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Abstract We compute quantum cohomology rings of ellipticP1 orbifolds via orbicurve

counting. The main technique is the classification theorem which relates holomorphic

orbicurves with certain orbifold coverings. The countings of orbicurves are related to the

integer solutions of Diophantine equations. This reproduces the computation of Satake

and Takahashi in the case of P1
3,3,3 via a different method.

1. Introduction

The theory of holomorphic curves has been a great tool for understanding the

geometry of a symplectic manifold. The quantum cohomology ring plays an

important role in Hamiltonian dynamics and mirror symmetry. Quantum coho-

mology counts J -holomorphic spheres inside a symplectic manifold which inter-

sect three given (co)cycles. As the counting also includes constant holomorphic

spheres, quantum cohomology deforms the classical cup product on the singular

cohomology ring.

Later, Chen and Ruan [CR] defined the quantum cohomology for symplectic

orbifolds. Their orbifold quantum cohomology ring captures stringy phenomena

in the sense that it also includes twisted sectors of a given orbifold as well as the

usual cocycles on the underlying space of the orbifold. In order to do this, one

also allows the domain curves to have orbifold singularities. That is, one should

count holomorphic orbispheres as well.

The main objects which we will study throughout this article are among the

simplest types of such orbifolds, spheres with three cone points called the orbifold

projective lines. The orbifold quantum cohomology of these spheres indeed has a

richer structure than that of the ordinary smooth sphere, since one additionally

considers the interaction among three singular points through J -holomorphic

orbispheres as mentioned. We shall briefly review the orbifold quantum cohomol-

ogy in Section 3.

The orbifold projective lines that are of interest in this article are those which

admit elliptic curves as their manifold covers and have three singular points z1,

z2, and z3. There are three such orbifold projective lines, P1
3,3,3, P

1
2,3,6, and P1

2,4,4,
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where the subindices indicate the orders of the singularities at the three orbifold

points zi. We will call these elliptic orbifold projective lines. (We remark that

there is in fact one more orbifold projective line which is a quotient of elliptic

curves, that is, the orbifold projective line P1
2,2,2,2 with four Z2-singular points,

which will not be considered in this article.)

Recently, Satake–Takahashi [ST] computed the full genus 0 Gromov–Witten

potential for P1
3,3,3 and P1

2,2,2,2, making use of an algebraic argument (e.g.,

Witten–Dijkgraaf–Verlinde–Verlinde (WDVV in short) equations). And further-

more, Krawitz–Shen [KS] independently computed the potentials for P1
3,3,3, P

1
2,3,6,

and P1
2,4,4 even for all genera and proved the Landau–Ginzburg/Calabi–Yau

(LG/CY) correspondences for these examples.

We would like to mention that our method is different from theirs. Namely,

our purpose here is to reproduce the (small) quantum product terms of the

potential by directly counting holomorphic orbispheres. For this we will classify

all holomorphic orbispheres with three markings in Section 4.2. Interestingly, we

find that these orbispheres have a one-to-one correspondence with the solutions

of certain Diophantine equations depending on the lattice structures on the uni-

versal covers of orbifold projective lines constructed from the preimages of the

three singular points. As a result, we will provide simple expressions for the quan-

tum cup products (Sections 5 and 6), making use of the formula for the number

of solutions of a quadratic Diophantine equation (Appendix A).

The main results of the article are as follows. First, the classification of

holomorphic orbispheres for the quantum product on P1
3,3,3 is related to the

Diophantine equation QF (a, b) := a2− ab+ b2 = d. After fixing the first insertion

to be Δ
1/3
1 , we will show that the moduli space of holomorphic orbispheres with

three orbimarkings can be identified with the Z3-quotient of the space

L(C) :=
{
z �→ λz

∣∣ λ= a+ bτ(a, b ∈ Z)
}

(τ = e2πi/3),

where the Z3-action on L(C) is induced by multiplying λ by τ . Then, the above

identification can be further decomposed into three pieces as[
L(C)/Z3

] ∼= (i) M0,3(P1
3,3,3;Δ

1/3
1 ,Δ

1/3
1 ,Δ

1/3
1 )

∪ (ii)
(
M0,3(P1

3,3,3;Δ
1/3
1 ,Δ

1/3
2 ,Δ

1/3
3 )

∪M0,3(P1
3,3,3;Δ

1/3
1 ,Δ

1/3
3 ,Δ

1/3
2 )

)
depending on whether (i) QF (a, b)≡ 0 (mod3) or (ii) QF (a, b)≡ 1 (mod3). We

will also see that degree d holomorphic spheres correspond to λ = a+ bτ with

QF (a, b) = d (Sections 5.1 and 5.2). Finally, there is a Z6-action on L(C) gener-
ated by (1 + τ)-multiplication, which in turn switches the two summands in (ii)

(see Section 5.3).
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THEOREM 1.1

For P1
3,3,3, the only nontrivial 3-point Gromov–Witten invariants are

〈Δ1/3
1 ,Δ

1/3
2 ,Δ

1/3
3 〉P

1
3,3,3

0,3 ,(1.1)

〈Δ1/3
i ,Δ

1/3
i ,Δ

1/3
i 〉P

1
3,3,3

0,3(1.2)

for i= 1,2,3, where subindices of Δ indicate the singular points zi. If one denotes

the (compactified) moduli space of degree d holomorphic orbispheres contributing

to (1.1) by M0,3,d(P1
3,3,3;Δ

1/3
1 ,Δ

1/3
1 ,Δ

1/3
1 ) and that for (1.2) by M0,3,d(P1

3,3,3;

Δ
1/3
i ,Δ

1/3
i ,Δ

1/3
i ), then

#M0,3,d(P1
3,3,3;Δ

1/3
1 ,Δ

1/3
2 ,Δ

1/3
3 ) =

1

6
#
{
(a, b) :QF (a, b) = d, d≡ 1(mod3)

}
,

#M0,3,d(P1
3,3,3;Δ

1/3
1 ,Δ

1/3
1 ,Δ

1/3
1 ) =

1

3
#
{
(a, b) :QF (a, b) = d, d≡ 0(mod3)

}
.

Similarly, solutions of the Diophantine equation QG(a, b) := a2 + b2 = d are

assigned to holomorphic orbispheres in P1
2,4,4, and the rest of the argument is

parallel to that for P1
3,3,3.

THEOREM 1.2

For P1
2,4,4, the nontrivial contributions to 3-point Gromov–Witten invariants

come only from the moduli spaces

M0,3,d(P1
2,4,4;Δ

1/2
1 ,Δ

1/4
j ,Δ

1/4
k ), M0,3,d(P1

2,4,4;Δ
2/4
j ,Δ

1/4
j ,Δ

1/4
j ),

M0,3,d(P1
2,4,4;Δ

2/4
j ,Δ

1/4
k ,Δ

1/4
k )

for j, k = 2,3 and

#M0,3,d(P1
2,4,4;Δ

1/2
1 ,Δ

1/4
j ,Δ

1/4
k ) =

1

4
#
{
(a, b) :QG(a, b) = d, d≡ 1(mod4)

}
,

#M0,3,d(P1
2,4,4;Δ

2/4
j ,Δ

1/4
j ,Δ

1/4
j ) =

1

4
#
{
(a, b) :QG(a, b) = d, d≡ 0(mod4)

}
,

#M0,3,d(P1
2,4,4;Δ

2/4
j ,Δ

1/4
k ,Δ

1/4
k ) =

1

4
#
{
(a, b) :QG(a, b) = d, d≡ 2(mod4)

}
.

The quantum product on P1
2,3,6 is also related to the Diophantine equation

QF (a, b) := a2 + b2 = d, but now we consider d modulo 6.

PROPOSITION 1.3

For P1
2,3,6, we also have a similar statement related to the number of solutions of

QF (a, b) = d considering d (mod6) and d (mod3). Nontrivial 3-point Gromov–

Witten invariants are listed as follows:

(1)

#M0,3,d(P1
2,3,6;Δ

1/2
1 ,Δ

1/3
2 ,Δ

1/6
3 ) =

1

6
#
{
(a, b) :QF (a, b) = d, d≡ 1(mod6)

}
,
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#M0,3,d(P1
2,3,6;Δ

3/6
3 ,Δ

1/3
2 ,Δ

1/6
3 ) =

1

6
#
{
(a, b) :QF (a, b) = d, d≡ 4(mod6)

}
,

#M0,3,d(P1
2,3,6;Δ

1/2
1 ,Δ

2/6
3 ,Δ

1/6
3 ) =

1

6
#
{
(a, b) :QF (a, b) = d, d≡ 3(mod6)

}
,

#M0,3,d(P1
2,3,6;Δ

3/6
3 ,Δ

2/6
3 ,Δ

1/6
3 ) =

1

6
#
{
(a, b) :QF (a, b) = d, d≡ 0(mod6)

}
;

(2)

#M0,3,2d(P1
2,3,6;Δ

2/6
3 ,Δ

2/6
3 ,Δ

2/6
3 ) =

1

6
#
{
(a, b) :QF (a, b) = d, d≡ 0(mod3)

}
,

#M0,3,2d(P1
2,3,6;Δ

1/3
2 ,Δ

1/3
2 ,Δ

2/6
3 ) =

1

6
#
{
(a, b) :QF (a, b) = d, d≡ 1(mod3)

}
,

#M0,3,2d(P1
2,3,6;Δ

1/3
2 ,Δ

1/3
2 ,Δ

1/3
2 ) =

1

3
#
{
(a, b) :QF (a, b) = d, d≡ 0(mod3)

}
.

In item (2), there are only even-degree holomorphic orbispheres.

In addition to these, there are two more 3-point Gromov–Witten invariants

〈Δ1/6
3 ,Δ

1/6
3 ,Δ

4/6
3 〉P

1
2,3,6

0,3 and 〈Δ2/3
2 ,Δ

1/6
3 ,Δ

1/6
3 〉P

1
2,3,6

0,3 , for which we only give a

heuristic counting in Conjecture 6.3. We are not able to associate solutions of

a Diophantine equation to these holomorphic orbispheres since their domain is

P1
3,6,6, which does not admit an elliptic curve as a covering unlike the other

cases.

On the other hand, closed-string mirror symmetry for P1
a,b,c has been inten-

sively studied in many preceding works. For example, Gromov–Witten theory on

P1
a,b,c with 1

a +
1
b +

1
c > 1 was investigated by Milanov–Tseng [MT] and Rossi [R]

using Frobenius structures associated with the mirror potential W for P1
a,b,c. For

elliptic orbifold projective lines, global mirror symmetry and LG/CY correspon-

dence were proved by Milanov–Ruan [MR], Krawitz–Shen [KS], and Milanov–

Shen [MSh].

In the mirror symmetry point of view, quantum cohomology rings of ellip-

tic projective lines should be isomorphic to the Jacobian rings of their mirror

potentials:

(1.3) ks :QH∗
orb(P

1
3,3,3)→ Jac(W3,3,3).

We remark that Wa,b,c has been explicitly computed in [CHKL] and the com-

putation in this article should be helpful to understand such a mirror symmetry

isomorphism.

2. Preliminaries

In this section, we briefly review orbifold theory which will be used in Sec-

tion 4.
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2.1. Orbifolds
The notion of orbifolds was first introduced by Satake [Sa] under the name V -

manifolds, and the theory of orbifolds was further developed by Thurston [Thu].

Here we follow the definition of orbifold as given in [CR1] (see [ALR] for more

details on other approaches).

