose C' is a proximinal closed convex cone in X such
that the associated preorder is a lattice order. Assume the norm of X 1is
nondecreasing on C and the dual norm is nondecreasing on C* = — (C°).
Then for D := J~1(C®), any w can be decomposed as w = x+vy with x € C,
yeD=-C,y L=z

Another decomposition can be obtained when the space is a dual space.

Corollary 3.13. Suppose X is the dual space of a Banach space X, ordered
by a closed conver cone Cy. Let C = —C7. If the norm of X, is nonde-

creasing on C,, then each w € X can be decomposed as w = x + y with
r€P(Ciw),ye —CNJHC),y L.
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Proof. 1t is shown in [26, Th. 3.8], that when the norm of X, is nondecreasing
on C, then each f € X can be written as f = f — f_ with fy, f- € C and
If+]l = do (—f). Taking f = —w, setting x = f_, y = —f} and observing
that

lw =zl = llyll = [[f+]] = do (w),
we get that 2 € P (C,w) and y € —C. The relations y € J~1(C°), y L
are provided by Corollary 3.6. =

It will be shown in the next section that, when X is a vector lattice for the
preorder defined by a closed convex cone C' of X, this decomposition can be
made more precise in the sense that it corresponds to an order decomposition
w=w"—w", withwt € P(C,w), —w~ € P(—C,w), and w Lw™.

4. AN APPLICATION TO ORDERED BANACH SPACES

Let C be a nonempty closed convex cone in X, and let < be the preorder
defined by the cone C' in the usual sense: for all z,y € X, x < y if and
only if y — x € C. We assume that X is a vector lattice with respect to this
preorder and we set: xt := sup (z,0), 2~ := sup (—=x,0), |z| = sup(z, —x).
In this case, (see [28]), one has x = 2T — ™.

Corollary 4.1. Let w € X. If the following conditions hold:
(i) For allu e C, (w™,u)+ >0,
(i) (w™,wh)4 <0,

then the vector w™ is a metric projection of w in C, that is |[w™|| = d¢ (w).
Moreover, if the function k is Gateauz-differentiable at w™, the converse
holds.

Proof. This result is a consequence of Theorem 3.1 (f) since (i) and (ii) imply
(w™,wT); <0 and since (w™,.) is sublinear. u

Since for all v,w € X, the implication (v < w) = (vt < w™) holds by defi-
nition of a supremum, the metric projection thus obtained is homotone (or
order preserving, or isotone, see [14]). Moreover, we recall that condition (i)
holds whenever the norm is nondecreasing on C' (thanks to Lemma 3.8) and
in particular (w™,w*); > 0. We may also remark that whenever assumption
(i) holds, assumption (ii) can be replaced by (w™,w™), = 0.

The following terminology will be convenient.
Definition 4.2. The closed convex cone C' is said to be “obtuse” if
V (z,y) € C x C, inf (z,y) =0= (x,y)+ <O0.
The closed convex cone C' is said to be “orthogonal” if
V (z,y) € C x C, inf (z,y) =0= (z,y)+ =0.

Lemma 3.8 implies that both notions coincide when the norm is nondecreas-
ing on C.
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Example. The set C = {(r cos@,rsinf): re Ry, 6 € [O, ?jf}} is obtuse

but non orthogonal in the Euclidean space X = IR%. Indeed the Euclidean
norm is not nondecreasing on C'since ||(0, 1)||, < ||[(—1,1)]|, although (0,1)—
(-1,1)eC.

The following proposition gives an useful property of obtuse cones.

Proposition 4.3. The following assertions are equivalent.
(i) The closed convex cone C' is obtuse.
(1))VweX, (w,wh)y <0.
(iii) YV w € X, (whw™)y <0.
Proof. 1t suffices to prove that (i)<(ii), the equivalence (i)<(iii) being ob-
tained by changing w into —w. Assertion (i) implies (ii). Indeed, for all
w € X, one has inf (w™,w") = 0. Conversely, suppose (ii) holds. Let
(xz,y) € C x C with inf (z,y) = 0. Setting w = y — x, one has (see [28])

w™ = —inf (y — 2,0) = — (inf (7,y) —2) =z and v =w+w™ =y.
Using assertion (ii), one has

(T, y)4 = <w_’w+>+ < 0.

Thus the cone C' is obtuse. =
A similar proof, in which the relation < is replaced by =, yields the following
statement.
Proposition 4.4. The following assertions are equivalent:
(i) The closed convex cone C' is orthogonal.
(i))VweX, (w,wh)y =0.
(iii) YV w € X, (wh,w™)y =0.

