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Abstract Weprove that, for any type III1 free product factor, its continuous core is full

if and only if its τ -invariant is the usual topology on the real line. This trivially implies,

as a particular case, the same result for freeAraki–Woods factors.Moreover, ourmethod

shows the same result for full (generalized)Bernoulli crossedproduct factors of type III1.

1. Introduction

Let M1,M2 be two nontrivial von Neumann algebras with separable preduals,

and let ϕ1, ϕ2 be faithful normal states on them, respectively. Let (M,ϕ) =

(M1, ϕ1) � (M2, ϕ2) be their free product (see, e.g., [25, Section 2.1]). Then M

must be of the form M =Md⊕Mc or Mc, where Md is finite-dimensional (which

can explicitly be determined) and Mc is diffuse. In what follows, we assume that

(dimM1,dimM2) �= (2,2); otherwise Mc = L∞[0,1] ⊗̄M2(C). Then Mc is a full

factor of type II1 (if both ϕi’s are tracial), IIIλ with 0< λ < 1 (if the modular

actions σϕi have a common (positive) period and the smallest one is 2π/| logλ|),
or III1 (otherwise). Hence, we call Mc a free product factor in what follows.

Moreover, Connes’s [4] τ -invariant τ(Mc) coincides with the weakest topology

on R making the mapping t ∈ R �→ σϕ
t ∈ Aut(M) (equipped with the so-called

u-topology; see, e.g., [4, Section III]) continuous. See [25, Theorem 4.1] and [26,

Theorem 3.1] (with a trivial argument; see the proof of Theorem 1(2) ⇔ The-

orem 1(3) below) for these facts, respectively. In this way, almost all the basic

invariants have been made clear for M (and Mc), but it still remains an open

question when the continuous core of Mc becomes a full factor (if Mc is of type

III1). Here, for a given type III von Neumann algebra, we call the carrier algebra

of its so-called associated covariant system (see [20, Definitions XII.1.3, XII.1.5])

its continuous core. In this article, we would like to report the following simple

solution to the question.
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THEOREM 1

Assume that Mc is of type III1. Then the following conditions are equivalent.

(1) The continuous core M̃c :=Mc �σϕc R with ϕc := ϕ �Mc is full.

(2) The τ -invariant τ(Mc), that is, the weakest topology on R making the

mapping t ∈ R �→ σϕ
t ∈Aut(M) continuous in this particular case (see the above

explanation), is the usual topology on R.

(3) For any sequence tn in R we have (σϕ1

tn , σϕ2

tn ) −→ (IdM1 , IdM2) in

Aut(M1)× Aut(M2) as n→∞ implies tn −→ 0 in the usual topology on R as

n→∞.

The above theorem completes the project to compute all the basic invariants for

arbitrary free product von Neumann algebras. (Here we would like to mention

that the triviality of the asymptotic bicentralizer of any type III1 free product

factor was confirmed by the second-named author by using only [7, Theorem 4,

Corollary 8] and [25, Corollary 3.2, Theorem 4.1].) One of the important fea-

tures of Theorem 1 is that the consequence is formulated in terms of modular

automorphisms associated with given states rather than the τ -invariant itself;

hence, it is suitable for practical use. Moreover, the next corollary is obtained as

a particular case of the theorem (see Remark 10).

COROLLARY 2

Let Γ(HR,Ut)
′′ be a free Araki–Woods factor of type III1 (see [16]). Then the

continuous core of Γ(HR,Ut)
′′ is full if and only if the weakest topology on R

making t �→ Ut (with respect to the strong operator topology) is the usual one.

There are previously known cases where the continuous cores of free Araki–

Woods factors become full (see Shlyakhtenko [17, Theorem 4.8], Houdayer [10,

Theorem 1.2], and more recently Houdayer–Raum [11, Theorem B]; note that

the second needs [14, Proposition 7] with N0 =M there). However, any kind of

characterization such as the above corollary has never been known.