DEFINITION 2.1

A paracompact Hausdorff space X is called an n-dimensional orbifold if X can

be covered by open subsets X =
⋃
Ui such that

(1) there exists a homeomorphism φi : Vi/Gi → Ui where Vi is an open subset

of Rn with an (effective) action of a finite group Gi;

(2) for a point x ∈ Ui∩Uj , there is an open neighborhood Uij of x in X which

is isomorphic to the quotient of an open domain Vij in Rn by a finite group Gij ,

and there are embeddings (Vij → Vi,Gij →Gi) and (Vij → Vj ,Gij →Gj) which

are equivariant.

The local model (Vi,Gi, φi) ofX is called a local uniformizing chart. We denote by

|X| the underlying topological space obtained by forgetting the orbifold structure

of X .

In particular, for each x ∈X , we can take an open neighborhood Ux of x in X

which is isomorphic to Vx/Gx (where Vx ⊂ Rn and Gx is a finite group) such

that the preimage of x in Vx is the single point which is fixed by Gx. We call

(Vx,Gx) a local uniformizing chart around x. Now, for two orbifolds X and Y ,

the morphism between them can be defined as follows.

DEFINITION 2.2

(1) A smooth map f between X and Y is a continuous map f :X → Y which

has the following local property. For each x ∈X , there exist uniformizing charts

(Vx,Gx) and (Vf(x),Gf(x)) of x and f(x), respectively, and an injective group

homomorphism Gx →Gf(x) such that f admits a local smooth lifting f̃VxVf(x)
:

Vx → Vf(x) which is (Gx,Gf(x))-equivariant.

(2) A smooth map f between X and Y is called good if it admits a collection

of maps {f̃UU ′ , λ} which is called a compatible system of f and is defined as

follows. For each equivariant embedding i : (V2,G2, π2) → (V1,G1, π1) of local

uniformizing charts of X , there is an equivariant embedding λ(i) : (V ′
2 ,G

′
2, π

′
2)→



202 Hansol Hong and Hyung-Seok Shin

(V ′
1 ,G

′
1, π

′
1) of charts of Y with the following commuting diagram:

V0

f̃V0V ′
0

V2
i

j◦i

f̃V2V ′
2

V1

j

f̃V1V ′
1

V ′
0

V ′
2 λ(i)

λ(j◦i)

V ′
1

λ(j)

where each map is an equivariant map.

There is another notion of maps between orbifolds introduced by Takeuchi [T].

We will compare the two notions in Lemma 2.10.

2.2. Orbifold fundamental group
In this section, we recall the notion of the orbifold fundamental group (introduced

by Thurston), which is closely related to the orbifold covering theory explained

below. This is analogous to the connection between the usual covering theory

and fundamental groups. It is enough to consider global quotient orbifolds for

our purpose in this article. Consider a finite group action G on a manifold M

which preserves orientation. (One may consider an infinite group G if an orbifold

is represented as a quotient of noncompact manifolds by a locally free action of

a discrete group.) Then, generalized loops in M are defined as follows.

DEFINITION 2.3

A path γ : [0,1]→M is called a generalized loop based at x̃0 ∈M if γ(0) = x̃0

and there exists gγ ∈G such that γ(1) = g · γ(0).

Choose a point x̃0 ∈M with Gx̃0
= 1, and let πorb

1 ([M/G]) be the set of equiv-

alence classes of generalized loops based at x̃0 where the equivalence relation

is given as homotopies fixing endpoints. One can check that πorb
1 ([M/G]) has a

natural group structure by defining

[γ] · [δ] =
[
γ#gγ(δ)

]
for generalized loops γ, δ based at x̃0 where # denotes the concatenation of paths.

For example, πorb
1 (P1

a,b,c) has a presentation

πorb
1 (Pa,b,c) =

〈
ρ1, ρ2, ρ3

∣∣ (ρ1)a = (ρ2)
b = (ρ3)

c = ρ1ρ2ρ3 = 1
〉
,

where ρ1, ρ2, and ρ3 are generalized loops in the universal cover of P1
a,b,c whose

images in the underlying space of the orbifold look as in Figure 1(a). The relation
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Figure 1. (a) Generators of πorb
1 (P1

a,b,c) and (b) the relation ρa
1 = 1.

ρa1 = 1 can be seen in the uniformizing chart around the singular point of order

a (see Figure 1(b)). One can observe the relation ρ1ρ2ρ3 = 1 even more directly

on the orbifold itself.

REMARK 2.4

See [T] for details on the link between orbifold fundamental groups and orbifold

coverings which we shall explain below.

2.3. Orbifold covering theory
There is an analogue of covering space for orbifolds whose local model is Rn/G′ →
Rn/G for some finite group G which acts on Rn with G′ ≤G.

DEFINITION 2.5 ([T, SECTION 1])

An orbifold X̃ is called a covering orbifold if there is a continuous surjective map

p : |X̃| → |X| satisfying the following condition. For each point x ∈ |X|, there is a
local uniformizing chart Ũx/Gx

∼= Ux such that each point x̃ ∈ p−1(x) has a local

uniformizing chart Ũx/Gx,i
∼= Vx,i for some Gx,i ≤ Gx such that the following

diagram commutes:

Ũx/Gx,i

∼=

q

Vx,i

p

Ũx Ũx/Gx

∼=
Ux

where q is the natural projection.

An orbifold which admits a manifold covering is called a good orbifold. For exam-

ple, the orbifold projective lines P1
3,3,3, P

1
2,4,4, and P1

2,3,6 that are our main concern

are all good orbifolds, as they are given by quotients of a 2-torus. Throughout

the section, we assume that all orbifolds are good.

Following [T] we introduce the notion of an orbimap.
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DEFINITION 2.6 ([T, SECTION 2])

An orbimap f :X → Y consists of a continuous map h : |X| → |Y | between under-

lying spaces and a fixed continuous map h̃ : X̃ → Ỹ which satisfy

(1) h ◦ p= q ◦ h̃;
(2) for each σ ∈Aut(X̃, p) (∼= πorb

1 (X)), there exists τ ∈Aut(Ỹ , q) such that

h̃ ◦ σ = τ ◦ h̃;
(3) h(|X|) does not lie in the singular loci of Y entirely.

REMARK 2.7

Indeed, the covering theory in [T] only concerns good orbifolds.

For orbimaps, we have the usual lifting theorems in covering theory as well, the

proofs of which are not very much different from the standard one.

PROPOSITION 2.8 ([T, PROPOSITION 2.7])

Let f : (X,x)→ (Y, y) be an orbimap, and let p : (Y ′, y′)→ (Y, y) be a covering.

Then f can be lifted to an orbimap f̃ : X → Y ′ if and only if f∗π
orb
1 (X,x) ⊂

p∗π
orb
1 (Y ′, y′).

As we will often use lifting theorems for orbifold coverings by Takeuchi [T], we

also introduce another notion of morphisms between orbifolds which Takeuchi

called orbimaps. However, we will show in Section 2.4 that the two notions are

equivalent for our main examples.

2.4. Orbimaps between 2-dimensional orbifolds
While orbifold covering theory was well established for orbimaps by Takeuchi

[T], orbifold quantum cohomology is defined by counting the good maps given

in Definition 2.2(2). In the case of elliptic P1-orbifolds, it will be shown that the

maps given in Definition 2.2(1) satisfy the axioms in Definition 2.6.

REMARK 2.9

From [CR, Lemma 4.4.11], a smooth map f :X →X ′ between two orbifolds X

and X ′ is a good map with a unique compatible system up to isomorphism if the

inverse image of the regular part of X ′ is an open, dense, and connected subset

of X . Note that a nonconstant smooth map contributing to the quantum product

for P1
a,b,c automatically satisfies this property.

Consider two (good) orbifolds X and Y which admit manifold universal covering

spaces p : X̃ →X and q : Ỹ → Y , respectively. Assume that the deck transforma-

tion actions of p and q are orientation preserving. Moreover, assume that both

X and Y are 2-dimensional (which is the case of our main interest). Note that

singular loci of X and Y are sets of isolated points.
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LEMMA 2.10

With the setting as above, any nonconstant smooth map φ :X → Y satisfies the

axioms in Definition 2.6 if dimX = dimY = 2.

Proof

We first show that there is a continuous map φ̃ : X̃ → Ỹ which lifts φ :X → Y .

(2.1)

X̃

φ◦p

φ̃

p

Ỹ

q

X
φ

Y

What we want to have is basically a lift of the map φ ◦ p : X̃ → Y . We claim that

at each point x̃ ∈ X̃ there is a local lifting of φ ◦ p. Let x := p(x̃). Then one can

find a neighborhood of x̃ which uniformizes X locally around x. Since the same

is true for any point in the inverse image q−1(φ(x)), we can find a local lifting of

φ around x̃ by the properties of orbifold maps.

By gathering such a neighborhood for each x̃ ∈ X̃ , we obtain an open covering

Ũ = {Ũi : Ũi ⊂ X̃, i ∈ I} of X̃ which consists of open subsets of X̃ on which φ

can be locally lifted. For each Ũi ∈ Ũ , we fix a local lifting φ̃i of φ. On the

intersection of two open subsets Ũi and Ũj in Ũ , two local liftings φ̃i and φ̃j

differ by an element gij of Aut(Ỹ , q)∼= πorb
1 (Y ), that is,

(2.2) φ̃i|Ũi∩Ũj
= gij ◦ φ̃j |Ũi∩Ũj

.

Note that {gij : i, j ∈ I} satisfies the usual cocycle condition; that is,

(2.3) gijgjkgki = 1.

We obtain (2.3) from

φ̃i = gij ◦ φ̃j

= (gijgjk) ◦ φ̃k

= (gijgjkgki) ◦ φ̃i

on Ũi ∩ Ũj ∩ Ũk and the fact that the action of πorb
1 (Y ) on Y is free generically.

(Recall that φ is a nonconstant map.)

Therefore, {gij}i,j∈I defines a principal πorb
1 (Y )-bundle over X̃ or equiva-

lently a covering space of X̃ . Here, gij glues Ũi × πorb
1 (Y ) and Ũj × πorb

1 (Y ) by

left multiplication so that the resulting bundle admits the right action of πorb
1 (Y ).

Since πorb
1 (Y ) is discrete and X̃ is simply connected, this bundle should be triv-

ial. Therefore, the cocycle {gij} is also trivial up to coboundary, that is, there

exists a collection {(εi, Ũi) ∈ πorb
1 (Y )× Ũ : i ∈ I} of elements of πorb

1 (Y ) each of

which is associated with an open subset in Ũ such that

(2.4) gij = ε−1
i εj .
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(In other words, {εi} trivializes the principal bundle corresponding to the data

{gij}.)
From (2.2) and (2.4), we have

εiφ̃i = εj φ̃j

on Ũi ∩ Ũj . If we set φ̃′
i := εiφ̃i, then {φ̃′

i}i∈I gives a collection of local liftings

of φ, any two of which agree on their common domain. Denote the resulting

global lifting of φ by h̃.

We next check the second axiom of Definition 2.6. Let σ be a deck transfor-

mation of the covering p : X̃ →X , that is, an element of Aut(X̃, p). Then h̃ ◦ σ
is a lifting of φ ◦ p because

q ◦ h̃ ◦ σ = (φ ◦ p) ◦ σ

= φ ◦ (p ◦ σ)

= φ ◦ p.

Since both h̃ and h̃ ◦ σ are liftings of φ ◦ p, one can find an element τx̃ in

Aut(Y, q) for each x̃ ∈ X̃ such that

h̃ ◦ σ(x̃) = τx̃
(
h̃(x̃)

)
.

Since X̃ is connected and πorb
1 (Y ) is discrete, τx̃ has to be independent of x̃. This

gives an element τ that holds for the second property of orbimaps.

(2.5)

X̃
h̃◦σ,h̃

φ◦p

Ỹ

q

Y

Finally, the third condition of orbimaps follows obviously since we are only

considering nonconstant morphisms between orbifolds with the same dimension.

