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Abstract The typical chaotic maps f(x) = 4x(1−x) and g(z) = z2−2 are well known.

Veselov generalized these maps. We consider a class of maps P d
A3

of those generalized

maps, view them as holomorphic endomorphisms of P3(C), and make use of methods of

complex dynamics in higher dimension developed by Bedford, Fornaess, Jonsson, and

Sibony.WedetermineJulia setsJ1, J2, J3, JΠ and the global formsof external rays.Then

we have a foliation of the Julia set J2 formed by stable disks that are composed of exter-

nal rays.

We also show some relations between those maps and catastrophe theory. The set of

the critical values of each map restricted to a real three-dimensional subspace decom-

poses into a tangent developable of an astroid in space and two real curves. They coin-

cide with a cross section of the set obtained by Poston and Stewart where binary quartic

forms are degenerate. The tangent developable encloses the Julia set J3 and joins to a

Möbius strip, which is the Julia set JΠ in the plane at infinity in P3(C). Rulings of the

Möbius strip correspond to rulings of the surface of J3 by external rays.

1. Introduction

The typical chaotic map f(x) = 4x(1 − x) is well known (see, e.g., [21]). Its

complex version is a Chebyshev map g(z) = z2 − 2. It is also a chaotic map.

Generalized Chebyshev functions and maps in several variables were studied by

several researchers (see Koornwinder [14], Lidl [15], Beerends [2], Veselov [22],

Hoffman and Withers [11], and Uchimura [19]).

A polynomial endomorphism P d
A3

(z1, z2, z3) of degree d on C
3 is defined by

the following. We consider the jth elementary symmetric function in t1, t2, t3, t4
with t4 = 1/(t1t2t3) for j = 1,2,3. Let

z1 = t1 + t2 + t3 +
1

t1t2t3
,

z2 = t1t2 + t1t3 + t2t3 +
1

t1t2
+

1

t1t3
+

1

t2t3
,(1.1)
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z3 =
1

t1
+

1

t2
+

1

t3
+ t1t2t3

(
tj ∈C \ {0}

)
.

Set

Φ1(t1, t2, t3) = (z1, z2, z3).

Then P d
A3

satisfies the following commutative diagram:

(1.2)

(t1, t2, t3) −−−−−→ (td1, t
d
2, t

d
3)

↓Φ1 ↓Φ1

(z1, z2, z3) −−−−−→ P d
A3

(z1, z2, z3)

Clearly, Φ1 is a branched covering map. We show two examples:

P 2
A3

(z1, z2, z3) = (z21 − 2z2, z
2
2 − 2z1z3 + 2, z23 − 2z2),

P 3
A3

(z1, z2, z3) = (z31 − 3z1z2 + 3z3, z
3
2 − 3z1z2z3 + 3z23 + 3z21 − 3z2,

z33 − 3z3z2 + 3z1).

These are based on the definition given by Veselov [22]. Veselov [22] defined

generalized Chebyshev maps as follows. Let G be a simple complex Lie algebra

of rank n, H be its Cartan subalgebra, H∗ be its dual space, L be a lattice of

weights in H∗ generated by the fundamental weights �1, . . . ,�n, and L be the

dual lattice in H . One defines

φG :H/L→C
n, φG = (ϕ1, . . . , ϕn), ϕk =

∑
w∈W

exp
[
2πiw(�k)

]
,

where W is the Weyl group acting on the space H∗.

To each G of rank n is associated an infinite series of integrable polynomial

mappings P d
G from Cn to Cn, d= 2,3, . . . , determined by the condition

φG(dx) = P d
G

(
φG(x)

)
.

For n = 1 there is a unique simple algebra A1. Here φA1 = 2cos(2πx) and the

P d
A1

are, within a linear substitution, Chebyshev polynomials of a single variable.

Here An is the Lie algebra of SL(n+ 1,C).

The dynamics of P d
A2

was studied in [20]. In this article, we consider maps

P d
A3

, view them as holomorphic endomorphisms of P3(C), and make use of meth-

ods of complex dynamics in higher dimension developed by Fornaess and Sibony

[9] and Bedford and Jonsson [1].

In this article we will provide a typical example of complex dynamics in

higher dimension. In this higher-dimensional dynamics, classical geometrical fig-

ures, for example, a Möbius strip and a special ruled surface (tangent devel-

opable), which is called the Holy Grail in catastrophe theory, appear with their

chaotic dynamical structures.

The main tools used in this article are Julia sets and external rays. We

present some background on Julia sets. The main references are [1], [9], and [18].

Let f : Ck → C
k be a regular polynomial endomorphism of degree d (see the
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paragraph before Proposition 2.1). Set

K(f) :=
{
z ∈C

k :
{
fn(z)

}
is bounded

}
.

We define the Green function of f as

G(z) := lim
n→∞

d−n log+
∥∥fn(z)

∥∥, z ∈C
k.

The Green current TCk := 1
2πdd

cG is a positive closed (1,1)-current. A regular

polynomial endomorphism f extends to a holomorphic endomorphism of Pk, still

denoted by f .

The Green current TCk has an extension as a positive closed current to P
k

in the following manner. Every holomorphic endomorphism f of Pk has a lift

F : Ck+1 → C
k+1. The projection π : Ck+1 \ {0} → P

k semiconjugates F to f :

π ◦ F = f ◦ π. The Green function GF of F is defined by

GF := lim
n→∞

d−n log
∥∥Fn(z)

∥∥.
The Green current T = TPk of f is defined by

π∗T =
1

2π
ddcGF .

We can define the currents T l := T ∧ · · · ∧ T (l terms). The lth Julia set Jl(f) is

the support of T l. The Green measure μf of f is defined by

μf := (T )k.

The measure μf is a probability measure that is invariant under f and maximizes

entropy.

In our case we consider four kinds of Julia sets, J1(f), J2(f), J3(f), and

J2(fΠ), where fΠ denotes the restriction of f to the hyperplane Π at infinity. We

will determine these four kinds of Julia sets in Theorems 2.7, 3.2, and 4.2.

We will determine the Julia set J3(f) and the maximal entropy measure

μf in Theorem 2.7. The Julia set J3(f) coincides with the set K(f). To obtain

Theorem 2.7 we use Briend and Duval’s theorem in complex dynamics and some

results of the theory of Lie groups.

We will determine the Julia set J2(fΠ) and the maximal entropy measure μfΠ

in Theorem 3.2. The Julia set J2(fΠ) is a Möbius strip M. On the Möbius strip

M we give a dynamical measure. The map fΠ restricted to C
2 is a polynomial

skew product map of C2. The maximal entropy measure for fΠ restricted to the

base curve which is a unit circle is dθ/2π, and that restricted to each ruling is

the invariant measure of Chebyshev maps in one variable.

Next we provide some background on external rays. External rays play an

important role in the theory of dynamics in one complex variable. Let f : P→ P

be a monic polynomial map of degree d≥ 2. Suppose that the set K =K(f) is

connected. Then the complement C \K is conformally isomorphic to the com-

plement C \ D̄ under the Böttcher map φ. The external rays for K are defined

by
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{
z : arg

(
φ(z)

)
= const

}
.

The image of an external ray under f is also another external ray.

Bedford and Jonsson [1] defined external rays for holomorphic endomor-

phisms of Pk. We will determine the global forms of external rays of our maps

f = P d
A3

. The image of each external ray under the extended map f on P
3 is

also an external ray. We will show in Theorem 4.2 that the Julia set J2(f) is a

foliated space and leaves of the space are stable disks composed of external rays.

The image of a stable disk under the map f is another stable disk.

Next we consider the dynamics of P d
A3

restricted to a real three-dimensional

subspace. The map P d
A3

:C3 →C
3 admits an invariant space

R3 :=
{
(z1, z2, z3) ∈C

3 : z1 = z̄3 and z2 is real
}
.

We consider the dynamics of P d
A3

restricted to R3. The set J3(f) =K(f) lies in

the space R3. Sometimes we may regard R3 as R3. Then J3(f) is isomorphic to

a closed domain in R
3 bounded by the ruled surface A whose base curve is an

astroid in space (see Proposition 2.4). In particular, A is a part of the tangent

developable of an astroid in space, and so, we call it an astroidalhedron. A ruled

surface is called a tangent developable if its rulings are tangent lines to its base

curve. The ruled surface A has a relationship to the root system of a Lie algebra

of type A3 and a (
√
3,
√
3,2)-tetrahedron.

The external rays included in R3 are half-lines that connect the ruled surface

A and the Möbius strip M= J2(fΠ). By this fact, we will show that rulings of

M correspond to rulings of A by external rays in Proposition 4.9.

Next we will show some relations between those maps and catastrophe theory.

The dynamics of the maps P d
A2

on C
2 was studied in [20]. The set of critical values

of P d
A2

restricted to {z1 = z̄2} is proved to be a deltoid. The deltoid coincides with

a cross section of the bifurcation set (caustics) of the elliptic umbilic catastrophe

map (D−
4 ). In [20], it was shown that the external rays and their extensions

constitute a family of lines whose envelope is the deltoid. Hence, these lines are

real “rays” of caustics.

In addition to the caustics, the deltoid has relations with binary cubic forms

f(x, y) = ax3 + bx2y+ cxy2 + dy3, a, b, c, d ∈R.

Let V be the set where the discriminant of f(x, y) vanishes. To understand the

geometry of the set V , Zeeman [23] pursued a different tack. Zeeman [23] showed

that V ∩S3 is mapped diffeomorphically to the “umbilic bracelet.” It has a deltoid

section that rotates 1/3 twist going once round the bracelet.

We return to the study of the maps P d
A3

. In this case we will show that the

set of critical values of P d
A3

restricted to R3 has relations with binary quartic

forms.

