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Abstract This article gives an explicit formula for the Ehrhart quasipolynomial of cer-

tain 2-dimensional polyhedra in terms of invariants of surface quotient singularities.

Also, a formula for the dimension of the space of quasihomogeneous polynomials of a

given degree is derived. This admits an interpretation as a numerical adjunction formula

for singular curves on the weighted projective plane.

1. Introduction

This article deals with the general problem of counting lattice points in a polyhe-

dron with rational vertices and its connection with both the singularity theory of

surfaces and adjunction formulas for curves in the weighted projective plane. In

addition, we focus on rational polyhedra (whose vertices are rational points) as

opposed to lattice polyhedra (whose vertices are integers). Our approach exploits

the connection between Dedekind sums (as originated from the work of Hirze-

bruch and Zagier [18]) and the geometry of cyclic quotient singularities, which has

been proposed by several authors (see, e.g., [23], [7], [10], [19], [28], [11], [4], [5]).

According to Ehrhart [17], the number of integer points of a lattice (resp.,

rational) polygon P and its dilations dP = {dp | p ∈ P} is a polynomial (resp.,

quasipolynomial) in d of degree dimP referred to as theEhrhart (quasi-)polynomial

of P (cf. [12]). In this article we focus on the Ehrhart quasipolynomial of polygons

of type

(1) dDw =Dw,d =
{
(x, y, z) ∈R3

∣∣ x, y, z ≥ 0,w0x+w1y+w2z = d
}
,
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where w = (w0,w1,w2) are pairwise coprime and

(2) Dw :=
{
(x, y, z) ∈R3

∣∣ x, y, z ≥ 0,w0x+w1y+w2z = 1
}

is a rational polygon. In Theorem 1.1 we give an explicit formula for the Ehrhart

quasipolynomial of (1), which in Theorem 1.2 is shown to be an invariant of the

quotient singularities of the weighted projective plane P2
w.

Throughout this article, w0,w1,w2 are assumed to be pairwise coprime

integers. Denote by w = (w0,w1,w2), w̄ = w0w1w2, and |w| = w0 + w1 + w2.

Finally, the key ingredients to connect the arithmetical problem referred to

above with the geometry of weighted projective planes come from the obser-

vation that

(3) Lw(d) := #(Dw,d ∩Z3) = h0
(
P2
w;O(d)

)
,

that is, the dimension of the vector space of weighted homogeneous polynomials

of degree d, and from a numerical adjunction formula relating h0(P2
w;O(d)) with

the genus of a curve in P2
w.

To explain what we mean by numerical adjunction formulas, assume that

a quasismooth curve C ⊂ P2
w of degree d exists. In that case, according to the

classical adjunction formula, one has the following equality relating canonical

divisors on C and P2
w:

(4) KC = (KP2
w
+ C)|C .

Equating degrees on both sides of (4) and using the weighted Bézout’s theorem,

one has

2g(C)− 2 = deg(KP2
w
+ C)|C =

deg(C)deg(KP2
w
+ C)

w̄
=

d(d− |w|)
w̄

.

Notice that the generic curve of degree kw̄ is smooth (see [15, Lemma 5.4]).

In that case, one has (cf. Section 4)

(5) h0
(
P2
w;O

(
kw̄− |w|

))
=Lw

(
kw̄− |w|

)
= gw,kw̄,

where gw,t :=
t(t−|w|)

2w̄ + 1.

However, for a general d the generic curve of degree d in P2
w is not necessarily

quasismooth (see [15, Lemma 5.4]). The final goal of this article is to revisit (5)

in the general (singular) case.

Let us present the main results of this work. The first main statement shows

an explicit formula for the Ehrhart quasipolynomial Lw(d) of degree two of Dw,d

in terms of d.

THEOREM 1.1

The Ehrhart quasipolynomial Lw(d) for the polygon Dw in (2) satisfies

Lw(d) = gw,d+|w| −
∑

P∈Sing(P2
w)

ΔP

(
d+ |w|

)
.
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The quadratic polynomial gw,k =
k(k−|w|)

2w̄ + 1 in k is called the virtual genus

(see [15, Definition 5.1]) and ΔP (k) is a periodic function of period w̄ which is

an invariant associated to the singularity P ∈ Sing(P2
w) (see Definition 3.8). The

proof of Theorem 1.1 relies heavily on computations with Dedekind sums.

The next result aims to show that the previous combinatorial number ΔP (k)

has a geometric interpretation and can be computed via invariants of curve sin-

gularities on a singular surface. To do so, we recall the recently defined invariant

δP (f) of a curve ({f = 0}, P ) on a surface with quotient singularity (see [15,

Section 4.2]), and we define a new invariant κP (f) in Section 3.1.

THEOREM 1.2

Let (f,P ) be a reduced curve germ at P ∈X, a surface cyclic quotient singularity.

Then

ΔP (k) = δP (f)− κP (f)

for any reduced germ f ∈OX,P (k).

The module OX,P (k) of k-invariant germs of X at P can be found in Defini-

tion 2.3.

As an immediate consequence of Theorems 1.1 and 1.2 one has a method

to compute Lw(d) by means of appropriate curve germs ({f = 0}, P ) on sur-

face quotient singularities. In an upcoming article (see [14]), we will study the

ΔP (k)-invariant by means of singularity theory and intersection theory on surface

quotient singularities to give a closed effective formula for the Ehrhart quasipoly-

nomial Lw(d). In fact, Theorem 1.1 can also be seen as a version of [7], where an

explicit interpretation of the correction term is given in Theorem 1.2.

Finally, we generalize the numerical adjunction formula for a general singular

curve C on P2
w relating h0(P2,OP2

w
(d−|w|)), its genus g(C), and the newly defined

invariant κP .

THEOREM 1.3 (NUMERICAL ADJUNCTION FORMULA)

Consider C = {f = 0} ⊂ P2
w an irreducible curve of degree d. Then

h0
(
P2
w,OP2

w

(
d− |w|

))
= g(C) +

∑
P∈Sing(C)

κP (f).