�

REMARK 2.11

From the proof, we see that the lemma also holds for a smooth map between two

good orbifolds of general dimension which does not send a whole open subset to

a fixed locus.

3. Gromov–Witten theory of orbifolds

In this section, we briefly review the quantum cohomology of orbifolds developed

by Chen and Ruan. The key ingredients in defining the product on this cohomol-

ogy are holomorphic orbispheres (or orbifold stable maps in general) in orbifolds

with three marked points. If we consider such spheres with an arbitrary num-

ber of markings as well, then we obtain the orbifold (genus 0) Gromov–Witten

invariants (see [CR]; see also Sections 3.1 and 3.2).
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At the end of the section, we will come back to our main examples, orb-

ifold projective lines P1
a,b,c, and their Gromov–Witten theory. We are particu-

larly interested in P1
a,b,c with 1

a + 1
b + 1

c = 1, which are in fact quotients of an

elliptic curve and exhibit lots of number-theoretic phenomena. We remark that

Satake and Takahashi [ST] provided the full genus 0 potential of P1
3,3,3 using the

algebraic method. We will also briefly recall their work.

3.1. Description of Mg,k,β(X)

Let (X,ω) be a compact effective symplectic orbifold with a compatible almost

complex structure J (see [CR, Definitions 2.1.1, 2.1.5]). We begin with the

description of the compactified moduli space of orbifold stable maps into X .

The details can be found in [CR].

DEFINITION 3.1 ([CR, DEFINITION 2.2.2])

An orbi-Riemann surface of genus g is a triple (Σ,z,m) where

• Σ is a smooth Riemann surface of genus g, and

• z = (z1, . . . , zk) is a set of orbisingular points on Σ with isotropy group of

order m= (m1, . . . ,mk) for some integer mi ≥ 2. The orbifold structure on Σ is

given as follows: at each point zi, a disc neighborhood of zi is uniformized by the

branched covering map z → zmi .

In order to compactify the moduli space, we should also include nodal Riemann

surfaces as domains of holomorphic maps.

DEFINITION 3.2 ([CR, DEFINITION 2.3.1])

A nodal Riemann surface with k marked points is a pair (Σ,z) of a connected

topological space Σ =
⋃
πΣν (Σν) and a set of k distinct points z = (z1, . . . , zk) in

Σ with the following properties.

• Σν is a smooth Riemann surface of genus gν , and πν : Σν →Σ is a contin-

uous map. The number of components Σν is finite.

• For each z ∈Σν , there is a neighborhood around it such that the restriction

of πν : Σν →Σ to this neighborhood is a homeomorphism to its image.

• For each z ∈ Σ, we have
∑

ν #π−1
ν (z) ≤ 2, and the set of nodal points

{z |
∑

ν #π−1
ν (z) = 2} is finite.

• z does not contain any nodal points.

We next allow cone singularities on nodal Riemann surfaces.

DEFINITION 3.3 ([CR, DEFINITION 2.3.2])

A nodal orbi-Riemann surface is a nodal marked Riemann surface (Σ,z) with an

orbifold structure as follows.
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• The set of orbisingular points is contained in the set of marked points and

nodal points z.

• A disk neighborhood of a marked point is uniformized by a branched cov-

ering map z → zmi .

• A neighborhood of a nodal point is uniformized by the chart (Ũ ,Znj ), where

Ũ = {(x, y) ∈C2 | xy = 0} on which Znj acts by e
2πi
nj · (x, y) = (e

2πi
nj x, e

− 2πi
nj y).

Here mi and nj are allowed to be 1. We denote the corresponding nodal orbi-

Riemann surface by (Σ,z,m,n), and if there is no confusion, then we simply

write it as (Σ,z) (see Figure 2).

With a nodal orbi-Riemann surface as the domain, an orbifold stable map is

defined as follows.

DEFINITION 3.4 ([CR, DEFINITION 2.3.3])

For a given almost complex orbifold (X,J), an orbifold stable map is a triple

(f, (Σ,z,m,n), ξ) with the following properties.

• f : Σ→ |X| is a continuous map from a nodal Riemann surface Σ such that

fν = f ◦ πν is a J -holomorphic map.

• Consider the local lifting f̃VxVf(x)
: (Vx,Gx) → (Vf(x),Gf(x)) of f . The

homomorphism Gx →Gf(x) is injective.

• Let kν be the number of points in Σν which are marked or nodal. If fν is

a constant map, then kν + 2gν ≥ 3.

• ξ is an isomorphism class of compatible systems.

For the definition of an isomorphism between compatible systems, see [CR, Def-

inition 4.4.4].

We are now ready to define the moduli space relevant to the orbifold Gromov–

Witten invariants of X .

DEFINITION 3.5

(1) Two stable maps (f, (Σ,z), ξ) and (f ′, (Σ′,z′), ξ′) are equivalent if there

is an isomorphism θ : (Σ,z,m,n)→ (Σ′,z′,m′,n′) such that f ′ ◦ θ = f and ξ′ ◦
θ = ξ.

Figure 2. A nodal orbi-Riemann surface.
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(2) Given a homology class β ∈H2(|X|;Z), Mg,k,β(X,J) is defined as the

moduli space of equivalence classes of orbifold stable maps of genus g, with k

marked points, and of homology class β.

3.2. Gromov–Witten invariants of orbifolds
Now, we recall the definition of the orbifold cohomology group H∗

orb(X,Q) from

[CR1] which is freely generated by the elements of the cohomology groups of

twisted sectors of X (i.e., H∗
orb(X,Q) =H∗(IX ,Q) as a vector space, where IX

is the inertia orbifold of X). Here, the degrees of elements in H∗(X(g),Q) are

shifted by 2ι(g) where X(g) is the twisted sector associated with the conjugacy

class (g) and ι(g) is the age of an element g in a local group. Also, H∗
orb(X,Q)

admits a natural Poincaré pairing which is compatible with these shifted degrees:

(3.1)

∫ orb

IX

(·)∪orb (·) :H∗
orb(X,Q)⊗H∗

orb(X,Q)→Q.

We fix a Q-basis {γi}i=1,...,N of H∗
orb(X,Q). Then the k-point Gromov–

Witten invariants are defined by the following equation:

(3.2) 〈γ1, . . . , γk〉Xg,k,β :=

∫
[M0,k,β(X)]vir

ev∗1γ1 ∧ · · · ∧ ev∗kγk.

We also define 〈γ1, . . . , γk〉Xg,k to be the weighted sum
∑

β〈γ1, . . . , γk〉Xg,k,βqω(β).

REMARK 3.6

The compactified moduli space M0,k,β(X) admits a virtual fundamental class

[M0,k,β(X)]vir which can be defined with the help of an abstract perturbation

technique in general. (Readers are referred to [CR] for more details.)

For a tuple x= (X(g1),X(g2), . . . ,X(gk)) of twisted sectors, we say that (f, (Σ,z), ξ)

is of type x if orbi-insertions at the marked point zi lie in H∗(X(gi),Q) for

each i. Let Mg,k,β(X,J,β,x) denote the moduli space of equivalence classes of

orbifold stable maps of genus g with k marked points and of homology class β

and type x. Then M0,k,β(X) is the union of Mg,k,β(X,J,β,x) over all types x,

and the integration in (3.2) is nonzero on components Mg,k,β(X,J,β,x) with

γi ∈H∗(X(gi),Q).

For later purposes, we give the virtual dimension of Mg,k,β(X,J,β,x) explic-

itly as

(3.3) 2c1(TX)(β) + 2(n− 3)(1− g) + 2k− 2ι(x),

where 2n= dimRX and ι(x) =
∑k

i=1 ι(gi) (see [CR, Proposition 3.2.5]).

REMARK 3.7

If c1 of X vanishes as in our elliptic examples, then the virtual dimension of the

moduli is independent of the homology class β. In particular, n= 1 and g = 0 in

our main examples.
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If we set t :=
∑

tiγi, then the generating function for the Gromov–Witten invari-

ants is defined as

FX
0 (t) :=

∑
k,β

1

k!
〈t, . . . , t〉X0,k,βqω(β),

which we will call the genus 0 Gromov–Witten potential for X .

In particular, when k = 3, the counting given in (3.2) defines a product ∗ on

H∗
orb(X,Q) which is called the quantum product. More precisely,∫ orb

X

(γi ∗ γj)∪orb γl := 〈γi, γj , γl〉X0,3,

or equivalently,

γi ∗ γj :=
N∑
l=1

∑
β

〈γi, γj , γl〉X0,3,βPD(γl)q
ω(β)

where PD(·) denotes the Poincaré dual with respect to the pairing (3.1). There-

fore, (3.2) with n= 3 gives structure constants of this product. The associativity

of ∗ is proved in [CR]. We remark that what we have defined is the small quantum

cohomology of X while the big quantum cohomology involves the full Gromov–

Witten invariants.

3.3. Elliptic orbifolds P1
a,b,c and review on Satake–Takahashi’s work

We now focus on elliptic orbifolds with three cone points P1
a,b,c and their Gromov–

Witten potential. We have that P1
a,b,c is elliptic if and only if 1

a + 1
b +

1
c = 1, and

hence there are three elliptic orbifold projective lines P1
a,b,c where (a, b, c) are

(3,3,3), (2,3,6), and (2,4,4). They are called elliptic since these orbifolds can be

described as a global quotient of an elliptic curve E by a finite cyclic group G.

We first fix the notation for generators of their orbifold cohomology rings

in the following way. Let w1, w2, and w3 be the three cone points P1
a,b,c with

isotropy groups Za, Zb, and Zc, respectively. We fix a choice of a Q-basis of

H∗
orb(P

1
a,b,c,Q), which is fairly standard. The Q-basis

(3.4)
{
1,Δ

1/a
1 , . . . ,Δ

(a−1)/a
1 ,Δ

1/b
2 , . . . ,Δ

(b−1)/b
2 ,Δ

1/c
3 , . . . ,Δ

(c−1)/c
3 , [pt]

}
of H∗

orb(P
1
a,b,c,Q) is defined by the following conditions. The bases of a smooth

sector are

H0
orb(P

1
a,b,c,Q) =Q〈1〉, H2

orb(P
1
a,b,c,Q) =Q

〈
[pt]

〉
.

For twist sectors, let Δ
j/a
1 ∈H

2j
a

orb(P
1
a,b,c,Q), Δ

j/b
2 ∈H

2j
b

orb(P
1
a,b,c,Q), and Δ

j/c
3 ∈

H
2j
c

orb(P
1
a,b,c,Q), which are supported at singular points w1, w2, and w3, respec-

tively. For t :=
∑

tj,iΔ
i
j , orbifold cup products with respect to these bases are

given as follows:∫ orb

X

Δ
j/a
1 ∪Δ

k/a
1 =

1

a
δj+k−a,0,

∫ orb

X

Δ
j/b
1 ∪Δ

k/b
1 =

1

b
δj+k−b,0,
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∫ orb

X

Δ
j/c
1 ∪Δ

k/c
1 =

1

a
δj+k−c,0,

∫ orb

X

1∪ [pt] = 1,

where δi,j is 1 if i= j and 0 otherwise. The last cup product does not have any

fraction since both 1 and [pt] live in a smooth (untwisted) section of IX .

REMARK 3.8

Readers are hereby warned that the Poincaré dual PD(Δ
j/a
1 ) of Δ

j/a
1 is not

Δ
(a−j)/a
1 , but a×Δ

(a−j)/a
1 , and the same happens for b and c. However, 1 and

[pt] are still Poincaré dual to each other.