Another important class of full factors of type III1 whose τ -invariants are

already computed consists of Bernoulli crossed products. In fact, Vaes and Ver-

raedt [30, Section 2.5] recently proved that any Bernoulli crossed product of non-

amenable group must be a full factor and, moreover, computed its τ -invariant in

terms of given data, generalizing Connes’s [4] original work. In the appendix, we

will explain that our method of proving Theorem 1 works well even for (general-

ized) Bernoulli crossed products (see Theorem 12 for the precise assertion).

This article uses the same standard notation as in [25] and [26] (except

the appendix, where the notation follows [30, Section 2.5]). We will freely use

(Ocneanu) ultraproducts and asymptotic centralizers (denoted by Nω ⊇ Nω ,

respectively, for given von Neumann algebras N ), for which we refer to [25,

Section 2.2] as a brief summary and to [1] as a detailed reference. Our discussion

below is fairly simple, though it depends upon some previous works, namely,
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[27], [28, Section 2.1] (based on [25, Theorem 4.1]), [30, Section 2.5], and the

automorphism analysis due to Connes and Ocneanu.

2. Preliminary facts

Let us start with a general lemma on group actions on factors. Our intuition

about it came from quite the recent work [12, Theorems 6.7, 6.8] about a char-

acterization of the Rohlin property for flows on von Neumann algebras.

LEMMA 3

Let α : Γ�N be an action of a countable discrete abelian group on a factor with

separable predual. Let αω : Γ � Nω be the action on the asymptotic centralizer

Nω arising from α. Then, for every p ∈ Ker(αω)
⊥ (in the dual Γ̂) there exists

a unitary u ∈ Nω such that αω,γ(u) = 〈γ, p〉u holds for all γ ∈ Γ, where 〈·, ·〉 is

the dual pairing between Γ and Γ̂ and Λ⊥ := {p ∈ Γ̂ | 〈Λ, p〉 = 0} for a subgroup

Λ of Γ. Moreover, for every p ∈Ker(αω)
⊥, the dual action α̂p is approximately

inner, that is, it falls in the closure of Int(N �α Γ).

Proof

By [5, Proposition 2.1.2], the action αω induces a properly outer action of

Γ/Ker(αω) on Nω . Note that the dual of Γ/Ker(αω) is naturally identified with

Ker(αω)
⊥ in Γ̂. Let p ∈Ker(αω)

⊥ be arbitrarily chosen. We apply the so-called

1-cohomology vanishing theorem [13, Section 7.2] to the (rather simple) cocycle

γ �→ 〈γ, p〉1 ∈Nω with the above properly outer action, and we get the desired

unitary u ∈Nω .

Since u ∈Nω (⊆N ′ ∩Nω trivially), one easily observes that α̂p(x) = uxu∗

holds inside (N �α Γ)ω for every x ∈N �α Γ. Thanks to [5, Proposition 1.1.3(b)]

we can choose a representing sequence un of u in such a way that it consists of

unitaries. Let ψ be a faithful normal state on N , and set ψ̃ := ψ ◦EN with the

canonical conditional expectation EN : N �α Γ→N . For any y, z ∈N �α Γ one

has ∣∣((yψ̃) ◦ α̂p − (yψ̃) ◦Adun

)
(z)

∣∣
≤
∥∥α̂−1

p (y)− u∗
nyun

∥∥
ψ̃
‖z‖∞ +

∣∣ψ̃(unzu
∗
ny)− ψ̃(zu∗

nyun)
∣∣

≤
∥∥α̂−1

p (y)− u∗
nyun

∥∥
ψ̃
‖z‖∞ + ‖ψun − unψ‖‖y‖∞‖z‖∞

so that∥∥(yψ̃) ◦ α̂p − (yψ̃) ◦Adun

∥∥≤
∥∥α̂−1

p (y)− u∗
nyun

∥∥
ψ̃
+ ‖ψun − unψ‖‖y‖∞ −→ 0

as n→ ω. Therefore, α̂p = limn→ω Adun in Aut(N �α Γ), because the yψ̃’s form

a dense subset of the predual. �

For a given type IIIλ factor, we call the canonical type II∞ factor N0 in [20,

Theorem XII.2.1] the discrete core of the type IIIλ factor. The discrete core is

indeed uniquely determined from the given type IIIλ factor. Moreover, it can
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explicitly be constructed based on the Takesaki duality (see, e.g., the proof of