This article is organized as follows. In Section 2 some basic definitions and prelim-

inary results on surface quotient singularities, logarithmic forms, and Dedekind

sums are given. In Section 3, after defining the three local invariants mentioned

above, a proof of Theorem 1.2 is given. An introductory example is treated in

Section 4, and finally, the main results, Theorems 1.1 and 1.3, are proven in

Section 5.
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2. Definitions and preliminaries

In this section some needed definitions and results are provided.

2.1. V -manifolds and quotient singularities
We start by giving some basic definitions and properties of V -manifolds, weighted

projective spaces, embedded Q-resolutions, and weighted blowups (for a detailed

exposition see, e.g., [16], [2], [3], [20], [22]). Let us fix the notation and introduce

several tools to calculate a special kind of embedded resolution, called embedded

Q-resolutions (see Definition 2.4), for which the ambient space is allowed to

contain abelian quotient singularities. To do this, we study weighted blowups at

points.

DEFINITION 2.1

A V -manifold of dimension n is a complex analytic space which admits an open

covering {Ui} such that Ui is analytically isomorphic to Bi/Gi where Bi ⊂Cn is

an open ball and Gi is a finite subgroup of GL(n,C).

We are interested in V -surfaces where the quotient spaces Bi/Gi are given by

(finite) abelian groups.

Let Gd ⊂ C∗ be the cyclic group of dth roots of unity generated by ξd.

Consider a vector of weights (a, b) ∈ Z2 and the action

Gd ×C2 ρ−→ C2,
(6) (

ξd, (x, y)
)

�→ (ξadx, ξ
b
dy).

The set of all orbits C2/Gd is called a cyclic quotient space of type (d;a, b) and

it is denoted by X(d;a, b).

The type (d;a, b) is normalized if and only if gcd(d, a) = gcd(d, b) = 1. If this

is not the case, then one uses the isomorphism (assuming gcd(d, a, b) = 1)

X(d;a, b) −→X
( d

(d, a)(d, b)
;

a

(d, a)
,

b

(d, b)

)
,[

(x, y)
]
�→

[
(x(d,b), y(d,a))

]
to normalize it.

We present different properties of some important sheaves associated to a

V -surface (see [8, Section 4], [16]).

PROPOSITION 2.2 ([8])

Let OX be the structure sheaf of a V -surface X.

• If P is not a singular point of X, then OX,P is isomorphic to the ring of

convergent power series C{x, y}.
• If P is a singular point of X, then OX,P is isomorphic to the ring of Gd-

invariant convergent power series C{x, y}Gd .
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If no ambiguity seems likely to arise, then we simply write OP for the corre-

sponding local ring or just O in the case P = 0.

DEFINITION 2.3

Let Gd be an arbitrary finite cyclic group, and let (a, b) ∈ Z2 be a vector of

weights. Consider the action given in (6). Associated with X(d;a, b) one has the

following OX,P -module:

OX,P (k) :=
{
h ∈C{x, y}

∣∣ h(ξadx, ξbdy) = ξkdh(x, y)
}
,

also known as the module of k-invariant germs in X(d;a, b).

REMARK 2.1

Note that

(7) C{x, y}=
d−1⊕
k=0

OX,P (k).

REMARK 2.2 ([8])

Let l, k ∈ Z. Using the notation above one clearly has the following properties:

• OX,P (k) =OX,P (d+ k),

• OX,P (l)⊗OX,P (k)⊂OX,P (l+ k).

These modules produce the corresponding sheaves OX(k) on a V -surface X ,

which are also called orbisheaves.

One of the main examples of V -surfaces is the so-called weighted projective

plane (e.g., [16]). Let w := (w0,w1,w2) ∈ Z3
>0 be a weight vector, that is, a triple

of pairwise coprime positive integers. There is a natural action of the multiplica-

tive group C∗ on C3 \ {0} given by

(x0, x1, x2) �−→ (tw0x0, t
w1x1, t

w2x2).

The universal geometric quotient of
C

3\{0}
C∗ under this action is denoted by P2

w

and it is called the weighted projective plane of type w.

Let us recall the adapted concept of resolution in this category.

DEFINITION 2.4 ([20])

An embedded Q-resolution of a hypersurface (H,0)⊂ (M,0) in an abelian quo-

tient space is a proper analytic map π :X → (M,0) such that

(1) X is a V -manifold with abelian quotient singularities,

(2) π is an isomorphism over X \ π−1(Sing(H)),

(3) π−1(H) is a Q-normal crossing hypersurface on X (see [26, Defini-

tion 1.16]).

Embedded Q-resolutions are a natural generalization of the usual embedded

resolutions for which some invariants such as δ can be effectively calculated (see
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[15]). As a key tool to construct embedded Q-resolutions of abelian quotient

surface singularities we will recall toric transformations or weighted blowups in

this context (see [21] as a general reference), which can be interpreted as blowups

of m-primary ideals.

Let X be an analytic surface with abelian quotient singularities. Let us define

the weighted blowup π : X̂ →X at a point P ∈X with respect to w = (p, q). Since

it will be used throughout the article, we briefly describe the local equations of

a weighted blowup at a point P of type (d;a, b) (see [20, Chapter 1] for further

details).

The birational morphism π = π(d;a,b),w : ̂X(d;a, b)w → X(d;a, b) can be

described as usual by covering ̂X(d;a, b)w into two charts Û1 ∪ Û2, where for

instance Û1 is of type X(
pd

e ; 1,
−q+a′pb

e ), with a′a = b′b ≡ 1 mod (d) and e =

gcd(d, pb− qa). The first chart is given by

X
(pd
e
; 1,

−q+ a′pb

e

)
−→ Û1,

(8) [
(xe, y)

]
�→

[(
(xp, xqy), [1 : y]w

)]
(d;a,b)

.

The second one is given analogously.

The exceptional divisor E = π−1
(d;a,b),w(0) is identified with P1

w(d;a, b) :=

P1
w/Gd. The singular points are cyclic and correspond to the origins of the two

charts.

