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Abstract We give a classification of all nonsymplectic automorphisms of prime order

p acting on irreducible holomorphic symplectic four-folds deformation equivalent to the

Hilbert scheme of two points on a K3 surface, for p = 2,3, and 7 ≤ p ≤ 19. Our classi-

fication relates some invariants of the fixed locus to the isometry classes of two natural

lattices associated to the action of the automorphism on the second cohomology group

with integer coefficients. In several cases we provide explicit examples. As an applica-

tion, we find new examples of nonnatural nonsymplectic automorphisms of order 3.

1. Introduction

Irreducible holomorphic symplectic (IHS) manifolds (or equivalently hyper-

Kähler manifolds), together with Calabi–Yau manifolds, are the natural higher-

dimensional generalizations of K3 surfaces. In particular, many properties of

automorphisms on K3 surfaces generalize to IHS manifolds (see [4, Section 4]).

The interest in automorphisms of IHS manifolds has grown markedly in the last

few years (see [5], [12], [28], [35], [9], [10]), especially the study of automor-

phisms of prime order on IHS four-folds deformation equivalent to the Hilbert

scheme of two points on a K3 surface, which we call for short IHS−K3[2]. The

case of symplectic automorphisms (i.e., those automorphisms leaving invariant

the holomorphic two-form) was studied by the second author [12] for p= 2 and

then completely settled by Mongardi [29] for all primes. They describe the fixed

locus, which is never empty and consists of isolated fixed points, abelian surfaces,

and K3 surfaces. The case of nonsymplectic involutions was considered first by

Beauville [5] and recently by Ohashi–Wandel [36] who study in detail families of

IHS−K3[2] with 19 parameters and nonsymplectic involution. In particular, they

describe some nonnatural involutions: these cannot be deformed to an involution

on the Hilbert scheme of two points on a K3 surface induced by an automorphism

on the K3 surface.

In this article we classify the nonsymplectic automorphisms of prime order

p≥ 3 acting on IHS−K3[2]. As an application of our results, we construct the
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first known examples of nonnatural nonsymplectic automorphisms of order 3

on IHS−K3[2]. This comes from the study of nonsymplectic automorphisms of

order 3 on a special 20-dimensional and a special 14-dimensional family of Fano

varieties of lines on cubic four-folds (Corollary 7.6).

Let X be an IHS − K3[2]. In the study of nonsymplectic automorphisms

on X , two natural lattices play an important role: the invariant sublattice T of

H2(X,Z) = U⊕3⊕E⊕2
8 ⊕〈−2〉 and its orthogonal complement S. The lattice T is

contained in the Néron–Severi group of X , while the lattice S contains the tran-

scendental lattice. These two lattices play an important role when studying mod-

uli spaces. In the case of K3 surfaces, they also determine completely the topology

of the fixed locus (see [1], [2]). In this article, using lattice theory and a formula

relating topological invariants of the fixed locus with lattice invariants (see [10]),

we classify the lattices S and T when the order is p= 2,3, and 7≤ p≤ 19. Our

first main result (Theorem 3.8) classifies all possible lattices T and S for p �= 2,5.

Our second main result (Theorem 5.5, Theorem 7.1) proves that all cases (except

one) can be realized by an automorphism. For p= 11,13,17,19 all the examples

that we find are natural; for p= 3 some examples are constructed using the Fano

variety of lines of a cubic four-fold. In particular, in a 12-dimensional family we

find an example of a nonsymplectic automorphism of order 3 of different kind : it

has the same invariant lattice T and orthogonal complement S as a natural auto-

morphism, but its fixed locus is different (see Remark 7.7). This is very surprising:

it shows that in the case of IHS − K3[2] the lattice invariants do not uniquely

determine the fixed locus, contrary to the case of K3 surfaces. In several cases

we construct coarse moduli spaces of IHS − K3[2] with a nonsymplectic auto-

morphism of order p. This construction uses the classification of nonsymplectic

automorphisms of order p on K3 surfaces (Theorem 5.5).

In the last section of the article we discuss the case p= 2. The situation is

more complicated because the lattice T can have different embeddings in the

lattice U⊕3 ⊕E⊕2
8 ⊕ 〈−2〉. This has an important influence on the construction

of the moduli spaces. Our main result is Proposition 8.5, where we show that

every embedding of T can be realized as the invariant lattice of a nonsymplec-

tic involution on an IHS−K3[2]. Many examples can be constructed explicitly

by using natural involutions, but in several cases concrete realizations of the

automorphisms are still unknown.

2. Preliminary results on lattice theory

A lattice L is a free Z-module of finite rank equipped with a nondegenerate sym-

metric bilinear form 〈·, ·〉 with integer values. Its dual lattice is L∨ := HomZ(L,Z).

It can be also described as

L∨ ∼=
{
x ∈ L⊗Q

∣∣ 〈x, v〉 ∈ Z ∀v ∈ L
}
.

Clearly, L is a sublattice of L∨ of the same rank, so the discriminant group

AL := L∨/L is a finite abelian group whose order is denoted discr(L) and called

the discriminant of L. We denote by �(AL) the length of AL, that is, the minimal
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number of generators of AL. In a basis {ei}i of L, for the Gram matrix M :=

(〈ei, ej〉)i,j one has discr(Λ) = |det(M)|.
A lattice L is called even if 〈x,x〉 ∈ 2Z for all x ∈ L. In this case the bilinear

form induces a quadratic form qL : AL −→ Q/2Z. Denoting by (s(+), s(−)) the

signature of L ⊗ R, we have that the triple of invariants (s(+), s(−), qL) char-

acterizes the genus of the even lattice L (see [15, Chapter 15, Section 7], [32,

Corollary 1.9.4]).

A lattice L is called unimodular if AL = {0}. A sublattice M ⊂ L is called

primitive if L/M is a free Z-module. If L is unimodular and M ⊂ L is a primitive

sublattice, then M and its orthogonal M⊥ in L have isomorphic discriminant

groups and qM =−qM⊥ (see [32]).

Let p be a prime number. A lattice L is called p-elementary if AL
∼= ( Z

pZ )
⊕a

for some nonnegative integer a (also called the length �(AL) of A). We write
Z

pZ (α), α ∈ Q/2Z, to denote that the quadratic form qL takes value α on the

generator of the Z

pZ component of the discriminant group. (To be precise we

assume that α is a rational number contained in the interval [0,2), and it is the

least representative of the corresponding equivalence class in Q/2Z.) Recall the

following classification result.

THEOREM 2.1 ([37, SECTION 1])

(1) An even, hyperbolic, p-elementary lattice of rank r with p �= 2 and r > 2

is uniquely determined by the integer a.

(2) For p �= 2, a hyperbolic p-elementary lattice with invariants r, a exists if

and only if the following conditions are satisfied: a≤ r, r ≡ 0 (mod 2), and{
if a≡ 0 (mod 2), r ≡ 2 (mod 4),

if a≡ 1 (mod 2), p≡ (−1)r/2−1 (mod 4).

Moreover, if r �≡ 2 (mod 8), then r > a > 0.

We formulate also the following generalization of Theorem 2.1. The proof is

essentially contained in [15, Chapter 15, Section 8.2]. We give it here again for

convenience.

THEOREM 2.2

Let S be an even, indefinite, p-elementary lattice of rank r ≥ 3, p≥ 3. Then S is

uniquely determined by its signature and its discriminant form.

Proof

By a result of Eichler (see [15, Chapter 15, Theorem 14]), since r ≥ 3, the genus

and the spinor genus of S coincide, so by [15, Chapter 15, Theorem 13] the genus

contains only one isomorphism class. Then by [32, Corollary 1.9.4] the genus of

an even lattice is uniquely determined by the signature and the discriminant

form. �
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REMARK 2.3

For 2-elementary lattices the situation is different: an even indefinite 2-elementary

lattice is determined up to isometry by its signature, length, and a third invariant

δ ∈ {0,1}. We refer to [16, Theorem 1.5.2], [33, Theorem 4.3.1, Theorem 4.3.2],

and [37, Section 1] for the relations between these invariants.

The following results on the unicity of the isometry class of a lattice of a given

genus and on the splitting of lattices will be needed in the remainder of the paper.

THEOREM 2.4 ([30, THEOREM 2.2])

Let L be an even lattice of invariants (s(+), s(−), qL). Assume that s(+) > 0,

s(−) > 0, and �(AL) ≤ rankL − 2. Then up to isometry, L is the only lattice

with those invariants.

THEOREM 2.5 ([15, CHAPTER 15, THEOREM 21])

If L is an indefinite lattice of rank n and discriminant d with more than one

isometry class in its genus, then 4[
n
2 ]d is divisible by k(

n
2) for some nonsquare

natural number k ≡ 0,1 mod (4).

We denote by U the unique even unimodular hyperbolic lattice of rank two

and by Ak,Dh,El the even, negative definite lattices associated to the Dynkin

diagrams of the corresponding type (k ≥ 1, h≥ 4, l= 6,7,8). We denote by L(t)

the lattice whose bilinear form is the one on L multiplied by t ∈N∗. The following

p-elementary lattices will be used in the remainder of the paper (see [2]).

• For p≡ 3 mod (4), the lattice

Kp :=

(
−(p+ 1)/2 1

1 −2

)
is negative definite and p-elementary with a= 1. Note that K3 =A2.

• For p≡ 1 mod (4) the lattice

Hp :=

(
(p− 1)/2 1

1 −2

)
is hyperbolic and p-elementary with a= 1.

• The lattice

L17 :=

⎛⎜⎜⎝
−2 1 0 1

1 −2 0 0

0 0 −2 1

1 0 1 −4

⎞⎟⎟⎠
is negative definite and 17-elementary with a= 1.

• The lattice E∨
6 (3) is even, negative definite, and 3-elementary with a= 5.

To get a simple form of its discriminant group one can proceed as follows. By [1,

Table 2] the lattice U(3)⊕E∨
6 (3) admits a primitive embedding in the K3 lattice

(which is unimodular) with orthogonal complement isometric to U ⊕U(3)⊕A⊕5
2 .
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It follows that the discriminant form of E∨
6 (3) is the opposite of those of A⊕5

2 ,

that is, Z/3Z(2/3)⊕5.

THEOREM 2.6 ([32, THEOREM 1.13.5])

Let L be an even indefinite lattice of signature (s(+), s(−)), and assume that

s(+) > 0 and s(−) > 0.

(1) If s(+)+ s(−) ≥ 3+ �(AL), then L∼= U ⊕W for a certain even lattice W .

(2) If s(−) ≥ 8 and s(+) + s(−) ≥ 9 + �(AL), then L∼=E8 ⊕W ′ for a certain

even lattice W ′.

The following result is an application of Nikulin’s [32] results on primitive embed-

dings.

PROPOSITION 2.7

Let S be an even p-elementary lattice, p �= 2, with invariants (s(+), s(−), qS , a),

and let L := U⊕3⊕E⊕2
8 ⊕〈−2〉. If S admits a primitive embedding in L, then the

orthogonal complement T of S in L has discriminant group (Z/pZ)⊕a ⊕ Z/2Z

and discriminant form (−qS) ⊕ qL. If moreover s(+) < 3, s(−) < 20, and a ≤
21− rank(S), then T is uniquely determined and there is at most one embedding

of S in L up to an isomorphism of L.