[20, Theorem XII.2.1] and also [28, Section 2.2]). Here is a small remark on

this fact for the reader’s convenience. Let Q be a type IIIλ factor with separable

predual (0< λ< 1), and let χ be a faithful normal state on Q such that σχ
T = IdQ

with T := 2π/| logλ| (the existence of such a state is well known; see, e.g., [6,

Theorem 2.3], which fits the discussion here). Then we can view σχ as an action of

R/TZ. Note that Q�σχ (R/TZ) must be properly infinite, since Q is of type III. It

follows that Q�σχ (R/TZ)∼= (Q�σχ (R/TZ))⊗̄B(2)∼= (Q⊗̄B(2))σχ⊗̄Tr(R/TZ)

(with a faithful normal semifinite trace Tr on B(2)), which is confirmed to be

the discrete core of Q in the proof of [20, Theorem XII.2.1].

PROPOSITION 4

Let λ ∈ (0,1), and set T := 2π/| logλ|. Let Q be a type IIIλ factor with separable

predual. Then Q is full if and only if so is its discrete core Q̂ :=Q�σχ (R/TZ)

with a periodic state χ (i.e., a faithful normal state with σχ
T = IdQ).

Proof

The ‘if ’ part. Assume that Q̂ is full. It is known that Q̂ is stably isomorphic

to Qχ. Hence, Qχ is also full. By [4, Proposition 2.3(2)] Q must be full.

The ‘only if ’ part. Assume next that Q is full. Let us denote by θ : Z� Q̂

the dual action of σχ : R/TZ�Q.

Suppose that θω is a nontrivial action. By Lemma 3 there exists ζ ∈ T \ {1}
so that the dual action θ̂ζ falls in the closure of Int(Q̂�θ Z). Since Q̂�θ Z

∼=Q

is full, we conclude that θ̂ζ must be inner. However, θ̂ is the bidual action of

σχ : [0, T ) = R/TZ = T � Q, and therefore, by [20, Theorem X.2.3(iv)] σχ
t is

inner for some 0 < t < T , a contradiction. Hence, we have shown that θω is

indeed the trivial action.

Let v ∈ Q̂ω be an arbitrary unitary. Since θω is trivial, we observe that

x= vxv∗ inside (Q̂�θ Z)
ω for every x ∈ Q̂�θ Z. The same argument as that for

getting α̂p = limn→ω Adun in the proof of Lemma 3 shows that v ∈ (Q̂�θ Z)ω ∼=
Qω =C1. �

The proof of Proposition 4 (especially, its only if part) actually works well, with-

out any essential change, for showing the next proposition. Note that the discrete

decomposition is well defined for any full type III1 factor as long as it is possi-

ble (see [4] and also [28, Section 2.2] for its explicit construction based on the

Takesaki duality).

PROPOSITION 5

The discrete core of any full type III1 factor must be full (if it exists).

Our question is about the fullness of certain continuous crossed product factors

of type II∞, but the next lemma says that it is equivalent to that of certain

discrete crossed product factors of type IIIλ.
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LEMMA 6

Let P be a type III1 factor with separable predual, and let χ be a faithful normal

state on it. Let λ ∈ (0,1) be arbitrarily chosen, and set T := 2π/| logλ|. Then the

continuous core P̃ is full if and only if the type IIIλ factor Q := P �σχ
T
Z is full.

