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Abstract Weprove that every sectional-hyperbolicLyapunov stable set contains anon-

trivial homoclinic class.

1. Introduction

A well-known problem in dynamics is to determine when a given system has

periodic or nontrivial homoclinic classes. This has been completely solved for

hyperbolic sets; namely, every nontrivial isolated hyperbolic set contains a non-

trivial homoclinic class (and hence infinitely many periodic orbits). It is very nat-

ural to extend this solution beyond hyperbolicity. For instance, we can consider

the singular-hyperbolic sets, introduced in [24], to put together both hyperbolic

systems and certain robustly transitive sets with singularities like the geometric

Lorenz attractor (see [1], [16]). It is tempting to say that every nontrivial isolated

singular-hyperbolic set contains a nontrivial homoclinic class, but this is false in

general (see [22]). However, Bautista and the third author [9] proved that if a

three-dimensional singular-hyperbolic set is attracting, then it must contain a

periodic orbit. This was proved in parallel with the claim by Arroyo and Pujals

[8] that every three-dimensional singular-hyperbolic transitive attracting set is

a nontrivial homoclinic class (see also [3]). Afterward, Nakai [25] extended [9]

from attracting to Lyapunov stable sets while Reis [27] gave generic conditions

under which a three-dimensional singular-hyperbolic attracting set exhibits infin-

itely many periodic orbits. In 2013, Pacifico and Reis [26] reported that every

singular-hyperbolic attracting set of a three-dimensional flow contains a nontriv-

ial homoclinic class. In 2005, Metzger and the third author [20], [21] introduced

the notion of a sectional-hyperbolic set extending singular hyperbolicity to higher
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dimensions. More recently, the second author [19] was able to extend the exis-

tence of periodic orbits in [9] to all sectional-hyperbolic attracting sets.

In this article we will extend all these results by proving that every sectional-

hyperbolic Lyapunov stable set has a nontrivial homoclinic class. In particular,

they contain infinitely many periodic orbits too. Let us state it in a precise way.

By abuse of language, we call flow any C1 vector field X with induced flow

Xt of a compact connected manifold M endowed with a Riemannian structure

‖ · ‖. We say that Λ⊂M is invariant if Xt(Λ) = Λ for all t ∈R. An invariant set

Λ is Lyapunov stable if for every neighbourhood U of Λ there is a neighborhood

V ⊂ U of Λ such that Xt(V ) ⊂ U for all t ≥ 0. A similar definition holds for

maps. The set of singularities (i.e., zeroes of X) is denoted by Sing(X). We say

that σ ∈ Sing(X) is hyperbolic if the derivative DX(σ) has no purely imaginary

eigenvalues. We say that a point x is periodic if there is a minimal t= tx > 0 such

that Xt(x) = x. We say that a periodic point x is hyperbolic if the eigenvalues of

the derivative DXtx(x) not corresponding to the flow direction are all different

from 1 in modulus. In case there are eigenvalues of modulus less than and greater

than 1 we say that the hyperbolic periodic point is a saddle.

As is well known (see [17]), through any periodic saddle x there passes a pair

of invariant manifolds, the so-called strong stable and unstable manifolds W ss(x)

and Wuu(x), tangent at x to the eigenspaces corresponding to the eigenvalues of

modulus less than and greater than 1, respectively. Saturating them with the flow,

we obtain the stable and unstable manifolds W s(x) and Wu(x), respectively.

Denote by Cl(·) the closure operation. We say that H ⊂M is a homoclinic

class if there is a periodic saddle x such that

H =Cl
({

q ∈W s(x)∩Wu(x) : dim
(
TqW

s(x)∩ TqW
u(x)

)
= 1

})
.

A homoclinic class is nontrivial if it does not reduce to a single periodic orbit.

We say that a compact invariant set Λ has a dominated splitting with respect

to the tangent flow if there is a continuous splitting TΛM = E ⊕ F into DXt-

invariant subbundles E,F such that DXt|E dominates DXt|F ; namely, there are

positive constants K,λ satisfying∥∥DXt(p)
∣∣
Ep

∥∥ ·
∥∥DX−t

(
Xt(p)

)∣∣
FXt(p)

∥∥ ≤Ke−λt, ∀p ∈ Λ, t≥ 0.