Now, let us give the first main result of this section. It is an extension to

general Banach spaces, not necessarily Hilbertian, of a result stated by Isac
[14, Th 4.2] about the behaviour of metric projections.

Theorem 4.5. Suppose a Banach space X is a vector lattice with respect
to the preorder < defined by a closed convex cone C of X. Assume the norm
of X is nondecreasing on C. If C is obtuse then for each w € X, w' is
a metric projection of w in C, that is ||w™| = dco (w). Moreover, if the
function k is Gateauz-differentiable on X, the converse holds.

Proof. Let w € X. Assume the norm of X is nondecreasing on C. First of
all, if we suppose that the cone C' is obtuse (in this case it is orthogonal),
we deduce from Corollary 4.1 and Lemma 3.8 that w™ is a metric projection
of w in C, that is [[w™| = d¢ (w). Conversely, assume the function & is
Gateaux-differentiable at w™ and w™ is a metric projection of w in the cone
C. Since 0 € C, one has by Theorem 3.1 (g) and the linearity of (w™,.)4,

0> _<w+ —w,0— w+>+ = _<w_7 _w+>+ = (w_7w+>+ > 0.

Thus, by Proposition 4.4, the cone C' is orthogonal. =
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Example. If X = L'(Q, IR), where (Q, A, i) is a measured space, then for
each w € X, w' is a projection of w in the positive cone C = LY(Q, IR,)
as easily seen in [25] although k£ is not Gateaux-differentiable and C' is not
orthogonal. In fact, (w™,wt); = |Jw™| |[w*]| as easily seen either from the
expression of the semi-inner product given above, else from (w™,w*); =
4 il + bt

In the sequel, we will make use of the following definition.

Definition 4.6. [28] The norm of the vector lattice X, with respect to the
preorder < defined by a closed convex cone C of X, is said to be absolute if
[ ] | = [l]| for all z.

Proposition 4.7. Suppose a Banach space X is a vector lattice with respect
to the preorder < defined by a closed convex cone C' of X. Assume the norm
of X is Gateaux-differentiable off 0 and absolute. Then, the closed convex
cone C' is orthogonal.

Proof. 1t is known (see [28]) that
|z — y| = sup(z,y) — inf(z,y) and = + y = sup(z,y) + inf(z, y).

Hence, if x and y belong to C' with inf(z,y) = 0, then |z —y| = =+ y. For
t €]0,1], 0 < ty <y, so inf (z,ty) = inf (z,y) = 0, thus |z — ty| = = + ty.
Since the norm is absolute, one has

o —tyll = |l |z —tyl || = [lo +tyl -
It follows from the definition of the semi-inner product that (z,—y); =
(x,y)+. As the norm is Gateaux-differentiable off 0, we obtain 2(z,y);+ = 0.

By changing the role of z and y, (y,z)y = 0 as well, thus the cone C is
orthogonal. m

Our assumptions are in particular satisfied when one studies the classical
framework of Banach lattices in the usual sense.

Definition 4.8. The space X is called a Banach lattice, with respect to an
order <, if X is a Banach space satisfying the following assumptions:

(i) X is a vector lattice with respect to < .

(i) 0 < x <y implies that ||z| < ||ly|| for all z,y.

(iii) The norm of X is absolute.

Theorem 4.9. Assume X is a Banach lattice, with respect to the preorder
< defined by a closed convex cone C' of X. If the function k is Gateaux-
differentiable on X, then for all w € X, w' is a metric projection of w in

C.
Proof. 1t suffices to apply Theorem 4.5, Definition 4.8, and Proposition 4.7. =

Let us recall that a Hilbert lattice is a Banach lattice with an Hilbertian
norm. It is easily seen that the following result, established by Isac in Hilbert
spaces (see [14, Th. 4.2]), is an immediate consequence of the preceding
theorem.
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Corollary 4.10. [14, Th. 4.2] If the space X is a Hilbert lattice with respect
to the order < defined by a closed convex cone C of X, then for allw € X,
w™ is the metric projection pc (w) of w in C.

Let us illustrate these results by some examples.

Example. Let X = LP(Q,R), with 1 < p < 400, where (2,4, p) is a
measured space. Let C := LP(, IR, ) be the cone of nonnegative p-integrable
functions on Q. Obviously, for w € X, w™ is given by

wt = sup(w,0) < wh(s) = sup(w(s),0) = w(s)" a.e. s €.

Then, w' is the metric projection of w in C. Indeed, LP(Q, IR) is a Banach
lattice with a Gateaux-differentiable norm off 0, and Theorem 4.9 applies.
This result can also be proved by using the specific properties of LP-spaces
(see [25]). Notice that it can be shown directly that the cone C'is orthogonal
by using the semi-inner product:

(w™,wt), = Hw_||2_p/Q (w™ (s))p_1 wt(s) du(s) = 0.