Proof

Although many proofs seem to be available for this fact (see [21, Lemma

XVIII.4.17(i)] and its proof), we would like to give a proof, which we believe

to be elementary, for the reader’s convenience. Let E : P �σχ
T
Z → P be the

canonical conditional expectation. By, for example, [15, Proposition 2.1] we have

(P �σχ
T
Z)�σχ◦E R∼= (P �σχ R)�σχ

T ⊗̄Id Z
∼= (P �σχ R) ⊗̄ L(Z), which sends the

generators x ∈ P , λσχ
T (n) (n ∈ Z), and λσχ◦E

(t) (t ∈R) in the leftmost algebra to

x⊗ 1, (λσχ

(T )⊗u)n, and λσχ

(t)⊗ 1 in the rightmost algebra with the canonical

generator u of L(Z). In particular, the center of the leftmost algebra is generated

by v := λσχ
T (1)λσχ◦E

(T )∗, since we know that P �σχ R is a factor. (Note that P

is a factor of type III1.) Then the dual action θ of σχ◦E satisfies θs(v) = eisT v,

s ∈ R. Therefore, the (smooth) flow of weights of Q = P �σχ
T
Z is a transitive

flow of period − logλ so that Q must be a type IIIλ factor. Choose a faithful

normal state ψ on Q with σψ
T = IdQ (see the explanation before Proposition 4).

Then we see that P̃ ⊗̄ L(Z)∼=Q�σχ◦E R∼=Q�σψ R∼= (Q�σψ (R/TZ)) ⊗̄ L(Z),

where the last isomorphism follows from [9, Proposition 5.6]. (Note that its proof

uses only σχ
T = IdQ.) By the uniqueness of the central decomposition we obtain

P̃ ∼=Q�σψ (R/TZ). Thus, the desired assertion immediately follows from Propo-

sition 4. �

We remark that the use of central decomposition can be replaced with taking

the fixed-point algebra under the canonical extension of the dual action of σχ
T to

the continuous core of Q.

3. Proof of Theorem 1

Our main concern is to prove Theorem 1(2) ⇒ Theorem 1(1). If both M1,M2

are (possibly infinite) direct sums of type I factors, then both ϕ1, ϕ2 are almost

periodic and so is the positive linear functional ϕc (see [26, Theorem 2.1]); hence,

τ(Mc) never becomes the usual topology on R. Therefore, we may and do assume

that M1 has a diffuse direct summand. Note here that the τ -invariant is a von

Neumann algebraic invariant. Hence, by the trick explained at the beginning of

[28, Section 2.1] we may and do further assume that M1 is either (a) a diffuse von

Neumann algebra with no type III1 factor direct summands or (b) a type III1
factor. In each case, M =Mc holds thanks to [25, Theorem 4.1]. In what follows,

we fix λ ∈ (0,1) and set T := 2π/| logλ|, and it suffices, thanks to Lemma 6, to

prove that M �σϕ
T
Z is full under Theorem 1(2). We need two technical lemmas.
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LEMMA 7

With the conditional expectation Eϕ1 := (ϕ1 ⊗̄ Id) �M1�σ
ϕ1
T

Z : M1 �σ
ϕ1
T

Z →
C1 �σ

ϕ1
T

Z, one can find a faithful normal state ψ on C1 �σ
ϕ1
T

Z so that for

each natural number n ≥ 2 there exists a unitary un ∈ (M1 �σ
ϕ1
T

Z)ψ◦Eϕ1
such

that Eϕ1(u
k
n) = 0 as long as 1≤ k ≤ n− 1.

Proof

We first treat case (a). It is easy to see that (M1)ϕ1 is diffuse (see the proof

of [25, Theorem 3.4] with standard facts; see, e.g., [23, Lemmas 11, 12]). Let

EM1 : M1 �σ
ϕ1
T

Z→M1 be the canonical conditional expectation. One can easily

confirm τZ ◦Eϕ1 = ϕ1 ◦EM1 with the canonical tracial state τZ on L(Z) =C1�σ
ϕ1
T

Z naturally, and thus, (M1)ϕ1 ⊗̄ L(Z) naturally sits in (M1 �σ
ϕ1
T

Z)τZ◦Eϕ1
. Let

v ∈ (M1)ϕ1 be a Haar unitary with respect to ϕ1 (see, e.g., the proof of [25,

Theorem 3.7] for its existence), and ψ := τZ and un := v⊗ 1 (for every n) are the

desired ones.