The splitting TΛM =E⊕F is called sectional-hyperbolic if E is contracting, that

is, ∥∥DXt(p)
∣∣
Ep

∥∥ ≤Ke−λt, ∀p ∈ Λ, t≥ 0,

and F is sectional expanding, that is, dim(F )≥ 2 and∣∣detDXt(p)
∣∣
L

∣∣ ≥Keλt,

for every p ∈ Λ, t≥ 0, and every two-dimensional subspace L⊂ Fp.

A compact invariant set is sectional-hyperbolic if its singularities are all

hyperbolic and if it exhibits a sectional-hyperbolic splitting. We emphasize that

this definition does require that all the singularities of a sectional-hyperbolic set

be hyperbolic. We shall use this hypothesis in the proof of our main result below.
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Of course, one can try to handle a general situation in which this requirement is

dropped.

Sectional hyperbolicity is closely related to the notion of singular hyperbol-

icity defined elsewhere (see [24]). Indeed, sectional hyperbolicity implies singular

hyperbolicity and they are equivalent in dimension three only. With these defi-

nitions we can state our main result.

THEOREM 1.1

Every sectional-hyperbolic Lyapunov stable set contains a nontrivial homoclinic

class.

The above theorem can be added to a number of important results which have

been appearing related to sectional hyperbolicity. Among these we can mention

the structure of the strong stable manifolds (see [23]), existence of Sinai–Ruelle–

Bowen (SRB) measures (see [4], [14], [28]), connecting lemmas (see [10]), decay of

correlations (see [2], [5]), essential hyperbolicity (see [11]) and sensitivity to initial

conditions (see [7], [11]), abundance of sectional-hyperbolic Lyapunov stable sets

(see [6], [29]), and finally the solution of a conjecture by Palis (see [15]).

Our proof uses some recent results concerning SRB-like measures for con-

tinuous maps (see [12], [13]) and a version of Crovisier’s [14, Proposition 1.4]

for (locally) star flows stated in [29]. This allows us to prove the existence of

nontrivial homoclinic classes not only for these Lorenz-like attractors but for any

sectional-hyperbolic Lyapunov stable set.

2. Proof

We start with some terminology from [13]. As is well known, the space of proba-

bility measures of M endowed with the weak* topology is metrizable; we denote

by d∗ the corresponding metric. We say that a measure μ is supported on H ⊂M

if its support supp(μ) is contained in H . We denote by δy the Dirac measure

supported on y.

If f : M → M is a continuous map, then we say that a Borel probability

measure μ is an invariant measure if μ(f−1(A)) = μ(A) for every Borelian A.

For any point x ∈ M we denote by pω(x) the set of all the Borel probability

measures that are the accumulation points of the sequence

1

n

n−1∑
i=0

δfi(x).

An invariant measure μ is SRB-like for f if the set of points x ∈M for which

there is ν ∈ pω(x) satisfying d∗(ν,μ) < ε has positive Lebesgue measure for all

ε > 0.

Applying [13, Theorem 1.3] we obtain the following existence result.
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LEMMA 2.1

Every Lyapunov stable set of a continuous map f supports an SRB-like mea-

sure.

Proof

Let Λ be a Lyapunov stable set of f , and fix any neighborhood W of Λ. By

Lyapunov stability we can arrange a neighborhood U ⊂W satisfying Xt(V )⊂W

for all t ≥ 0. Defining U =
⋃

t≥0Xt(U) we obtain a neighborhood U ⊂W of Λ

satisfying Xt(U)⊂ U for all t≥ 0. From this we can construct a nested sequence

Ui of compact neighborhoods of Λ such that f(Ui)⊂ Ui and
⋂

iUi = Λ. By the

aforementioned result in [13] there is a sequence of SRB-like measures μi for f |Ui ,

∀i ∈N. By definition, such measures are also SRB-like measures for f . Again by

[13], any accumulation measure of μi is SRB-like and supported on Λ. This ends

the proof. �

Next we recall some facts about Lyapunov exponents. Assume that f is a dif-

feomorphism, and let μ be an invariant measure. By Oseledets’s theorem, for

every continuous invariant subbundle F of TΛM there exist a full measure set

R (called regular points) and, for all x ∈ R, a positive integer k(x), real num-

bers χ1(x) < · · · < χk(x)(x), and a splitting Fx = E1
x ⊕ · · · ⊕ E

k(x)
x , depending

measurably on x ∈R, such that

lim
n→±∞

1

n
log

∥∥Dfn(x)vi
∥∥= χi(x), ∀vi ∈Ei

x \ {0},1≤ i≤ k(x).