Proof

The lattice L has signature (3,20) and discriminant form qL = Z

2Z (
3
2 ); hence,

by Theorem 2.4 it is unique in its genus. By Nikulin [32, Proposition 1.15.1],

a primitive embedding of S in L is equivalent to a quintuple (HS ,HL, γ, T, γT )

satisfying the following conditions.

• HS is a subgroup of AS = (Z/pZ)⊕a, HL is a subgroup of AL = Z/2Z, and

γ : HS →HL is an isomorphism of groups such that, for any x ∈HS , qL(γ(x)) =

qS(x). Here the only possibility is HS = {0}, HL = {0}, and γ = id.

• T is a lattice of invariants (3 − s(+),20 − s(−), qT ) with qT = ((−qS) ⊕
qL)|Γ⊥/Γ, where Γ is the graph of γ in AS⊕AL, Γ

⊥ is the orthogonal complement

of Γ in AS⊕AL with respect to the bilinear form induced on AS⊕AL, with values

in Q/Z, and γT is an automorphism of AT that preserves qT . Moreover, T is the

orthogonal complement of S in L. Here we get Γ = {0}; hence, Γ⊥ =AS ⊕AL =

AT and qT = (−qS)⊕ qL is the only possibility.

Since p �= 2, one has �(AT ) = a. If T is indefinite (i.e., s(+) < 3, s(−) < 20) and

a≤ rank(T )− 2 = 21− rank(S), then by Theorem 2.4 the lattice T is uniquely

determined up to isometry. Moreover, under these assumptions the natural homo-

morphism O(T )→ O(AT ) is surjective (see [16, Proposition 1.4.7]) so different

choices of the isometry γT produce isomorphic embeddings of S in L (see [16,

Lemma 1.4.5]). �
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3. Automorphisms on deformations of the Hilbert scheme of two points on a K3
surface

3.1. Irreducible holomorphic symplectic manifolds
A complex, compact, Kähler, smooth manifold X is called irreducible holomor-

phic symplectic (IHS) if X is simply connected and H0(X,Ω2
X) is spanned by an

everywhere nondegenerate closed two-form, denoted by ωX . In dimension 4, one

of the most famous examples of IHS manifolds is the Hilbert scheme Σ[2] of two

points on a K3 surface Σ.

The second cohomology group has a Hodge decomposition

H2(X,C) =H2,0(X)⊕H1,1(X)⊕H0,2(X),

and we set H1,1(X)R := H1,1(X) ∩ H2(X,R). The second cohomology group

H2(X,Z) is torsion-free and equipped with the Beauville–Bogomolov [4] bilinear

symmetric nondegenerate two-form of signature (3, b2(X)− 3) with the property

that, after scalar extension, H1,1(X) is orthogonal to H2,0(X)⊕H0,2(X). The

Néron–Severi group of X is defined by

NS(X) :=H1,1(X)R ∩H2(X,Z).

We set ρ(X) := rank(NS(X)) as the Picard number of X and Transc(X) :=

NS(X)⊥ as the orthogonal complement of NS(X) in H2(X,Z) for the quadratic

form, called the transcendental lattice. Note that NS(X) and Transc(X) are prim-

itively embedded in H2(X,Z). By [22, Theorem 3.11] X is projective if and only

if NS(X) is a hyperbolic lattice.

Let G⊂ Aut(X) be a finite group of automorphisms of prime order p, and

fix a generator σ ∈ G. If σ∗ωX = ωX , then G is called symplectic. Otherwise,

there exists a primitive pth root of unity ξ such that σ∗ωX = ξωX and G is

called nonsymplectic. Observe that nonsymplectic actions exist only when X is

projective (see [3, Section 4]). Following the notation of [10] we denote by T :=

TG(X) the invariant sublattice of H2(X,Z) and by S := SG(X) its orthogonal

complement (see [10, Lemma 6.1]).

Since h0(X,TX) = 0, the variety X admits a universal deformation p : X →
Def(X), where p is a smooth proper holomorphic morphism, Def(X) is a germ of

analytic space, and p−1(0)∼=X . (The isomorphism is part of the data.) Although

h2(X,TX) is not zero in general, Def(X) is smooth of dimension h1(X,TX)

(see [23, Section 4] and references therein). If Def(X) is taken small enough,

then all nearby fibers Xt := p−1(t), t ∈ Def(X) are also IHS manifolds and the

universal deformation p : X → Def(X) is in fact universal also for these fibers

Xt (see Huybrechts [22, Section 1.12]). Two IHS manifolds X and X ′ are called

deformation equivalent if there exists a smooth proper holomorphic morphism

p : X → S with connected base S, whose fibers are Kähler manifolds, and with

two points t, t′ ∈ S such that Xt
∼=X and Xt′

∼=X ′. We say that an IHS manifold

X is an IHS−K3[2] if it is deformation equivalent to the Hilbert scheme of two

points on a K3 surface.
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3.2. Invariant sublattice and fixed locus
We recall the main results of Boissière–Nieper-Wißkirchen–Sarti [10], [8]. In this

section we denote by G a finite group of prime order p acting on an IHS−K3[2]

that we call X .

PROPOSITION 3.1 ([10, DEFINITIONS 4.5 AND 4.9, LEMMA 5.5])

Assume that the order p of G satisfies 3≤ p≤ 23. Then:

• rankS = (p− 1)mG(X) for some positive integer mG(X);

•
H2(X,Z)
S⊕T

∼= ( Z

pZ )
⊕aG(X) for some nonnegative integer aG(X);

• AT
∼= Z/2Z⊕ (Z/pZ)⊕aG(X), AS

∼= (Z/pZ)⊕aG(X); and

• if G acts nonsymplectically, then S has signature (2, (p − 1)mG(X) − 2)

and T has signature (1,22− (p− 1)mG(X)).

REMARK 3.2

We denote by H∗(XG,Fp) the cohomology of the fixed locus XG with coefficients

in Fp, and we set m :=mG(X), a := aG(X), and h∗(XG,Fp) =
∑

i≥0 h
i(XG,Fp),

where hi(XG,Fp) := dimHi(XG,Fp).

THEOREM 3.3 ([10, THEOREM 6.15])

Assume that the order p of G satisfies 3≤ p≤ 19, p �= 5. Then

h∗(XG,Fp) = 324− 2a(25− a)− (p− 2)m(25− 2a)

+
1

2
m
(
(p− 2)2m− p

)(1)

with 2≤ (p− 1)m< 23 and 0≤ a≤min{(p− 1)m,23− (p− 1)m}.

REMARK 3.4

• For technical reasons (see [10, proof of Theorem 5.15]), the case of p= 5 is

excluded in Theorem 3.3.

• It follows from [10, Proposition 5.17] that the fixed locus XG is never

empty if p �= 2. So one cannot produce new examples of Enriques varieties (see

[9], [35]) by using finite quotients of IHS−K3[2] other than quotients by (special)

involutions.

• If the group G acts on the K3 surface Σ, then it induces a natural action

on Σ[2]. One can similarly define the integers aG(Σ) and mG(Σ), and it is easy to

check that aG(Σ) = aG(Σ
[2]) and mG(Σ) =mG(Σ

[2]) (see [10, Remark 5.16(2)]).

For any σ ∈G considered as an automorphism of Σ, we denote by σ[2] the auto-

morphism induced on Σ[2]. These automorphisms are called natural in [7], but

we will use this term in a more general sense in Definition 4.1. To be precise this

“old” definition of natural means the following: let X be an IHS−K3[2], and let

f be an automorphism acting on it; then f is called natural if there exists a K3

surface Σ with an automorphism σ such that the couple (X,f) is isomorphic to

(Σ[2], σ[2]).
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The topological Lefschetz fixed-point formula gives complementary information

on the fixed locus XG. Denote by χ(XG) :=
∑

i(−1)i dimHi(XG,R) the Euler

characteristic of XG. If σ is a generator of G, then one has

χ(XG) =
∑
i≥0

(−1)i tr(σ∗
|Hi(X,R)).

Since X has real dimension 8 and trivial odd cohomology, using Poincaré duality

we rewrite the formula as

χ(XG) = 2+ 2tr(σ∗
|H2(X,R)) + tr(σ∗

|H4(X,R)).

Setting r := rankT one sees easily that tr(σ∗
|H2(X,R)) = r−m.

LEMMA 3.5

One has tr(σ∗|H4(X,R)) =
(m−r)(m−r−1)

2 .

Proof

Denote by ξ a primitive pth root of unity, and denote by Vξi the one-dimensional

representation of G with character ξi, for i= 1, . . . , p− 1. Then, as a representa-

tion of G,

H2(X,R)∼=R⊕r ⊕
p−1⊕
i=1

V ⊕m
ξi ,

where R = Vξ0 stands for the trivial representation. Since H4(X,R) ∼=
Sym2H2(X,R) (cf. [39, Theorem 1.3]) one gets

Sym2H2(X,R)∼=R⊕ r(r+1)
2 ⊕

p−1⊕
i=1

V ⊕rm
ξi ⊕

p−1⊕
i=1

Sym2(V ⊕m
ξi )

⊕
p−1⊕
i=1

p−1⊕
j=i+1

(V ⊕m
ξi ⊗ V ⊕m

ξj ).

Since Sym2(V ⊕m
ξi )∼= V

⊕m(m+1)
2

ξ2i and V ⊕m
ξi ⊗ V ⊕m

ξj
∼= V ⊕m2

ξi+j one gets

tr(σ∗
|H4(X,R)) =

r(r+ 1)

2
+
(p−1∑
i=1

ξi
)
rm+

(p−1∑
i=1

ξ2i
)m(m+ 1)

2

+
(p−1∑
i=1

p−1∑
j=i+1

ξi+j
)
m2

=
r(r+ 1)

2
− rm− m(m+ 1)

2
+m2

=
(m− r)(m− r− 1)

2
. �

Using the fact that r = 23− (p− 1)m we obtain the following.
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COROLLARY 3.6

The Euler characteristic of the fixed locus satisfies

χ(XG) = 324− 51

2
mp+

1

2
m2p2.(2)

We deduce one further relation between the parameters a and m.

COROLLARY 3.7

One has a≤m.

Proof

By the universal coefficient theorem we have that Hi(XG,Z) ⊗ Fp injects in

Hi(XG,Fp). Since hi(XG,R) equals the rank of the free part of Hi(XG,Z) it

follows that hi(XG,R)≤ hi(XG,Fp) for all i. So we get h∗(XG,Fp)−χ(XG)≥ 0.

Combining (1) and (2) we get

h∗(XG,Fp)− χ(XG) = 2(a−m)(a− 25 +mp−m).

By Theorem 3.3 we have a− 25 +mp−m< 0. Hence, a≤m. �

3.3. Computation of the invariant lattice
Let X be an IHS−K3[2] with a nonsymplectic action of a group G= 〈σ〉 of prime

order p with 3 ≤ p ≤ 19, p �= 5. Recall that H2(X,Z) is isometric to the lattice

L = U⊕3 ⊕ E⊕2
8 ⊕ 〈−2〉, T is the invariant sublattice of H2(X,Z), and S is its

orthogonal complement.