In the remaining part, we briefly recall the work of Satake and Takahashi [ST] on

P1
3,3,3. We first give a description of P1

3,3,3 as a quotient of an elliptic curve. Let E

be the elliptic curve associated with the lattice Z〈1, τ〉 in C where

τ = exp(2π
√
−1

3 ). Then the Z3-action on C generated by a rotation of 2π/3

descends to E since this action preserves the lattice Z〈1, τ〉. By taking quo-

tients of E via the induced Z3-action, we finally obtain the global quotient orb-

ifold P1
3,3,3 = [E/Z3]. (The shaded region in Figure 3(a) represents a fundamental

domain of the Z3-action on E.) Since each fixed point in E has the isotropy group

isomorphic to Z3, P1
3,3,3 has three cone points, each of which has Z3-singularity.

We denote these singular points by w1, w2, and w3, respectively. Therefore, the

inertia orbifold I P1
3,3,3 consists of the trivial sector together with three BZ3’s

(equivalent to [Z3 � {∗}]), which are associated with the wi’s.

REMARK 3.9

Consider the universal covering C → E of the elliptic curve. The composition

p : C → E → P1
3,3,3 as well as the quotient map E → P1

3,3,3 is a holomorphic

orbifold covering map in the sense of [T] (see also Definition 2.5). Indeed, p is the

orbifold universal cover. We will use this fact crucially to classify holomorphic

orbispheres in P1
3,3,3.

Figure 3. (a) The Z3-action on E and (b) its quotient.
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Following the notation in (3.4), the Q-basis of H∗
orb(P

1
3,3,3,Q) is given by

H0
orb(P

1
3,3,3,Q) = Q〈1〉, H2

orb(P
1
3,3,3,Q) =Q

〈
[pt]

〉
,

H
2
3

orb(P
1
3,3,3,Q) = Q〈Δ1/3

1 ,Δ
1/3
2 ,Δ

1/3
3 〉, H

4
3

orb(P
1
3,3,3,Q) =Q〈Δ2/3

1 ,Δ
2/3
2 ,Δ

2/3
3 〉,

and the Poincaré pairing for Δi
j ’s is determined by∫ orb

P
1
3,3,3

Δi
j ∪orb Δ

k
l =

{
1
3 if i+ k = 1 and j = l,

0 otherwise.

Satake and Takahashi [ST, Theorem 3.1] calculated the genus 0 Gromov–

Witten potential of P1
3,3,3 and the quantum product term can be written as

f0(q) :=
∑
d≥0

〈Δ1/3
1 ,Δ

1/3
2 ,Δ

1/3
3 〉0,3,dqd =

η(q9)3

η(q3)
,

f1(q) :=
∑
d≥0

〈Δ1/3
1 ,Δ

1/3
1 ,Δ

1/3
1 〉0,3,dqd =

(
1 +

1

3

( η(q)

η(q9)

)3)
f0(q).

(3.5)

Here, η(q) is Dedekind’s eta function

η(τ) := exp
(π√−1τ

2

) ∞∏
n=1

(1− qn), q = exp(2π
√
−1τ),

for τ ∈H := {τ ∈C | Im(τ)> 0}.
Write f0(q) =

∑
N≥1 aNqN . The Fourier coefficients aN of f0 depend on the

prime factorization of N (or more precisely the quadratic reciprocity of N ) and

are given by

aN =

⎧⎪⎪⎨⎪⎪⎩
0 if n > 0,

0 if one of mj is odd,

(n1 + 1) · · · (nk + 1) otherwise,

for N = 3npn1
1 · · ·pnk

k qm1
1 · · · qml

l where pi is a prime number with pi ≡ 1 (mod 3),

and qi is a prime number with qi ≡ 2 (mod 3) (see [S]). The Fourier coefficients

of f1 also have a similar description which we will give in Appendix A.

We also provide the first few terms of f0 and f1 to give readers an impression:

f0 = q+ q4 + 2q7 + 2q13 + q16 + 2q19 +O(q24),

f1 =
1

3
+ 2q3 + 2q9 + 2q12 + 4q21 +O(q24).

4. Holomorphic orbifold maps

As mentioned in the introduction, our main goal is to compute the (quantum)

product structure of H∗
orb(P

1
a,b,c,Q) where (a, b, c) is either (3,3,3), (2,3,6), or

(2,4,4). Throughout the section, P1
a,b,c denotes one of the elliptic orbifolds P

1
3,3,3,

P1
2,3,6, or P1

2,4,4. In order to do this, we have to count holomorphic orbispheres

in (or stable maps into) P1
a,b,c with three markings. In this section, we first

characterize these holomorphic maps and find their properties which are useful



Holomorphic orbispheres in elliptic curve quotients 213

for classifying holomorphic orbispheres in P1
a,b,c. We will see that if (f, (P1,z), ξ)

is a nonconstant orbifold stable map into elliptic P1
a,b,c of type x, then z cannot

contain a smooth point. Thus, we may assume that x is a triple of twisted sectors

(see the discussion after the proof of Lemma 4.1 below).

Recall that the type x determines the virtual dimension of a component of

the moduli of orbifold stable maps containing (f, (P1,z), ξ) as well as the orbifold

structure of the domain orbi-Riemann sphere (P1,z) (see Remark 3.7). In fact,

the virtual dimension is given as

vir.dimM0,3(P1
a,b,c, J, β,x) = 2− 2ι(x).

As we only consider the 0-dimensional moduli for the quantum product, this gives

a restriction on the type, that is, ι(x) = 1. If we impose an additional condition

on the degrees of inputs for a holomorphic orbisphere of type x with ι(x) = 1,

then we can show that it is actually an orbifold covering. This will be shown

in Section 4.2. As the first step, we show that there is no contribution to the

quantum product from a degenerate orbisphere, which is an element lying on the

boundary of M0,3,β(P1
a,b,c).

4.1. Considerations on degenerate maps
Note that the Δi

◦’s are cohomology classes of nontrivial sectors of P1
a,b,c. We want

to show that all the holomorphic orbispheres u : (Σ,z = (z1, z2, z3))→ P1
a,b,c of

appropriate type x= (x1, x2, x3), a triple of twisted sectors of P1
a,b,c, cannot have

any nodal singularity. More precisely, the above “appropriate” means that the

x is a type with vir.dimM0,3(P1
a,b,c, J, β,x) = 0 for all β. Here, since P1

a,b,c is

elliptic, the virtual dimension does not depend on β (Remark 3.7).

LEMMA 4.1

There are no degenerate (i.e., nodal) holomorphic orbispheres which are non-

constant and contribute to 〈Δi
◦,Δ

j
•,Δk

�〉
P
1
a,b,c

0,3 for i+ j + k = 1.

Proof

There are two classes of degenerate maps which are possibly contained in the

boundary of the moduli space M0,3(P1
a,b,c, J, β,x):

(1) u1 : P1
α,β,• �• P1

•,δ → P1
a,b,c,

(2) u2 : P1
α,β,δ,◦ �◦ P1

◦ → P1
a,b,c,

where • and ◦ are the order of the local isotropy group of the nodal point (see

Figure 4). Note that ui (i = 1,2) is a nonconstant map when restricted to the

second component of the domain, since ui should be stable. We claim that there

cannot exist such maps into P1
a,b,c.

First, consider the case of u : P1
δ,δ → P1

a,b,c (•= δ in (1)). Since the quotient

map π : P1 → P1
δ,δ (by the obvious Zδ-action on P1) is a holomorphic orbifold

covering and π1(P1) = 0, there is a holomorphic map ũ which makes the following
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Figure 4. Domains of degenerate maps: (a) P1
α,β,• �• P

1
•,δ and (b) P1

α,β,δ,◦ �◦ P
1
◦.

diagram commute (using Proposition 2.8 and Lemma 2.10).

(4.1)

P1 ∃ũ

π

E

p

P1
δ,δ

u P1
a,b,c

Note that the image of ũ must be homotopic to a constant map since

π2(E) = 0, and hence ũ is a constant map from the holomorphicity. This contra-

dicts the stability of the map u, and hence there is no such holomorphic map u.

A similar argument shows that u : P1 → P1
a,b,c (◦= 1 in (2)) cannot exist.

The remaining case is when the second component of the domain is not a

good orbifold, namely, u : P1
mp,mq → P1

a,b,c for some natural numbers p, q, and

m satisfying gcd(p, q) = 1 and pq �= 1. Consider the holomorphic quotient map

π : P1
p,q → P1

mp,mq , and consider the holomorphic map v := u ◦ π.

P1
p,q

v
π

P1
mp,mq

u P1
a,b,c

Let x ∈ P1
mp,mq be an orbisingular point, and let x̃ ∈ P1

p,q be the element in

π−1(x). We may assume that x̃ and u(x) have isotropy groups Zp for some p �= 1

and Za, respectively. Then from the definition of an orbifold map, the map v

should be lifted locally to an equivariant map ṽ on the local uniformizing charts

(4.2)

Ux̃
ṽ

Vv(x̃)

Ux̃/Zp
v

Vv(x̃)/Za
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and the induced group homomorphism between isotropy groups φv : Zp → Za

should be injective since φv = φu ◦ φπ : Zp
×m→ Zmp → Za is a composition of

two injective morphisms. (The injectivity of the second map comes from the

definition of an orbifold map. See Definition 2.2.) Hence, the generator g of

πorb
1 (Ux̃/Zp) should be mapped to an order p element of πorb

1 (Vv(x̃)/Za). However,

from van Kampen’s theorem, πorb
1 (P1

p,q) = {0}, so the image of g in πorb
1 (P1

p,q)

is zero whereas πorb
1 (P1

a,b,c) = 〈g1, g2, g3 | ga1 = gb2 = gc3 = g1g2g3 = 1〉 is nontrivial.
Note that the homomorphism πorb

1 (Vv(x̃)/Za) → πorb
1 (P1

a,b,c) induced from the

inclusion map ι : Vv(x̃) → P1
a,b,c is injective, since P1

a,b,c is a good orbifold (see,

e.g., [D, Proposition 1.18]). This gives a contradiction. �

Consider an orbifold stable map (f, (P1,z), ξ) with three markings of type x.

If there is a smooth point in z, then f can be thought of as a map from an

orbisphere with two singular points. Then exactly the same argument in the

proof of Lemma 4.1 implies that f is indeed a constant map.

4.2. Orbifold coverings of P1
a,b,c contributing to the quantum product

In this section, we prove that holomorphic orbispheres satisfying certain prop-

erties become orbifold covering maps. Most of the holomorphic orbispheres con-

tributing to the quantum product of elliptic P1
a,b,c will satisfy these properties,

as will be shown later. (There is only one exceptional case for P1
2,3,6 where non-

trivial holomorphic orbispheres from the hyperbolic orbifold P1
3,6,6 contribute to

the quantum product of P1
2,3,6.)

Let u be a holomorphic orbisphere from P1
α,β,δ to P1

a,b,c, consider the uni-

versal covering map π : P̃1
α,β,δ → P1

α,β,δ , and consider p : C→ P1
a,b,c. Here, p is a

holomorphic map since the complex structure on P1
a,b,c comes from that on its

universal cover. From orbifold covering theory, we obtain a lifting ũ of u ◦ π of

the underlying orbifold morphism u : P1
α,β,δ → P1

a,b,c:

(4.3)

P̃1
α,β,δ

∃ũ

π
u◦π

C

p

P1
α,β,δ

u P1
a,b,c

For each equivalence class [u] ∈ Mreg
0,3,β(P

1
a,b,c), if we choose a representative u

of [u] by fixing the location of three special points on the domain (denoted by

P1
α,β,δ), then there is no further equivalence relation since there is a unique auto-

morphism which sends the given three points to the others. For such u, the lifting

ũ is holomorphic, since it is locally holomorphic.