2.2. Log-resolution logarithmic forms
All the preliminaries about de Rham cohomology for projective varieties with

quotient singularities can be found in [26, Chapter 1], and the ones about the C∞

log complex of quasiprojective algebraic varieties can be found in [13, Section 1.3].

Here we focus on the nonnormal crossing Q-divisor case in weighted projective

planes.

Let D be a Q-divisor in a surface X with quotient singularities. The com-

plement of D will be denoted by XD. Let us fix a Q-resolution π : Y −→X of

the singularities of D so that the reduced Q-divisor D̄ = π∗(D)red is a union of

smooth Q-divisors on Y with Q-normal crossings.

Using the results in [26] we can generalize in [13, Definition 2.7] for a non-

normal crossing Q-divisor in X .

DEFINITION 2.5

The sheaf π∗ΩY (log〈D̄〉) is called the sheaf of log-resolution logarithmic forms

on X with respect to D.

REMARK 2.3

Note that the space Y in the previous definition is not smooth, and we use the

standard definition of logarithmic sheaf for V -manifolds and V -normal crossing

divisors D̄ due to Steenbrink [26].
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In what follows, a log-resolution logarithmic form with respect to a Q-divisor D

and a Q-resolution π will be referred to as simply a logarithmic form if D and π

are known and no ambiguity is likely to arise.

REMARK 2.4

Let h be an analytic germ on X(d;a, b) where the type is normalized. Notice

that ω = h
dx∧dy

xy automatically defines a logarithmic form with poles along xy,

whereas expressions of the form ω̃ = h
dx∧dy

x might not even define a 2-form unless

h is such that ω̃ is invariant under Gd.

Also note that π∗ΩY (log〈D̄〉) depends, in principle, on the given resolution π.

The following result shows that this is not the case.

PROPOSITION 2.6

The sheaves π∗Ω
•
Y (log〈D̄〉) of logarithmic forms on X with respect to the Q-

divisor D do not depend on the chosen Q-resolution.

Proof

Let Y and Y ′ be two Q-resolutions of (X,D). After resolving (Y, D̄) and (Y ′, D̄′)

and applying the strong factorization theorem for smooth surfaces, there exists

a smooth surface Ỹ obtained as a finite number of blowups of both Y and Y ′,

which is a common resolution of (Y, D̄) and (Y ′, D̄′). Note that (see [26, p. 351])

Ω•
Y

(
log〈D̄〉

)
= ρ∗Ω

•
Ỹ

(
log〈D̃〉

)
and Ω•

Y ′
(
log〈D̄′〉

)
= ρ′∗Ω

•
Ỹ

(
log〈D̃〉

)
,

where D̄, D̄′, and D̃ are the corresponding total preimages and ρ and ρ′ are the

corresponding resolutions. The result follows, since

π∗Ω
•
Y

(
log〈D̄〉

)
= π∗ρ∗Ω

•
Ỹ

(
log〈D̃〉

)
= π′

∗ρ
′
∗Ω

•
Ỹ

(
log〈D̃〉

)
= π′

∗Ω
•
Y ′
(
log〈D̄′〉

)
due to the commutativity of the diagram πρ= π′ρ′. �

NOTATION 2.7

In the future, we will refer to such sheaves as logarithmic sheaves on D and they

will be denoted simply as Ω•
X(LR〈D〉).

2.3. Dedekind sums
Let a, b, c, t be positive integers with gcd(a, b) = gcd(a, c) = gcd(b, c) = 1. The aim

of this part (see [6] for further details) is to give a way to compute the cardinal

of the following two sets:

Δ1 :=
{
(x, y) ∈ Z2

≥0

∣∣ ax+ by ≤ t
}
,

Δ2 :=
{
(x, y, z) ∈ Z3

≥0

∣∣ ax+ by+ cz = t
}
.

Note that #Δ1 cannot be computed by means of Pick’s theorem unless t is

divisible by a and b.

Denote by LΔi(t) the cardinal of Δi. Let us consider the following notation.
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NOTATION 2.8

Denote by ξa := e
2iπ
a . Consider

p{a,b,c}(t) := poly{a,b,c}(t) +
1

a

a−1∑
k=1

1

(1− ξkba )(1− ξkca )ξkta

+
1

b

b−1∑
k=1

1

(1− ξkab )(1− ξkcb )ξktb
+

1

c

c−1∑
k=1

1

(1− ξkac )(1− ξkbc )ξktc
,

(9)

with

poly{a,b,c}(t) :=
t2

2abc
+

t

2

( 1

ab
+

1

ac
+

1

bc

)
+

3(ab+ ac+ bc) + a2 + b2 + c2

12abc
.

REMARK 2.5

Notice that, in particular, one has

p{a,b,1}(t) = poly{a,b,1}(t)

+
1

a

a−1∑
k=1

1

(1− ξkba )(1− ξka)ξ
kt
a

+
1

b

b−1∑
k=1

1

(1− ξkab )(1− ξkb )ξ
kt
b

,
(10)

with

poly{a,b,1}(t) =
t2

2ab
+

t

2

( 1

ab
+

1

a
+

1

b

)
+

3(ab+ a+ b) + a2 + b2 + 1

12ab
.

THEOREM 2.9 ([6])

One has

LΔ1(t) = p{a,b,1}(t) and LΔ2(t) = p{a,b,c}(t).

Now we are going to define the Dedekind sums, giving some properties which

will be particularly useful for future results. See [24] and [6] for a more detailed

exposition.

DEFINITION 2.10 ([24])

Let a, b be integers, with gcd(a, b) = 1 and b ≥ 1. The Dedekind sum s(a, b) is

defined as

(11) s(a, b) :=

b−1∑
j=1

((ja
b

))((j
b

))
,

where the symbol ((x)) denotes

((x)) =

{
x− [x]− 1

2 if x is not an integer,

0 if x is an integer,

with [x] being the greatest integer not exceeding x.

The following result, referred to as a reciprocity theorem (see [6, Corollary 8.5]

or [24, Theorem 2.1] for further details), will be key in what follows.
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THEOREM 2.11 (RECIPROCITY THEOREM; SEE [6], [24])

Let a and b be two coprime integers. Then

s(a, b) + s(b, a) =−1

4
+

1+ a2 + b2

12ab
.