The following examples, for which the norm is not necessarily differen-
tiable, satisfy the assumptions of Theorem 4.5.

Example. Given a topological compact space T', let us consider, as before,
X = C(T). Let C := C(T,Ry) be the cone of nonnegative continuous
functions on 7T'. The space X is known to be a Banach lattice with respect
to the order < defined by C' (see [28]), and one has

T = sup(z,0) & 7 (t) = sup(z(t),0) = 2(t) T Vt €T,

We claim that w™ is a metric projection of w in C. In fact, by applying
Theorem 4.5, it suffices to verify that the cone C' is orthogonal:

(wh,w™) 4 =max {w (t) wH(t): t € T(wh)} =0,
since
Twh)y={teT:|w"@t)=|w|}c{teT:w (t)=0}
if wt # 0, and (w™,w"); =0, if w = 0. This result can also be proved by
using the specific properties of C' (T')-spaces (see [25]).
Example. Let X := R? equipped with the norm ||z, = maxj<;<q |z,
and let C' := ]Ri be the positive cone of IR?. In this case

<zr< i = = B '
0<w <y = mox v = o] < Iyl = max i

+ =0,

(w™,wh)y = [Jw”|| max w;

€l(w™)
where I(w™) = {1 <i<d:w;, = Hw‘HOO}. Thus, applying Theorem 4.5,

wt = (wz+ )1<' is a metric projection of w in C for the supremum norm.
<i<n



CHARACTERIZATIONS OF METRIC PROJECTIONS 99

Example. Let X := L, (FE) be the space of symmetric linear operators
in a finite dimensional Euclidean space E with dim F = d, and with inner
product (. | .). Let C := LY (E) be the cone of semi-definite positive elements
of Lg (E). For any matrix A € X, it is known there exists an orthogonal
matrix U and a diagonal matrix D = diag (Ai1,...,\g), where \; are the
eigenvalues of A, such that A = U~!DU. On the space L, (E), let us
consider a norm satisfying the following monotonicity property:

0<A<B= A <|BI,

In this case, the space X is a vector lattice with respect to the preorder <
(see [18]), and one has for A € X
A = (42)2 = U1 (D?)? U;
A% = sup(A4,0) = L (| + A); A~ = sup (~A,0) = } (|4] - A);
At =U"'DtU, A=~ =U"'DU,
where Dt = diag (\],...,A}) and D~ = diag (A\],...,A;). In particular,

when ||| is the Frobenius norm given by
IAll == | S a2 = \Jtraz,
ij=1,....d

the space X equipped with this absolute norm is Euclidean with inner prod-
uct given by ((A | B)) = tr (AB). It is also a Hilbert lattice. Here, we can
check directly that the cone C' is orthogonal:

(A7, A%)y = (A7 | A%)) =tr (A= A%) =tr (U"'D"D*U) =0

Thus, Corollary 4.10 ensures that AT is the metric projection of A in C for
the Frobenius norm. Unfortunately, Theorem 4.9 or Corollary 4.10 cannot
be applied if we consider the supremum norm given by

IA|l = max |(Av | v)| = max (|A1], ..., |Ad]) = [[M]|o Where X = (A1, ..., Ag) .

However, Theorem 4.5 enables us to conclude. Indeed, the norm is nonde-
creasing on C' and the cone C' is orthogonal since

A" AN, =||A7|| max A\ =0,

(A A7) = A7) e X
where

) ={1<i<d: A =\ }-

Thus, Theorem 4.5 ensures that A" is a metric projection of A in C for the
supremum norm.

A partial extension of what precedes to the infinite dimensional case is
possible. If F is a separable Hilbert space, and X is the space of Hilbert-
Schmidt operators A on E, then there exists a sequence (\,),cp of reals
with [Ag| < [A1]... < |A\,| < ...and an Hilbertian basis (uy),cv of £, such
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that for all A € X, one has Au,, = A\yu,. So by using the Hilbert-Schmidt
norm given by

4] = (z (A | Aun>)é - (z w);,

nelN nelN
we get that the cone C is orthogonal since
(A7 ANy =3 (A un [ AT wn) = 3 (A un [ A un) =0,
nelN neN

Since the Hilbert-Schmidt norm is nondecreasing on C', Corollary 4.10 holds,
and AT is then the metric projection of A in C for the Hilbert-Schmidt norm.