For each value of p, combining Proposition 3.1, formulas (1) and (2), and

Corollary 3.7, we get all the possible values of m :=mG(X) and a := aG(X), and

we compute the values of χ := χ(XG) and h∗ := h∗(XG,Fp). By Proposition 3.1,

the lattice S has signature (2, (p− 1)m− 2) and is p-elementary with discrim-

inant group (Z/pZ)⊕a, and the lattice T has signature (1,22 − (p − 1)m) and

discriminant group Z/2Z⊕ (Z/pZ)⊕a. Considering T and S as sublattices of L

we call a triple (p,m,a) admissible if such sublattices of L with these invariants

do exist. In this case, we compute their isometry class. We prove the following

result.

THEOREM 3.8

For every admissible value of (p,m,a), there exists a unique even p-elementary

lattice S of signature (2, (p− 1)m− 2) with AS = (Z/pZ)⊕a. This lattice admits

a primitive embedding in L, this embedding is unique if (p,m,a) /∈ {(3,10,2),
(3,8,6), (11,2,2)}, and its orthogonal complement T in L is uniquely determined

by the signature (1,22− (p− 1)m) and the discriminant group AT = (Z/2Z)⊕
(Z/pZ)⊕a.

Proof

The proof follows from a case-by-case analysis. We use Theorems 2.6 and 2.1 on

the existence of hyperbolic p-elementary lattices to exclude the nonadmissible
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values and determine the isometry class of S. The uniqueness of T and of the

embedding of S in L are a direct consequence of Proposition 2.7. Only a few

special cases require a more specific argument. We first handle one case in detail

to explain the method; then we treat the special cases.

The case (p,m,a) = (3,9,1). Here S has signature (2,16) and is 3-elementary

with a= 1. Since rank(S) = 18≥ 3+ �(AS) = 4 by Theorem 2.6 we can write S =

U ⊕W , where W is an even hyperbolic 3-elementary lattice of signature (1,15)

and a(W ) = 1. We use Theorem 2.1 to compute W and to prove its uniqueness.

This also gives the uniqueness of S, so one computes directly that the only

possibility (up to isometry) is W = U ⊕E6 ⊕E8. Finally, 1 = a≤ 21− rank(S),

so, by Proposition 2.7, T is uniquely determined and the embedding of S in L is

unique.

We discuss now the special cases.

The case (p,m,a) = (3,11,1). One has T = 〈6〉. It is easy to check that the

homomorphism O(T ) → O(AT ) is surjective, so the argument of the proof of

Proposition 2.7 applies and S admits a unique embedding in L.

The case (p,m,a) = (3,1,1). In this case one computes directly that S =

A2(−1). Then one concludes with Proposition 2.7.

The case (p,m,a) ∈ {(3,10,2), (3,8,6), (11,2,2)}. Here we have a >

rank(T ) − 2. Using Theorem 2.5 one sees that T is unique in its genus and

one deduces its isometry class.

The case (p,m,a) = (3,9,5). We prove that this case cannot occur. We com-

pute as before that S is isometric to U⊕2 ⊕ E8 ⊕ E∨
6 (3), so its discriminant

group is AS = Z

3Z (
2
3 )

⊕5. By Proposition 2.7, if S admits a primitive embed-

ding in L, then its orthogonal T has signature (1,4) and discriminant form
Z

3Z (
4
3 )

⊕5⊕ Z

2Z (
3
2 ). Assume that such a lattice does exist. Consider its 3-adic com-

pletion T3 := T ⊗Z Z3. One has AT3 = (AT )3 so qT3 =
Z

3Z (
4
3 )

⊕5. The rank of T3

is then equal to �(AT3). By Nikulin [32, Theorem 1.9.1], there exists a unique

3-adic lattice K of rank �(AT3) and discriminant form qT3 . Then necessarily the

determinants of the lattices T3 and K differ by an invertible square:

detT = detT3 ≡ detK mod (Z∗
3)

2.

One has detT = (−1)4|AT | = 2 · 35. Using [32, Proposition 1.8.1] one finds

that K = 〈3θ〉⊕5 with θ = 1
4 ∈ Z∗

3 so detK = ( 34 )
5. The relation detT ≡ detK

mod (Z∗
3)

2 gives here 211 ∈ (Z∗
3)

2. This is not true (it would imply that 2 is a

square modulo 3), so such a lattice T does not exist. �

REMARK 3.9

The isometry classes of the lattices S and T for all admissible values of (p,m,a)

are summarized in the Appendix in Tables 1–7 corresponding to p= 3,7,11,13,

17,19, respectively. The excluded values of (p,m,a) are not written in the tables.
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PROPOSITION 3.10

Under the same assumptions as in Theorem 3.8, the lattice T admits a unique

primitive embedding in the lattice L whose orthogonal complement is S.

Proof

The proof is essentially the same as in Proposition 2.7. Observe that in this

case the orthogonal complement is given and it is isometric to S. So a primitive

embedding of T into L corresponds to a quadruple (HT ,HL, γ, γS). The only

possibility is HT =HL = Z

2Z , so the only choice is γ = id. Finally, observe that

all the lattices S in the tables except the case (p,m,a) = (3,1,1) have rank(S)≥
�(S)+2, so by [16, Proposition 1.4.7] the morphism O(S)→O(AS) is surjective.

In the case (p,m,a) = (3,1,1) one shows the surjectivity by hand. Hence, different

choices of the isomorphism γS produce isomorphic embeddings of T in L. �

4. Deformation of automorphisms on IHS manifolds

Let X be an IHS manifold, and let f ∈Aut(X) be a biholomorphic automorphism

of X . We denote by p : X →Def(X), p−1(0) =X , the universal deformation of X .

By a theorem of Horikawa [21, Theorem 8.1], there exists an open neighborhood

Δ of the origin of Def(X), a family of deformations p′ : X ′ →Δ, p′−1(0) =X , and

a holomorphic map Φ: X|Δ →X ′ over Δ such that Φ0 = f . By the universality of

p, there exists a unique holomorphic map γ : Δ→Def(X) with γ(0) = 0 such that

X ′ =Δ×Def(X)X , so we obtain by composition a holomorphic map F : X|Δ →X
such that F0 = f with a commutative diagram

XΔ
F

pΔ

X

p

Δ
γ

Def(X)

(3)

Denote D := Δγ = {t ∈Δ | γ(t) = t}. By restricting to D one obtains a family of

holomorphic maps

XD
F

pD

XD

pD

D D

with F0 = f and such that the holomorphic map Ft : Xt →Xt is an automorphism

for all t ∈D (by shrinking D if necessary). The pair (pD : XD →D,F ) is thus

a deformation space of the pair (X,f) (see also [28, Definition 1.1]). From the

diagram (3) we get a commutative diagram of vector bundles over X with exact

rows
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0 TX

df

TXΔ|X

dF

T0Δ

d0γ

0

0 TX TX|X T0Def(X) 0

that induces in cohomology an exact sequence

T0Δ
ρ

d0γ

H1(X,TX)

df

T0Def(X)
ρ

H1(X,TX)

where ρ is the Kodaira–Spencer map. Since the deformation is universal, ρ is

an isomorphism (note that T0Δ = T0Def(X)), and df is an isomorphism since

f is an automorphism of X . It follows that d0γ is invertible, so the fixed locus

D =Δγ is smooth and its dimension equals the dimension of the invariant space

H1(X,TX)df .

If the automorphism f acts symplectically onX , then the isomorphism TX ∼=
ΩX induced by ωX is f -equivariant (f induces natural actions denoted df on tan-

gent vectors and denoted f∗ on differential forms), so dimD = dim(H1,1(X)f
∗
).

If the automorphism f acts nonsymplectically on X , that is, f∗ωX = ξωX for

some ξ ∈ C∗, ξ �= 1, then the isomorphism TX ∼= ΩX is not f -equivariant and

one computes that H1(X,TX)f
∗
is isomorphic to the eigenspace of H1,1(X) cor-

responding to the eigenvalue ξ of f∗. Assume that f is an automorphism of prime

order p, G= 〈f〉, so that ξ is a primitive pth root of unity. Since the action of f∗

on H2(X,C) comes from an action on the lattice H2(X,Z), the eigenspaces of

f∗ corresponding to the eigenvalues ξi, i= 1, . . . , p−1, have the same dimension,

which ismG(X). SinceH2,0(X) is an eigenspace for the eigenvalue ξ andH0,2(X)

is one for ξ̄, it follows that dimD =mG(X)− 1 if p≥ 3 and dimD =mG(X)− 2

if p= 2.

If X is an IHS manifold and f ∈ Aut(X), G = 〈f〉, then it follows from

Ehresmann’s theorem that the G-module structure ofH∗(X,Z) is invariant under

deformation of the pair (X,f), so the lattices TG(X) and SG(X) and the values

h∗(XG) and χ(XG) (by (1) and (2)) are also invariant.

DEFINITION 4.1

Let X be an IHS−K3[2]. An automorphism σ of X is called natural if there exists

a K3 surface Σ and an automorphism ϕ of Σ such that (X,σ) is deformation

equivalent to (Σ[2], ϕ[2]), where ϕ[2] denotes the induced automorphism on Σ[2]

by ϕ.
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5. Moduli spaces of lattice polarized IHS manifolds

5.1. The global Torelli theorem
We recall some well-known facts from [22] and [26]. If X is an irreducible holo-

morphic symplectic manifold, then a marking for X is a choice of an isome-

try η : L−→H2(X,Z). Two marked pairs (X1, η1) and (X2, η2) are isomorphic

if there is an isomorphism f : X1 −→ X2 such that η1 = f∗ ◦ η2. There exists

a coarse moduli space ML that parameterizes isomorphism classes of marked

pairs, which is a non-Hausdorff smooth complex manifold (see [22]). If X is an

IHS−K3[2], then this has dimension 21. Denote by

ΩL :=
{
ω ∈ P(L⊗C)

∣∣ q(ω) = 0, q(ω+ ω̄)> 0
}

the period domain, which is an open (in the usual topology) subset of the non-

singular quadric defined by q(ω) = 0. The period map

P :ML −→ΩL, (X,η) �→ η−1
(
H2,0(X)

)
is a local isomorphism by the local Torelli theorem [3, Théorème 5]. For ω ∈ΩL

we put

L1,1(ω) :=
{
λ ∈ L

∣∣ (λ,ω) = 0
}
,

where (·, ·) is the bilinear form associated to the quadratic form q. Then L1,1(ω)

is a sublattice of L. Let λ ∈ L, λ �= 0, and consider the hyperplane

Hλ =
{
ω ∈ΩL

∣∣ (ω,λ) = 0
}
.

Then L1,1(ω) = {0} if ω does not belong to the countable union of hyperplanes⋃
λ∈L\{0}Hλ. In particular, given a marked pair (X,η) we get η−1(NS(X)) =

L1,1(P (X,η)). The set {α ∈ H1,1(X,R) | q(α) > 0} has two connected compo-

nents; we denote the connected component containing the Kähler cone KX as

the positive cone CX .

Following the terminology of [26] recall that two points x, y of a topological

space M are called inseparable if every pair of open neighborhoods x ∈ U and

y ∈ V has nonempty intersection. A point x ∈M is called a Hausdorff point if x

and y are separable for every y ∈M , y �= x.

THEOREM 5.1 (GLOBAL TORELLI THEOREM [39], [26, THEOREM 2.2])

Let M0
L be a connected component of ML.