Let us express the sum (11) in terms of ath roots of the unity (see, e.g., [6,

Example 8.1] or [24, Chapter 2, (18b)] for further details).

PROPOSITION 2.12 ([6], [24])

Let a, b be integers, with gcd(a, b) = 1 and b ≥ 1. Denote by ξb a primitive bth

root of unity. The Dedekind sum s(a, b) can be written as

s(a, b) =
b− 1

4b
− 1

b

b−1∑
k=1

1

(1− ξkab )(1− ξkb )
.

Let us exhibit some useful properties of the Dedekind sum s(a, b).

Since ((−x)) =−((x)) it is clear that

s(−a, b) =−s(a, b)

and also

s(a,−b) = s(a, b).

If we define a′ by a′a≡ 1 mod b, then

s(a′, b) = s(a, b).

PROPOSITION 2.13 ([6], [24])

Let a, b, c be integers with gcd(a, b) = gcd(a, c) = gcd(b, c) = 1. Define a′ by a′a≡ 1

mod b, b′ by b′b≡ 1 mod c, and c′ by c′c≡ 1 mod a. Then

s(bc′, a) + s(ca′, b) + s(ab′, c) =−1

4
+

a2 + b2 + c2

12abc
.

DEFINITION 2.14 ([6])

Let a1, . . . , am, let n ∈ Z, and let b ∈ Z>0. Then the Fourier–Dedekind sum is

defined as

sn(a1, . . . , am; b) :=
1

b

b−1∑
k=1

ξknb
(1− ξka1

b )(1− ξka2

b ) · · · (1− ξkam

b )
.

Let us see some interesting properties of these sums.

REMARK 2.6 ([6])

Let a, b, c ∈ Z.

(1) For all n ∈ Z, sn(a, b; 1) = 0.

(2) For all n ∈ Z, sn(a, b; c) = sn(b, a; c).
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(3) One has s0(a,1; b) =−s(a, b) + b−1
4b .

(4) If a′ denotes the inverse of a modulo c, then s0(a, b; c) =−s(a′b, c)+ c−1
4c .

With this notation we can express (9) and (10) as

p{a,b,1}(t) = poly{a,1,b}(t) + s−t(a,1; b) + s−t(1, b;a),(12)

p{a,b,c}(t) = poly{a,b,c}(t) + s−t(a, b; c) + s−t(b, c;a) + s−t(a, c; b).(13)

As a consequence of Zagier reciprocity in dimension 3 (see [6, Theorem 8.4]),

one has the following result.

COROLLARY 2.15 (RADEMACHER’S RECIPROCITY LAW; SEE [6])

Substituting t= 0 in the previous expression one gets

1− poly{a,b,c}(0) = s0(a, b; c) + s0(c, b;a) + s0(a, c; b) =−1

4
+

a2 + b2 + c2

12abc
.

3. Local algebraic invariants on quotient singularities

In this section we study two local invariants of a curve in a V -surface, the δ-

invariant δP (C) and the dimension κP (C) (see Definitions 3.2 and 3.5), and a

local invariant of the surface, ΔP (k) (see Definition 3.8), as well as the relation

among them (see Theorem 1.2), so as to understand the right-hand side of the

formula in Theorem 1.1.

In [15] and [22] we started extending the concept of the Milnor fiber and

Milnor number of a curve singularity allowing the ambient space to be a quotient

surface singularity. A generalization of the local δ-invariant is also defined and

described in terms of a Q-resolution of the curve singularity. All these tools allow

for an explicit description of the genus formula of a curve defined on a weighted

projective plane in terms of its degree and the local type of its singularities.

DEFINITION 3.1 ([15])

Let C = {f = 0} ⊂ X(d;a, b) be a curve germ, where f is quasi-invariant. The

Milnor fiber fw
t of (C, [0]) is defined as

fw
t := {fd = t}/Gd.

The Milnor number μw of (C, P ) is defined as

μw := 1− χorb(fw
t ).

We recall that χorb(O) := 1
|G|

∑
Δ(−1)dimΔ|GΔ| for an orbifold O with a finite

CW -complex structure given by the cells Δ and the finite group G acting on it,

where GΔ denotes the stabilizer of Δ.

Note that alternative generalizations of Milnor numbers can be found, for

instance, in [1], [9], [27], and [25]. The one proposed here seems more natural

for quotient singularities, but more importantly, it allows for the existence of an
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explicit formula relating the Milnor number, δ-invariant, and genus of a curve on

a singular surface.

We define the local invariant δ for curve singularities on X(d;a, b).

DEFINITION 3.2 ([15])

Let C be a reduced curve germ at [0] ∈X(d;a, b). Then we define δ (or δ0(C)) as
the number verifying

χorb(fw
t ) = rw − 2δ,

where rw is the number of irreducible branches of C at [0].

REMARK 3.1

Note that the δ-invariant of a reduced curve (i.e., a reduced Q-divisor) on a

surface with quotient singularity is not an integer number in general, but rather

a rational number (see [15, Example 4.6]). However, in the case when C is in fact

Cartier, δ0(C) is an integer number that has an interpretation as the dimension of

the quotient R̄/R where R is the coordinate ring of C and R̄ is its normalization

(see [15, Theorem 4.14]). An alternative definition of δ0(C) on normal surfaces in

terms of a resolution can be found in [7].

Also note that rw can also be seen as the number of irreducible k-invariant

factors of the defining equation f . For instance, the germ defined by f = (x2−y4)

in C2 is not irreducible since (x2 − y4) = (x− y2)(x+ y2). However, f = 0 also

defines a set of zeroes in X(2; 1,1), which is irreducible (and hence rw = 1), since

(x− y2) and (x+ y2) are not k-invariant for any k (recall Definition 2.3).

A recurrent formula for δ based on a Q-resolution of the singularity is provided

in Theorem 3.3.

Assume (f,0) ⊂ X(d;a, b), and consider a (p, q)-blowup π at the origin.