Poston and Stewart [16], [17] studied quartic forms in two variables,

f(x, y) = ax4 + 4bx3y+ 6cx2y2 + 4dxy3 + ey4, a, b, c, d, e ∈R.
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Let 
 be the discriminant of f(x, y), and let D ⊂ R5 be the algebraic set given

by 
 = 0. The set W = D ∩ S5 is decomposed into W1 and W∞. Then W1 is

diffeomorphic to U . They considered a cross section Q of U . The shape for Q is

called the Holy Grail in catastrophe theory. We will show in Proposition 5.8 that

the set Q coincides with the set of critical values of P d
A3

restricted to R3 by a

coordinate transformation. We will show that the set decomposes into a tangent

developable T of an astroid in space and two real curves in Proposition 5.5. The

astroidalhedron A is a part of T .

In Proposition 5.6, we will show that the rims of T join simply to the bound-

ary of M in the hyperplane Π at infinity in P
3(C). Poston and Stewart [16], [17]

dealt with the same situation by analyzing W∞ in R
5. It is complicated. But we

consider the situation in P
3(C), and so, our description is simpler. We will show

that any ruling of T , that is, any tangent line to the astroid, consists of two

external rays and their extension and that any external ray which is not a ruling

connects the astroidalhedron A and Möbius strip M.

In this article, we will show not only static aspects of catastrophe theory but

also dynamical aspects of catastrophe theory. We know that the sets of critical

values of P d
A2

and P d
A3

restricted to the real subspaces have relations with binary

cubic forms and quartic forms, respectively. These relations will be generalized

for general maps P d
An

.

2. The sets K(P d
A3

) and J3(P
d
A3

)

In this section we determine the set K(P d
A3

) of bounded orbits and the third Julia

set J3(P
d
A3

). We will show that the surface of K(P d
A3

) is a part of the tangent

developable of an astroid in space.

We consider the map P d
A3

defined by (1.1) and (1.2). Let

P d
A3

=
(
g
(d)
1 (z1, z2, z3), g

(d)
2 (z1, z2, z3), g

(d)
3 (z1, z2, z3)

)
.

Then, from [15, pp. 183–184] we know that the set of polynomials {g(d)j (z1, z2, z3)}
satisfies the following recurrence formulas:

g
(k)
1 = z1g

(k−1)
1 − z2g

(k−2)
1 + z3g

(k−3)
1 − g

(k−4)
1 ,

g
(j)
1 =

j∑
r=1

(−1)r−1zrg
(j−r)
1 + (−1)j(4− j)zj (j = 0,1,2,3), z0 = 1,

(2.1)

g
(k)
3 (z1, z2, z3) = g

(k)
1 (z3, z2, z1),(2.2)

g
(k+6)
2 − z2g

(k+5)
2 + (z1z3 − 1)g

(k+4)
2 − (z21 − 2z2 + z23)g

(k+3)
2

+ (z1z3 − 1)g
(k+2)
2 − z2g

(k+1)
2 + g

(k)
2 = 0.

(2.3)

Note that the formula in [15, p. 184] corresponding to (2.3) is incorrect. The

correct coefficient of g
(k+3)
2 is equal to −(z21 − 2z2 + z23). And the correct initial
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values are given by

g
(−2)
2 = z22 − 2z1z2 + 2, g

(−1)
2 = z2, g

(0)
2 = 6, g

(1)
2 = z2,

g
(2)
2 = g

(−2)
2 , g

(3)
2 = z32 − 3z1z2z3 + 3z23 + 3z21 − 3z2.

A polynomial endomorphism f of degree d is called regular if the homoge-

neous part fh of degree d satisfies f−1
h (0) = {0}.

PROPOSITION 2.1

We have that P d
A3

(z1, z2, z3) is a regular polynomial endomorphism.

Proof

Let f := P d
A3

(z1, z2, z3). From (2.1), (2.2), and (2.3), we have fh = (zd1 , h
(d)
2 , zd3),

where h
(d)
2 (z1, z2, z3) is a polynomial satisfying the recurrence formulas

h
(d+2)
2 = z2h

(d+1)
2 − z1z3h

(d)
2 ,

h
(1)
2 = z2, h

(2)
2 = z22 − 2z1z3.

(2.4)

Then we deduce f−1
h (0) = {0}. �

Next we study the set

K(P d
A3

) =
{
z ∈C

3 : the orbit
{
(P d

A3
)n(z)

}
is bounded

}
.

Then K(P d
A3

) is described in the following form.

PROPOSITION 2.2 ([22])

We have that K(P d
A3

) = {Φ1(t1, t2, t3) : |t1|= |t2|= |t3|= 1}.

The set K(P d
A3

(z1, z2, z3)) is given by (see [8])
⎧⎨
⎩
z1 = eiα + eiβ + eiγ + ei(−α−β−γ),

z2 = ei(α+β) + ei(α+γ) + ei(γ+β) + e−i(β+γ) + e−i(γ+α) + e−i(α+β),

z3 = e−iα + e−iβ + e−iγ + ei(α+β+γ),

−α− β − γ ≤ α≤ β ≤ γ ≤ 2π− α− β − γ.

(2.5)

We call R′ := {(α,β, γ) :−α− β − γ ≤ α≤ β ≤ γ ≤ 2π − α− β − γ} the natural

domain (see Figure 1).

We denote the real three-dimensional subspace {(z1, z2, z̄1) : z1 ∈ C, z2 ∈ R}
by R3. Then K(P d

A3
)⊂R3, and R3 is invariant under the maps P d

A3
. Sometimes

we regard R3 as R3.

To facilitate computations we transform the Euclidean coordinates (α,β, γ)

into new coordinates (s1, s2, s3) concerning the root system of type A3. A base

{αj} for the root system and fundamental weights �j of type A3 are given by

α1 =
(
− 1√

2
,−1,

1√
2

)
, α2 = (

√
2,0,0), α3 =

(
− 1√

2
,1,

1√
2

)
,
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Figure 1. The natural domain R′.

�1 =
(
0,−1

2
,
1√
2

)
, �2 =

( 1√
2
,0,

1√
2

)
, �3 =

(
0,

1

2
,
1√
2

)
.

One of the alcoves of A3 is the closed region R bounded by the polyhedron√
2π (O,�1,�2,�3). We call the region R the fundamental region. The region

R′ is transformed to R by a transformation T . The matrix associated with the

transformation T from the (α,β, γ) space to the (s1, s2, s3) space is given by

(2.6)

⎛
⎝s1
s2
s3

⎞
⎠=

⎛
⎜⎝

−1
2

1
2 0

− 1√
2

− 1√
2

0
1
2

1
2 1

⎞
⎟⎠

⎛
⎝α

β

γ

⎞
⎠ .

The region R is a closed region bounded by a (
√
3,
√
3,2)-tetrahedron. That

is, it has four faces which are congruent with each other and the ratios of whose

edge lengths are equal to
√
3 :

√
3 : 2. Coxeter [6] proved that there exist only

seven types of reflective space-fillers. It is one of them. A convex polyhedron P

is called a reflective space-filler if its congruent copies tile the 3-space in such a

way that

(1) the tilling is face to face,

(2) if the intersection P1 ∩ P2 of two of those copies has a face in common,

then P1 is the mirror image of P2 in the common face, and

(3) each of the dihedral angles of P is π/k for integer k ≥ 2.

We consider the tiling of the (s1, s2, s3) space by (
√
3,
√
3,2)-tetrahedrons.

The region R (see Figure 2) is a closed region bounded by one of these tetrahe-

drons with vertices

O = (0,0,0), A1 = (0,−π/
√
2, π), A2 = (π,0, π), A3 = (0, π/

√
2, π).

Let G be the group of isometrics which is generated by the reflections in the faces

of these tetrahedrons.

The reflection in the hyperplane through the origin orthogonal to αi is given

by

wαi(x) = x− 2(x,αi)

(αi, αi)
αi (i= 1,2,3), x ∈R

3.
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Figure 2. The fundamental region R.

Set Ji := wαi . Then Ji is the reflection in the face 
OAjAk of the tetrahedron

∂R with {i, j, k} = {1,2,3}. Set J0(s1, s2, s3) = (s1, s2,2π − s3). Then J0 is the

reflection in the face 
A1A2A3. It is known, for example, from [3] that the reflec-

tions J0, J1, J2, and J3 generate the group G. Set X = {eiα, eiβ , eiγ , e−i(α+β+γ)}.
Then by the direct computations using (2.6) we can prove that each Jk acts on

the set X as a permutation, for k = 0,1,2,3. For any element (s1, s2, s3) in the

space, there exists an element J in the group G such that J(s1, s2, s3) ∈R.

PROPOSITION 2.3

For k = 0,1,2,3, let the images of (s1, s2, s3) and Jk(s1, s2, s3) under the inverse

of the transformation T be (α,β, γ) and (α′, β′, γ′). Then we have

Φ1(e
iα, eiβ , eiγ) = Φ1(e

iα′
, eiβ

′
, eiγ

′
).

Proof

The terms in zi (i= 1,2,3) in (2.5) are invariant under any Jk. �

We study the surface of K(P d
A3

). We define a coordinate system (p1, p2, q) of R3

by

p1(1,0,0,0,1,0) + p2(0,1,0,0,0,−1) + q(0,0,1,0,0,0).

We consider the map Φ1 restricted to R′ onto K(f)⊂R3. We denote it by ϕ1.

The mapping ϕ1 :R
′ →K(f) is given by

p1 =Re(eiα + eiβ + eiγ + ei(−α−β−γ)),

p2 = Im(eiα + eiβ + eiγ + ei(−α−β−γ)),

q = ei(α+β) + ei(α+γ) + ei(γ+β) + e−i(β+γ) + e−i(γ+α) + e−i(α+β).