(1) The period map P restricts to a surjective holomorphic map

P0 :M
0
L −→ΩL.

(2) For each ω ∈ΩL, the fiber P
−1
0 (ω) consists of pairwise inseparable points.

(3) Let (X1, η1) and (X2, η2) be two inseparable points of M0
L. Then X1 and

X2 are bimeromorphic.

(4) The point (X,η) ∈M0
L is Hausdorff if and only if CX = KX .
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(5) The fiber P−1
0 (ω), ω ∈ΩL consists of a single Hausdorff point if L1,1(ω)

is trivial or if L1,1(ω) is both of rank one and generated by a class α satisfying

q(α)> 0.

REMARK 5.2

In assertion (5) if L1,1(ω) is trivial, then X is nonprojective. If it is of rank one

and generated by a class α with q(α)> 0, then X is projective, ±α is an ample

class, and the Néron–Severi group of X has signature (1,0), so its transcendental

lattice has signature (2,20) (see [22, Theorem 3.11]).

5.2. Lattice polarizations
In this section and the next one, we extend some constructions and results of

[19, Section 6], [18, Section 10], [17], and [2, Section 9]. See also [13] for related

results.

Let M be an even nondegenerate lattice of rank ρ≥ 1 and signature (1, ρ−1).

An M -polarized IHS−K3[2] is a pair (X,j), where X is a projective IHS−K3[2]

and j is a primitive embedding of lattices j : M ↪→ NS(X). Two M -polarized

IHS−K3[2]’s (X1, j1) and (X2, j2) are called equivalent if there exists an isomor-

phism f :X1 →X2 such that j1 = f∗ ◦ j2. As in [18, Section 10] and [17] one can

construct a moduli space of marked M -polarized IHS−K3[2]’s as follows. We fix a

primitive embedding of M in L and we identify M with its image in L. A marking

of (X,j) is an isomorphism of lattices η : L→H2(X,Z) such that η|M = j. As

observed in [17, p. 11], if the embedding of M in L is unique up to an isometry

of L, then every M -polarization admits a compatible marking. Two M -polarized

marked IHS − K3[2]’s (X1, j1, η1) and (X2, j2, η2) are called equivalent if there

exists an isomorphism f :X1 →X2 such that η1 = f∗ ◦ η2. (This clearly implies

that j1 = f∗ ◦ j2.) Let N :=M⊥ ∩ L be the orthogonal complement of M in L,

and set

ΩM :=
{
ω ∈ P(N ⊗C)

∣∣ q(ω) = 0, q(ω+ ω̄)> 0
}
.

Since N has signature (2,21−ρ) the period domain ΩM is a disjoint union of two

connected components of dimension 21− ρ. For each M -polarized marked IHS−
K3[2](X,j, η), since η(M) ⊂ NS(X) we have η−1(H2,0(X)) ∈ ΩM . On the other

hand, by the surjectivity of the period map (see [22, Theorem 8.1]) restricted to

any connected component M0
L of ML we can associate to each point ω ∈ ΩM

an M -polarized IHS−K3[2] as follows: there exists a marked pair (X,η) ∈M0
L

such that η−1(H2,0(X)) = ω ∈ P(N ⊗ C) so M =N⊥ ⊂ ω⊥ ∩ L; hence, η(M)⊂
H2,0(X)⊥ ∩H1,1

Z
(X) = NS(X), and we take (X,η|M , η).

By the local Torelli theorem for IHS manifolds, an M -polarized IHS−K3[2]

(X,j) has a local deformation space DefM (X) that is contractible and smooth

of dimension 21 − ρ such that the period map P : DefM (X) → ΩM is a local

isomorphism (see [17]). By gluing all these local deformation spaces one obtains

a moduli space KM of marked M -polarized IHS−K3[2]’s that is a nonseparated
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analytic space, with a period map P : KM → ΩM . The following proposition

generalizes [36, Lemma 2.9].

PROPOSITION 5.3

If rankM ≤ 20, then there exists a dense subset Ω0
M of ΩM such that if (X,η) is

a marked IHS−K3[2] whose period is in Ω0
M , then NS(X) is isomorphic to M .

Proof

For each λ ∈N \ {0} consider the hyperplane Hλ := {ω ∈ ΩM | (ω,λ) = 0}, and
let H :=

⋃
λHλ. Each subset ΩM \Hλ is open and dense in ΩM ; hence, by Baire’s

theorem the subset Ω0
M := ΩM \H is dense in ΩM since H is a countable union

of complex closed subspaces. If ω = P (X,η) ∈ Ω0
M , then NS(X) = η(L1,1(ω)) =

η(M). �

This means that for a general point of ΩM the associated marked M -polarized

IHS−K3[2] has Néron–Severi group isometric to M and transcendental lattice

isometric to N . If rankM = 21, then ΩM consists of two periods that correspond

to an IHS − K3[2] whose Néron–Severi group is isometric to M . We specialize

this construction of the period domain in the case of projective IHS − K3[2]’s

with nonsymplectic automorphism.

REMARK 5.4

Observe that in the construction we fix an embedding of M in L. Different

embeddings give a priori different constructions of ΩM .

5.3. Eigenperiods of projective IHS−K3[2] with a nonsymplectic automorphism
Let (X,j) be an M -polarized IHS − K3[2], and let G = 〈σ〉 be a cyclic group

of prime order p ≥ 2 acting nonsymplectically on X . It is easy to see that the

invariant sublattice T = TG(X) is contained in NS(X). Assume that the action

of G on j(M) is the identity and that there exists a group homomorphism ρ :

G−→O(L) such that

M = Lρ :=
{
x ∈ L

∣∣ ρ(g)(x) = x, ∀g ∈G
}
.

We define a (ρ,M)-polarization of (X,j) as a marking η : L → H2(X,Z) such

that η|M = j and σ∗ = η ◦ ρ(σ) ◦ η−1.

Two (ρ,M)-polarized IHS − K3[2]’s (X1, j1) and (X2, j2) are isomorphic if

there are markings η1 : L→H2(X1,Z) and η2 : L−→H2(X2,Z) such that ηi|M =

ji and an isomorphism f : X1 →X2 such that η1 = f∗ ◦ η2.
Recall that by construction CωX is the line in L ⊗ C defined by CωX =

η−1(H2,0(X)). Let ξ ∈ C∗ such that ρ(σ)(ωX) = ξωX . Observe that ξ �= 1 since

the action is nonsymplectic and it is a primitive pth root of unity since p is prime.

The period ωX belongs to the eigenspace of N ⊗C relative to the eigenvalue ξ,

where N =M⊥∩L. We denote it by N(ξ). (If p= 2, then we have ξ =−1 and we

denote N(ξ) =NR(ξ)⊗C, where NR(ξ) is the real eigenspace relative to ξ =−1.)
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Assume that ξ �=−1. Then the period belongs to the space

Ωρ,ξ
M :=

{
x ∈ P

(
N(ξ)

) ∣∣ q(x+ x̄)> 0
}

of dimension dimN(ξ)− 1, which is a complex ball if dimN(ξ)≥ 2. By using the

fact that ξ �=−1 it is easy to check that every point x ∈Ωρ,ξ
M satisfies automati-

cally the condition q(x) = 0.

If ξ =−1, then we set Ωρ,ξ
M := {x ∈ P(N(ξ)) | q(x) = 0, q(x+ x̄) > 0}. It has

dimension dimN(ξ)− 2; clearly, Ωρ,ξ
M ⊂ΩM .

Assume now that M = T = T ⊕ 〈−2〉 where T is an even nondegenerate

lattice of signature (1,21− (p− 1)m). Assume moreover that T has a primitive

embedding in the K3 lattice Λ. We fix such an embedding, and we call again T

the image. This induces in a natural way a primitive embedding of T in L. We

then identify T with its image. Let N = S = T⊥∩L, and assume that S ⊂ Λ. For

δ ∈ S with q(δ) = −2, denote Hδ = δ⊥ ∩ S and Δ :=
⋃

δ∈S,q(δ)=−2Hδ . Then we

have the following (with the same notation as above).

THEOREM 5.5

Let X be a (ρ,T )-polarized IHS − K3[2] such that H2,0(X) is contained in the

eigenspace of H2(X,C) relative to ξ. Then ωX ∈ Ωρ,ξ
T , and conversely, if

dimN(ξ) ≥ 2, then every point of Ωρ,ξ
T \Δ is the period point of some (ρ,T )-

polarized IHS−K3[2].

The proof is an application of a result of Namikawa that we recall for convenience.

THEOREM 5.6 ([31, THEOREM 3.10])

Let Σ be a K3 surface, and let G be a finite subgroup of the group of isome-

tries of H2(Σ,Z). Denote by ω the period of Σ in H2(Σ,C), and set SG(Σ) :=

(H2(Σ,Z)G)⊥∩{Cω}⊥. Then there exists an element � in the Weyl group W (Σ)

of Σ such that �G�−1 ⊂Aut(Σ) if and only if

(i) Cω is G-invariant;

(ii) SG(Σ) contains no element of length −2;

(iii) if ω ∈H2(Σ,C)G, then SG(Σ) is nondegenerate and negative definite

if SG(Σ) �= 0;

(iii′) if ω /∈H2(Σ,C)G, thenH2(Σ,C)G contains an element α with (α,α)> 0.

Proof of Theorem 5.5

We have already proven that ωX ∈ Ωρ,ξ
T . Conversely, if dimN(ξ) ≥ 2, then the

locus Ωρ,ξ
T \Δ is nonempty (see the proof of Proposition 5.3). By our assumptions

on the lattice T , for any ω ∈ Ωρ,ξ
T \Δ the map ρ(σ) acts as the identity on the

〈−2〉 class of the decomposition Λ⊕ 〈−2〉 = L (where Λ is the K3 lattice with

a fixed embedding to L) so it leaves invariant the lattice Λ. We thus have a

corestriction map to Λ = L/〈−2〉:

ρ̄ : G−→O(Λ).
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This has the property that T =Λρ̄(σ), and by our assumption on S, the orthogonal

complement of T in Λ is S. Now as in [18, Section 11] we consider the period

domain of (ρ̄, T )-polarized K3 surfaces. For ξ �=−1 this is

Dρ,ξ

T
:=

{
x ∈ P

(
S(ξ)

) ∣∣ (x, x̄)> 0
}
,

and for ξ =−1 this is

Dρ,ξ

T
:=

{
x ∈ P

(
S(ξ)

) ∣∣ (x,x) = 0, (x, x̄)> 0
}
.