Denote by ν0(f) the (p, q)-multiplicity of f at 0, and let e := gcd(d, pb − qa).

As an interpretation of ν = ν0(f), we recall that π∗(C) = Ĉ + ν
eE, where π∗(C)

is the total transform of C, Ĉ is its strict transform, and E is the exceptional

divisor.

We will use the following notation:

(14) δ0,π(f) =
ν0(f)

2dpq

(
ν0(f)− p− q+ e

)
.

THEOREM 3.3 ([15])

Let (C, [0]) be a curve germ on an abelian quotient surface singularity. Then

(15) δ(C) =
∑
Q≺[0]

δQ,π(p,q)
(f),

where Q runs over all the infinitely near points of a Q-resolution of (C, [0]) and

π(p,q) is a (p, q)-blowup of Q, the origin of X(d;a, b).
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3.1. Logarithmic modules
For a given k ≥ 0, one has the module OP (k) of k-invariant germs (see Defini-

tion 2.3)

OP (k) :=
{
h ∈C{x, y}

∣∣ h(ξadx, ξbdy) = ξkdh(x, y)
}
.

Let {f = 0} be a germ in X(d;a, b). Note that if f ∈ OP (k), then one has the

following OP -module:

OP (k− a− b) =
{
h ∈C{x, y}

∣∣∣ hdx∧ dy

f
is Gd-invariant

}
.

DEFINITION 3.4

Let D = {f = 0} be a germ in P ∈X(d;a, b), where f ∈OP (k).

(1) Let MLR
D denote the submodule of OP (k − a− b) consisting of all h ∈

OP (k− a− b) such that the 2-form (recall Notation 2.7)

ω = h
dx∧ dy

f
∈Ω2

X

(
LR〈D〉

)
.

(2) Let Mnul
D denote the submodule of MLR

D consisting of all h ∈MLR
D such

that the 2-form

ω = h
dx∧ dy

f
∈Ω2

X

(
LR〈D〉

)
admits a holomorphic extension outside the strict transform f̂ .

(3) Any OP -module M⊆MLR
D will be called a logarithmic module.

DEFINITION 3.5

Let D = {f = 0} be a germ in P ∈X(d;a, b). Let us define the following dimen-

sion:

κP (D) = κP (f) := dimC

OP (s)

Mnul
D

,

for s= deg f − a− b.

REMARK 3.2

From the discussion in Section 2.2 note that κP (f) turns out to be a finite number

independent of the chosen Q-resolution. Intuitively, the number κP (f) provides

the minimal number of conditions required for a generic germ h ∈OP (s) so that

h ∈Mnul
D .

REMARK 3.3

It is known (see [13, Chapter 2]) that if f is a holomorphic germ in (C2,0), then

κ0(f) = δ0(f).
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3.2. The δ-invariant in the general case of local germs
Let us start with the following constructive result which allows one to see any

singularity on the quotient X(d;a, b) as the strict transform of some {g = 0} ⊂C2

after performing a certain weighted blowup.

REMARK 3.4

The Weierstrass division theorem states that, given f, g ∈ C{x, y} with f being

y-general of order k, there exist q ∈ C{x, y} and r ∈ C{x}[y] of degree in y less

than or equal to k−1, both uniquely determined by f and g, such that g = qf+r.

The uniqueness and the linearity of the action ensure that the division can be

performed equivariantly for the action of Gd on C{x, y} (see (7)), that is, if

f, g ∈ O(l), then so are q and r. In other words, the Weierstrass preparation

theorem still holds for zero sets in C{x, y}Gd .

Let {f = 0} ⊂ (X(d;a, b),0) be a reduced analytic germ. Assume that (d;a, b) is a

normalized type. After a suitable change of coordinates of the form X(d;a, b)→
X(d;a, b), [(x, y)] �→ [(x + λyk, y)] where bk ≡ a mod d, one can assume x � f .
Moreover, by Remark 3.4, f can be written in the form

(16) f(x, y) = yr +
∑

i>0,j<r

aijx
iyj ∈C{x}[y]∩O(k).

For technical reasons, in the following results the space X(d;a, b) will be consid-

ered to be of type X(p;−1, q). Note that this is always possible.

LEMMA 3.6

Let f ∈ O(k) define an analytic germ on X(p;−1, q), gcd(p, q) = 1, such that

x � f . Then there exist g ∈ C{x, y} with x � g such that g(xp, xqy) = xqrf(x, y).

Moreover, f is reduced (resp., irreducible) if and only if g is.

Proof

By the discussion after Remark 3.4 one can assume f ∈ C{x}[y] as in (16). We

have −i+ qj ≡ qr ≡ k mod p for all i, j so p | (i+ q(r− j)) and i+ q(r− j)> 0.

Consider

g(x, y) = yr +
∑

i>0,j<r

aijx
i+q(r−j)

p yj ∈C{x}[y],

g(xp, xqy) = xqryr +
∑

i>0,j<r

aijx
i+qryj = xqr

(
yr +

∑
i>0,j<r

aijx
iyj

)
.

Note that the strict transform passes only through the origin of the first chart. �

The following Proposition 3.7 will be useful to give a generalization of Remark 3.3.

Before we state the result we need some notation. Given r, p, q ∈ Z>0 we define
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the following combinatorial number which generalizes
(
d
2

)
:

(17) δ(p,q)r :=
r(qr− p− q+ 1)

2p
.

Note that
(
d
2

)
= δ

(1,1)
d .

PROPOSITION 3.7

Let p, q, a, r ∈ Z>0 with gcd(p, q) = 1 and r1 = r + pa. Consider the following

cardinal:

A(p,q)
r := #

{
(i, j) ∈ Z2

∣∣ pi+ qj ≤ qr; i, j ≥ 1
}
.

(1) If r = pa, then one has δ
(p,q)
r =A

(p,q)
r .

(2) The following equalities hold:

δ(p,q)r1 − δ(p,q)r = δ
(p,q)
r1−r + aqr,(18)

A(p,q)
r1 −A(p,q)

r =A
(p,q)
r1−r + aqr.(19)

(3) The difference A
(p,q)
r − δ

(p,q)
r only depends on r modulo p.