(2.7)

So ϕ1 is a diffeomorphism from int(R′) to int(K(f)), and ∂R′ is mapped onto

∂K(f) injectively.

PROPOSITION 2.4

The surface of K(P d
A3

) is a part of the tangent developable of an astroid in space.
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The surface is given by

χ(u, v) = (4cos3 u,4 sin3 u,6cos2u) + v(cosu,− sinu,2),

−2− 2cos2u≤ v ≤ 2− 2cos2u.

Proof

To get the surface, we substitute an inequality sign for an equality sign in the

definition of R′. That is, we set −α−β−γ = α. By (2.7) and the above equality,

we have

(p1, p2, q) = 2(cosα, sinα, cos2α) + 2cos(α+ β)(cosα,− sinα,2)

(0≤ α< 2π,0≤ α+ β < π).
(2.8)

From the properties of reflections of R, we see that (2.8) represents the surface

of K(P d
A3

). It is a ruled surface. Using a striction curve (see [10, Lemma 17.7]),

we reparameterize the ruled surface. Set

χ̃(u, v) = 2(cosu, sinu, cos2u) + 2v(cosu,− sinu,2).

Then from [10, Lemma 17.7], we have a reparameterization

χ(u, v) = (4cos3 u,4 sin3 u,6cos2u) + v(cosu,− sinu,2)

(−2− 2cos2u≤ v ≤ 2− 2cos2u).

The base curve {(4 cos3 u,4 sin3 u,6cos2u) : 0 ≤ u < 2π} is an astroid in space,

and χ(u, v) is a part of the tangent developable of the astroid. �

The astroid consists of edges of the surface. We call the ruled surface an astroidal-

hedron and denote it by A (see Figure 3). By [13], we see that those edges except

for four vertices of A are cuspidal edges (see Figure 4).

Now we begin with the study of Julia sets. In Section 1 we define the lth Julia

set Jl. In our situation we have three kinds of Julia sets J1, J2, and J3. Clearly,

J1 ⊃ J2 ⊃ J3. We begin with the study of J3. We will show that J3 =K(P d
A3

).

To show this we use Briend and Duval [4, Theorem 2]. It reads as follows. Let

Pn denote the set of repelling periodic points of period n. The number of the

elements in Pn is d3n. Let f = P d
A3

. Set μ= (Tf )
3. Then the sequence of measures

μn := d−3n
∑

a∈Pn
δa converges weakly to μ.

From the above diagram (1.2), we have the following lemma.

LEMMA 2.5

Any periodic point of f in int(K(f)) is repelling.

Next we consider the distribution of repelling periodic points. Using a conjugacy

from K(f) to R, we study the distribution of repelling periodic points. We will

show that the repelling periodic points are dense and equidistributed in R.
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Figure 3. An astroidalhedron.

Figure 4. An astroid in space.

Combining the inverse of ϕ1 with the coordinate transformation T , we get

a continuous map ϕ from K(f) to R such that ϕ restricted to int(K(f)) is a

diffeomorphism. We set ρ := ϕ ◦ f ◦ϕ−1. Then ρ(s1, s2, s3) = d(s1, s2, s3).

To study the distribution of periodic points of ρ, we use an argument similar

to that used in [20, Proposition 2.2]. We first consider the case d= 2. The image

of the fundamental region R under ρ and its division into eight (
√
3,
√
3,2)-

tetrahedrons are depicted in Figure 5.
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Figure 5. Eight tetrahedrons.

Figure 6. A triangular prism.

For any d≥ 3, we combine the three adjacent (
√
3,
√
3,2)-tetrahedrons which

yield a triangular prism. A small ball denotes the origin (see Figure 6).

The triangular prism plays the same role as the equilateral triangle plays

in [20, Proposition 2.2]. Then the image of the fundamental region R under ρn

consists of d3n regions, each of which is congruent to R. Each region is mapped

to R by some sequence of reflections in G.
Conversely, we consider the subdivision of R. We can divide the fundamental

region R into d3n regions, each Dn of which is congruent to a region bounded by

a smaller (
√
3,
√
3,2)-tetrahedron. Combining ρn and the sequence of reflections,

we have a continuous map from Dn onto R. Then by the fixed point theorem,

we can prove the following lemma.

LEMMA 2.6

Each region Dn has a periodic point of period n of ρ.

All the repelling periodic points are dense and equidistributed in R. Hence, we

can prove the following theorem.
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THEOREM 2.7

(1) We have J3(P
d
A3

) =K(P d
A3

).

(2) The maximal entropy measure μ of P d
A3

(z1, z2, z3) is given by

μ=
36

π3

1√
d3

dp1dp2dq,

where

d3 = 256− 27(z41 + z̄41) + (z21 + z̄21)(144z2 − 4z32 + 18z1z̄1z2)

− 80z1z̄1z
2
2 + z21 z̄

2
1z

2
2 − 192z1z̄1 − 4z31 z̄

3
1 − 6z21 z̄

2
1 − 128z22 + 16z42 ,

with z1 = p1 + ip2 and z2 = q.

(3) The Lyapunov exponents of P d
A3

with respect to the measure μ are given

by λ1 = λ2 = λ3 = logd.

Proof

(1) From Briend and Duval’s theorem and Lemmas 2.5 and 2.6, we have

J3(P
d
A3

) =K(P d
A3

).

(2) By pulling back the Lebesgue measure on R we will obtain the invariant

measure μ. Set μ̃n := −ϕ∗μn. From Lemma 2.6 we deduce that the sequence

{μ̃n} converges weakly to μ̃= 3
√
2

π3 ds1 ∧ ds2 ∧ ds3. Hence,

μ=−3
√
2

π3
ϕ∗ds1 ∧ ds2 ∧ ds3.

From (2.6), we have

T ∗ds1 ∧ ds2 ∧ ds3 =
1√
2
dα∧ dβ ∧ dγ.

Using [8, Lemma 3], we can compute the Jacobian determinant

det
∂(p1, p2, q)

∂(α,β, γ)
.

Then (
det

∂(p1, p2, q)

∂(α,β, γ)

)2

=
d3
4
,

where

d3 = 256− 27(z41 + z̄41) + (z21 + z̄21)(144z2 − 4z32 + 18z1z̄1z2)

− 80z1z̄1z
2
2 + z21 z̄

2
1z

2
2 − 192z1z̄1 − 4z31 z̄

3
1 − 6z21 z̄

2
1 − 128z22 + 16z42 ,

with z1 = p1+ip2 and z2 = q. (Note that the formula from [8, p. 98] corresponding

to the above formula for d3 is incorrect.) Hence,

(ϕ−1
1 )∗dα∧ dβ ∧ dγ =

1− 2√
d3

dp1 ∧ dp2 ∧ dq.

Since ϕ∗ = (ϕ−1
1 )∗T ∗, the assertion (2) follows.

(3) This assertion follows from the fact that ρ(s1, s2, s3) = d(s1, s2, s3). �
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3. Julia set JΠ and stable sets

In this section we continue to study Julia sets. Set f := P d
A3

(z1, z2, z3). From

Proposition 2.1 we know that f is a regular polynomial endomorphism. So f

extends continuously and holomorphically to P
3, still denoted by f . We will

study the Julia sets J2(f), J1(f), and J2(fΠ), where fΠ denotes the restriction

of f to the hyperplane Π at infinity. Note that Π is completely invariant under f .

The Böttcher coordinate is useful in holomorphic dynamics in one complex

variable. We try to construct analogous maps to the Böttcher coordinate.

Let fh denote the homogeneous part of degree d of f(z1, z2, z3). Set

Φ2(x, y, z) =
(
x2, x

(
y+

1

y

)
/z,1/z2

)
.

PROPOSITION 3.1

We have that f and fh satisfy the following commutative diagram:

(3.1)

(z1, z2, z3)
f−→ (z

(d)
1 , z

(d)
2 , z

(d)
3 )

↑Φ1 ↑Φ1

(t1, t2, t3) −→ (td1, t
d
2, t

d
3)

↑ ↑
(
√
t1,

√
t2,

√
t3) −→ (

√
t1

d
,
√
t2

d
,
√
t3

d
)

↓Φ2 ↓Φ2

(t1,
√
t1√
t3
(
√
t2 +

1√
t2
), 1

t3
)

fh−→ (td1, (
√
t1√
t3
)d(

√
t2

d
+ 1√

t2
d ),

1
td3
)

where tj ∈C \ {0},
√
t1,

√
t2,

√
t3 are arbitrary branches, and

z
(d)
1 = td1 + td2 + td3 +

1

td1t
d
2t

d
3

,

z
(d)
2 = td1t

d
2 + td1t

d
3 + td2t

d
3 +

1

td1t
d
2

+
1

td1t
d
3

+
1

td2t
d
3

,

z
(d)
3 =

1

td1
+

1

td2
+

1

td3
+ td1t

d
2t

d
3.

(3.2)

Proof

The upper half of the commutative diagram is shown in (1.2). We prove the

lower half of the diagram by induction on d. If d= 2 or 3, we can directly prove

that the diagram is commutative. The function fh is considered in the proof of

Proposition 2.1:

fh(x, y, z) =
(
xd, h

(d)
2 (x, y, z), zd

)
.

Set

Φ2(
√
t1,

√
t2,

√
t3) = (x, y, z).

Then

h
(d+2)
2 ◦Φ2 = yh

(d+1)
2 ◦Φ2 − xzh

(d)
2 ◦Φ2.

Hence, the diagram is commutative for any d. �



210 Keisuke Uchimura

We use the definitions and notation in [1]. Let Π := P3−C3, the plane at infinity.