To avoid notational complexity, let us write X for P1
a,b,c, and consider a triple

of twisted sectors x= (X(g1),X(g2),X(g3)). Let Gi be an isotropy group of a point

in X(gi) which is defined up to conjugacy. Since X is 1-dimensional, the age of an
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element of Gi is given by ι(gi) =
li

|Gi| for some li ∈ {1, . . . , |Gi|− 1}. Since we only
count 0-dimensional strata of moduli of orbifold stable maps for the quantum

product, we assume that

(4.4)

3∑
i=1

ι(gi) = 1.

From Definition 2.5, we see that the necessary condition for u to be an

orbifold covering map is that

(4.5) ι−1
(gi)

∈ Z, i= 1,2,3,

or equivalently li | |Gi| for i= 1,2,3. Nonetheless, this condition (4.5) is indeed

sufficient to guarantee that u is an orbifold covering map.

LEMMA 4.2

If u is a nonconstant holomorphic orbifold stable map from (P1,z,m) to X of

the type x satisfying (4.4) and (4.5), then u is an orbifold covering map. Here,

z = (z1, z2, z3) is a triple of marked points, and m= (m1,m2,m3) is the triple of

orders of isotropy groups of z.

Proof

Recall that any nonconstant holomorphic map between Riemann surfaces is a

branched covering. We want to show that this map is an orbifold covering (see

Definition 2.5).

Consider three orbisingular points {w1,w2,w3} in the target space, and con-

sider their inverse image u−1(wi). Since x consists of twisted sectors, there is

a function I : {1,2,3}→ {1,2,3} such that u(zi) = wI(i) ∈X(gi). We denote the

number of points in u−1(wi)− {z1, z2, z3} by m(wi).

Let Ui be an open neighborhood of zi with uniformizing system (Ũi,Zmi , bri),

where bri : z �→ zmi , and let V be an open neighborhood of wI(i) uniformized by

(Ṽ ,Z|Gi|, br) for br : z �→ z|Gi|. By the definition of orbifold morphisms, there is

a local holomorphic lifting ũ of u such that the diagram

Ũi
ũ

bri

Ṽ

br

Ui u
V

commutes. Then, from (4.5) and the injectivity of Zmi → Z|Gj | which maps 1

to li, one can check that mili = |Gi| and ũ(z) = zmiai+1 for some ai ∈ N≥0.

Then u(w) = w|Gi|ai+li where w is a local holomorphic coordinate w = zmi of

the underlying space of P1
a,b,c.

Since any orbifold Riemann surface (Σg,z) is analytically isomorphic to a

smooth Riemann surface Σg , the orbifold map u can be regarded as a branched

covering between underlying spaces CP1. Hence, the ramification index at zi is
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|Gi|ai + li for i = 1,2,3. In the inverse image u−1(w1), every point except the

orbisingular points zi have ramification indices that are multiples of a, say, aej for

some ej ∈N and j = 1, . . . ,m(w1). Similarly, in u−1(w2) and u−1(w3), there are

m(w2) and m(w3) points with ramification indices bfk and cgl for 1≤ k ≤m(w2)

and 1≤ l≤m(w3), respectively.

We apply the Riemann–Hurwitz formula to u to obtain

2≤ 2d−
{ 3∑

i=1

(
|Gi|ai + li − 1

)
+

m(w1)∑
j=1

(aej − 1)

+

m(w2)∑
k=1

(bfk − 1) +

m(w3)∑
l=1

(cgl − 1)
}
,

(4.6)

where d is the degree of u. (Here, the 2 on the left-hand side is the topological

Euler characteristic of P1
a,b,c.) If u does not have any branching outside u−1(w1)∪

u−1(w2)∪u−1(w3), then the equality holds in (4.6). Since d is the weighted count

of the number of points in the fiber u−1(wi) of u, we have

d =
∑

i∈I−1(1)

(
|Gi|ai + li

)
+ a

m(w1)∑
j=1

ej

=
∑

i∈I−1(2)

(
|Gi|ai + li

)
+ b

m(w2)∑
k=1

fk(4.7)

=
∑

i∈I−1(3)

(
|Gi|ai + li

)
+ c

m(w3)∑
l=1

gl,

and hence, by inserting (4.7) in (4.6),

(4.8) d≤ 1 +

3∑
j=1

m(wj).

Then, (4.7) together with ej ≥ 1 implies that

d≥
∑

i∈I−1(1)

(
|Gi|ai + li

)
+ am(w1),(4.9)

and similar inequalities also hold for w2 and w3. Combining (4.8) and (4.9), we

have

abc
( 3∑
i=1

m(wi)
)
+ bc

∑
i∈I−1(1)

(
|Gi|ai + li

)
+ ca

∑
i∈I−1(2)

(
|Gi|ai + li

)
+ ab

∑
i∈I−1(3)

(
|Gi|ai + li

)
(4.10)

≤ (bc+ ca+ ab)d= abcd,

where the last equality follows from 1
a + 1

b +
1
c = 1.
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Note that
∑3

i=1
li

|Gi| = 1 from the condition (4.4). Hence

bc
∑

i∈I−1(1)

li + ca
∑

i∈I−1(2)

li + ab
∑

i∈I−1(3)

li = abc.(4.11)

Since |Gi|= a if i ∈ I−1(1), we have (along with similar equalities for the other

two cases)

bc
∑

i∈I−1(1)

|Gi|ai + ca
∑

i∈I−1(2)

|Gi|ai + ab
∑

i∈I−1(3)

|Gi|ai = abc

3∑
i=1

ai.(4.12)

Combining (4.10) with (4.8), (4.11), and (4.12), we have that

abc
( 3∑
i=1

m(wi) +

3∑
i=1

ai + 1
)
≤ abc

(
1 +

3∑
j=1

m(wj)
)
.(4.13)

Hence, a1 = a2 = a3 = 0 from the nonnegativity of the ai’s.

If we do not use inequality (4.9) and proceed, then we have the more precise

estimate

abc
(m(w1)∑

j=1

ej +

m(w2)∑
k=1

fk +

m(w3)∑
l=1

gl +

3∑
i=1

ai + 1
)
≤ abc

(
1 +

3∑
j=1

m(wj)
)
,

which implies ej = fk = gl = 1 for all j, k, l. Therefore, u is an orbifold covering.

�

REMARK 4.3

For the case of c1(TX)< 0 (i.e., X = P1
a,b,c is hyperbolic), the same lemma also

holds since (4.10) is still valid. However, if c1(TX)> 0 (i.e., X is spherical), then

the argument in Lemma 4.2 is no longer true.

4.3. Regularity of holomorphic maps
Finally, we show that holomorphic orbispheres which become orbifold coverings

of elliptic P1
a,b,c are Fredholm regular. We first recall the definition of the desin-

gularization of an orbibundle, and then we examine some properties of the desin-

gularized bundle which will be used for proving the regularity.

Let (Σ,z,m) be an orbi-Riemann surface, and consider an orbibundle E →
(Σ,z,m). The desingularization of E is defined as follows. For each disc neighbor-

hood Di of orbisingular points zi in z, E can be uniformized by (Di×Cn,Zmi , π)

so that the action is linear and diagonal. Hence, the action can be written as

(4.14) e
2π

√
−1

mi · (z, f) =
(
e

2π
√

−1
mi z,diag(e

2π
√

−1mi,1
mi , . . . , e

2π
√

−1mi,n
mi )f

)
for some integers 0≤mi,j <mi (j = 1, . . . , n). Let Φi :D

∗ ×Cn →D∗ ×Cn be a

Zmi -equivariant map over the punctured disc D∗ =Di − {0} defined by

(4.15) Φi(z, f1, . . . , fn) = (zmi , z−mi,1f1, . . . , z
−mi,nfn),

where Zmi trivially acts on the right-hand side. Consider the natural map φ :

(Σ,z,m)→ |Σ| which can be written as z → zmi over each Di. Then the local
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holomorphic chart on |Σ| is w = zmi over each φ(Di). We construct a complex

vector bundle |E| over the underlying space |Σ| of (Σ,z,m) by extending the

complex vector bundle over |Σ| − {z1, . . . , zk} whose trivialization is given by the

right-hand side of (4.15).

Chen and Ruan [CR1] observed that the first Chern number of an orbibundle

is the sum of the first Chern number of its desingularization and the ages of

representations which are induced from local trivialization of the orbibundle over

orbisingular points. More precisely, let E be an orbibundle over a closed orbi-

Riemann surface (Σ,z,m), and set m = (m1, . . . ,mk) for mi ∈ Z≥0. Then for

each orbisingular point zi, the induced representation ρi : Zmi → End(Cn) can

be written as

ρi(e
2π

√
−1

mi ) = diag(e
2π

√
−1mi,1
mi , . . . , e

2π
√

−1mi,n
mi )

for some integers 0≤mi,j <mi (j = 1, . . . , n). Then

(4.16) c1(E)
(
[Σ]

)
= c1

(
|E|

)(
[Σ]

)
+

k∑
i=1

n∑
j=1

mi,j

mi
.

For a holomorphic orbibundle E →X , let us denote sheaves of holomorphic

sections of E and |E| over X and |X| by O(E) and O(|E|), respectively. Then
we have O(E) =O(|E|) (see [CR1, Proposition 4.2.2]) from the removability of

isolated singularities of J -holomorphic maps. In detail, if g :Di → Cn is a local

holomorphic section over |E| |Di→Di, then g(w) = (g1(w), . . . , gn(w)) for some

holomorphic maps gi :Di →C with respect to the trivialization taken as above.

If we pull back this section via Φi, then the corresponding section on E|Di →Di

is the holomorphic map f :Di →Cn whose components are fj(z) = zmi,jgj(z
mi)

for each j = 1, . . . , n.

Conversely, let f = (f1, . . . , fn) :Di → Cn be a given local holomorphic sec-

tion on the orbibundle E|Di →Di, that is, f is a Zmi -equivariant holomorphic

section. Define a map g :D∗ → Cn whose components are gj(w) := z−mi,jfj(z)

for z = w
1

mi . Note that the Zmi -equivariantness of f says that the section g

is well defined, although there is an ambiguity on the choice of branch cut for

z =w
1

mi . Moreover, if we expand the holomorphic function fj as

fj(z) =

∞∑
n=0

an,jz
n,

then an,j = 0 unless n ≡mi,j modulo mi. Thus, | fj(z)zmi,j | is bounded on Di, and

we conclude that g can be extended to a holomorphic section over Di using the

Riemann extension theorem. One can easily check that this process is the inverse

of the pullback via Φi, which gives O(E) =O(|E|).
Now we prove the Fredholm regularity of holomorphic orbispheres in elliptic

P1
a,b,c, which are orbifold coverings. This will imply that the relevant moduli space

of holomorphic orbispheres is smooth, and hence justify our direct counting of

holomorphic orbispheres, later.
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PROPOSITION 4.4

Let X be an elliptic orbisphere, and let (Σ,z) be a domain Riemann orbicurve.

If u : Σ → X is a holomorphic orbisphere satisfying (4.4) and (4.5), then u is

regular.

Proof

Consider the pullback orbibundle u∗TX → Σ, and consider the linearized ∂-

operator D∂J(u) : C∞(u∗TX) → Ω0,1(u∗TX). Since J is integrable,

D∂J(u) = ∂J . Hence, it is sufficient to show that H0,1

∂
(X,u∗TX) = 0.

Note that the first Chern number of the tangent bundle of X is zero, and

for any orbifold covering u, that of u∗TX is also zero. From this, we can see

that the desingularized bundle of u∗TX , |u∗TX|, has (desingularized) Chern

number −1 since the second term on the right-hand side of (4.16) is 1 from (4.4).

