MAXIMAL RANKS AND INTEGER POINTS
ON A FAMILY OF ELLIPTIC CURVES II

P.G. WALSH

ABSTRACT. We extend a result of Spearman which provides a sufficient condition for elliptic curves of the form
\(y^2 = x^3 - dx \), with \(d = p, 2p \) and \(p \) prime, to have Mordell-Weil rank 3.

As in Spearman's work, the condition given here involves the existence of integer points on these curves.

1. Introduction. In two recent papers [9, 10], Spearman provided criteria for elliptic curves of the form \(y^2 = x^3 - dx \), with \(d = p, 2p \) and \(p \) prime, to have maximal rank. Specifically, in the case \(d = p \), Spearman proved that if \(p = u^4 + v^4 \) for some integers \(u, v \), then the rank of \(y^2 = x^3 - px \) is 2, while in the case \(d = 2p \), he proved that if \(2p = (u^2 + 2v^2)^4 + (u^2 - 2v^2)^4 \), for integers \(u, v \), then the rank of \(y^2 = x^3 - 2px \) is 3. In [11], it was shown that the above condition for the case \(d = p \) can be described in terms of the set of integer points lying on such curves. The condition given includes all curves \(y^2 = x^3 - px \) for which \(p = u^4 + v^4 \), but also includes a larger class of curves. We note however that although the result in [11] applies to more curves than those in [9], there is no closed form for those \(p \), such as the polynomial given by Spearman. The purpose of the present paper is to give an analogous sufficient condition for curves of the form \(y^2 = x^3 - 2px \) to have Mordell-Weil rank 3, where the condition is given in terms of rational points on these curves. This is more general than the approach taken in [11], wherein a similar condition was given, but stated in terms of integer points. We thank the anonymous referee for this suggestion. We note that, as in [11], there does not appear to be a closed form for these primes which satisfy the condition given in this paper.

As noted above, for curves of the form

\[
E_{-2p} : y^2 = x^3 - 2px,
\]

\[2010 \text{ AMS Mathematics subject classification. Primary 11G05. Keywords and phrases. Elliptic curve, prime number.}
\]
Received by the editors on May 13, 2008, and in revised form on August 5, 2008.
DOI 10.1216/RMJ-2011-41-1-311 Copyright ©2011 Rocky Mountain Mathematics Consortium

311