We then treat case (b). Let us denote by u ∈C1�σ
ϕ1
T

Z the canonical unitary

generator. By a standard fact (see, e.g., [20, Theorem X.1.17]) together with the

identity τZ ◦Eϕ1 = ϕ1 ◦EM1 we observe that σ
τZ◦Eϕ

T = Adu. One can choose a

positive invertible h ∈C1�σ
ϕ1
T

Z so that u∗ = hiT . Set ψ := τZ(h)
−1τZ(h−), and

one has σ
ψ◦Eϕ1

T = IdM1�σ
ϕ1
T

Z. By [3, Theorem 4.2.6], (M1�σ
ϕ1
T

Z)ψ◦Eϕ must be a

type II1 factor and contain C1�σ
ϕ1
T

Z. Since C1�σ
ϕ1
T

Z is diffuse, for each natural

number n≥ 2 there exist n orthogonal e0, . . . , en−1 ∈ (C1�σ
ϕ1
T

Z)p, all of which

are equivalent in (M1 �σ
ϕ1
T

Z)ψ◦Eϕ , and
∑n−1

i=0 ei = 1. Then one can construct

a unitary un ∈ (M1 �σ
ϕ1
T

Z)ψ◦Eϕ in such a way that une0 = e1un, une1 = e2un,

. . . , unen−1 = e0un. Since C1 �σ
ϕ1
T

Z is commutative, one has Eϕ1(u
k
n) = 0 for

every 1≤ k ≤ n− 1. �

LEMMA 8

We have (M �σϕ
T
Z)ω = (M �σϕ

T
Z)′ ∩ (M �σϕ

T
Z)ω =M ′ ∩ (C1�σϕ

T
Z)ω, where

M canonically sits in M �σϕ
T
Z.

Proof

Similar to [22, Theorem 5.1], we have

(M �σϕ
T
Z,Eϕ) = (M1 �σ

ϕ1
T

Z,Eϕ1) �C1�σ
ϕ
T
Z (M2 �σ

ϕ2
T

Z,Eϕ2)

naturally, to which [27, Proposition 3.5] is applicable thanks to Lemma 7. Since

M2 is nontrivial, one can choose an invertible y ∈ Ker(ϕ2) so that Eϕ2(y
∗y) =

ϕ2(y
∗y)1 �= 0. Therefore, [27, Proposition 3.5] actually says that (M �σϕ

T
Z)ω ⊆

(M �σϕ
T
Z)′∩ (M �σϕ

T
Z)ω ⊆ (M1�σ

ϕ1
T

Z)ω . For any x ∈ (M2�σ
ϕ2
T

Z)′∩ (M1�σ
ϕ1
T

Z)ω one has y(x−Eω
ϕ(x))+yEω

ϕ(x) = yx= xy =Eω
ϕ(x)y+(x−Eω

ϕ(x))y, and the

free independence of (M1 �σ
ϕ1
T

Z)ω and (M2 �σ
ϕ2
T

Z)ω in ((M �σϕ
T
Z)ω,Eω

ϕ) (see

[24, Proposition 4]) forces at least y(x−Eω
1 (x)) = 0. This implies x = Eω

ϕ(x) ∈
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(C1�σϕ
T
Z)ω thanks to the invertibility of y. Consequently, (M�σϕ

T
Z)ω ⊆ (C1�σϕ

T

Z)ω , from which the desired assertion immediately follows. �

We are ready to prove the desired assertion.

Proof of Theorem 1(2) ⇒ Theorem 1(1)

We prove its contraposition. Namely, assume that M̃ is not full. Lemma 6

together with [20, Theorem XIV.3.8, Theorem XIV.4.7] says that (M �σϕ
T
Z)ω �=

C1.