That is, c1(|u∗TX|) =−1. Since X is a complex orbifold and u is a holomorphic

orbimap, u∗TX is a holomorphic orbibundle over Σ. The desingularization of

a holomorphic orbibundle is also holomorphic. From [McS, Lemma 3.5.1], this

implies that the holomorphic line bundle |u∗TX| has vanishing cohomology group

H0,1

∂
(|Σ|, |u∗TX|). As the sheaf of holomorphic sections of |u∗TX| is the same as

the sheaf of (orbifold) holomorphic sections of u∗TX on Σ, we have the vanishing

of H0,1

∂
(Σ, u∗TX). More precisely,

H0,1

∂

(
|Σ|, |u∗TX|

) ∼=H1
(
|Σ|,O

(
|u∗TX|

))
∼=H1

(
Σ,O(u∗TX)

)
∼=H0,1

∂
(Σ, u∗TX).

For the last isomorphism, note that the two-term complex ∂J : C∞(u∗TX) →
Ω0,1(u∗TX) is a fine resolution for the sheaf of holomorphic sections O(u∗TX)

as in the smooth case. �

REMARK 4.5

Even if u is not an orbifold covering, we still have c1(u
∗TX)≥ c1(TX). (Indeed,

we can improve this inequality by considering the degree of u.) Therefore, the

above proposition also holds as long as X has a nonnegative first Chern number.

For example, when we calculate the quantum cohomology of P1
2,3,6, we need to

count holomorphic orbispheres u : P1
3,6,6 → P1

2,3,6 which are not orbifold covering

maps. These orbispheres are also Fredholm regular by exactly the same argument.

5. The quantum cohomology ring of P1
3,3,3

In this section, we explicitly compute the product structure on QH∗
orb(P

1
3,3,3,Q),

which proves Theorem 1.1. For this, we first classify holomorphic orbispheres in

P1
3,3,3 (Section 5.1). Recall from Lemma 4.1 and Proposition 4.4 that these sta-

ble maps, in fact, are maps from a single orbisphere component and are regular.

Thus, by counting holomorphic orbispheres inside P1
3,3,3, we obtain the 3-point
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Gromov–Witten invariant for P1
3,3,3 which combined with the constant map con-

tributions (Section 5.4) gives rise to the quantum product on QH∗
orb(P

1
3,3,3,Q).

One interesting feature is that one can relate these orbispheres with the solutions

of a certain Diophantine equation. In Section 5.1 it will be shown that only

〈Δ1/3
1 ,Δ

1/3
2 ,Δ

1/3
3 〉P

1
3,3,3

0,3 and 〈Δ1/3
i ,Δ

1/3
i ,Δ

1/3
i 〉P

1
3,3,3

0,3

for i = 1,2,3 are nontrivial, which precisely give the coefficients f0 and f1 of

cubic terms for the Gromov–Witten potential in [ST, Theorem 3.1].

REMARK 5.1

We will write the details on the classification orbispheres in P1
3,3,3 as concretely

as possible. For the other two cases, P1
2,3,6 and P1

2,4,4, we will find similar classi-

fication results in Section 6, but without many details as the arguments are not

all that different from the one for P1
3,3,3.

5.1. Classification of orbispheres in P1
3,3,3

From the expected dimension formula and the representability of an orbifold sta-

ble map, the only possible domain orbisphere in 0-dimensional components of the

moduli space M0,3,β(P1
3,3,3) is P

1
3,3,3 itself. Since there exists a unique biholomor-

phism φ : (P1
3,3,3,z)→ (P1

3,3,3,z
′) sending any triple of orbipoints z = (z1, z2, z3)

to another z′ = (z′1, z
′
2, z

′
3), there is no domain parameter in the relevant mod-

uli M0,3,β(P1
3,3,3). Hence, from now on, we take the domain orbisphere to be

P1
3,3,3 with the fixed conformal structure which is induced by the quotient map

E → P1
3,3,3 in Section 3.3.

By degree reason, 〈Δi
◦,Δ

j
•,Δk

�〉
P
1
3,3,3

0,3 is trivial unless i+ j+ k = 1. Note that,

by the obvious symmetry on P1
3,3,3, it is enough to consider only the following

three cases:

(1) 〈Δ1/3
1 ,Δ

1/3
1 ,Δ

1/3
1 〉0,3,

(2) 〈Δ1/3
1 ,Δ

1/3
2 ,Δ

1/3
3 〉0,3,

(3) 〈Δ1/3
1 ,Δ

1/3
2 ,Δ

1/3
2 〉0,3.

Namely, we may assume that the first marked point z1 in the domain orbisphere

is mapped to the orbisingular point w1 in P1
3,3,3 associated with Δ

1/3
1 .

Let u be a holomorphic orbisphere from P1
3,3,3 to P1

3,3,3 which contributes

to 〈Δ1/3
1 ,Δ

1/3
◦ ,Δ

1/3
• 〉0,3. We fix base points of the domain orbisphere and the

target orbisphere of u and their universal coverings as follows: x0 := z1 ∈ P1
3,3,3

and x̃0 := 0 ∈ p−1(x) (⊂C) for the domain P1
3,3,3, and y0 :=w1 ∈ P1

3,3,3 and ỹ0 :=

0 ∈ p−1(w1) (⊂ C). Recall that p : C→ P1
3,3,3 is the orbifold universal covering,

and u(x0) = y0. Thus, we obtain a unique lifting ũ of u ◦ p for the underlying
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holomorphic orbisphere u : P1
3,3,3 → P1

3,3,3:

(5.1)

C ∃ũ

p

C

p

P1
3,3,3

u P1
3,3,3

Note that the conditions in Lemma 4.2 are automatic in this case. There-

fore, u : P1
3,3,3 → P1

3,3,3 is an orbifold covering, and its lifting ũ from (5.1) has a

particularly nice shape.

PROPOSITION 5.2

If u is a nonconstant holomorphic orbisphere contributing to 〈Δ1/3
1 ,Δ

1/3
◦ ,Δ

1/3
• 〉0,3,

then ũ(z) = λz for some λ ∈ Z[τ ], where Z[τ ] := {a+ bτ | a, b ∈ Z}.

Proof

Because u is an orbifold universal covering, so is the composition u ◦ p. Now, by
the uniqueness of orbifold universal coverings, ũ should be a homeomorphism.

Note that ũ is an entire proper holomorphic map, since ũ is a homeomorphism

and is a lifting of the holomorphic map u◦p. It is well known that any entire and

proper holomorphic map on C is a polynomial. Since ũ is invertible, we conclude

that ũ is a linear map ũ(z) = λz for some λ ∈C. Here, ũ does not have a constant

term because the lifting preserves the base points, ũ(x̃0) = ỹ0 (i.e., ũ(0) = 0).

Recall from Section 3.3 that p−1(x0) gives a lattice Z〈1, τ〉 = Z[τ ](∵ τ2 =

−τ − 1) in C∼=R2 (see the left-hand side of Figure 5). Since 1 ∈C is an element

of this lattice, ũ should map 1 to a point in p−1(y0) which is also the same lattice

Z[τ ] in C. Thus, λ= ũ(1) has to lie in Z[τ ], which finishes the proof. �

It is obvious from the picture that the fundamental domain of the domain orbi-

sphere covers that of the target orbisphere |λ|2 times by the holomorphic map

Figure 5. The shaded regions show the images of degree 3 maps contributing to 〈Δ1/3
1 ,Δ

1/3
1 ,Δ

1/3
1 〉0,3

(left-hand side) and 〈Δ1/3
2 ,Δ

1/3
2 ,Δ

1/3
2 〉0,3 (right-hand side).
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induced by the linear map z �→ λz between the universal covers. Another way to

see this is to consider the energy
∫
|du|2 which equals the symplectic area of the

holomorphic orbisphere u. Note that, for ũ(z) = λz, |dũ|2 = |λ|2. Therefore, such
a map induces a term containing q|λ|

2

in the (3-point) Gromov–Witten potential.

Conversely, any linear map ũ= λz with a coefficient λ in Z[τ ] induces a Z3-

equivariant holomorphic map between the middle level torus E. The equivariance

implies that ũ descends to a holomorphic map u : P1
3,3,3 → P1

3,3,3. Then u is a well-

defined orbifold morphism between P1
3,3,3’s, as it is represented by an equivariant

map between E’s, and P1
3,3,3 = [E/Z3]. Later, we will establish the one-to-one

correspondence between linear maps with Z[τ ]-coefficients modulo certain equiv-

alences and orbispheres in P1
3,3,3 contributing to 〈Δ1/3

1 ,Δ
1/3
◦ ,Δ

1/3
• 〉0,3 modulo

equivalences given in (3.5).

REMARK 5.3

Let σ be the cyclic permutation (1,2,3) in the permutation group S3 on three

letters {1,2,3}. If u contributes to 〈Δ1/3
1 ,Δ

1/3
i ,Δ

1/3
j 〉0,3, then it is easy to see

from Figure 5 that the translation of ũ by an element of Z〈2+τ
3 , 1+2τ

3 〉 induces

a map v : P1
3,3,3 → P1

3,3,3 contributing to 〈Δ1/3

σk(1)
,Δ

1/3

σk(i)
,Δ

1/3

σk(j)
〉0,3 for some 0≤

k ≤ 2. This explains the coincidence of various 3-point Gromov–Witten invariants

appearing in [ST, Theorem 3.1]. Note that Z[τ ] is a sublattice of Z〈 2+τ
3 , 1+2τ

3 〉.

5.2. Symmetries of the lifting of orbimaps
We have proved that any orbispheres with orbi-insertions Δ

1/3
1 ,Δ

1/3
i ,Δ

1/3
j can

be lifted to a linear map z �→ λz for λ ∈ Z[τ ]. We next investigate a natural

equivalence relation ∼ on {ũ = λz | λ ∈ Z[τ ]} such that if ũ1 ∼ ũ2, then these

maps induce a pair of equivalent holomorphic orbispheres. Let us denote the set

of linear maps {z �→ λz | λ ∈ Z[τ ]} by L(C). We now find the equivalence relation

on L(C) such that the set of equivalence classes of L(C) corresponds bijectively
to the moduli space M0,3(P1

3,3,3;Δ
1/3
1 ,Δ

1/3
i ,Δ

1/3
j ) for 1≤ i, j ≤ 3.

Recall that the positions of the three orbimarkings as well as the domain

P1
3,3,3 itself are fixed by regarding P1

3,3,3 as a quotient of E = C/Z〈1, τ〉 via the

Z/3-action. Therefore, we do not have an equivalence from a domain reparame-

terization, and it is enough to find the condition for two linear maps ũi(z) = λiz

(λi ∈ Z[τ ], (i= 1,2)) inducing the same map on the quotient orbifold.

Denote the induced orbispheres from ũi by ui for i= 1,2, and suppose that

they have orbi-insertions Δ
1/3
1 , Δ

1/3
i , and Δ

1/3
j at z1, z2, and z3, respectively.

Since u1 and u2 are the same orbifold morphism and both of them send z1 to

w1, their local liftings should be related by the local isotropy group at w1, which

is isomorphic to Z3 and is generated by the τ -multiplication. On the level of

universal covers, this local group can be realized as the local isotropy group at the

origin (lying in p−1(w1)) of C. Local groups at other points in the fiber p−1(wi)

cannot relate ũ1 and ũ2 since they do not preserve the origin. Consequently,

λ1 = τkλ2 for some k = 0,1,2, and this gives the desired equivalence relation on

L(C).



224 Hansol Hong and Hyung-Seok Shin

In summary, we have obtained an identification

(5.2)
[
L(C)/Z3

]∼= ⋃
i,j,d

M0,3,d(P1
3,3,3;Δ

1/3
1 ,Δ

1/3
i ,Δ

1/3
j )

where the degree on the right-hand side corresponds to |λ|2 = a2 − ab + b2 on

the left-hand side (see the discussion below the proof of Proposition 5.2). In

Section 5.3 it will be shown that the only possible (i, j)’s are (1,1), (2,3), and

(3,2).