5. AN APPLICATION TO VARIATIONAL INEQUALITIES

In this section we apply the characterizations of metric projections given
in Theorem 3.1 (c) to variational inequalities. Let us first recall that if X
and Y are two topological vector spaces, a multimapping M from X into Y
is said to be surjective if

VyeY, 3xzeX: yeM(z).

Moreover, the inverse image of a multimapping M is given for a subset
Z CY by

MY (Z)={zecX: ZNM (z) #0}.
Now, let us take a Banach space X, an application A from X into X*, a
linear continuous form f € X* and C' a nonempty closed convex subset of
X. Let us consider the variational inequality

Find x € C such that
(Ax — fly—2) >0, VyeC.

This variational inequality can be rewritten as a generalized equation:

Find x € C such that f — Az € N (C, x).

(V1)

The following observation is just a consequence of the definition of the duality
mapping J. If z € C is a solution of the variational inequality (VI), and if
the element Az — f of X* attains its norm, then for each u, € J~! (Az — f)
one has
f—Az e J(ug) NN (C,z).

As observed in [22], the variational inequality (V1) may also be seen in
terms of metric projections. The following proposition generalizes the result
given in [22] in which it is supposed that the space X is smooth (hence
that J is single-valued), and that the space is rotund (hence that the metric
projection is unique). Its corollary yields a characterization of solutions of
the variational inequality (V' I). It has been kindly pointed to us by Professor
Y. Al’ber, when editing the present paper, that a similar statement has been
announced in reference [2]. Let us note however that the assumption of
Corollary 5.2 below does not impose that J is everywhere single-valued.



CHARACTERIZATIONS OF METRIC PROJECTIONS 101

Proposition 5.1. Assume that f — Ax € J (u) for some x € C, and for
some u € X. Then, among the followings conditions, one has the implica-
tions (i)= (i1)& (i) (iv)= (v)<= (vi)<= (i)
(i) f — Az € N (C,z)
(i) For allr >0, x € P(C,z +ru);
(iii) For some r >0, x € P(C,x + ru);
(iv) 0 € P(T(C,z),u);
(v) (Ax — f,v) <0, Vve P(T(C,x),u);
(vi) (Az — f,v) =0, Vv e P(T(C,z),u);
Proof. 1) Let us prove (i)=(ii). Since by hypothesis, f — Az € N (C,z),
and r (f — Az) € J(ru) for all » > 0, we get by Theorem 3.1 (e) that
x € P(C,z+ru).
2) The equivalence between (ii) and (iii) is a direct consequence of Corollary
3.3
3) (iii) is equivalent to (iv). Namely 0 € P (7' (C,z),u) if and only if
dzeJO0—u): (z,v—0)>0VveT(C,x).

In turn, by the equivalence (a)<(c) of Theorem 3.1, this assertion means
that © € P(C,x 4 u); taking into account the equivalence of (ii) with (iii)
we get that (iii) is equivalent to (iv).

4) Now, let us prove that (iv) implies (v). Let v € P (T (C,z),u). As
0 €T (C,x), one has

[ull = flu = O} = flu — o]
(Az— f,0—u)+ (A — fou) < [[Az — f]| Ju— o] — Jul?,
(Az = fov) < JJull Jlu = ol = [[ul* < 0.
5) Let us assume (i) holds, so that for each v € T'(C, x) we already have

(Az — f,v) > 0. As (i) implies (v) we also have the reverse inequality for
each v € P (T (C,z),u), so that (vi) holds. =

Corollary 5.2. Given x € C such that for some u € J=1 (f — Ax), J (u) is
a singleton, the following assertions are equivalent:
(i) x € C is a solution of the variational inequality (VI);
(i) For allr >0, x € P(C,z +ru);
(i1i) For some r >0, x € P(C,z 4+ ru).
Proof. The implications (i)=-(ii)=-(iii) are consequences of Proposition 5.1
since f— Az € N (C,z) when x € C is a solution of the variational inequality
(VI). Now, if (iii) holds, Theorem 3.1 (e) yields

J((z+ru)—x)NN(C,z) #0.
Since J (ru) = rJ (u) is the singleton f—Az, we have f—Ax € N (C,z)NJ (u)

and (i) is satisfied by the reformulation of (VI) given above. m

In the following corollary we use more concrete assumptions.



102

JEAN-PAUL PENOT AND ROBERT RATSIMAHALO

Corollary 5.3. Suppose that for x given in X,

(i) Az — f € J (X).
(ii) For some u € J~! (Ax — f), the function k is Gateaux-differentiable at

u.

Then x € C is a solution of the variational inequality (VI) if, and only if,
for some r >0, x € P(C,x + ru). In particular, if X is the dual space of a
strictly convex Banach space X, if f € Xi, and if A maps X into X, the
preceding equivalence holds.
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