CLAIM 9

There exists a sequence kl in Z\{0} such that σϕ
klT

−→ IdM in Aut(M) as l→∞
or, equivalently, that ‖x− σϕ

klT
(x)‖ϕ −→ 0 as l→∞ for every x ∈M (since σϕ

t

preserves ϕ; see [20, Theorem IX.1.15, Proposition IX.1.17]).

Proof

On the contrary, suppose that there exist ε > 0 and a finite subset F of M

such that
∑

y∈F
‖y − σϕ

mT (y)‖2ϕ ≥ ε as long as m �= 0. Let x ∈ (M �σϕ
T
Z)ω be

arbitrarily chosen with a representing sequence xn. Lemma 8 shows that x falls

in (C1 �σϕ
T
Z)ω so that we can approximate each xn in the σ-strong topology

by a bounded net consisting of finite linear combinations of the form
∑

m cmum

with scalars cm (see the proof of Lemma 7 for the symbol u). We have∥∥∥(∑
m

cmum
)
− τZ

(∑
m

cmum
)
1
∥∥∥2
τZ

=
∑
m 
=0

|cm|2

≤ ε−1
∑
m 
=0

|cm|2
∑
y∈F

∥∥y− σϕ
mT (y)

∥∥2
ϕ

≤ ε−1
∑
y∈F

∥∥∥∑
m

cm
(
y− σϕ

mT (y)
)
um

∥∥∥2
ϕ◦E

= ε−1
∑
y∈F

∥∥∥y(∑
m

cmum
)
−
(∑

m

cmum
)
y
∥∥∥2
ϕ◦E

.

It follows that ‖xn− τZ(xn)1‖2τZ ≤ ε−1
∑

y∈F
‖yxn−xny‖2ϕ◦E for every n. Taking

the limit of this inequality as n→ ω we get

0≤
∥∥x− τωZ (x)1

∥∥
τω
Z

≤ ε−1
∑
y∈F

‖yx− xy‖2(ϕ◦E)ω = 0.

This implies that x = τω
Z
(x)1, a contradiction to (M �σϕ

T
Z)ω �= C1. Hence, we

have proved the claim. �
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Since |klT | ≥ T > 0 for all l, the sequence klT in the claim never converges to

0 in the usual topology on R. Nevertheless, σϕ
klT

−→ IdM in Aut(M) as l→∞.

These clearly contradict Theorem 1(2). Hence, we are done. �

Here are quick proofs of Theorem 1(1) ⇒ Theorem 1(2) and Theorem 1(2) ⇔
Theorem 1(3) for the sake of completeness. We remark that the former can also

be derived as a consequence of the more general [18, Corollary 3.4].

Proof of Theorem 1(1) ⇒ Theorem 1(3)

Suppose, on the contrary, that there exists a sequence tn of real numbers so

that σϕc

tn −→ IdMc in Aut(Mc) as n→∞ but tn does not converge to 0 in the

usual topology as n→∞. Let λϕc : R→ M̃c =Mc �σϕc R be the canonical uni-

tary representation. Passing to a subsequence, we may assume that there is a

positive constant ε > 0 so that |tn| ≥ 3ε for all n. Then the regular representa-

tion λ : R� L2(R) enjoys that ‖λ(tn)χ[−ε,ε] − ζχ[−ε,ε]‖22 ≥ 2ε for all n and all

ζ ∈ C. It follows that the sequence λϕc(tn) never defines a scalar in (M̃c)
ω . Set

Eϕc := (ϕc ⊗̄ Id) �
M̃c

, a positive scalar multiple of faithful normal conditional

expectation onto C1Mc �σϕc R. With a faithful normal state ψ on C1Mc �σϕc R

we have ‖λϕc(tn)x− xλϕc(tn)‖ψ◦Eϕc
= ‖σϕc

tn (x)− x‖ϕc −→ 0 as n→∞ for every

x ∈Mc so that the sequence λ
ϕc(tn) defines a nonscalar element of (M̃c)

′∩(M̃c)
ω ,

a contradiction. �

Proof of Theorem 1(2) ⇔ Theorem 1(3)