It is isomorphic to P
2. Clearly, Π is completely invariant. Let fΠ denote the

restriction of f to Π. We may define the current TΠ := T |Π as the slice current.

Set

μΠ := T 2
Π and J2(fΠ) := supp(μΠ).

Bedford and Jonsson [1] used the symbol JΠ for J2(fΠ). We have the following

statements for JΠ and μΠ.

THEOREM 3.2

(1) The Julia set J2(fΠ) is a Möbius strip M,

M=
{
(eθi, xe

θ
2 i) : 0≤ θ < 2π,−2≤ x≤ 2

}
.

(2) The maximal entropy measure μ= μΠ is given by

σ∗(μ) =
dθ

2π
on {eiθ : 0≤ θ < 2π} in the ξ-plane,

μ
(
· | σ−1(ξ)

)
=

1

π

dx√
4− x2

on {xe θ
2 i :−2≤ x≤ 2}.

Here fΠ(z1 : z2 : z3) = fΠ(ξ : η : 1), and σ(ξ, η) = ξ.

(3) The Lyapunov exponents of fΠ with respect to μ are given by λ1 = λ2 =

logd.

To prove this theorem we use Jonsson’s results (see [12]). Jonsson [12] studied

polynomial skew product maps on C
2. A polynomial skew product of C2 of degree

d≥ 2 is a map of the form f(z,w) = (p(z), q(z,w)), where p and q are polynomials

of degree d. Let Gp(z) be the Green function of p, and let G(z,w) be the Green

function of f on C2. Set

Kp := {Gp = 0} and Jp := ∂Kp.

Define Gz(w) :=G(z,w)−Gp(z). Let

Kz := {Gz = 0} and Jz := ∂Kz.

Proof of Theorem 3.2

(1) Let π be the projection from C
3 − {0} to Π. Then π ◦ fh = fΠ ◦ π. Since

fh(z,w, v) = (zd, h
(d)
2 (z,w, v), vd), it follows that fΠ(z :w : v) = (zd : h

(d)
2 (z,w, v) :

vd).

Case 1: v = 0. The line {v = 0} at infinity in Π is an attracting set of fΠ(z :w :

v). Hence, there is a neighborhood of {v = 0} which does not have any repelling

periodic points of fΠ. Therefore,

{v = 0} ∩ J2(fΠ) = ∅.
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Case 2: v �= 0. Then fΠ(z : w : 1) = (zd : h
(d)
2 (z,w,1) : 1) and so we consider

a polynomial skew product on C
2, still denoted by fΠ,

fΠ(z,w) =
(
zd, h

(d)
2 (z,w,1)

)
.

Set z = t1 and w =
√
t1(

√
t2 +

1√
t2
). Then from (3.1) we see that

(3.3) fΠ

(
t1,

√
t1

(√
t2 +

1√
t2

))
=
(
td1,

√
t1

d
(√

t2
d
+

1
√
t2

d

))
.

We use Jonsson’s results. In our case p(z) = zd and so Jp = {|z|= 1}. Hence, we
may assume that z = t1 �= 0. To use [12, Corollary 4.4], we consider Ka for any

a= eiθ ∈ Jp. Let t1 = eiθ. Since Gp(a) = 0, we have Ga(w) =G(a,w), where

G(a,w) = lim
n→∞

d−n log+
∣∣fn

Π(a,w)
∣∣.

From (3.3) and the definition of Ka, we see that w ∈ Ka if and only if w =

eiθ/2(eiφ + e−iφ) with 0≤ φ≤ 2π. Hence,

Ka = {2cosφe iθ
2 : 0≤ φ≤ 2π}.

Therefore,

Ja = ∂Ka =Ka.

By [12, Corollary 4.4], we conclude that

J2(fΠ) =
⋃

a∈Jp

{a} × Ja =
{
(eiθ,2cosφeiθ/2) : 0≤ θ ≤ 2π,0≤ φ≤ π

}
.

(2) To prove this assertion, we use [12, Theorem 4.2]. The action of μ on a

test function ϕ is given by∫
ϕμ=

∫ (∫
ϕ(z,w)μz(w)

)
μp(z),

where

μp :=
1

2π
ddcGp and μz :=

1

2π
ddcGz.

Since p(z) = zd, it follows that μp =
1
2πdθ and supp(μp) is the unit circle S1. We

will compute

Gz(w) :=G(z,w)−Gp(z) and μz for z ∈ S1.

Let a= eiθ.

As before, we set z = t1 = a and w =
√
t1(

√
t2 +

1√
t2
). From (3.3), we have

∣∣fn
Π(a,w)

∣∣2 = |adn |2 +
∣∣∣(√a)d

n
(√

t2
dn

+
1

√
t2

dn

)∣∣∣2

= 1+
∣∣∣√t2

dn

+
1

√
t2

dn

∣∣∣2.
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Hence,

G(a,w) = lim
n→∞

1

2dn
log

(
1 +

∣∣∣√t2
dn

+
1

√
t2

dn

∣∣∣2
)

= lim
n→∞

1

2dn
log+

∣∣∣√t2
dn

+
1

√
t2

dn

∣∣∣2

= lim
n→∞

1

dn
log+

∣∣∣√t2
dn

+
1

√
t2

dn

∣∣∣

= lim
n→∞

1

dn
log+

∣∣Tn
d (u)

∣∣
=GT (u).

Here Td(u) is the Chebyshev polynomial of degree d of a single variable u =

(
√
t2 +

1√
t2
) and GT (u) is the Green function of Td(u).

Since w = e
iθ
2 u and GT (u) =G(a,w) =Ga(w), we have

∂2

∂u∂ū
GT (u) = e−

iθ
2 · e iθ

2
∂2

∂w∂w̄
G(eiθ,w) =

∂2

∂w∂w̄
Ga(w).

It is known from [21] that the maximal entropy measure (1/2π)ddcGT (u) of

Td(u) is equal to 1
π

du1√
4−u1

supported on the segment {u1 : −2 ≤ u1 ≤ 2}, where
u1 =Re(u). Hence, the current μa is given by

1

π

dx√
4− x2

on {xe θ
2 i :−2≤ x≤ 2}.

(3) We have proved that Jp is connected and each Ja is connected for all

a ∈ Jp. Hence, from [12, Theorem 6.5] we have λ1 = λ2 = logd. �

We continue to study Julia sets. We consider orbits of f and classify all the

points of C3 into four categories. We begin by finding invariant sets of f in P
3.

We already have two invariant sets K(f) and J2(fΠ). Besides these sets, there

are two circles:

S1 :=
{
(1 : eiθ : 0 : 0) : 0≤ θ < 2π

}
, S2 :=

{
(0 : eiθ : 1 : 0) : 0≤ θ < 2π

}
,

and three attracting fixed points:

P1 = (1 : 0 : 0 : 0), P2 = (0 : 1 : 0 : 0), P3 = (0 : 0 : 1 : 0).

We define the stable set of an invariant set X by

W s(X,f) =
{
x ∈ P

3 : d(fnx,X)→ 0 as n→∞
}
.

Then we have the following proposition.

PROPOSITION 3.3

Let a, b, c, d be a permutation of the set {|t1|, |t2|, |t3|, |t4|}, where t4 =
1

t1t2t3
.

(1) If a= b= c= d= 1, then Φ1(t1, t2, t3) ∈K(f).

(2) If a > b= c= 1> d= 1
a , then Φ1(t1, t2, t3) ∈W s(J2(fΠ), f).
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(3) If a > b = 1 > c ≥ d or a ≥ b > c = 1 > d, then Φ1(t1, t2, t3) ∈ W s(S1 ∪
S2, f).

(4) If (a−1)(b−1)(c−1)(d−1) �= 0, then Φ1(t1, t2, t3) ∈W s(P1∪P2∪P3, f).

Proof

(1) The assertion (1) is already shown in Proposition 2.2.

(2) Let rj = |tj |, j = 1,2,3,4. We assume that

r1 = r, r3 =
1

r
, r2 = r4 = 1, r > 1.

Then

z1 = reiα + eiβ +
eiγ

r
+ ei(−α−β−γ),

z2 = rei(α+β) + ei(α+γ) + rei(−γ−β) +
1

r
ei(β+γ) + ei(−α−γ) +

1

r
e−i(α+β),

z3 =
1

r
e−iα + e−iβ + re−iγ + ei(α+β+γ).

The dominant terms of z1, z2, z3 are re
iα, rei(α+β)+rei(−β−γ), re−iγ , respectively.

Then for large n,

fn(z1 : z2 : z3 : 1)�
(
exp(iαdn) : exp

(
i(α+ β)dn

)

+ exp
(
−i(β + γ)dn

)
: exp(−iγdn) :

1

rdn

)

=
(
exp

(
i(α+ γ)dn

)
: exp

(
i(α+ γ)

dn

2

)

· 2cos
((α+ γ

2
+ β

)
dn

)
: 1 : exp(iγdn)/rd

n
)
.

Hence,

(z1 : z2 : z3 : 1) ∈W s
({

(eiσ : 2 cos τe
iσ
2 : 1 : 0) : 0≤ σ < 2π,0≤ τ < π

}
, f

)
=W s

(
J2(fΠ), f

)
.

Then assertion (2) follows.

(3) We assume that r1 ≥ r2 ≥ r3. If a > b = 1 > c ≥ d, then there are four

cases:

(i) r4 > r1 = 1> r2 ≥ r3, (ii) r1 > r4 = 1> r2 ≥ r3,

(iii) r1 > r2 = 1> r4 ≥ r3, (iv) r1 > r2 = 1> r3 ≥ r4.