Proof

(1) To prove this fact it is enough to apply Pick’s theorem (see, e.g., [6,

Section 2.6]), noticing that the number of points on the diagonal without counting

the ones on the axes is a− 1. Finally, one gets

A(p,q)
pa =

a(pqa− p− q+ 1)

2
= δ(p,q)pa .

(2) Proving (18) is a simple and direct computation. To prove (19), let us

describe A
(p,q)
r1 , A

(p,q)
r , and A

(p,q)
r1−r:

A(p,q)
r1 =#

{
(i, j) ∈ Z2

∣∣ pi+ qj ≤ qr+ pqa; i, j ≥ 1
}
,

A(p,q)
r =#

{
(i, j) ∈ Z2

∣∣ pi+ qj ≤ qr; i, j ≥ 1
}

=#
{
(i, j) ∈ Z2

∣∣ pi+ qj ≤ qr+ apq− apq; i, j ≥ 1
}

=#
{
(i, j) ∈ Z2

∣∣ p(i+ aq) + qj ≤ qr1; i≥ 1, j ≥ 1
}

=#
{
(i, j) ∈ Z2

∣∣ pi+ qj ≤ qr1; i≥ aq+ 1, j ≥ 1
}
,

A
(p,q)
r1−r =#

{
(i, j) ∈ Z2

∣∣ pi+ qj ≤ qr1 − qr; i, j ≥ 1
}

=#
{
(i, j) ∈ Z2

∣∣ pi+ q(j + r)≤ qr1; i, j ≥ 1
}

=#
{
(i, j) ∈ Z2

∣∣ p+ qj ≤ qr1; i≥ 1, j ≥ r+ 1
}
.

By using the decomposition shown in Figure 1, the claim follows.

(3) Subtracting (18) and (19) shows that the result holds. �
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Figure 1

DEFINITION 3.8

Let k ≥ 0, and let P ∈X(p;−1, q) =X . The ΔP (k)-invariant of X is defined as

ΔP (k) :=A(p,q)
r − δ(p,q)r ,

where r = q−1k mod p.

As a result of Proposition 3.7 one has the following result.

THEOREM 3.9

Let f1, f2 ∈O(k) be two germs at [0] ∈X(d;a, b). Then,

κ0(f1)− κ0(f2) = δ0(f1)− δ0(f2).

Proof

By Remark 3.4 and the discussion after it, we can assume that

f�(x, y) = yr� +
∑

i>0≤j<r�

aijx
iyj ∈C{x}[y]

in X(p;−1, q) (p = d, q ≡ −ba−1 mod d). Consider g1 ∈ C{x, y} the reduced

germ obtained after applying Lemma 3.6 to f1. Denote by π(p,q) the blowup at

the origin. Note that νp,q(g1) = qr1, and thus, δ
(p,q)
r1 = δπ(p,q)

(g1) (see (17) and

(14)).

Consider the form ω := φdx∧dy
g1

, φ ∈ C{x, y}, and let us calculate the local

equations for the pullback of ω after blowing-up the origin on C2,

(20) φ
dx∧ dy

g1

π(p,q)←− xνφ+p+q−1−qr1h
dx∧ dy

f1
.

Using the definitions of Mnul
g1 and Mnul

f1
(see Definition 3.4), we find that

φ ∈Mnul
g1 ⇔ h ∈Mnul

f1 and νφ + p+ q− 1− qr1 ≥ 0.
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Therefore, φ(x, y) �→ φ(xp, xqy) induces an isomorphism

Mnul
g1

∼=A(p,q)
r1 ∩Mnul

f1 ,

where A(p,q)
r1 := {h ∈ C{x, y} | ordh+p+ q − 1− qr1 ≥ 0} and ordh is the (p, q)-

order of h. Since dimC

C{x,y}
A(p,q)

r1

=A
(p,q)
r1 , one obtains

(21) κ0(g1) =A(p,q)
r1 + κ0(f1).

On the other hand (see Remark 3.3 and Theorem 3.3),

(22) κ0(g1) = δ0(g1) = δπ(p,q)
(f) + δ0(f1) = δ(p,q)r1 + δ0(f1).

Therefore, from (21) and (22),

(23) κ0(f1) = δ0(f1) + δ(p,q)r1 −A(p,q)
r1 .

Following a similar procedure we get

(24) κ0(f2) = δ0(f2) + δ(p,q)r2 −A(p,q)
r2 .

Notice that k ≡ qr1 ≡ qr2 mod p, which implies r1 ≡ r2 mod p since p and q are

coprime. Therefore by Proposition 3.7,

A(p,q)
r1 − δ(p,q)r1 =A(p,q)

r2 − δ(p,q)r2 ,

and finally from (23) and (24) it can be concluded that

κ0(f1)− κ0(f2) = δ0(f1)− δ0(f2). �

Proof of Theorem 1.2

The result follows directly from (23). �

REMARK 3.5

If (f, [0]) is a function germ on X =X(d;a, b), then from Proposition 3.7(1) and

Theorem 1.2, one has

κP (f) = δP (f).

In particular, if P is a smooth point of X , then this generalizes Remark 3.3.

4. An introductory example

Let us start this section with one basic illustrative example. Let us compute the

number of solutions (a, b, c) ∈ Z3
≥0 of the equation

aw0 + bw1 + cw2 = kw̄

with w0,w1,w2 ∈ Z>0 and k ∈ Z≥0 fixed, or equivalently, the number of mono-

mials in OP2
w

of quasihomogeneous degree kω̄. This number will be denoted

by Lw(kw̄) (recall (3)). Notice that this is equivalent to computing the num-

ber of nonnegative integer solutions (a, b, c) to aw0 + bw1 = (kw01 − c)w2 (with

wij :=wiwj), which can be achieved by considering the following sets:
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Figure 2

Ã :=
{
(a, b) ∈ Z2

>0

∣∣ aw0 + bw1 = αw2, α= 0, . . . , kw01

}
,

B̃ :=
{
(a,0) ∈ Z2

>0

∣∣ aw0 = αw2, α= 0, . . . , kw01

}
∪
{
(0, b) ∈ Z2

>0

∣∣ bw1 = αw2, α= 0, . . . , kw01

}
.