This follows from the equivalence between σϕ
tn −→ IdM in Aut(M) as n→∞ and

(σϕ1

tn , σϕ2

tn ) −→ (IdM1 , IdM2) in Aut(M1)×Aut(M2) as n→∞. First, the linear

span of the identity 1 and all alternating words in Ker(ϕk), k = 1,2 forms a dense

subspace of the standard form L2(M), which can be understood as the completion

of M with respect to the norm ‖ · ‖ϕ. Second, the free independence of M1,M2

with respect to ϕ together with the formula σϕ
t = σϕ1

t � σϕ2

t (see [2], [8]) enables

us to see that ‖σϕ
tn(x)− x‖ϕ ≤ (max1≤i≤l ‖xi‖∞)l−1

∑l
i=1 ‖σ

ϕki
tn (xi)− xi‖ϕki

for

every alternating word x= x1 · · ·xl with xi ∈Ker(ϕki). The equivalence is imme-

diate from these facts (thanks to [20, Theorem IX.1.15, Proposition IX.1.17]). �

In closing this section we give a simple remark explaining Corollary 2.

REMARK 10

The corollary is indeed a particular case of Theorem 1, since any free Araki–

Woods factor Γ(HR,Ut)
′′ with its distinguished state ϕU can be written as a free

product of two nontrivial von Neumann algebras (see the proof of [29, Theo-

rem 2.7] for a related claim). This should be known by experts, but we do give

an explanation about this for the reader’s convenience.

Let Ut = exp(
√
−1tA) with A =

∫ +∞
−∞ sEA(ds) be the Stone representation

on the complexification HR +
√
−1HR. The unitary conjugation J : ξ+

√
−1η �→

ξ −
√
−1η for ξ +

√
−1η ∈ HR +

√
−1HR enjoys the property that JEA(B)J =
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EA(−B) for each Borel subset B of R. This shows that if �(Sp(A)∩ (0,+∞))≤ 1,

then Sp(A) must be either {0}, {−s, s}, or {−s,0, s} with s > 0. Hence, the

desired free product decomposition is obtained in the proof of [16, Theorem 6.1].

If �(Sp(A)∩(0,+∞))≥ 2, then Sp(A)∩(0,+∞) is decomposed into two nontrivial

Borel subsets B1,B2. Set P1 :=EA(−B1 ∪ {0} ∪B1), P2 :=EA(−B2 ∪B2), both

of which commute with Ut and J . Thus, we have (HR,Ut) = (P1HR,Ut �P1HR
)⊕

(P2HR,Ut �P2HR
) so that Γ(HR,Ut)

′′ becomes a free product of two free Araki–

Woods factors (see [16, Theorem 2.11]).

In this way, almost all general results on free Araki–Woods factors follow

as particular cases from the corresponding ones on free product von Neumann

algebras (see [25], [26], [28]). Only two nontrivial facts (i.e., [16, Theorem 5.4]

and [17, Theorem 4.8]), both of which heavily depend upon matricial models,

have not been re-proved in the general framework of free product von Neumann

algebras. These lacks seem to be related to the question from [25, Section 5.4].

Appendix. Bernoulli crossed products

Throughout this section, we follow the notation from [30, Section 2.5], which is

different from that in the other sections. Let Λ be a countable group acting on

a countable set I such that Λ� I has no invariant mean, and let (P,φ) be a

nontrivial von Neumann algebra equipped with a faithful normal state φ. Let

(P,φ)I �Λ (or P I
�Λ for short) be the (generalized) Bernoulli crossed product

(see, e.g., [30, Section 2.5]). Set ϕ := φI ◦ EP I with the canonical conditional

expectation EP I : P I �Λ→ P I .

LEMMA 11

For every countable subgroup G of R, any central sequence (see [21, Definition

XIV.3.2]) in (P I
�Λ)�σϕ G is equivalent to an (operator norm-)bounded one in

(C1�Λ)�σϕ G=C1 ⊗̄L(Λ×G).