Let

M(z1) := max{r1, r2, r3, r4},

M(z2) := max{r1r2, r1r3, r1r4, r2r3, r2r4, r3r4},

M(z3) := max
{ 1

r1
,
1

r2
,
1

r3
,
1

r4

}
.

Let dom(zj) be the set of the maximum elements that are equal to M(zj).
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Case (i). Then dom(z1) = {r4},dom(z2) = {r1r4},M(z3) = 1
r3
. Hence,

M(z1) =M(z2)>M(z3).

For the other cases, we can show that dom(z1) and dom(z2) are singletons

and that M(z1) =M(z2)>M(z3). Hence, if we set r :=M(z1) =M(z2), then

fn(z1 : z2 : z3 : 1)�
(
exp(iσdn) : exp(iτdn) : εn :

1

rdn

)
, with εn → 0 (n→∞).

Hence,

(z1 : z2 : z3 : 1) ∈W s
({

(1 : eiθ : 0 : 0) : 0≤ θ < 2π
}
, f

)
.

Similarly, we can prove that if a≥ b > c= 1> d, then

(z1 : z2 : z3 : 1) ∈W s
({

(0 : eiθ : 1 : 0) : 0≤ θ < 2π
}
, f

)
.

Then assertion (3) follows.

(4) If (a−1)(b−1)(c−1)(d−1) �= 0, then (see (3) on p. 2.13) there are three

cases:

(i) a > 1> b≥ c≥ d, (ii) a≥ b > 1> c≥ d, (iii) a≥ b≥ c > 1> d.

Case (i). Then we see thatM(z1)>M(z2),M(z3) and dom(z1) is a singleton.

Hence,

(z1 : z2 : z3 : 1) ∈W s
(
(1 : 0 : 0 : 0), f

)
.

Case (ii). Then we see that M(z2)>M(z1),M(z3) and dom(z2) is a single-

ton. Hence,

(z1 : z2 : z3 : 1) ∈W s
(
(0 : 1 : 0 : 0), f

)
.

Case (iii). Then we see that M(z3)>M(z1),M(z2) and dom(z3) is a single-

ton. Hence,

(z1 : z2 : z3 : 1) ∈W s
(
(0 : 0 : 1 : 0), f

)
. �

4. Julia sets J1, J2 and external rays

External rays for holomorphic endomorphisms of Pk were introduced by Bedford

and Jonsson [1]. We review some results from [1]. Global stable manifolds at each

point of a in JΠ are defined by

W s(a) =
{
x ∈ P

k : d(f jx, f ja)→ 0 as j →∞
}
.

Note that W s(a) contains all the local stable manifolds W s
loc(b) for b ∈ JΠ with

fn
Πb= fn

Πa, n≥ 0. Divide W s(a) into stable disks Wa. Let Ea denote the set of all

gradient lines in Wa, and let the set E of external rays be the union of all Ea’s.
Note that f maps gradient lines to gradient lines.

In this article, using the Böttcher coordinate we construct global external

rays. We consider Φ1(re
iα, eiβ , 1r e

iγ),

z1 = reiα + eiβ +
eiγ

r
+ ei(−α−β−γ),
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z2 = rei(α+β) + ei(α+γ) + rei(−γ−β)

+
1

r
ei(β+γ) + ei(−α−γ) +

1

r
e−i(α+β),

(4.1)

z3 =
1

r
e−iα + e−iβ + re−iγ + ei(α+β+γ).

Let R(α,β, γ; r) denote this point Φ1(re
iα, eiβ , 1r e

iγ) in P3. Then using an argu-

ment similar to that from the proof of Proposition 3.3(2), we can prove that

R(α,β, γ;∞) =
(
ei(α+γ) :

(
2cos

(α+ γ

2
+ β

))
ei

α+γ
2 : 1 : 0

)
∈ JΠ,

where

R(α,β, γ;∞) := lim
r→∞

R(α,β, γ; r).

Clearly, R(α,β, γ; 1) ∈K(f) and R(α,β, γ; r) =R(α,−α− β − γ, γ; r).

Define an external ray by R(α,β, γ) := {R(α,β, γ; r) : r > 1}. (External rays
of fh are given by {Φ2(re

iα, eiβ , 1r e
iγ) : r > 1}.) Clearly,

f
(
R(α,β, γ; r)

)
=R(dα,dβ, dγ; rd).

Then

f
(
R(α,β, γ)

)
=R(dα,dβ, dγ),

and

if r > 1, lim
n→∞

fn
(
R(α,β, γ; r)

)
∈ JΠ.

We set

D(α+ γ,β) :=
⋃

0≤θ<2π

R(α− θ,β, γ + θ).

By the above equality, we have f(D(α+γ,β)) =D(d(α+γ), dβ). The next lemma

shows that D(α+ γ,β) is a stable disk passing through R(α,β, γ;∞).

LEMMA 4.1

We have that D(α+ γ,β)⊂W s(R(α,β, γ;∞)).

Proof

Let (z1, z2, z3) be any point of R(α− θ,β, γ + θ). The dominant terms of z1, z2,

and z3 are rei(α−θ), rei(α+β−θ) + rei(−β−γ−θ), and re−i(γ+θ), respectively. As in

the proof of Proposition 3.3(2), we can prove that

fn(z1 : z2 : z3 : 1)�
(
exp

(
i(α+ γ)dn

)
: exp

(
i(α+ γ)

dn

2

)

· 2cos
((α+ γ

2
+ β

)
dn

)
: 1 : exp

(
i(γ + θ)dn

)
/rd

n
)
.

On the other hand, by Proposition 3.1, we have
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fn
Π

(
R(α,β, γ;∞)

)

= fn
Π

(
ei(α+γ) : e

α+γ
2 i(e(

α+γ
2 +β)i + e−(α+γ

2 +β)i) : 1 : 0
)

=
(
exp

(
i(α+ γ)dn

)
: exp

(
i(α+ γ)

dn

2

)
· 2cos

((α+ γ

2
+ β

)
dn

)
: 1 : 0

)
.

Then the lemma follows. �

From Proposition 3.3, we deduce that the set {D(α+ γ,β)} forms a foliation of

W s(JΠ, f).

Now we will determine the Julia sets J2(f) and J1(f). Using a result from

[1] we will determine J2(f). Corollary 8.5 of [1] reads as follows. For almost every

a ∈ JΠ, we have W s(a) = supp(T k−1 �{G > 0}). Here G is the Green function

of f .

Using this and Proposition 3.3, we have the following. Let F (f) denote the

Fatou set of f .

THEOREM 4.2

We have that P3 decomposes into the following sets:

(1) J3(f) =K(f),

(2) J2(f) \ J3(f) =W s(J2(fΠ), f) =
⋃
D(α+ β,β),

(3) J1(f) \ J2(f) =W s(S1 ∪ S2, f),

(4) F (f) =W s(P1 ∪ P2 ∪ P3, f).

Proof

(1) This assertion is shown in Theorem 2.7(1).

(2) To prove this, we need [1, Corollary 8.5]. We know from Theorem 3.2

that

J2(fΠ) =M=
{
(eiθ, xe

iθ
2 ) : 0≤ θ < 2π,−2≤ x≤ 2

}
.

And the maximal entropy measure μΠ is given there. By [1, Corollary 8.5], we

see that there is an element a in M such that

(4.2) W s(a) = supp
(
T 2 �{G> 0}

)
.

Set a= (eiθ, xe
θ
2 i).

We claim that

(4.3) J2(fΠ) =
⋃
n

f−n
Π

(
fn
Π(a)

)
.

To see this, we note that, in the proof of Theorem 3.2,

fΠ(z,w) =
(
zd, h

(d)
2 (z,w,1)

)
.

Since eiθ ∈ Jp with p(z) = zd,
⋃

n p
−n(eiθ) is dense in Jp = S1. Also the set⋃

n p
−n(pn(eiθ)) is dense in Jp. From Theorem 3.2(2) we know that, on the fibers
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{σ−1(z) : z ∈
⋃

n p
−n(pn(eiθ))}, h(d)

2 acts as the Chebyshev map Td. Then (4.3)

follows.

For any c ∈
⋃

n f
−n
Π (fn

Π(a)), there is a sequence {bm} with

bm ∈
⋃
n

f−n
Π

(
fn
Π(a)

)

such that bm → c as m→∞. Since bm ∈W s(a), it follows that c ∈W s(a). Set

c = R(α,β, γ;∞) and bm = R(αm, βm, γm;∞). Then we have (αm + γm, βm)→
(α+ γ,β).

We claim that

(4.4) D(α+ γ,β)⊂W s(a).

Indeed, we have shown that the center R(α,β, γ;∞) of the disk D(α+ γ,β) is in

W s(a). For any point R(α−θ,β, γ+θ; r) in D(α+γ,β), we can select a sequence

{R(α− θ,βm, αm + γm − α+ θ; r)} such that

R(α− θ,βm, αm + γm − α+ θ; r)→R(α− θ,β, γ + θ; r) as m→∞.

Hence, from Lemma 4.1, we have

R(α− θ,βm, αm + γm − α+ θ; r) ∈D(αm + γm, βm)⊂W s
(
R(αm, βm, γm;∞)

)
.

Since

W s
(
R(αm, βm, γm;∞)

)
=W s(bm) =W s(a),

it follows that R(α− θ,βm, αm + γm − α+ θ; r) ∈W s(a). Then R(α− θ,β, γ +

θ; r) ∈W s(a). Therefore, (4.4) follows. Hence, from (4.3) we deduce that

(4.5)
⋃

α+γ,β

D(α+ γ,β)⊂W s(a).

Conversely, we claim that

(4.6)
⋃

α+γ,β

D(α+ γ,β)⊃W s(a).