If we denote by A = #Ã and B = #B̃, then one has Lw(kw̄) = A+ B + 1. To

compute A take two integers n0, n1 such that n0w0 + n1w1 = 1 with n1 > 0 and

n0 ≤ 0. (This can always be done since the weights are pairwise coprime.) There

exists a positive integer λ satisfying a= n0αw2 + λw1 and −n0αw2

w1
< λ<

n1αw2

w0
.

This justifies the following definition (see Figure 2):

Aα := #
{
λ ∈ Z>0

∣∣∣−n0αw2

w1
< λ<

n1αw2

w0

}
.

Note that by virtue of Pick’s theorem the area of the triangle is equal to the

number of natural points in its interior I plus one half the number of points in

the boundary minus one. The area of the triangle equals k2ω̄
2 . Thus,

k2ω̄

2
= I +

k|w|
2

− 1,

which implies

A= I + (kw2 − 1) =
(k2w̄

2
− k|w|

2
+ 1

)
+ (kw2 − 1) =

1

2

(
k2w̄− k|w|

)
+ kw2.

It is easy to check that B = kw0 + kw1. Then we have

Lw(kw̄) =
1

2
k
(
kw̄+ |w|

)
+ 1.
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It is known that the genus of a smooth curve on P2
w of degree d transversal with

respect to the axes is

gw,d =
d(d− |w|)

2w̄
+ 1.

We want to find d such that Lw(kw̄) = gw,d. To do that it is enough to solve the

equation

1

2
k
(
kw̄+ |w|

)
+ 1=

d(d− |w|)
2w̄

+ 1.

One finally gets that

Lw(kw̄) = gw,|w|+kw̄.

The rest of this article deals with the extension of this example when d is not

necessarily a multiple of w̄.

5. Proof of the main results

Proof of Theorem 1.1

We will prove the equivalent formula

Lw

(
d− |w|

)
= gw,d −

∑
P∈Sing(P2

w)

ΔP (d).

From the definitions note that

Lw

(
d− |w|

)
= p{w0,w1,w2}

(
d− |w|

)
=: p{w}

(
d− |w|

)
.

Fix a point P ∈ Sing(P2
w), and describe for simplicity the local singularity as

X(wi;wi+1,wi+2) =X(wi;−1, qi), where qi :=−w−1
i+1wi+2 mod wi, for i= 0,1,2.

(The indices are considered modulo 3.) Define ri :=w−1
i+2d mod wi. Then

A(wi,qi)
ri = p{wi,qi,1}(qiri −wi − qi).

On the one hand from (13) and a direct computation one obtains

Lw

(
d− |w|

)
− gw,d = −1 + poly{w}(0) +

2∑
i=0

s|w|−d(wi,wi+1;wi+2).

By Definition 2.14 and Corollary 2.15 one obtains

(25) Lw

(
d− |w|

)
− gw,d =

2∑
i=0

(
s|w|−d(wi+1,wi+2;wi)− s0(wi+1,wi+2;wi)

)
.

On the other hand, from (12) and straightforward computations, one obtains

δ(wi,qi)
ri −A(wi,qi)

ri =
wi + qi
2wiqi

− poly{wi,qi,1}(0)

(26)
−
(
swi+qi−qiri(wi,1; qi) + swi+qi−qiri(qi,1;wi)

)
,

with
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swi+qi−qiri(qi,1;wi) =
1

wi

wi−1∑
k=1

1

(1− ξkqiwi )(1− ξkwi
)ξ

k(qiri−wi−qi)
wi

and

swi+qi−qiri(wi,1; qi) =
1

qi

qi−1∑
k=1

1

(1− ξkwi
qi )(1− ξkqi)ξ

k(qiri−wi−qi)
qi

= − 1

qi

qi−1∑
k=1

1

(1− ξ−kwi
qi )(1− ξkqi)

,

which implies by Proposition 2.12 that

(27) swi+qi−qiri(wi,1; qi) = swi(wi,1; qi) = s(−wi, qi)−
qi − 1

4qi
.

Since by hypothesis qi = −w−1
i+1wi+2 mod wi and ri = w−1

i+2d mod wi, one

obtains

swi+qi−qiri(qi,1;wi)

=
1

wi

wi−1∑
�=1

1

(1− ξ�qiwi )(1− ξ�wi
)ξ

�(qiri−wi−qi)
wi

=
1

wi

wi−1∑
�=1

1

(1− ξ
�(−w−1

i+1wi+2)
wi )(1− ξ�wi

)ξ
�(−w−1

i+1d+w−1
i+1wi+2)

wi

(28)

�=−wi+1 �̄
=

1

wi

wi−1∑
�̄=1

1

(1− ξ
�̄wi+2
wi )(1− ξ

−�̄wi+1
wi )ξ

�̄(d−wi+2)
wi

=− 1

wi

wi−1∑
�̄=1

1

(1− ξ
�̄wi+2
wi )(1− ξ

�̄wi+1
wi )ξ

�̄(d−|w|)
wi

=−s|w|−d(wi+1,wi+2;wi).

Thus,

(29) s|w|−d(wi+1,wi+2;wi) =−swi+qi−qiri(qi,1;wi),

for i= 0,1,2.

By using (25), (26), and (29), it only remains to show that

(30) −s0(wi+1,wi+2;wi) =
wi + qi
2wiqi

− poly{wi,1,qi}(0)− swi+qi−qiri(wi,1; qi).

For the left-hand side we use Remark 2.6(4) and obtain

s0(wi+1,wi+2;wi) =−s(−qi,wi) +
wi − 1

4wi
= s(qi,wi) +

wi − 1

4wi
.