Observe that Dρ,ξ

T
\Δ is not empty because it coincides with Ωρ,ξ

T \Δ (which

is not empty by assumption). The point ω ∈ Ωρ,ξ
T \ Δ is then also a point in

Dρ,ξ

T
\Δ; hence, there exists a T -polarized K3 surface Σ (see [2, Section 9] and [18,

Section 11]). It has a T -polarization η : Λ−→H2(Σ,Z) with η|T (T )⊂NS(Σ) and

η(ω) =H2,0(Σ). The isometry η ◦ ρ̄(σ)◦η−1 acts on H2(Σ,Z), it is the identity on

j(T ) (where j := η|T ), and it preserves H2,0(Σ). Let us check that the conditions

of Theorem 5.6 are satisfied. Since the line generated by ω is preserved by ρ̄(σ)

we have condition (i). By assumption, S ∩ {ω}⊥ ∩ Λ does not contain classes

of length −2; this gives condition (ii). By construction, T is the ρ̄(σ)-invariant

sublattice of Λ and it is hyperbolic, so it contains a class α with (α,α) > 0;

this gives condition (iii′). So there exists a ∈ Aut(Σ) with a∗ = η ◦ ρ̄(σ) ◦ η−1

(up to conjugation with an element of the Weyl group). Take Y := Σ[2] with the

marking L→H2(Y,Z) =H2(Σ,Z)⊕ 〈−2〉 in such a way that its restriction to Λ

is equal to η. We still denote this marking by η. By construction, Y admits an

automorphism a[2] such that (a[2])∗ = η ◦ρ(σ)◦η−1, so Y is (ρ,T )-polarized with

period ωY = ω. �

COROLLARY 5.7

Let X and X ′ be two IHS − K3[2]’s admitting nonsymplectic automorphisms σ

and σ′, respectively, of the same prime order p. Assume as above that Tσ(X) =

T ⊕〈−2〉= Tσ′(X ′) and Sσ(X) = Sσ′(X ′) have rank at least p. Then there exists

h ∈O(L) such that h ◦ ρ(σ) ◦ h−1 = ρ′(σ′). (That is, once the order is fixed, the

action of σ on L is uniquely determined by Tσ and Sσ.)

Proof

We use the same notation as above. As in the proof of Theorem 5.5 we can

associate to X and X ′ two K3 surfaces Σ and Σ′ with respective automor-

phisms σ̄ and σ̄′ such that T σ̄(Σ) = T σ̄′(Σ′) and Sσ̄(Σ) = Sσ̄′(Σ′). Then by

[2, Proposition 9.3], σ̄∗ and σ̄′∗ are conjugated via an element of O(Λ). More

precisely, if ρ̄ : 〈σ〉 −→ O(Λ) and ρ̄′ : 〈σ′〉 −→ O(Λ) are the corestrictions of the

analogous morphisms with image in O(L), then there exists h̄ ∈O(Λ) such that

h̄ ◦ ρ̄(σ) ◦ h̄−1 = ρ̄′(σ′). We define an isometry h of L=Λ⊕ 〈−2〉 by h|Λ = h̄ and

h|〈−2〉 = id. Recall that

ρ(σ)|〈−2〉 = id, ρ′(σ′)|〈−2〉 = id.

This implies that h ◦ ρ(σ) ◦ h−1 = ρ′(σ′), hence the statement. �
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6. Examples of automorphisms

6.1. Natural automorphisms on Hilbert schemes of points
Let Σ be a K3 surface, and let ϕ be a nonsymplectic automorphism of prime

order p ≥ 3 acting on Σ. By [2, Theorem 0.1] the fixed locus Σϕ is a disjoint

union of curves and points of the form

Σϕ =Cg ∪R1 ∪ · · · ∪Rk ∪ {p1, . . . , pN},

where Cg is a smooth curve of genus g ≥ 0, Ri, i= 1, . . . , k, are smooth rational

curves, and pj , j = 1, . . . ,N are isolated fixed points. The isolated fixed points

are of different types depending on the local action of ϕ at them. The possible

local actions are

Ap,t =

(
ξt+1
p 0

0 ξp−t
p

)
, t= 0, . . . , p− 2;

here we use the same notation as in [2] and we denote by nt the number of

isolated fixed points corresponding to the local action Ap,t.

By using the results of [7, Section 4.2] one computes the fixed locus of ϕ[2]

on Σ[2]. It consists of the following:

• N(N − 1)/2+2(N −n p−1

2

) isolated fixed points. For this contribution, one

has χ= h∗ =N(N − 1)/2 + 2(N − n p−1

2

).

• (n p−1

2

+Nk+k) smooth rational curves: n p−1
2

for each fixed point at which

the local action has two equal eigenvalues, Nk for each couple of a fixed point

and a rational curve, and k for each rational curve. This last case comes from

the fact that, taking the schemes of length 2 of Σ[2] over a point of a rational

curve, we get a curve isomorphic to P1 contained in the exceptional set. (We also

get a surface isomorphic to P2 = (P1)[2]; this contribution is taken into account

below.) For this contribution, one has χ= h∗ = 2(n p−1

2

+Nk+ k).

• N + 1 curves isomorphic to Cg , one for each couple consisting of a fixed

point pj and the curve Cg , and one for the curve Cg . The explanation for this

last contribution is the same as above in the case of the rational curves. Here

χ= (N + 1)(2− 2g), and h∗ = (N + 1)(2 + 2g).

• k(k − 1)/2 surfaces isomorphic to P1 × P1, one for each couple of distinct

rational curves. Here χ= h∗ = 4(k(k− 1)/2).

• k surfaces isomorphic to P1 × Cg , one for each rational curve. Here χ =

(4− 4g)k, and h∗ = (4+ 4g)k.

• k surfaces isomorphic to P2 = (P1)[2], one for each rational curve. Here

χ= h∗ = 3k.

• one surface (Cg)
[2], which is the Hilbert scheme of two points on Cg . Here

χ= 3+ 2g2 − 5g, and h∗ = 3+ 2g2 + 3g.

As a consequence, the fixed locus of ϕ[2] on Σ[2] has invariants

χ= 2(n p−1

2

+Nk+ k) +N(N − 1)/2

+ 2(N − n p−1

2

) + 4k(k− 1)/2 + 3k+ (N + 1)(2− 2g)
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+ k(4− 4g) + 3− 5g+ 2g2

= (1/2)(2g− 2−N − 2k)(2g− 5−N − 2k),

h∗ =N2/2 + 7N/2 + 2Nk+ 7k+ 2Ng+ 5+ 5g+ 2k2 + 4kg+ 2g2.

Observe that ϕ[2] acts nonsymplectically on Σ[2]. In fact, there is an injective

morphism ι :H2(Σ,C)−→H2(Σ[2],C) such that

H2(Σ[2],C) = ι
(
H2(Σ,C)

)
⊕C[E],

where E denotes the exceptional set and ι respects the Hodge decomposition (see

[3, Proposition 6]). If α ∈H2,0(Σ), then ι(α) ∈H2,0(Σ[2]) and, by the definition

of ι, one has ϕ[2](ι(α)) = ι(ϕ(α)) (see [11]). This implies that Sϕ(Σ) = Sϕ[2](Σ[2])

and 〈−2〉 ⊕ Tϕ(Σ) = Tϕ[2](Σ[2]). In Tables 1–7 we mark with a ♣ the cases that

are realized with natural automorphisms.

REMARK 6.1

Theorem 3.3 for the order 5 automorphisms holds only for natural automor-

phisms, so in Table 2 the list of admissible triples (5,m,a) is only in this special

case. For the moment, there are no other known examples of nonsymplectic auto-

morphisms of order 5 (see also Remark 6.3).

6.2. The Fano variety of lines on a cubic four-fold
Let V be a smooth cubic hypersurface in P5. The Fano variety of lines on V is

defined as

F (V ) :=
{
l ∈Gr(1,5)

∣∣ l⊂ V
}
.

By [6] the variety F (V ) is an IHS−K3[2]. One can construct examples of non-

symplectic automorphisms of prime order by starting with an automorphism of

a cubic hypersurface in P5 and then looking at the induced automorphism on

F (V ). By a classical result of Matsumura and Monsky [27] the automorphism

group of a cubic hypersurface in P5 is finite, the automorphisms are induced

by linear automorphisms of P5, and a generic cubic hypersurface in P5 has no

automorphism. All automorphisms of prime order of smooth cubic four-folds are

classified in [20, Theorem 3.8]. We are interested in those that induce a nonsym-

plectic automorphism on F (V ).

Denote by Z ⊂ F (V )× V the universal family, and denote by p and q the

projection to F (V ) and V , respectively. By [6, Proposition 4] the Abel–Jacobi

map

A := p∗q
∗ : H4(V,Z)−→H2

(
F (V ),Z

)
is an isomorphism of Hodge structures with A(H3,1(V )) ∼=H2,0(F (V )). If σ is

an automorphism of V , then by the equivariance of A one has σ∗(ωF (V )) =

A(σ∗(A−1(ωF (V )))). Let f := f(x0, . . . , x5) be the cubic polynomial whose zero

set in P5 is V . By Griffith’s residue theorem (see [40, Proposition 18.2]) the coho-

mology group H3,1(V ) is one-dimensional and generated by the residue Res(
ω

P5

f2
),
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where

ωP5 =
∑
i

(−1)ixidx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dx5.

Assume that σ is an automorphism of P5 such that σ(V ) = V . The form
ω

P5

f2
is a

closed meromorphic five-form on P5, holomorphic on P5 \V , with poles of order 2

along V , that we consider as a differential form on U := P5 \ V . Taking its coho-

mology class we get an element in H5(U,C). There is a natural σ-equivariant

isomorphism H5(U,C) ∼= H5(P5,Ω•
P5(logV )). For a form with logarithmic pole

α ∧ df
f ∈ Ω•

P5(logV ), with α ∈ Ω•−1
P5 , one has by definition Res(α ∧ df

f ) = 2iπα|V
(see [40, Section 18.1.1]). Since σ has finite order we can assume that it acts diag-

onally; that is, σ(x0, . . . , x5) = (α0x0, . . . , α5x5), and we denote det(σ) :=
∏

iαi.

Then σ∗ωP5 = det(σ)ωP5 . Assume furthermore that f is a projective invari-

ant for σ, that is, σ∗f = λσf with λσ ∈ C∗. Then σ∗(
df
f ) =

df
f so the map

Res: H5(U,C)→H4(V,C) is σ-equivariant. It follows that

σ∗Res
(ωP5

f2

)
=

det(σ)

λ2
σ

Res
(ωP5

f2

)
.

This proves the following result.

LEMMA 6.2

Let σ be a diagonal automorphism of V . If the homogeneous polynomial of degree

three f ∈C[x0, . . . , x5] which defines V is a projective invariant for the action of

σ with σ∗f = λσf , then the action of σ on F (V ) is nonsymplectic if and only if
det(σ)

λ2
σ

�= 1.

Looking inside the classification of [20, Theorem 3.8] we see that examples of

nonsymplectic automorphisms occur only for p= 2,3. In this section we consider

only the case p= 3 and we find four families of examples, for which we compute

now the fixed locus and the lattices T and S. Put ξ := exp(2πi/3).

REMARK 6.3

There is a small mistake in the classification of [20]: the cubics of the family

denoted F2
5 , which would have a nonsymplectic automorphism of order 5, are in

fact all singular (as confirmed to us by the authors of [20]). So this family should

not be in the list.

EXAMPLE 6.4 (CASE T = 〈6〉)

Consider the automorphism of order 3 of P5 given by

σ1(x0 : x1 : x2 : x3 : x4 : x5) = (x0 : x1 : x2 : x3 : x4 : ξx5).