In the first place we consider any element b of W s(a) ∩ Π. From the proof of

Theorem 3.2(1), we may assume that b= (z :w : v) with v �= 0. By case 2 of the

proof of Theorem 3.2(1), we see that b ∈ JΠ. Then b ∈
⋃

α+γ,β D(α+ γ,β).

Next we assume that (z1, z2, z3) is an element of W s(a) in C
3. Then from

Proposition 3.3, we see that (z1, z2, z3) is written as Φ1(t1, t2, t3) in Proposi-

tion 3.3(2). Then we may set (z1, z2, z3) = Φ1(re
iα, eiβ , 1r e

iγ). Hence, (z1, z2, z3) ∈
R(α,β, γ)⊂D(α+ γ,β). Then (4.6) follows.

From (4.5) and (4.6), it follows that W s(a) =
⋃
D(α+ γ,β). The set⋃

D(α+ γ,β) is a union of closed disks, each of which is centered at a point

of the Möbius strip. Hence,
⋃
D(α+ γ,β) is a closed set. Then

⋃
D(α+ γ,β) =⋃

D(α+ γ,β). Thus, from (4.2) we have

supp
(
T 2 �{G> 0}

)
=

⋃
α+γ,β

D(α+ γ,β) =
⋃

α+γ,β

D(α+ γ,β).
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Set A := {G> 0}. Let U1 and U2 be the maximal open sets in which T 2 = 0

and T 2 �A= 0, respectively. Then suppT 2 = P
3 \U1 and supp(T 2 �A) = P

3 \U2.

Since K(f) = J3 ⊂ suppT 2 and
⋃
R(α,β, γ; 1) =K(f)⊂ supp(T 2 �A), we have

(4.7) Ui ∩K(f) = ∅, i= 1,2.

Let ψ be any 2-form of class C∞ with compact support in U1. Then by the

definition of U1 and (4.7), we have

0 = 〈T 2, ψ〉= 〈T 2, ψ ∧ χA〉= 〈T 2 �A,ψ〉,

where χA is a characteristic function of A. Then we have U1 ⊂ U2. Similarly,

we can prove that U2 ⊂ U1. Then it follows that suppT 2 = supp(T 2 �A). Since
K(f) = J3(f), we have J2(f)\J3(f) =

⋃
D(α+ γ,β). Assertion (2) follows.

(3) and (4) To prove these two statements we note that if f is a holomorphic

map from P
k to P

k, then the Julia set J1(f) is the complement of the Fatou set

of f (see [18, Théorème 3.3.2]).

Note that P
k = C

3 ∪Π. In the first place we consider the set C
3. We have

shown in Proposition 3.3 that C3 decomposes into four categories. Only Propo-

sition 3.3(4) corresponds to the Fatou set F (f).

Next we consider a decomposition of Π. We have shown in the proof of

Theorem 3.2 that

fΠ(z :w : v) =
(
zd : h

(d)
2 (z,w, v) : vd

)
.

Case 1: v �= 0. If z = 0, then

fΠ(0 :w : v) =
(
0 : h

(d)
2 (0,w, v) : vd

)
.

From (2.4), we see that h
(d)
2 (0,w, v) = wd. If |w| = |v|, then (0 : w : v) ∈ S2. If

|w| �= |v|, then (0 :w : v) ∈W s(P2 ∪ P3, fΠ). Next we assume that z �= 0. Then

fΠ(z,w) =
(
zd, h

(d)
2 (z,w,1)

)
.

We use the argument in the proof of Theorem 3.2. Set z = t1 and w =
√
t1(

√
t2+

1√
t2
). Set t1 = r1e

iσ and t2 = r2e
iτ . Then from (3.3) we have

fn
Π(z,w) =

(
rd

n

1 exp(iσdn), r
dn/2
1 exp(iσdn/2)

(
r
dn/2
2 exp(iτdn/2)

+ r
−dn/2
2 exp(−iτdn/2)

))
.

Hence, if r1 = r2 = 1, then (z,w) is an element of the Möbius strip M. If r1 �= 1

and (r1 = r2 or r1r2 = 1), then (z :w : 1) ∈W s(S1∪S2, fΠ). If r1 �= r2 and r1r2 �=
1, then (z :w : 1) ∈W s(P1 ∪ P2 ∪ P3, fΠ).

Case 2: v = 0. Using an argument similar to the proof of the case z = 0, we

have the following results.

If |z|= |w|, then (z :w : 0) ∈ S1,

If |z| �= |w|, then (z :w : 0) ∈W s(P1 ∪ P2, fΠ).

Now we combine the results on C3 and Π. Since the Fatou set of f is W s(P1 ∪
P2 ∪ P3, f), assertions (3) and (4) follow. �
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By direct computations, we can prove that J1(f) is a foliated space and that

leaves of the space are topological polydisks in C
2.

Next we consider external rays in R3 (= {(z1, z2, z̄1) : z1 ∈C, z2 ∈R}). Recall
that any point R(α,β, γ;∞) ∈M has a disk D(α+ γ,β) centered at itself.

PROPOSITION 4.3

If R(α,β, γ)⊂R3, then α= γ. Here R(α,β,α) is a half-line and lands at a point

of the astroidalhedron A. Hence, an external ray in D(α+ γ,β) included in R3

is only the external ray R(α+γ
2 , β, α+γ

2 ).

Proof

By (4.1), we have z1− z̄3 = (eiα− eiγ)(r− 1
r ). If z1 = z̄3, then α= γ. In this case,

R(α,β,α; r) is expressed as

(4.8) z1 =
(
r+

1

r

)
eiα+eiβ+ei(−2α−β), z2 = 2

(
r+

1

r

)
cos(α+β)+2cos 2α.

Therefore, R(α,β,α) is a half-line and lands at a point of the astroidalhedron A.

�

We extend the half-line R(α,β,α) to the interior of K(f). In (4.8), we substitute

eiθ for r. That is,

z1 = ei(α+θ) + ei(α−θ) + eiβ + ei(−2α−β),

z2 = 4cosθ cos(α+ β) + 2cos2α, 0≤ θ < 2π.
(4.9)

We call this the internal ray of R(α,β,α) and denote it by R0(α,β,α).

PROPOSITION 4.4

Internal rays R0(α,β,α) are classified into two categories.

(1) If α+ β = 0 or α+ β = π, then the internal ray is a ruling of A.

(2) If α+ β �= 0, π, then the internal ray R0(α,β,α) links two external rays

R(α,β,α) and R(α+ π,β,α+ π). And the internal ray touches the surface A.

Proof

(1) If α+ β = 0, then

z1 = 2cosθeiα + 2e−iα, z2 = 4cosθ+ 2cos2α, 0≤ θ < 2π.

Hence, from (2.8) we know that this is a ruling of A. The same holds for α+β = π.

(2) If α+ β �= 0, π, then the four terms of z1 in (4.9) are distinct except for

the cases

θ = 0, θ = π, θ =±(α− β), and θ =±(3α+ β).

Then the internal ray is not included in A and touches the surface at two points

θ =±(α− β) and θ =±(3α+ β). �
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Figure 7. A face ϕ1(H).

COROLLARY 4.5

The rulings of the astroidalhedron are internal rays.

Next we study “inscribed faces” of A. Using the notation from Section 2, we

consider a face H in the natural domain R′ in the space (α,β, γ) defined by

H := {α= c}∩R′, where c is a constant. Recall that ϕ1 is the map from R′ onto

K(f).

PROPOSITION 4.6

We have that ϕ1(H) is a face on the plane in the (p1, p2, q) space given by

p1 cos c− p2 sin c− q/2 = cos2c.

Proof

By direct computations, we have this proposition. �

The face ϕ1(H) is depicted in Figure 7.
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Figure 8. A line segment L and a face H .

We denote four vertices of the polyhedron ∂R′ by O(0,0,0), B1(π/2, π/2,

π/2), B2(−π,π,π), and B3(−π/2,−π/2,3π/2). We consider the triangle


OB2B3. It lies on the plane 2α+ β + γ = 0. Set L :=H ∩
OB2B3 (see Fig-

ure 8). The line segment L is given by {(c, β,−2c− β)}. The image of L under

the transformation T is a line segment which is parallel to the root α3. The image

of 
OB2B3 under ϕ1 is a part of the surface A.

PROPOSITION 4.7

We have that ϕ1(L) is a ruling of A. At any point of ϕ1(L), the face ϕ1(H) is

tangent to ϕ1(
OB2B3).

Proof

Let (p1, p2, q) := ϕ1(c, β,−2c− β). Then as in the proof of (2.8), we have

(p1, p2, q) = 2(cos c, sin c, cos2c) + 2cos(β + c)(cos c,− sin c,2).

Hence from (2.8), we see that ϕ1(L) is a ruling of A.

Since
OB2B3 = {(α,β, γ) ∈R′ : 2α+β+γ = 0}, we have that ϕ1(
OB2B3)

is given by

p1(α,β) = 2cosα+ 2cos(α+ β) cosα, p2(α,β) = 2sinα− 2 sinα cos(α+ β),

q(α,β) = 2(cos2α+ 2cos(α + β)). Set χ(α,β) = (p1(α,β), p2(α,β), q(α,β)). Let

N := (cos c,− sin c,−1/2) be the normal to ϕ1(H) at ϕ1(c, β,−2c− β). We see

that the normal vector N is also orthogonal to the tangent vectors

∂χ

∂α
and

∂χ

∂β
at ϕ1(c, β,−2c− β). �

We describe the “inscribed face” ϕ1(H) in Proposition 4.6 in terms of internal

rays. Set D0(β) =
⋃

αR0(α,β,α). Then we have the following proposition.