For computational simplicity, we consider another type of symmetry on

P1
3,3,3, which is induced from the (1+τ)-multiplication on C. (Note that (1+τ)2 =

τ .) This action gives rise to an action of Z6 on L(C) (and hence Z2-action on

[L(C)/Z3]) in an obvious way. In view of holomorphic orbispheres correspond-

ing to elements of L(C), this action switches two orbi-insertions Δ
1/3
i and Δ

1/3
j

without changing the degree. Thus, for example, the (1+ τ)-multiplication gives

rise to the one-to-one correspondence

M0,3,d(P1
3,3,3;Δ

1/3
1 ,Δ

1/3
2 ,Δ

1/3
3 )←→M0,3,d(P1

3,3,3;Δ
1/3
1 ,Δ

1/3
3 ,Δ

1/3
2 ),

both of which are components of the right-hand side of (5.2).

In Section 5.3, we will count elements in L(C) whose underlying holomorphic

orbispheres contribute 〈Δ1/3
1 ,Δ

1/3
2 ,Δ

1/3
3 〉0,3 or 〈Δ1/3

1 ,Δ
1/3
3 ,Δ

1/3
2 〉0,3 simultane-

ously. Then, dividing the number of such linear maps by the order of the group

generated by the (1 + τ)-multiplication (which is 6), we find the presentation of

f0(q) =
∑

d∈H2(X,Z)

〈Δ1/3
1 ,Δ

1/3
2 ,Δ

1/3
3 〉X0,3,dqd.

5.3. Identification of inputs
We have shown that a degree d nonconstant holomorphic orbisphere in P1

3,3,3

contributing to 〈Δ1/3
1 ,Δ

1/3
i ,Δ

1/3
j 〉0,3,d has a one-to-one correspondence with a

linear map z �→ λz for some λ = a+ bτ ∈ Z[τ ] with |λ|2 = d ( �= 0). (Recall that

this d is really the degree of the corresponding holomorphic orbisphere (see the

discussion below the proof of Proposition 5.2).) We subdivide this set of holo-

morphic orbispheres in terms of their orbi-insertions. Orbi-insertions of the holo-

morphic orbisphere corresponding to z �→ λz can be determined in the following

way. Note that the triangle with vertices 0, 1+2τ
3 , and 2+τ

3 in the universal cover

of the domain P1
3,3,3 gives a fundamental domain for the upper hemisphere of

P1
3,3,3. Thus, we can think of 1+2τ

3 and 2+τ
3 as (liftings of) the second and the

third markings of the domain P1
3,3,3, respectively (see the shaded region on the

left-hand side of Figure 6).

Since λ ∈ Z[τ ], the images λ · ( 1+2τ
3 ) and λ · ( 2+τ

3 ) will lie in the lattice

Z〈 1+2τ
3 , 2+τ

3 〉 in the universal cover of the target P1
3,3,3. It is clear that the types of

these two lattice points determine the orbi-insertions of the orbisphere associated

with λ, that is, if λ · ( 1+2τ
3 ) lies in 1+2τ

3 +Z〈1, τ〉, then the second orbi-insertion

is Δ
1/3
2 and so on (see Figure 6). (Note that z �→ λz always sends the origin to
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Figure 6. Images of holomorphic orbispheres in P
1
3,3,3 visualized in its universal cover.

the origin, which is related to the fact that we fix the first orbi-insertion as Δ
1/3
1

using the symmetry.)

Observe that

λ ·
(1 + 2τ

3

)
= (a+ bτ)

(1 + 2τ

3

)
=

(a− 2b) + (2a− b)τ

3

and

λ ·
(2 + τ

3

)
=

(2a− b) + (a+ b)τ

3
.

(Here, we used the relation τ2 =−τ − 1.) Using

a− 2b≡ a+ b mod 3,

we see that there are only two possibilities:

(i) 3 | (a + b), for which both λ · ( 1+2τ
3 ) and λ · ( 2+τ

3 ) correspond to the

insertion Δ
1/3
1 ;

(ii) 3 � (a + b), for which both λ · ( 1+2τ
3 ) and λ · ( 2+τ

3 ) correspond to two

different insertions Δ
1/3
2 and Δ

1/3
3 .

We remark that, in case (ii), insertions (Δ
1/3
2 ,Δ

1/3
3 ) can be located at either

(z2, z3) or (z3, z2) (see the discussion at the end of Section 5.2).

Note that

(5.3) d= |λ|2 = a2 − ab+ b2 = (a+ b)2 − 3ab≡ (a+ b)2 mod 3.

Therefore, if d ≡ 0 mod 3, then the corresponding holomorphic spheres con-

tribute to

〈Δ1/3
1 ,Δ

1/3
1 ,Δ

1/3
1 〉0,3,
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and if d≡ 1 mod 3, then they contribute to

〈Δ1/3
1 ,Δ

1/3
2 ,Δ

1/3
3 〉0,3.

Let F (q) denote the power series

(5.4) F (q) :=
∑
a,b∈Z

qa
2−ab+b2 .

See (A.1) for the first few terms of F .

By (5.3), the power of any nontrivial term in F (q) should be either 0 (mod 3)

or 1 (mod 3). Thus, we can decompose F as F = F0,3 + F1,3 according to the

remainder of the power of q when divided by 3. Then the above discussion directly

implies that

f0(q) =
∑

d∈H2(X,Z)

〈Δ1/3
1 ,Δ

1/3
2 ,Δ

1/3
3 〉X0,3,dqd =

1

6
F1,3(q)

since there cannot be contributions from constant maps. Here, 1
6 is responsible

for the group Z6
∼= 〈1 + τ〉 which is discussed at the end of Section 5.2. For

f1(q) =
∑

d∈H2(X,Z)〈Δ
1/3
1 ,Δ

1/3
1 ,Δ

1/3
1 〉X0,3,dqd, there is an additional contribution

from the constant map (see Section 5.4, (5.6)) so that f1(q) =
1
3F0,3(q), where

1
3

again comes from Z3, the isotropy group at w1 (or the origin in C).

REMARK 5.4

Number-theoretic aspects of F such as an explicit description of its Fourier coef-

ficients will be given in Appendix A. In particular, we will describe the Fourier

coefficients of F in terms of the prime factorization of the exponent of q.

5.4. Contribution from constant maps
The constant map whose image lies in a single singular point also contributes to

the quantum product. Indeed, these constant maps induce the product structure

· of the Chen–Ruan [CR1] cohomology ring of P1
3,3,3, and the quantum product

deforms this structure analogously to the relation between cup products and

quantum products for smooth symplectic manifolds.

Let us consider one of the singular points wi and the constant maps from an

orbisphere with three markings onto this point. The computation is essentially

the same for all i = 1,2,3 because of the symmetry. Obviously, there are two

constant maps with image wi whose domain orbispheres are P1
3,3,3 and P1

3,3. We

denote these maps by c1 and c2. Here, the markings for c2 are located at two

singular points and a chosen smooth point. We remark that the second map

does not violate Lemma 4.1 since it only holds for nonconstant holomorphic

orbispheres.

We have that c1 and c2 give rise to classical parts

〈Δ1/3
i ,Δ

1/3
i ,Δ

1/3
i 〉X0,3,d=0 and 〈Δ1/3

i ,Δ
2/3
i ,1〉X0,3,d=0

of the 3-point Gromov–Witten invariant on X = P1
3,3,3. Both of these numbers

are 1
3 , where the fraction comes from the definition of the orbifold integration
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(see [ALR] and Section 3.3). Therefore, the Chen–Ruan cup product for P1
3,3,3 is

given as follows:

Δ
1/3
i ·Δ2/3

i =
1

3
PD(1) =

1

3
[pt],(5.5)

Δ
1/3
i ·Δ1/3

i =
1

3
PD(Δ

1/3
i ) =Δ

2/3
i .(5.6)

Here, we used PD(Δ
1/3
i ) = 3×Δ

2/3
i (see Remark 3.8), and (5.6) completes the

computation of f1.

REMARK 5.5

In fact, to verify (5.5), it remains to show that there are no other contribu-

tions than constants. However, we have shown in Lemma 4.1 that there are no

holomorphic orbispheres in P1
3,3,3 which have only two orbifold markings.

6. Further applications: (2,3,6), (2,4,4)

In this section, we prove Theorem 1.2 and Proposition 1.3. We slightly modify

the classification of holomorphic orbispheres in P1
3,3,3 in order to compute the

quantum cohomology rings of the two other orbifold projective lines with three

singular points: P1
2,3,6 and P1

2,4,4. For a certain product in QH∗
orb(P

1
2,3,6), we use

a heuristic argument, so the proof is incomplete (see Conjecture 6.3). In fact,

all 3-point correlators including what remains as a conjecture here are computed

in [MR]. We hope to rediscover this missing part by classifying holomorphic

orbispheres whose domain admits a hyperbolic structure, but we leave it to future

investigation.

6.1. The product on QH∗
orb(P

1
2,3,6)

We set the notation for generators of H∗
orb(P

1
2,3,6) as follows. Recall that E is

the elliptic curve associated with the lattice Z〈1, τ〉 in C where τ = exp(2π
√
−1

3 ).

Then P1
2,3,6 is obtained as the global quotient [E/Z6], where Z6

∼= 〈1 + τ〉 acts

on E by complex multiplication. There are three cone points on P1
2,3,6 and we

use the same notation w1, w2, and w3 for these singular points as we did for

P1
3,3,3, where w1, w2, and w3 have isotropy groups Z2, Z3, and Z6, respectively.

The inertia orbifold I P1
2,3,6 consists of the smooth sectors BZ2, BZ3, and BZ6.

The Q-basis of H∗
orb(P

1
2,3,6,Q) is given as 1,Δ

1/2
1 ,Δ

1/3
2 ,Δ

2/3
2 ,Δ

1/6
3 , . . . ,Δ

5/6
3 , [pt]

as follows.

The bases of the smooth sectors are

H0
orb(P

1
2,3,6,Q) =Q · 1, H2

orb(P
1
2,3,6,Q) =Q · [pt].

For twist sectors, let Δ
1/2
1 ∈H1

orb(P
1
2,3,6,Q), Δ

j/3
2 ∈H

2j
3

orb(P
1
2,3,6,Q) (j = 1,2), and

Δ
k/6
3 ∈H

2k
6

orb(P
1
2,3,6,Q) (k = 1, . . . ,5), which are supported at singular points w1,

w2, and w3, respectively. From the virtual dimension formula of M0,3,d(P1
2,3,6),
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we can classify all possible orbi-insertions with expected dimension 0 and the

corresponding domain orbisphere as in the following list:

(a) P1
2,3,6: 〈Δ

1/2
1 ,Δ

1/3
2 ,Δ

1/6
3 〉, 〈Δ3/6

3 ,Δ
1/3
2 ,Δ

1/6
3 〉, 〈Δ1/2

1 ,Δ
2/6
3 ,Δ

1/6
3 〉, 〈Δ3/6

3 ,

Δ
2/6
3 ,Δ

1/6
3 〉;

(b) P1
3,3,3: 〈Δ

2/6
3 ,Δ

2/6
3 ,Δ

2/6
3 〉, 〈Δ1/3

2 ,Δ
2/6
3 ,Δ

2/6
3 〉, 〈Δ1/3

2 ,Δ
1/3
2 ,Δ

2/6
3 〉, 〈Δ1/3

2 ,

Δ
1/3
2 ,Δ

1/3
2 〉;

(c) P1
3,6,6 (hyperbolic): 〈Δ1/6

3 ,Δ
1/6
3 ,Δ

4/6
3 〉, 〈Δ2/3

2 ,Δ
1/6
3 ,Δ

1/6
3 〉;

(d) P1
2,2: 〈1,Δ

3/6
3 ,Δ

3/6
3 〉, 〈1,Δ1/2

1 ,Δ
3/6
3 〉, 〈1,Δ1/2

1 ,Δ
1/2
1 〉;

(e) P1
3,3: 〈1,Δ

1/3
2 ,Δ

4/6
3 〉, 〈1,Δ2/3

2 ,Δ
2/6
3 〉.