For the right-hand side, using Corollary 2.15 and (27) we have

poly{wi,1,qi}(0) + swi+qi−qiri(wi,1; qi)

= 1− s0(qi,1;wi)− s0(wi,1; qi) + swi(wi,1; qi),
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which by Remark 2.6(3) and (27) becomes(
1 + s(qi,wi)−

wi − 1

4wi
+ s(wi, qi)−

qi − 1

4qi

)
+ s(−wi, qi)−

qi − 1

4qi
.

Combining these equalities into (30) one obtains the result. �

Proof of Theorem 1.3

It is enough to apply [15, Theorem 5.7] and Theorem 1.1 and recall the charac-

terization of κP (f) in the proof of Theorem 3.9 (see (23)):

g(C) = gw,d −
∑

P∈Sing(C)
δP (f)

= gw,d +

2∑
i=0

(δ(wi,qi)
ri −A(wi,qi)

ri )︸ ︷︷ ︸
Lw(d−|w|)

−
( ∑
P∈Sing(C)

δP (f) +

2∑
i=0

(δ(wi,qi)
ri −A(wi,qi)

ri )
)

︸ ︷︷ ︸∑
P∈Sing(C) κP (f)

.

�

REMARK 5.1

The second equality in the previous identity always holds, and therefore if one

considers C ⊂ P2
w a reduced curve of degree d, then (recall Theorem 1.2)

Lw

(
d− |w|

)
= gw,d −

∑
P∈Sing(C)

δP (f) +
∑

P∈Sing(C)
κP (f).

Let us see an example of the previous result.

EXAMPLE 5.1

Consider the polygon Dw := {(x, y, z) ∈ R3 | w0x + w1y + w2z = 1}, for w =

(w0,w1,w2) = (2,3,7). As an example, we want to obtain the Ehrhart quasipoly-

nomial Lw(d) for Dw. Note that according to Theorem 1.1

Lw(d) =
1

84
d2 +

1

7
d+ a0(d),

where a0(d) is a rational periodic number of period w̄ = 42. Moreover, a0(d) =

1 − (
∑2

i=0Δi(d + 12)), where Δi has period wi and depends only on the sin-

gular point Pi = {xj = xk = 0} ({i, j, k} = {0,1,2}) in the weighted projective

plane P2
w.

In order to describe Δi(d) we will introduce some notation. Given a list of

rational numbers q0, . . . , qr−1 we denote by [q0, . . . , qr−1] the periodic function

f : Z→ Q whose period is r and such that f(i) = [q0, . . . , qr−1]i = qi. By using



Numerical adjunction formulas 595

Table 1. Local invariants at X(7; 2,3).

d 0 1 2 3 4 5 6

ΔP 0 2/7 3/7 3/7 2/7 0 4/7

δP 0 9/7 3/7 3/7 9/7 1 4/7

κP 0 1 0 0 1 1 0

Branches 0 2 1 1 2 2 1

Equation 1 x(x3 + y2) x y x(x+ y3) xy x3 + y2

this notation it is easy to check that

Δ0(d) =
[
0,

1

4

]
d

and Δ1(d) =
[
0,

1

3
,
1

3

]
d
.

Finally, in order to obtain Δ2(d), one needs to compute both δ- and K-invariants

for the singular point P2 ∈X =X(7; 2,3).

The typical way to obtain the first row is by applying Theorem 1.3 to a

generic germ fd in OX(d). This is how the second and third rows in the previ-

ous table were obtained. The last two rows indicate the local equations and the

number of branches of such a generic germ fd ∈OX(d).

Let us detail the computations for the third column in Table 1 (case

d= 1). One can write the generic germ f1 in OX(1) as x(x3 + y2). On the one

hand, a (2,3)-blowup serves as a Q-resolution of X , and thus, by using Theo-

rem 3.3,

δP (f1) =
8(8− 2− 3 + 7)

2 · 7 · 2 · 3 +
3− 1

2 · 3 =
9

7
.

For a computation of κP one needs to study the quotient OX(3)/Mnul
f1

.

Notice that in the present case OX = C{x, y}G7 = C{x7, y7, x2y} and OX(3) is

the OX -module generated by y and x5. In order to study Mnul
f1

, consider a generic

form

(ay+ bx5)
dx∧ dy

f1
∈Ω2

X

(
LR〈f1〉

)
,

where a, b ∈ OX , and its pullback by a resolution of the singularity X(7; 2,3).

One obtains the following:

(ay+ bx5)
dx∧ dy

x(x3 − y2)

x=u1v̄
2
1

y=v̄3
1 , v1=v̄7

1

←− 3v̄31(ã+ b̃u5
1v̄

7
1)

v̄41 du1 ∧ dv̄1
v̄81u1(u3

1 − 1)
(31)

=
3

7
(ã+ b̃u5

1v1)
du1 ∧ dv1

v1u1(u3
1 − 1)

.

Therefore, (ay + bx5) /∈Mnul
f1

if and only if the function a ∈ OX is a unit.

Hence, by Definition 3.5,

κP (f1) = dimC

OX(3)

Mnul
f1

= dimC〈y〉C = 1.
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Finally,

ΔP (1) = δP (f1)− κP (f1) =
2

7
.

The rest of values in Table 1 can be computed analogously. Hence, one

obtains

Δ2(d) :=
[
0,

2

7
,
3

7
,
3

7
,
2

7
,0,

4

7

]
d
,

and thus,

Lw(d) =
1

84
d2 +

1

7
d+

(
1−

[
0,

1

4

]
d
−
[
0,

1

3
,
1

3

]
d
−
[
0,

4

7
,0,

2

7
,
3

7
,
3

7
,
2

7

]
d

)
.

For instance, to obtain Lw(54), note that [0, 14 ]54 = [0, 14 ]0 = 0, [0, 13 ,
1
3 ]54 =

[0, 13 ,
1
3 ]0 = 0, and [0, 47 ,0,

2
7 ,

3
7 ,

3
7 ,

2
7 ]54 = [0, 47 ,0,

2
7 ,

3
7 ,

3
7 ,

2
7 ]5 =

3
7 . Thus,

Lw(54) =
1

84
542 +

1

7
54+

(
1− 3

7

)
= 43.
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