Proof

The idea used in the proof of [30, Lemma 2.7] works for proving this lemma.

Let xn be a central sequence in (P I
�Λ)�σϕ G. Consider those xn’s as vectors

in the standard Hilbert space L2((P I
� Λ)�σϕ G)∼= [L2((P,φ)I �C) ⊗̄ 2(Λ) ⊗̄

2(G)] ⊕ [2(Λ) ⊗̄ 2(G)]. We remark that this Hilbert space decomposition is

given by the conditional expectation from (P I
�Λ)�σϕ G onto (C1�Λ)�σψ G

defined to be the restriction of φI ⊗̄ Id ⊗̄ Id to (P I �Λ)�σϕ G and also that the

Bernoulli action commutes with the modular action associated with φI . Hence,

as in the proof of [30, Lemma 2.7] (note that one of the keys there is that any

tensor product representation of nonamenable one with arbitrary one must be

nonamenable again; see, e.g., [19, Proposition 2.7]), we see that xn is equivalent

to (φI ⊗̄ Id ⊗̄ Id)(xn) in (C1�Λ)�σψ G=C1 ⊗̄L(Λ×G). Hence, we are done. �

With the above lemma, one can prove the next proposition in the essentially

same way as in the proof of Theorem 1(1) ⇔ Theorem 1(2).



608 Reiji Tomatsu and Yoshimichi Ueda

THEOREM 12

If P I
�Λ is a full factor of type III1, then the following conditions are equivalent.

(1) The continuous core (P I
�Λ)�σϕ R of P I

�Λ is a full factor.

(2) The τ -invariant τ(P I
� Λ), that is, the weakest topology on R making

the mapping t ∈ R �→ σφ
t ∈ Aut(P ) continuous in this particular case (see [30,

Lemma 2.7]), is the usual topology on R.

Proof

That σϕ
tn −→ Id in Aut(P I) is easily seen to be equivalent to that σφ

tn −→ Id in

Aut(P ). Hence, it suffices to prove Theorem 12(2) ⇒ Theorem 12(1). In fact, the

proof of Theorem 1(1) ⇒ Theorem 1(2) works by replacing ϕc there with φI . We

will explain how to modify the proof of Theorem 1(2) ⇒ Theorem 1(1).

We prove its contraposition. Namely, by Lemma 6 we assume that there

exists a nontrivial strongly central sequence xn in (P I
�Λ)�σϕ

T
Z for some T > 0

(see [21, Definition XIV.3.2] for the notion of strongly central sequences). By

Lemma 11 we may and do assume that all the xn’s fall in (C1 � Λ) �σϕ
T
Z =

C1 ⊗̄L(Λ×Z). As in the proof of Theorem 1(2) ⇒ Theorem 1(1), it suffices to

prove that there exists a sequence kl in Z \ {0} such that ‖x− σϕ
klT

(x)‖ϕ −→ 0

as l →∞ for every x ∈ P I
� Λ. Suppose, on the contrary, that this is not the

case. Since C1�Λ⊆ (P I
�Λ)ϕ, the fixed-point algebra of the modular action σϕ,

the same argument as in Claim in the proof of Theorem 1(2) ⇒ Theorem 1(1)

actually works for proving that ‖xn − (Id ⊗̄ Id ⊗̄ τZ)(xn)‖2 −→ 0 as n→∞. Set

yn := (Id ⊗̄ Id ⊗̄ τZ)(xn) ∈C1�Λ⊆ P I
�Λ. Since we have assumed that P I

�Λ

is full, by [20, Theorem XIV.3.8] the yn’s (and hence the xn’s) must be trivial, a

contradiction. �

So far, we have established, for every explicit example of full type III1 factor

whose τ -invariant is already computed, that the τ -invariant is the usual topol-

ogy if and only if the continuous core is full. Therefore, one may conjecture that

this is true even for any full type III1 factor. Actually, this question seems impor-

tant from the theoretical point of view, and we are still working on this general

question.
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the presentation.
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