The numbers χi(x) (which depend measurably on x ∈R) are the so-called Lya-

punov exponents of μ along F .

The following is a corollary of the main result in [12].

LEMMA 2.2

Let Λ be a Lyapunov stable set of a flow X. If Λ has a dominated splitting

TΛM =E ⊕ F with respect to the tangent flow and μ is an SRB-like measure of

the time-1 map X1, then

hμ(X1)≥
∫ dim(F )∑

i=1

χi dμ,

where
∑dim(F )

i=1 χi denotes the sum of the Lyapunov exponents along F .

The next lemma proves the positivity of the integral of the sum of the Lyapunov

exponents along the central subbundle of any sectional-hyperbolic set.

LEMMA 2.3

Let Λ be a compact invariant set of a flow X. If Λ has a sectional-hyperbolic

splitting TΛM = E ⊕ F and μ is an invariant measure of the time-1 map X1
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supported in Λ, then

∫ dim(F )∑
i=1

χi dμ > 0.

Proof

Since

lim
n→∞

1

n
log |detDXn|F |=

dim(F )∑
i=1

χi,

the result follows easily from the sectional expansivity of F . �

From this we obtain the following corollary proving positive topological entropy

for every sectional-hyperbolic Lyapunov stable set.

COROLLARY 2.4

If Λ is a sectional-hyperbolic Lyapunov stable set, then the time-1 map restricted

to Λ has positive topological entropy.

Proof

By Lemma 2.1 we can take an SRB-like measure μ supported on Λ for the

restricted time-1 map f = X1|Λ. Combining Lemmas 2.2 and 2.3 we obtain

hμ(X1)> 0. Thus, the result follows by applying the variational principle to X1.

�

The last ingredient is the following lemma whose proof is contained in that of

[29, Theorem 5.6]. Given a flow X and a compact invariant set Λ, we say that

X is a star flow on Λ if there exist a neighborhood U of Λ and U of X in the

C1-topology such that every periodic orbit or singularity contained in U of every

flow Y in U is hyperbolic.

LEMMA 2.5

Let Λ be a compact invariant set of a flow X. Suppose that X is a star flow

on Λ. Consider an ergodic measure μ of X whose support supp(μ) is neither a

periodic orbit nor a singularity of X. If supp(μ)⊂ Λ, then supp(μ) intersects a

nontrivial homoclinic class of X.

Now we can prove our main result.

Proof of Theorem 1.1

Let Λ be a sectional-hyperbolic Lyapunov stable set of a flow X . It is well known

(see [3]) that X is a star flow on Λ.

Since the entropy is positive by Corollary 2.4, the variational principle pro-

duces an ergodic measure μ whose support supp(μ) not only is contained in Λ

but also is neither a periodic orbit nor a singularity. Applying Lemma 2.5 we
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obtain that supp(μ) intersects a nontrivial homoclinic class H . In particular,

H ∩Λ �= ∅. Since Λ is Lyapunov stable, we conclude that H ⊂ Λ. For complete-

ness, we include the proof of this last assertion.

Choose a compact neighborhood U of Λ. By Lyapunov stability, there is a

neighborhood W of Λ such that

Xr(W )⊂ U, ∀r ≥ 0.

Take y ∈H . Since H ∩ Λ �= ∅ and W is a neighborhood of Λ, there is x ∈H ∩
Int(W ), where Int(W ) denotes the interior of W . But H is the omega-limit set of

some point z ∈H by Birkhoff–Smale’s theorem [18], so there is t0 > 0 such that

Xt0(z) is nearby x. In particular, we can assume that Xt0(z) ∈W . Since y ∈H

there is a sequence sn →∞ such that Xsn+t0(z)→ y. As Xt0(z) ∈W and sn > 0

for all n, we obtain Xsn+t0(z) ∈ U for all n by taking r = sn + t0 above. As U is

compact and Xsn+t0(z)→ y, we conclude that y ∈ U . Consequently, H ⊂ U for

every neighborhood U of Λ, proving that H ⊂ Λ. This completes the proof. �
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