The family of invariant cubics is

V1 : L3(x0, . . . , x4) + x3
5 = 0,
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where L3 is a homogeneous polynomial of degree 3. The fixed locus of σ1 on V is

the cubic three-fold C := {x5 = 0,L3(x0, . . . , x4) = 0}. The fixed points on F (V1)

correspond to σ1-invariant lines on V . If a line L⊂ V is invariant, then either it

is pointwise fixed or it contains two fixed points. If L is pointwise fixed, then it is

contained in C; if it is only invariant but not pointwise fixed, then L intersects C
in two points. Hence it intersects also the hyperplane {x5 = 0} in two points so it

is contained in it. Hence, L⊂ V ∩ {x5 = 0}; this means that L is contained in C.
We call again σ1 the induced automorphism on F (V1); this is nonsymplectic by

Lemma 6.2. We have shown that its fixed locus is the Fano surface F (C) of C.
This is a well-known surface of general type with Hodge numbers h1,0 = h0,1 = 5,

h0,2 = h2,0 = 10, and h1,1 = 25. (These are computed, e.g., in [14].) Hence, one

computes χ(F (V1)
σ1) = 27 and h∗(F (V1)

σ1 ,F3) = 67. By using (1) and (2) we get

m= 11 and a= 1, so looking in the table we have Sσ1(F (V1)) = U⊕2⊕E⊕2
8 ⊕A2

and Tσ1(F (V1)) = 〈6〉. Finally, observe that the dimension of the family F (V1) is

10, which is also rank(Sσ1(F (V1)))/2− 1.

EXAMPLE 6.5 (CASE T = U ⊕A⊕5
2 ⊕ 〈−2〉)

Consider the automorphism of order 3 of P5 given by

σ2(x0 : x1 : x2 : x3 : x4 : x5) = (x0 : x1 : x2 : x3 : ξx4 : ξx5).

The family of invariant cubics is

V2 : L3(x0, x1, x2) +M3(x4, x5) = 0,

where L3 and M3 are homogeneous polynomials of degree 3. The fixed locus of σ2

on V2 is {x0 = x1 = x2 = x3 = 0,M3(x4, x5) = 0}, which are three distinct points

p1, p2, p3 and the cubic surface K of P3 given by {x4 = x5 = 0,L3(x0, x1, x2) = 0}.
An invariant line through two points must also contain the third point, and in

fact, it is the line {x0 = x1 = x2 = x3 = 0}, which is not contained in V2. An

invariant line through pi and a point of K is contained in V2. So on F (V2) we

have three fixed surfaces isomorphic to the rational cubic K; this has h2(K,Z) =

h1,1(K) = 7. Moreover, each fixed line on K determines a fixed point on F (V2)

so we have 27 isolated fixed points. By Lemma 6.2 the induced automorphism

on F (V2), which we call again σ2, is nonsymplectic. Using the fact that the odd

cohomology of the fixed locus is zero we have

χ(Xσ2) = h∗(Xσ2 ,F3) = 3(2 + 7) + 27 = 54.

Then one computes that m= a= 5 by using (2) and (1). Looking in the table we

have Sσ2(F (V2)) = U ⊕ U(3)⊕A⊕3
2 and Tσ2(F (V2)) = U ⊕A⊕5

2 ⊕ 〈−2〉. Finally,
the dimension of the family is 4 which is equal to rank(Sσ2(F (V2)))/2−1. Observe

that this automorphism does not have the same fixed locus as the natural auto-

morphism on a Hilbert scheme with the same lattices S and T .
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EXAMPLE 6.6 (CASE T = 〈6〉 ⊕E∨
6 (3))

Consider the automorphism of order 3 of P5 given by

σ3(x0 : x1 : x2 : x3 : x4 : x5) = (x0 : x1 : x2 : ξx3 : ξx4 : ξ
2x5).

The family of invariant cubics is

V3 : L3(x0, x1, x2) +M3(x3, x4) + x3
5

+ x5

(
x3L1(x0, x1, x2) + x4M1(x0, x1, x2)

)
= 0,

where L3 and M3 are homogeneous polynomials of degree 3 and L1 and M1 are

linear forms. The fixed locus of σ3 on V3 is the union of the elliptic curve E :

{x3 = x4 = x5 = 0,L3(x0, x1, x2) = 0} and the three isolated fixed points q1, q2, q3
given by {x0 = x1 = x2 = x5 = 0,M3(x3, x4) = 0}. Any invariant line containing

two fixed points on E is contained in the plane {x3 = x4 = x5 = 0} so it cannot

be contained on V3. On the other hand a line through two of the points qj must

also contain the third point, and it is the line {x3 = x4 = x5 = 0}, which is not

contained in V3. Finally, all invariant lines through a point qj , j = 1,2,3, and a

point of E are contained in V3 so F (V3)
σ3 contains three elliptic curves isomorphic

to E. By Lemma 6.2 the induced automorphism on F (V3) is nonsymplectic.

One then computes χ(Xσ3) = 0 and h∗(Xσ3 ,F3) = 12, so by using (1) and (2)

we get m = 8 and a = 6. By looking in Table 1 one finds that Sσ3(F (V3)) =

U⊕2 ⊕A⊕6
2 and Tσ3(F (V3)) = 〈6〉 ⊕E∨

6 (3). Finally, the family of varieties F (V3)

is 7-dimensional, which is equal to rank(Sσ3(F (V3)))/2− 1.

EXAMPLE 6.7 (CASE T = U(3)⊕E∨
6 (3)⊕ 〈−2〉)

Consider the automorphism of order 3 of P5 given by

σ4(x0 : x1 : x2 : x3 : x4 : x5) = (x0 : x1 : ξx2 : ξx3 : ξ
2x4 : ξ

2x5).

The family of (projective) invariant cubics is

V4 : x2L2(x0, x1) + x3M2(x0, x1) + x2
4L1(x0, x1) + x4x5M1(x0, x1)

+ x2
5N1(x0, x1) + x4N2(x2, x3) + x5P2(x2, x3) = 0,

where L2, M2, N2, and P2 are homogeneous polynomial of degree 2, and L1,

M1, and N1 are linear factors. The fixed locus of σ4 on V4 is the union of the

three projective lines L1, L2, L3 of equations {x0 = x1 = x2 = x3 = 0}, {x0 =

x1 = x4 = x5 = 0}, and {x2 = x3 = x4 = x5 = 0}. Each line determines a fixed

point on F (V4). On the other hand an invariant line L intersects two of the

lines Li at one point each. Take a line L intersecting, for example, the lines L1

and L2 at the points (0 : 0 : 0 : 0 : p4 : p5) and (0 : 0 : q2 : q3 : 0 : 0), respectively.

Then these points satisfy the equation p4N2(q2, q3) + p5P2(q2, q3) = 0. This is a

rational curve on the surface L1 ×L2
∼= P1 × P1; hence, we have a fixed rational

curve on F (V4). In the same way, taking the lines L1,L3 and L2,L3 we get

two rational fixed curves on F (V4). By Lemma 6.2, σ4 acts nonsymplectically

on F (V4). One computes χ(F (V4)
σ4) = 9 and h∗(F (V4)

σ4 ,F3) = 9; checking in

Table 1 one finds that Sσ4(F (V4)) = U ⊕ U(3)⊕A⊕5
2 and Tσ4(F (V4)) = U(3)⊕
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E∨
6 (3) ⊕ 〈−2〉. Finally, the family of varieties F (V4) is 6-dimensional, which is

equal to rank(Sσ4(F (V4)))/2− 1. Observe that this automorphism has the same

fixed locus as the natural automorphism on a Hilbert scheme with the same

lattices S and T .

In Tables 1–7 we mark with a ♦ the cases that are realized with automorphisms

on the Fano variety of lines of a cubic four-fold.

REMARK 6.8

Let V be a 6-dimensional vector space. The wedge product ∧ :
∧3

V ×
∧3

V −→∧6
V induces a symplectic form ω on

∧3
V by choosing an isomorphism

∧6
V ∼=

C. Consider a Lagrangian subspace A⊂
∧3

V , and define YA := {v ∈ P(V )/(v ∧∧2
V ) ∩ A �= 0}. For general A, YA is a hypersurface of degree 6 of the type

described by Eisenbud–Popescu–Walter (EPW). Such a hypersurface is not

smooth, but for a general A it has a smooth double cover XA which is an

IHS−K3[2](see [34]). These are called double EPW sextics. One can construct

automorphisms of XA induced by automorphisms of prime order of V as done

in [12] and in [29]. A direct computation shows that, using double EPW sextics,

one can only construct nonsymplectic automorphisms of prime order 2 and these

examples are already explained in [12] and in [29].

7. Existence of automorphisms

Starting from our list of all admissible values of (p,m,a) we want to realize each

case by an automorphism, using Theorem 5.5 and the examples of Section 6. The

following result shows that it is always possible, except in one case.

THEOREM 7.1

For every admissible value of (p,m,a) �= (13,1,0) there exists an IHS − K3[2]

with a nonsymplectic automorphism σ of order p whose invariant lattice Tσ and

orthogonal lattice Sσ are those characterized in Theorem 3.8. The fixed locus is a

disjoint union of isolated fixed points, smooth curves, and smooth surfaces whose

invariants h∗ and χ are given in (1) and (2).

Proof

We refer to Tables 1–7 in the Appendix for the isometry class of the lattices and

the values of χ and h∗, which depend only on (p,m,a).

Existence. Observe that by Proposition 3.10 the lattice T has a unique primitive

embedding in L. So except for (p,m,a) = (3,11,1) and (p,m,a) = (3,8,6) it is

not a restriction to assume that T = T ⊕ 〈−2〉 with T primitively embedded

in Λ. Moreover, by Theorem 2.2 the lattice S is uniquely determined (the case

S =A2(−1) is a direct computation), and it is in fact the orthogonal complement

of T in Λ. Assume that T = T ⊕〈−2〉. If rankS > p−1, then the existence follows

from Theorem 5.5, the moduli space is a complex ball of dimension dimS(ξ)− 1,
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and these cases are realized by natural automorphisms on the Hilbert scheme of

points of a K3 surface (see Section 6.1 for explicit examples). If rankS = p− 1,

then dimΩρ,ξ
T = 0 and the existence follows again from the existence of a K3

surface with a nonsymplectic automorphism of order p with lattices T and S.

The remaining cases (3,11,1) and (3,8,6) are realized by automorphisms on Fano

varieties of lines on cubic four-folds in Examples 6.4 and 6.6.

Fixed locus. We prove that the fixed locus is smooth and that the maximal

dimension of a fixed component is 2. By the local inversion theorem, since σ has

finite order its action at the neighborhood of a fixed point x can be linearized as an

action of a 4×4-matrixM . The dimension of the fixed locus at x is the multiplicity

of 1 as an eigenvalue of M . It follows that the fixed locus is the disjoint union of

smooth connected subvarieties. Since σ is nonsymplectic, one has MTJM = ξpJ

where J = ( 0 I2
−I2 0 ) is the standard symplectic form and ξp is some primitive pth

root of unity. Since M−1 = ξ−1
p J−1MTJ one observes that if λ is an eigenvalue

of M , then ξp/λ is also an eigenvalue of M with the same multiplicity. It follows

that there are two possible sequences of eigenvalues for M : (1, ξp, ξ
(p+1)/2
p ) with

multiplicities (a, a, b) or (1, ξp, ξ
i
p, ξ

−i+1
p ) with 2i �≡ 1 mod (p) with multiplicities

(a, a, b, b). Since the sum of the multiplicities equals 4, we conclude that a≤ 2 so

the maximal dimension of a fixed component is 2. �

REMARK 7.2

One can get some extra information on the local action of an automorphism σ in

the neighborhood of a fixed point by using the Pfaffian. With the same notation

as in the proof above, one has

ξ2p =Pf(ξpJ) = Pf(MTJM) = Pf(J)det(M) = det(M).