PROPOSITION 4.8

We have that D0(β) is equal to ϕ1({β = const}).
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Proof

If we regard α + θ as α′ and α − θ as γ′ in (4.9), then we have z1 = eiα
′
+

eiγ
′
+ eiβ + e−i(α′+β+γ′). We fix β = const and move α and θ. Then we have

ϕ1({β = const}) =D0(β). �

Using external rays in R3 whose internal rays are like those from Proposi-

tion 4.4(2), we construct a map E from M0 to A0, where

M0 =
{
(eθi, xe

θ
2 i) : 0≤ θ < 2π,−2< x< 2

}
,

A0 =
{
(4 cos3 u,4 sin3 u,6cos2u) + v(cosu,− sinu,2) :

0≤ u < 2π,−2− 2cos2u < v < 2− 2cos2u
}
.

The external ray R(α,β,α) with α+ β �= 0, π has two endpoints. One is in M0

and the other is in A0. Using these two endpoints, we define a map E from M0

to A0 by

E
((
e2iα : 2 cos(α+ β)eiα : 1 : 0

))

=
(
2eiα + eiβ + ei(−2α−β),4cos(α+ β) + 2cos2α

)
.

(4.10)

PROPOSITION 4.9

The image of any ruling of M0 under the map E is also a ruling of A0.

Proof

In (4.10), we fix α and move β. Then by the same argument used in the proof of

Proposition 2.4, we can prove that the image (2eiα + eiβ + ei(−2α−β),4cos(α+

β) + 2cos2α) is written as (2.8). �

5. The set of critical values and catastrophe theory

In this section we show some relations between P d
A3

and catastrophe theory.

Before we start studying the relations, we review some results on maps P d
A2

on

C
2 related to Lie algebras of type A2. We show in [20] the following results.

The set of critical values of P d
A2

restricted to {z1 = z̄2} is a deltoid. The deltoid

coincides with a cross section of the bifurcation set (caustics) of the elliptic

umbilic catastrophe map (D−
4 ). The external rays and their extensions constitute

a family of lines whose envelope is the deltoid. These lines are real “rays” of

caustics (see Figure 9). In addition to the caustics, the deltoid has relations with

binary cubic forms

f(x, y) = ax3 + bx2y+ cxy2 + dy3, a, b, c, d ∈R.

The discriminant D is given by

D = 4(ac3 + b3d) + 27a2d2 − b2c2 − 18abcd,

Set V =
{
(a, b, c, d) ∈R

4 :D(a, b, c, d) = 0
}
.
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Figure 9. A deltoid and external rays.

Zeeman [23] showed that V ∩ S3 is mapped diffeomorphically to the “umbilic

bracelet.” It has a deltoid section that rotates 1/3 twist going once round the

bracelet.

Now we return to the study of the maps P d
A3

. We will show that the set of

critical values of P d
A3

restricted to R3 decomposes into the tangent developable

of an astroid and two real curves. The set coincides with a cross section of the

set obtained by Poston and Stewart [16], [17] where binary quartic forms are

degenerate. The shape for the cross section is called the Holy Grail.

We begin with the study of the critical set of P d
A3

. Let t4 = 1/(t1t2t3). We

use the notation from (1.1).

PROPOSITION 5.1

The critical set Cd of P d
A3

(z1, z2, z3) is equal to{
(z1, z2, z3) ∈C

3 : t1 = εt2 or t1 = εt3 or t1 = εt4 or

t2 = εt3 or t2 = εt4 or t3 = εt4, ε= e2jπ
√
−1/d (1≤ j ≤ d− 1)

}
.

Proof

Recall the map Φ1(t1, t2, t3) = (z1, z2, z3). Then

detDΦ1 = t4
∏

1≤i<j≤4

(ti − tj)

and

detD(P d
A3

◦Φ1) = d3t4
∏

1≤i<j≤4

(tdi − tdj ).

The proposition follows because

detDP d
A3

= detD(P d
A3

◦Φ1)/detDΦ1. �
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Clearly, the sets P d
A3

(Cd) (d = 2,3,4, . . . ) are the same. The set P d
A3

(Cd) is an

algebraic surface in P
3 invariant under P d

A3
, that is,

P d
A3

(
P d
A3

(Cd)
)
= P d

A3
(Cd).

Then P d
A3

is a critically finite map (see [7]).

We will determine the set P d
A3

(Cd)∩R3. We may set f := P 2
A3

(z1, z2, z3) and

C := C2. If (z1, z2, z3) ∈ C, then without loss of generality we may assume that

t1 =−t4, where t4 = 1/(t1t2t3). Then

z1 = t2 + t3, z2 = t2t3 +
1

t2t3
, z3 =

1

t2
+

1

t3
,

and the image of (z1, z2, z3) under f is written as

z
(2)
1 = t22 + t23 − 2

1

t2t3
,

z
(2)
2 = t22t

2
3 − 2

( t2
t3

+
t3
t2

)
+

1

t22t
2
3

,

z
(d)
3 =

1

t22
+

1

t23
− 2t2t3.

Set t2 = reiα and t3 = Reiβ . Then to determine the set f(C) ∩R3 we need the

following.

PROPOSITION 5.2

The point (z
(2)
1 , z

(1)
2 , z

(2)
3 ) belongs to the set R3 if and only if the following three

conditions are satisfied:

(1) (r2R4 − r2) cos 2b+ 2(r3R3 − rR) cos (a+ b) =R2 − r4R2,

(2) (r2R4 − r2) sin2b+ 2(r3R3 − rR) sin (a+ b) = 0,

(3) (r4R4 − 1) sina− 2(r3R− rR3) sin b= 0,

where a= 2α+ 2β, b= α− β.

Proof

We may check the conditions

z
(2)
1 = z

(2)
3 and z

(2)
2 ∈R.

The former condition is equivalent to(
r2 − 1

r2

)
+
(
R2 − 1

R2

)
e2(α−β)i + 2

(
rR− 1

rR

)
e(3α+β)i = 0.

The latter condition is equivalent to

r2R2e2(α+β)i +
1

r2R2
e−2(α+β)i − 2

( r

R
ei(α−β) +

R

r
ei(β−α)

)
∈R.

Then the proposition follows. �

Next we will show a refinement of Proposition 5.2. We consider four cases:
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(i) r =R= 1,

(ii) rR= 1 and r �=R,

(iii) rR �= 1 and r =R,

(iv) rR �= 1 and r �=R.

If r =R= 1, then the conditions (1), (2), and (3) are trivially satisfied.

LEMMA 5.3

We assume that the conditions (1), (2), and (3) in Proposition 5.2 are satisfied.

(i) If rR= 1 and r �=R, then b= 0, π.

(ii) If rR �= 1 and r =R, then (a, b) = (0, π), (π,0).

The proof is straightforward.

LEMMA 5.4

We assume that rR �= 1 and r �=R. Then there are not any numbers 0< r,R and

0≤ a, b < 2π satisfying (1), (2), and (3) in Proposition 5.2.

Proof

Suppose that there exist numbers 0< r,R and 0 ≤ a, b < 2π satisfying (1), (2),

and (3). From (3) we have

(5.1) sina= c1 sin b, where c1 :=
2(r3R− rR3)

r4R4 − 1
.

We square both sides of (1) and (2). Then we add the left-hand sides and add

the right-hand sides. Hence, if R �= 1, then

cos(a− b) =
1

2pq

(
R4(1− r4)2 − p2 − q2

)
=: c2,

where p= r2R4 − r2 and q = 2(r3R3 − rR).

(5.2)

(We denote the right-hand side of (5.2) by c2.) Applying the addition theorem

to cos(a− b) and using (5.1), we obtain

(5.3) sin2 b=
1− c22

1 + c21 − 2c1c2
.

From (2) and (5.1), it follows that

cosa sin b= c3 cos b sin b, where c3 =
−r(1 +R4)

R(1 + r2R2)
.

Case 1: sin b �= 0. Then

(5.4) cosa= c3 cos b.

Substituting sina in (5.1) and cosa in (5.4) for those in (1) and then substituting

sin2 b in (5.3) for the result, we have

(r−R)(r+R)(−1 + r2R2)2

1 + r2R2
= 0,

which is a contradiction.
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Case 2: sin b= 0. Then sina= 0.

If (a, b) = (0,0) or (π,π), then (r+R)2(r2R2 − 1) = 0,

If (a, b) = (0, π) or (π,0), then (r−R)2(r2R2 − 1) = 0.

In any case, we have a contradiction.

If R= 1, we also have a contradiction. �

From Lemma 5.4, we know that f(C)∩R3 decomposes into three cases:

(i) r =R= 1,

(ii) rR= 1 and r �=R,

(iii) rR �= 1 and r =R.

Case i: r = R = 1. The set {(z(2)1 , z
(2)
2 , z

(2)
3 ) : r = R = 1} is equal to the

astroidalhedron A. This is a central part of the tangent developable in Figure 10.

Case ii: rR = 1 and r �= R. From Lemma 5.3, it follows that b = 0 or π. If

b= π, then α− β = π and so t2 = reiα, t3 =−1
r e

iα. Set θ =−2α. Then we have

a top bowl. This is the upper part of the tangent developable in Figure 10. The

top bowl is given as

z
(2)
1 =

(
r2 +

1

r2

)
e−iθ + 2eiθ, z

(2)
2 = 2

(
r2 +

1

r2

)
+ 2cos2θ,

z
(2)
3 =

(
r2 +

1

r2

)
eiθ + 2e−iθ.

(5.5)

If b= 0, then α− β = 0 and so t2 = reiα, t3 =
1
r e

iα. Set θ =−2α. Then we have

a lower bowl. This is the lower part of the tangent developable in Figure 10. The

lower bowl is given as

z
(2)
1 =

(
r2 +

1

r2

)
e−iθ − 2eiθ, z

(2)
2 =−2

(
r2 +

1

r2

)
+ 2cos2θ,

z
(2)
3 =

(
r2 +

1

r2

)
eiθ − 2e−iθ.

(5.6)

Case iii: rR �= 1 and r =R. Then (a, b) = (0, π) or (π,0). If a= 0 and b= π,

then t2 = ir, t3 =−ir. Then we have top whiskers (see Figure 10). Top whiskers

are given as

(5.7) z
(2)
1 =−2

(
r2 +

1

r2

)
, z

(2)
2 = r4 +

1

r4
+ 4, z

(2)
3 =−2

(
r2 +

1

r2

)
.

If a = π and b = 0, then t2 = t3 = reiπ/4. Then we have lower whiskers (see

Figure 10). Lower whiskers are given as

(5.8) z
(2)
1 = 2i

(
r2 +

1

r2

)
, z

(2)
2 =−r4 − 1

r4
− 4, z

(2)
3 =−2i

(
r2 +

1

r2

)
.

Hence, f(C) ∩ R3 decomposes into the astroidalhedron A, a top bowl, a lower

bowl, top whiskers, and lower whiskers.

Next we consider relations between f(C) ∩R3 and external rays. The half-

lines (5.5) and (5.6) with 1≤ r ≤∞ are external rays R(−θ, θ,−θ) and R(−θ, θ+
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Figure 10. The tangent developable of an astroid in space and whiskers.

π,−θ) and land at points on the upper and lower self-intersection lines, respec-

tively. By Propositions 2.4 and 4.4, we know that, by adding an internal ray to

the half-lines, we have a tangent line to the astroid.

Then we have the following proposition.

PROPOSITION 5.5

We have that f(C)∩R3 \ {top and lower whiskers} is the tangent developable T
of an astroid in space given by

χ(u, v) = (4cos3 u,4 sin3 u,6cos2u) + v(cosu,− sinu,2) (−∞< v <∞).

The tangent developable T consists of A, the top bowl, and the lower bowl. Any

ruling of T , that is, any tangent line to the astroid, consists of two external rays

and an intermediate internal ray.

PROPOSITION 5.6

(1) The rims of the bowls join to the boundary of the Möbius strip M in Π.
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Figure 11. The tangent developable of an astroid in space.

(2) The images of the two self-intersection lines under the map ϕ from K(f)

to R defined in Section 2 are the two edges of longest length of the (
√
3,
√
3,2)-

tetrahedron ∂R.

Proof

(1) The external rays in the top bowl and the lower bowl are given in (5.5) and

(5.6). Making r→∞, we see that

top bowl : (z
(2)
1 : z

(2)
2 : z

(2)
3 : 1)→ (e−iθ : 2 : eiθ : 0) ∈M,

lower bowl : (z
(2)
1 : z

(2)
2 : z

(2)
3 : 1)→ (e−iθ :−2 : eiθ : 0) ∈M.

(2) We denote four vertices of the (
√
3,
√
3,2)-tetrahedron ∂R by O = (0,0,0),

A1 = (0,−π/
√
2, π),A2 = (π,0, π), and A3 = (0, π/

√
2, π) (see Figure 2). The

lengths of OA2 and A1A3 are equal to
√
2π and the lengths of the other edges

are equal to
√
3π/

√
2. The images of OA2 and A1A3 under the map ϕ−1 are the

upper self-intersection line and the lower self-intersection line, respectively (see

Figure 4). �

Recall that J3(f) is the closed domain bounded by A. We have shown in Propo-

sition 4.9 that the image of any ruling of M0 under the map E is also a ruling

of A0 (see Figures 11 and 12).
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Figure 12. A Möbius strip.

Last, we consider relations between f(C)∩R3 and binary quartic forms.

Poston and Stewart [16], [17] studied quartic forms in two variables,

f(x, y) = ax4 + 4bx3y+ 6cx2y2 + 4dxy3 + ey4, a, b, c, d, e ∈R.

Here, f(x, y) can be expressed uniquely as

(5.9) f(x, y) = Re(αz4 + βz3z̄ + γz2z̄2), α, β ∈C, γ ∈R.

We use the results and notation in [17, pp. 268–269]. Let 
 be the discriminant

of f(x, y), and let Q ⊂R
5 be the algebraic set given by 
= 0. To understand the

geometry of Q they pursued a different tack. The set W = Q∩S4 is decomposed

into W1 and W∞, and W1 is diffeomorphic to U . Then U is the orbit of Q under

a maximal tours T of GL2(R), and Q0 is the main part of Q. We consider the

set Q0. Lemma 3.3 in [16] states that Q0 is given parametrically by

(5.10) β =
1

2
(−3eiφ + e−3iφ − 2γe−iφ), 0≤ φ < 2π.

The shape for Q (or Q0) is called the Holy Grail in [5] and depicted in [17,

Figure 5]. We compare the shape with Figure 11. We show relations between Q0

and the tangent developable T in Proposition 5.5 of this article.

LEMMA 5.7

The set Q0 coincides with T by a coordinate transformation.

Proof

As in the proof of [16, Lemma 3.3], we put α= 1 and z = eiθ in the right-hand

side of (5.9). That is, we consider the equation

(5.11) e4iθ + e−4iθ + βe2iθ + β̄e−2iθ + 2γ = 0.
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The equation (5.10) follows from the condition that (5.11) has a double root in θ.

We will find the same condition in our situation. From (5.11), we have

(5.12) (e2iθ)4 + β(e2iθ)3 + 2γ(e2iθ)2 + β̄e2iθ + 1= 0.

Hence, we consider the equation

(5.13) T 4 − z1T
3 + z2T

2 − z3T + 1= 0.

Let the solutions of (5.13) be t1, t2, t3, and t4. Then the condition that (5.11) has

a double root in θ is described as follows. From (5.12), we assume that z1 = z̄3 and

z2 is real. That is, (z1, z2, z3) ∈R3. Under this assumption, (5.13) has a solution

{t1, t2, t3, t4} such that t1 = t2 = eiθ. Set t3 = reiφ. Then t4 = (1/r)e−i(2θ+φ).

Relations between tj ’s and zj ’s are given in (1.1) with t4 = 1/(t1t2t3). Then we

can express the condition that such an element (z1, z2, z3) lies in R3 in terms

of the variables r, φ, and θ. If r = 1, then (z1, z2, z3) ∈A. Next we assume that

r �= 1. Then by an argument similar to that used in the proof of Lemma 5.3(i),

we see that if such an element (z1, z2, z3) lies in R3, then φ+ θ = 0 or φ+ θ = π.

If φ+ θ = 0, then (z1, z2, z3) belongs to the top bowl in (5.5). If φ+ θ = π, then

(z1, z2, z3) belongs to the lower bowl in (5.6). The coordinate transformation is

given by β =−z1 and 2γ = z2. �

We can also prove this lemma by reparameterizing the ruled surface given by

(5.10) using a striction curve.

The set Q \ Q0 constitutes two whiskers in [17]. We can show that the

whiskers in [17] coincide with the whiskers in (5.7) and (5.8) by the above coor-

dinate transformation. Each whisker in this article joins to an attracting fixed

point P2 = (0 : 1 : 0 : 0) of f .

PROPOSITION 5.8

The set Q coincides with f(C)∩R3 by a coordinate transformation.

In Proposition 5.6, we show that the rims of the bowls join to the boundary of

M. Poston and Stewart [16], [17] deal with the same situation by considering

the attaching map to W∞ ⊂ S2 = {α = 0} ⊂ S4. But it is complicated in R5.

However, we consider the situation in P
3(C). Hence, the tangent developable

T joins simply to the boundary of M. We have studied the external rays that

connect T and M, and any ruling of T consists of two external rays and their

intermediate internal ray.

We have shown the static aspect of catastrophe theory and also the dynamical

aspect of catastrophe theory.
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Paris, 1999, 97–185. MR 1760844.

[19] K. Uchimura, The sets of points with bounded orbits for generalized Chebyshev

mappings, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 11 (2001), 91–107.

MR 1815529. DOI 10.1142/S0218127401002018.

[20] , Generalized Chebyshev maps of C2 and their perturbations, Osaka J.

Math. 46 (2009), 995–1017. MR 2604918.

[21] S. Ulam and J. von Newmann, On combination of stochastic and deterministic

processes, Bull. Amer. Math. Soc. 53 (1947), 1120.

[22] A. P. Veselov, Integrable mappings and Lie algebras (in Russian), Dokl. Akad.

Nauk SSSR 292 (1987), 1289–1291; English translation in Soviet Math. Dokl.

35 (1987), 211–213. MR 0880608.

[23] E. C. Zeeman, “The umbilic bracelet and double-cusp catastrophe” in

Structural Stability, the Theory of Catastrophes, and Applications in the

Sciences (Seattle, Wash., 1975), Lecture Notes in Math. 525, Springer, New

York, 1976, 328–366. MR 0515875.

Department of Mathematics, Tokai University, Hiratsuka, Japan; uchimura@tokai-u.jp

http://www.ams.org/mathscinet-getitem?mr=1760844
http://www.ams.org/mathscinet-getitem?mr=1815529
http://dx.doi.org/10.1142/S0218127401002018
http://dx.doi.org/10.1142/S0218127401002018
http://www.ams.org/mathscinet-getitem?mr=2604918
http://www.ams.org/mathscinet-getitem?mr=0880608
http://www.ams.org/mathscinet-getitem?mr=0515875
mailto:uchimura@tokai-u.jp

	Introduction
	The sets K(PA3d)  and J3(PA3d)
	Julia set JPi and stable sets
	Julia sets J1, J2 and external rays
	The set of critical values and catastrophe theory
	References
	Author's Addresses