In the first case mentioned in the proof, the eigenvalues are (1, ξp, ξ
(p+1)/2
p ) with

multiplicities (a, a, b) such that 2a+b= 4 and the equation above gives a+
p+1

2 b≡
2 mod (p). In the second case, the eigenvalues are (1, ξp, ξ

i
p, ξ

−i+1
p ) with 2i �≡ 1

mod (p) with multiplicities (a, a, b, b) such that a+ b= 2.

REMARK 7.3

The case (13,1,0) cannot be realized by a natural automorphism for the following

reason. Suppose that there exists an irreducible holomorphic symplectic manifold

X with a natural automorphism σ with invariants (p,m,a) = (13,1,0), S = U ⊕
U ⊕E8, and invariant lattice T = U ⊕E8⊕〈−2〉. If this automorphism is natural,

then there exists a K3 surface with a nonsymplectic automorphism of order 13,

T = U⊕E8, and S = U⊕U⊕E8, but by [25, Theorem 4.3] such a K3 surface does

not exist. This situation is similar to the case p= 23 (the maximum prime order

for a nonsymplectic automorphism on such varieties; see [10, Section 5.4]) that

cannot be realized by a natural automorphism. It is an open problem to construct

(or exclude) such nonnatural automorphisms of order 13 or 23 on IHS−K3[2].
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REMARK 7.4

In the case p= 2 one can do a similar construction as above, but the situation is

more complicated. For example, we can have several nonequivalent embeddings

of T with different orthogonal complements S, which then give different moduli

spaces (see Proposition 8.2 below and [24] for a description of the moduli spaces).

COROLLARY 7.5

Let X be an IHS−K3[2] with a nonsymplectic automorphism σ of prime order

3 ≤ p ≤ 19, p �= 5. If (p,m,a) /∈ {(3,8,6), (3,11,1), (13,1,0)}, then the action is

unique in the sense of Corollary 5.7.

Proof

By assumption, using Theorem 3.8 in each case the lattice T is of the form

T ⊕ 〈−2〉 so the assertion follows from Theorem 5.7 and from the fact that the

cases where the moduli space is zero-dimensional are realized by natural auto-

morphisms on K3 surfaces. �

COROLLARY 7.6

There exist IHS−K3[2] with nonnatural nonsymplectic automorphisms of prime

order p= 3.

Proof

We provide two examples of IHS − K3[2] admitting a nonsymplectic automor-

phism that cannot be the deformation of an automorphism on a Hilbert scheme

of points induced by an automorphism of the underlying K3 surface.

(p,m,a) = (3,11,1). This is Example 6.4, where rankT = 2. For every auto-

morphism on some Σ[2] induced by an automorphism of the K3 surface Σ, the

rank of the invariant lattice is at least 2, since it contains the class of an ample

divisor on the K3 surface and the class of the exceptional divisor is also invari-

ant. Since T is invariant under equivariant deformation, this automorphism is

nonnatural.

(p,m,a) = (3,8,6). This is Example 6.6, where S = U⊕2⊕A⊕6
2 . This lattice is

invariant under equivariant deformation. Checking all automorphisms obtained

by using K3 surfaces one sees that this lattice cannot be obtained in this way

(see [1] or [38]), so this automorphism is nonnatural. �

REMARK 7.7 (DIFFERENT FIXED LOCI)

We have shown that in many cases the action of the automorphism on the lattice

L is uniquely determined (see Corollary 5.7), but in general the fixed locus is not

uniquely determined, for instance, in the case (p,m,a) = (3,5,5). As explained in

Section 6.1, starting with a K3 surface Σ with a nonsymplectic automorphism of

order 3 with fixed locus consisting of five isolated fixed points and two rational

curves (see [2, Table 2]), we obtain a natural automorphism on the Hilbert scheme

Σ[2] with fixed locus consisting in 10 isolated fixed points, 17 rational curves, one
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surface isomorphic to P1 × P1, and two surfaces isomorphic to P2. As explained

in Example 6.5, using the Fano variety of lines on a cubic four-fold we construct

a nonsymplectic automorphism with a different fixed locus consisting this time of

27 isolated fixed points and three rational cubic surfaces. In contrast, Example 6.7

shows a similar situation where the fixed loci are identical.

REMARK 7.8 (OPEN QUESTIONS)

The study of Examples 6.7 and 6.5 leads us to the following questions, which for

the moment are open.

• Are (some of) the Fano varieties with automorphism (X,σ4) as in Exam-

ple 6.7 natural in the “old” sense?

• Are (some of) the Fano varieties X in Example 6.5 isomorphic to Σ[2] for

some K3 surface Σ? If the second question is answered in the affirmative, then

the example shows the existence of a nonnatural nonsymplectic automorphism of

order 3 on a Hilbert scheme Σ[2].

8. Nonsymplectic involutions

Beauville [5, Proposition 2.2] shows that the fixed locus of a nonsymplectic invo-

lution σ on an IHS−K3[2] is a smooth Lagrangian surface F (possibly not con-

nected) such that χ(OF ) =
1
8 (t

2+7) and e(F ) = 1
2 (t

2+23), where t is the trace of

σ∗ on H1,1(X), and he proves that t can take all odd integer values −19≤ t≤ 21.

Moreover, he provides examples for all such cases. These are all natural examples

except one: Beauville’s nonnatural example from [3] for t = −19. Nevertheless,

the article contains no information about the invariant lattice and its orthogonal.

Ohashi and Wandel [36] study the case t = −17 in detail by classifying all

possible conjugacy classes of nonsymplectic involutions. In fact, such conjugacy

classes are in bijection with the orbits of primitive embeddings of the invariant

sublattice T in L. Moreover, in their paper they show that all conjugacy classes

are indeed realized, at least abstractly, and give a new explicit example for one

of the families using moduli spaces of sheaves on K3 surfaces.

The proof of [10, Lemma 5.5], with little modification, gives the following

result for the case p= 2.

LEMMA 8.1

Let X be an IHS−K3[2], and let G be a finite group of order 2 acting nonsym-

plectically on X. Then:

•
H2(X,Z)
S⊕T

∼= ( Z

2Z )
⊕aG(X) for some integer 0≤ aG(X) =: a;

• S has signature (2, r− 2) and T has signature (1,22− r) where r = rankS;

and

• either AT
∼= (Z/2Z)⊕a+1 and AS

∼= (Z/2Z)⊕a or vice versa.
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Hence, both T and S are indefinite 2-elementary lattices and T is hyperbolic.

Recall that the isomorphism class of an indefinite 2-elementary lattice is classi-

fied by the triple (r, a, δ), where r is its rank, a is the length of the discriminant

group, and δ = 0 if the discriminant form takes values in Z/2Z ⊂ Q/2Z and

δ = 1 otherwise. We are interested in counting how many nonisomorphic prim-

itive embeddings of T in L there are. Proposition 8.2 below is the analogue of

Proposition 2.7 in the case of involutions. We formulate it this time for the lattice

T instead of S for compatibility with Nikulin’s classification [33] of nonsymplectic

involutions on K3 surfaces in terms of hyperbolic 2-elementary lattices.

PROPOSITION 8.2

Let T be an even hyperbolic 2-elementary lattice of signature (1, t) and length

�(AT ) = a≥ 0, and let L= U⊕3⊕E⊕2
8 ⊕〈−2〉. Assume that T admits a primitive

embedding in L.

(i) If there is no x ∈ AT such that qT (x) = 3/2 mod 2Z, then T admits a

unique primitive embedding into L whose orthogonal complement is a 2-elementary

lattice S of signature (2,20− t), length �(AS) = a+ 1, and δS = 1.

(ii) Otherwise, nonisomorphic primitive embeddings of T into L are in one-

to-one correspondence with nonisometric choices of a 2-elementary lattice S of

signature (2,20 − t) with either l(AS) = l(AT ) − 1, or l(AS) = l(AT ) + 1 and

δS = 1.

Proof

We proceed as in the proof of Proposition 2.7. By [32, Proposition 1.15.1] a prim-

itive embedding of T into L is equivalent to the data of a quintuple (HT ,HL, γ,

S, γS) satisfying the following conditions.

• HT is a subgroup of AT = (Z/2Z)⊕a, HL is a subgroup of AL = Z/2Z, and

γ : HT →HL is an isomorphism of groups such that, for any x ∈HT , qL(γ(x)) =

qT (x).

• S is a lattice of invariants (2,20− t, qS) with qS = ((−qT )⊕qL)|Γ⊥/Γ, where

Γ is the graph of γ in AT ⊕AL, Γ
⊥ is the orthogonal complement of Γ in AT ⊕AL

with respect to the bilinear form induced on AT ⊕AL and with values in Q/Z, and

γS is an automorphism of AS that preserves qS . Moreover, S is the orthogonal

complement of T in L.

In our case there are only two possibilities.

(1) HT =HL = {0} and γ = id. In this case, Γ = {(0,0)}, so the discriminant

group of the orthogonal complement is AT ⊕AL and qS =−qT ⊕ qL. Recall that

AL = Z

2Z (
3
2 ), so let y ∈ AL be such that qL(y) = 3/2. Then qS((0, y)) = qL(y) /∈

Z/2Z and hence δS = 1.

(2) HT = HL = Z/2Z and γ = id. This case can happen only if there is

x ∈AT such that qT (x) = 3/2. In this case, Γ∼= Z/2Z, so the discriminant group

of S is AS =Γ⊥/Γ∼= (Z/2Z)⊕a−1 and qS = (−qT ⊕ qL)|AS
.
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In each case the lattice S is 2-elementary so the natural map O(S) → O(qS)

is surjective by [32, Theorem 3.6.3]. This implies that different choices of the

isometry γS produce isomorphic embeddings of T in L. As a consequence, if there

is no x ∈AT such that qT (x) = 3/2 mod 2Z, then only the first case occurs and

the lattice S has signature (2,20 − t), �(AS) = a + 1, and δS = 1. As noted in

Remark 2.3, the lattice S is uniquely determined by these invariants so T admits

a unique embedding in L. Otherwise, both cases can occur and the primitive

embeddings of T in L are classified by S: the signature of S is (2,20 − t), in

the first case S has length a+ 1 and δS = 1, and in the second case its length is

a− 1. �

REMARK 8.3

As a consequence, the lattice T admits at most three nonisometric embeddings

in L.

(1) If δT = 0, then case (i) occurs and T admits a unique primitive embedding

in L. By [33, Theorem 4.3.2] this implies that 1− t≡ 0 mod (4) so rankT ≡ 2

mod (4).

(2) By [16, Theorem 1.5.2] if δS = 0, then t− 18≡ 0 mod (4) so rankS ≡ 0

mod (4) and rankT ≡ 3 mod (4). Hence, if rankT �≡ 3 mod (4), then one has

necessarily δS = 1; hence, T admits at most two embeddings in L.

In Figures 1 and 2 we give all possible values of (r, a, δ) such that a 2-elementary

lattice T with these invariants admits a primitive embedding in L. To show

all possible embeddings, in Figure 1 we give the cases where the orthogonal S

has the property �(AS) = �(AT ) + 1 and in Figure 2 we give the cases where

�(AS) = �(AT )− 1. These figures are obtained by using the results of Nikulin on

primitive embeddings (see Remark 2.3).

� δT = δS = 1

∗ δT = 0, δS = 1

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1
2
3
4
5
6
7
8
9

10
11
12

r

a

Figure 1. Order 2: The lattice T admits an embedding in L with orthogonal S such that 
(AS) = 
(AT )+1.
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� δT = δS = 1

◦ δT = 1, δS = 0

◦

◦ ◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1
2
3
4
5
6
7
8
9

10
11
12

r

a

Figure 2. Order 2: The lattice T admits an embedding in L with orthogonal S such that l(AS) = l(AT )−1

(all realized by natural automorphisms).

REMARK 8.4

Let Σ be a K3 surface with a nonsymplectic involution ι such that the invariant

lattice Tι(Σ) has invariants (r, a, δ). Then the natural involution ι[2] induced

by ι on Σ[2] gives an example of the case where the invariant sublattice T has

invariants (r + 1, a + 1,1), its orthogonal complement S satisfies �(AS) = a =

�(AT ) − 1, and δS = δ. This gives a realization of all the cases illustrated in

Figure 2.

PROPOSITION 8.5

Under the same assumptions as in Proposition 8.2, for each embedding j : T ↪→ L

there exists an IHS−K3[2] with a nonsymplectic involution σ : X →X such that

the invariant lattice Tσ(X)⊂H2(X,Z) is isomorphic to the embedding j(T )⊂ L.

Proof

The proof follows the same lines as those of [36, Lemma 2.6] with one exception.

The isometry i= idT ⊕ (−idS) of T ⊕S induces the identity on AS⊕T , so it leaves

stable the subgroup L
T⊕S ⊂AT⊕S . This implies that i extends to an isometry of

L such that Li = T (see [32, Corollary 1.5.2]). Assume first that rankT ≤ 20.

By the surjectivity of the period map P0 and Proposition 5.3, for any ω ∈ Ω◦
T

there exists an IHS−K3[2] with a marking η : L→H2(X,Z) such that η(T ) =

NS(X) and η(ω) =H2,0(X). Then NS(X) is hyperbolic, so X is projective by [22,

Theorem 3.11]. The action of i onH2(X,Z) induced by η, which we still denote by

i, is a Hodge isometry since i(ω) =−ω implies i(H2,0(X)) =H2,0(X). We apply

the strong Torelli theorem as stated in [26, Theorem 1.3]. We verify the conditions

of [26, Theorem 9.8] to prove that the involution i is a parallel transport operator.

The positive vectors of T and S generate a positive 3-dimensional subspace of

LR whose orientation is preserved by i. Moreover, since the lattice L admits a
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unique primitive embedding in the Mukai lattice U⊕4 ⊕E⊕2
8 , we conclude that

the involution i is a parallel transport operator. Since X is projective and i

acts trivially on NS(X), it leaves invariant an ample class, so i maps the Kähler

cone of X to itself. By the strong Torelli theorem it follows that there exists

an automorphism ι of X such that ι∗ = i. Since the natural map Aut(X) →
O(H2(X,Z)) is injective, ι is an involution.

Assume now that rankT = 21: the previous argument does not work since

the period domain is zero-dimensional but we observe that by [33] there exists

a K3 surface Σ with an involution ι such that the invariant lattice Tι(Σ) has

invariants (20,2,1). Then by Remark 8.4 the involution ι[2] on Σ[2] is such that

(ι[2])∗ = i and realizes the case where the invariant sublattice T has invariants

(21,3,1). �

EXAMPLE 8.6

(1) Take T = 〈2〉 of invariants (1,1,1). The unique embedding in L (see

Figure 1) corresponds to Beauville’s nonnatural involution [3] on the Hilbert

scheme of two points of a quartic in P3 containing no line; here S = U⊕2⊕E⊕2
8 ⊕

〈−2〉⊕2.

(2) Take T = 〈2〉⊕〈−2〉 of invariants (2,2,1). The embedding in Figure 1 has

orthogonal complement S = U⊕2 ⊕E8 ⊕E7 ⊕〈−2〉⊕2; it corresponds to Ohashi–

Wandel’s involution [36]. The embedding in Figure 2 has orthogonal complement

S = U⊕2 ⊕ E⊕2
8 ⊕ 〈−2〉 and is realized by a natural involution on the Hilbert

scheme of two points on a K3 surface (see Remark 8.4).

Appendix: Tables for the invariant lattice and its orthogonal

The isometry classes of the lattices S and T for all admissible values of (p,m,a)

are summarized in Tables 1, 3–7 corresponding to p = 3,7,11,13,17,19. The

excluded values of (p,m,a) are not written in the tables. Theorem 3.3 for the

order 5 automorphisms holds only for natural automorphisms, so in Table 2 the

list of admissible triples (5,m,a) is given only in this special case. Recall that

in Tables 1, 3–7 we mark with a ♣ the cases that are realized with natural

automorphisms and with a ♦ the cases that are realized with automorphisms on

the Fano variety of lines of a cubic four-fold.
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Table 1. Order 3.

p m a χ h∗ S T

♦ 3 11 1 27 67 U⊕2 ⊕E⊕2
8 ⊕A2 〈6〉

♣ 3 10 0 9 109 U⊕2 ⊕E⊕2
8 U ⊕ 〈−2〉

♣ 3 10 2 9 57 U ⊕U(3)⊕E⊕2
8 U(3)⊕ 〈−2〉

♣ 3 9 1 0 96 U⊕2 ⊕E6 ⊕E8 U ⊕A2 ⊕ 〈−2〉
♣ 3 9 3 0 48 U ⊕U(3)⊕E6 ⊕E8 U(3)⊕A2 ⊕ 〈−2〉
♣ 3 8 2 0 84 U⊕2 ⊕E6 ⊕E6 U ⊕A⊕2

2 ⊕ 〈−2〉
♣ 3 8 4 0 40 U ⊕U(3)⊕E⊕2

6 U(3)⊕A⊕2
2 ⊕ 〈−2〉

♦ 3 8 6 0 12 U⊕2 ⊕A6
2 〈6〉 ⊕E∨

6 (3)

♣ 3 7 1 9 129 U⊕2 ⊕A2 ⊕E8 U ⊕E6 ⊕ 〈−2〉
♣ 3 7 3 9 73 U ⊕U(3)⊕A2 ⊕E8 U ⊕A⊕3

2 ⊕ 〈−2〉
♣ 3 7 5 9 33 U⊕2 ⊕A5

2 U(3)⊕A3
2 ⊕ 〈−2〉

♦, ♣ 3 7 7 9 9 U ⊕U(3)⊕A5
2 U(3)⊕E∨

6 (3)⊕ 〈−2〉
♣ 3 6 0 27 183 U⊕2 ⊕E8 U ⊕E8 ⊕ 〈−2〉
♣ 3 6 2 27 115 U ⊕U(3)⊕E8 U ⊕E6 ⊕A2 ⊕ 〈−2〉
♣ 3 6 4 27 63 U⊕2 ⊕A4

2 U ⊕A4
2 ⊕ 〈−2〉

♣ 3 6 6 27 27 U ⊕U(3)⊕A4
2 U(3)⊕A4

2 ⊕ 〈−2〉
♣ 3 5 1 54 166 U⊕2 ⊕E6 U ⊕E8 ⊕A2 ⊕ 〈−2〉
♣ 3 5 3 54 102 U ⊕U(3)⊕E6 U ⊕A2

2 ⊕E6 ⊕ 〈−2〉
♦, ♣ 3 5 5 54 54 U ⊕U(3)⊕A3

2 U ⊕A5
2 ⊕ 〈−2〉

♣ 3 4 2 90 150 U⊕2 ⊕A2
2 U ⊕E2

6 ⊕ 〈−2〉
♣ 3 4 4 90 90 U ⊕U(3)⊕A2

2 U ⊕E6 ⊕A3
2 ⊕ 〈−2〉

♣ 3 3 1 135 207 U⊕2 ⊕A2 U ⊕E6 ⊕E8 ⊕ 〈−2〉
♣ 3 3 3 135 135 U ⊕U(3)⊕A2 U ⊕E⊕2

6 ⊕A2 ⊕ 〈−2〉
♣ 3 2 0 189 273 U⊕2 U ⊕E⊕2

8 ⊕ 〈−2〉
♣ 3 2 2 189 189 U ⊕U(3) U ⊕E6 ⊕E8 ⊕A2 ⊕ 〈−2〉
♣ 3 1 1 252 252 A2(−1) U ⊕E⊕2

8 ⊕A2 ⊕ 〈−2〉

Table 2. Order 5.

m a χ h∗ S T

5 1 −1 31 U ⊕E⊕2
8 ⊕H5 H5 ⊕ 〈−2〉

4 2 14 42 U ⊕H5 ⊕E8 ⊕A4 H5 ⊕A4 ⊕ 〈−2〉
4 4 14 14 U(5)⊕H5 ⊕E8 ⊕A4 H5 ⊕A∗

4(5)⊕ 〈−2〉
3 1 54 102 U ⊕H5 ⊕E8 H5 ⊕E8 ⊕ 〈−2〉
3 3 54 54 U ⊕H5 ⊕A2

4 H5 ⊕A2
4 ⊕ 〈−2〉

2 2 119 119 U ⊕H5 ⊕A4 H5 ⊕A4 ⊕E8 ⊕ 〈−2〉
1 1 202 202 U ⊕H5 H5 ⊕E2

8 ⊕ 〈−2〉
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Table 3. Order 7.

p m a χ h∗ S T

♣ 7 3 1 9 33 U⊕2 ⊕E8 ⊕A6 U ⊕K7 ⊕ 〈−2〉
♣ 7 3 3 9 9 U ⊕U(7)⊕E8 ⊕A6 U(7)⊕K7 ⊕ 〈−2〉
♣ 7 2 0 65 117 U⊕2 ⊕E8 U ⊕E8 ⊕ 〈−2〉
♣ 7 2 2 65 65 U ⊕U(7)⊕E8 U(7)⊕E8 ⊕ 〈−2〉
♣ 7 1 1 170 170 U⊕2 ⊕K7 U ⊕E8 ⊕A6 ⊕ 〈−2〉

Table 4. Order 11.

p m a χ h∗ S T

♣ 11 2 0 5 25 U⊕2 ⊕E⊕2
8 U ⊕ 〈−2〉

♣ 11 2 2 5 5 U ⊕U(11)⊕E⊕2
8 U(11)⊕ 〈−2〉

♣ 11 1 1 104 104 K11(−1)⊕E8 U ⊕A10 ⊕ 〈−2〉

Table 5. Order 13.

p m a χ h∗ S T

13 1 0 77 103 U⊕2 ⊕E8 U ⊕E8 ⊕ 〈−2〉
♣ 13 1 1 77 77 U ⊕E8 ⊕H13 E8 ⊕H13 ⊕ 〈−2〉

Table 6. Order 17.

p m a χ h∗ S T

♣ 17 1 1 35 35 U⊕2 ⊕E8 ⊕L17 U ⊕L17 ⊕ 〈−2〉

Table 7. Order 19.

p m a χ h∗ S T

♣ 19 1 1 20 20 K19(−1)⊕E⊕2
8 U ⊕K19 ⊕ 〈−2〉
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