From Lemma 4.1, there are no nontrivial maps which contribute to types (d)

and (e). Thus, if we denote t :=
∑

tj,iΔ
i
j , then the genus 0 Gromov–Witten

potential of P1
2,3,6 can be written up to order t3 as follows:

F
P
1
2,3,6

0 (t) =
1

2
t20 log q+ t0

(1
2
t1, 12 t1,

1
2
+

1

6
t3, 36 t3,

3
6

)
+ (t1, 12 t2,

1
3
t3, 16 ) · h0(q)

+ (t3, 36 t2,
1
3
t3, 16 ) · h1(q) + (t1, 12 t3,

2
6
t3, 16 ) · h2(q) + (t3, 36 t3,

2
6
t3, 16 ) · h3(q)

(6.1)

+
1

6
t33, 26

· h4(q) +
1

2
t23, 26

t2, 13 · h5(q) +
1

2
t3, 26 t

2
2, 13

· h6(q) +
1

6
t32, 13

· h7(q)

+
1

2
t23, 16

t3, 46 · h8(q) +
1

2
t23, 16

t2, 23 · h9(q) +
1

2
t2, 23 t

2
3, 16

· h10(q) +O(t4),

where the precise expressions of hi(q) for 0≤ i≤ 10 will be given later.

For holomorphic orbispheres of types (a) and (b), we choose the presentations

of domain orbispheres as [E/Z6] and [E/Z3], respectively. Here, E is the elliptic

curve corresponding to the Z-lattice 〈1, τ〉 in C, where τ = exp 2π
√
−1

3 .

Observe that any holomorphic orbisphere with the orbi-insertion condition

in (a) or (b) satisfies the condition in Lemma 4.2. So, we can lift such maps u :

P1
2,3,6 → P1

2,3,6 and u : P1
3,3,3 → P1

2,3,6 to a linear map between universal coverings

ũ : C → C. Below, we will count these holomorphic orbispheres with the help

of the lattice structures of the inverse image of orbisingular points in C. As in

the case of P1
3,3,3, it will be shown that the counting matches the number of

solutions of certain Diophantine equations. The regularity of these holomorphic

orbispheres is guaranteed by Lemma 4.4.

To clarify the orbi-insertions by looking at the lifted linear map ũ :C→C, we
explicitly identify the lattice structure on C coming from the universal orbifold

covering map p :C→ P1
2,3,6 as follows:

p−1(w1) = Z
〈1
2
,
τ

2

〉
+ p−1(w3)

=
{a

2
+

b

2
τ
∣∣∣ a, b ∈ Z and a or b is an odd integer

}
,

p−1(w2) = Z
〈2 + τ

3
,
1 + 2τ

3

〉
+ p−1(w1),

p−1(w3) = Z〈1, τ〉 (� 0).

(6.2)
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Figure 7. Lattices on the universal cover of P1
2,3,6: p

−1(w1) = {◦}, p−1(w2) = {�}, and p−1(w3) = {•}.

In particular, w3 is set to be a base point associated with the universal covering

(C,0) (see Figure 7).

The universal cover C of the domain P1
2,3,6 also has the same lattice structure,

and the lattices on C from the domain P1
3,3,3 are given as in Section 5.3.

Case (a) with the domain orbisphere P1
2,3,6: hi for 0≤ i≤ 3

Let z1, z2, and z3 be the three orbipoints in the domain P1
2,3,6 whose orders of

singularity are 2, 3, and 6, respectively. If u is a holomorphic map from P1
2,3,6 to

itself with the orbi-insertion condition as in (a), then u is an orbifold covering

map by Lemma 4.2, so one can find the lifting ũ :C→C with ũ(0) = 0:

(6.3)

C ũ

p

C

p

P1
2,3,6

u P1
2,3,6

Since any holomorphic orbisphere u contributing to (a) maps z3 to w3 (by the

arrangement of insertions in (a)), ũ(z) = λz for some λ ∈ Z[τ ]. Conversely, it
is clear from Figure 7 that any such linear map ũ descends to a holomorphic

orbisphere with insertions as in (a). Since for λ = a+ bτ (a, b ∈ Z), the degree

of the underlying map of ũ(z) = λz is N := |λ|2 = λλ= a2 − ab+ b2, the above
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discussion shows that

h0(q) + h1(q) + h2(q) + h3(q) =
1

6
F (q),

where F (q) is defined by (5.4). Here, 1
6 on the right-hand side comes from the

symmetry between linear maps which induce the same holomorphic orbisphere.

By the same argument as in Section 5.2, we see that the symmetry among these

linear maps is generated by (1+τ)-multiplication, which is nothing but the action

of the isotropy group of w3 (isomorphic to Z6).

Note that the triangle, whose vertices are 0 ∈ p−1(z3),
2+τ
3 ∈ p−1(z2), and

1+τ
2 ∈ p−1(z1), gives the fundamental domain of the upper hemisphere of (the

domain) P1
2,3,6 (see the shaded region in Figure 7 and compare it with Figure 8).

As in the case of P1
3,3,3, we classify the orbi-insertion condition by chasing the

images of 2+τ
3 and 1+τ

2 in the domain. For λ= a+ bτ ,

λ · 2 + τ

3
=

2a− b

3
+

a+ b

3
τ

and

λ · 1 + τ

2
=

a− b

2
+

a

2
τ.

First, note that

λ · 1 + τ

2
∈ p−1(w1) ⇐⇒ a or b is odd,

λ · 1 + τ

2
∈ p−1(w3) ⇐⇒ a and b is even.

From 3 | 2a− b ⇐⇒ 3 | a+ b, it can be easily checked that

λ · 2 + τ

3
∈ p−1(w3) ⇐⇒ 3 | (a+ b),

λ · 2 + τ

3
∈ p−1(w2) ⇐⇒ 3 � (a+ b).

Hence, using (5.3), we see that there are two possible orbi-insertions at the

marked point corresponding to λ · 2+τ
3 :

Δ
2/6
3 3 | (a+ b) ⇐⇒ N ≡ 0 mod 3,

Δ
1/3
2 3 � (a+ b) ⇐⇒ N ≡ 1 mod 3.

Figure 8. P
1
2,3,6.
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Similarly, two possible orbi-insertions at the marked point corresponding to λ ·
1+τ
2 are

Δ
3/6
3 a and b is even ⇐⇒ N ≡ 0 mod 2,

Δ
1/2
1 a or b is odd ⇐⇒ N ≡ 1 mod 2.

Summarizing the above discussion, we conclude from the Chinese remainder the-

orem that u contributes to

〈Δ1/2
1 ,Δ

1/3
2 ,Δ

1/6
3 〉 ⇐⇒ degu≡ 1 mod 6,

〈Δ3/6
3 ,Δ

1/3
2 ,Δ

1/6
3 〉 ⇐⇒ degu≡ 4 mod 6,

〈Δ1/2
1 ,Δ

2/6
3 ,Δ

1/6
3 〉 ⇐⇒ degu≡ 3 mod 6,

〈Δ3/6
3 ,Δ

2/6
3 ,Δ

1/6
3 〉 ⇐⇒ degu≡ 0 mod 6.

Recall N = |λ|2 = degu, which equals the exponent of q for the term in the

Gromov–Witten potential to which u contributes. Therefore, we obtain

h0(q) =
1

6

∞∑
N=1

N≡1mod6

∑
m2−mn+n2=N

m,n∈Z

qN =
1

6
F1,6(q),

h1(q) =
1

6

∞∑
N=1

N≡4mod6

∑
m2−mn+n2=N

m,n∈Z

qN =
1

6
F4,6(q),

h2(q) =
1

6

∞∑
N=1

N≡3mod6

∑
m2−mn+n2=N

m,n∈Z

qN =
1

6
F3,6(q),

h3(q) =
1

6

(
1 +

∞∑
N=1

N≡0mod6

∑
m2−mn+n2=N

m,n∈Z

qN
)
=

1

6
+

1

6
F0,6(q),

where Fi,6 is the sum of terms in F whose exponents of q are i modulo 6. Here,

the constant term of h3 can be obtained from a similar argument in Section 5.4.

Case (b) with the domain orbisphere P1
3,3,3

We first show that holomorphic orbispheres with orbi-insertions as in case (b) can

be lifted to the one on P1
3,3,3. Let π : P1

3,3,3 → P1
2,3,6 be the 2-fold orbifold covering

map which comes from the action on [E/〈τ〉] generated by (1+τ)-multiplication,

as drawn in Figure 9. Write w′
i and wi (i = 1,2,3) for orbipoints in P1

3,3,3 and

P1
2,3,6, respectively, and let π send both w′

1 and w′
2 to w2 and send w′

3 to w3.

After fixing base points of P1
3,3,3 and P1

2,3,6, we have (see Section 2.2)

πorb
1 (P1

3,3,3) =
〈
ρ1, ρ2, ρ3

∣∣ (ρ1)3 = (ρ2)
3 = (ρ3)

3 = ρ1ρ2ρ3 = 1
〉
,

πorb
1 (P1

2,3,6) =
〈
λ1, λ2, λ3

∣∣ (λ1)
2 = (λ2)

3 = (λ3)
6 = λ1λ2λ3 = 1

〉
,

and π induces a group homomorphism π∗ : πorb
1 (P1

3,3,3) → πorb
1 (P1

2,3,6). We see

from Figure 9 that the images of ρ1 and ρ2 under π∗ lie in the conjugacy class of
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Figure 9. The 2-fold covering π : P1
3,3,3 → P

1
2,3,6.

λ2, and the image of the other generator ρ3 lies in that of (λ3)
2. (Here, conjugacy

classes depend on the choice of base points.) It follows that π∗ (πorb
1 (P1

3,3,3))

contains λ2 and (λ3)
2, as it is a normal subgroup of πorb

1 (P1
2,3,6).

LEMMA 6.1

For a given (b)-type holomorphic orbisphere u : P1
3,3,3 → P1

2,3,6, there exists a

holomorphic orbisphere ũ which makes the following diagram commute:

P1
3,3,3

π

P1
3,3,3

∃ũ

u P1
2,3,6

Proof

Observe that only two kinds of orbi-insertions Δ
1/3
2 and Δ

2/6
3 appear in (b).

Hence u∗ maps a generator of πorb
1 (P1

3,3,3) to an element in the conjugacy class

of λ2 or λ2
3. (Indeed, if we choose base points and the generators ρ1 and λ2

as in Figure 1(b), then u∗ sends ρ1 exactly to λ2, and a similar result follows

for ρ2 and ρ3.) Thus, u∗ (πorb
1 (P1

3,3,3)) is contained in π∗ (πorb
1 (P1

3,3,3)). From

Proposition 2.8, there exists an orbimap ũ : P1
3,3,3 → P1

3,3,3 which lifts u. �

Let z be one of the three orbipoints of the domain P1
3,3,3 for a holomorphic

orbisphere u of type (b). If u sends z to w2 ∈ P1
2,3,6 with the orbi-insertion Δ

1/3
2 ,

then the corresponding orbi-insertion of the lifting ũ : P1
3,3,3 → P1

3,3,3 is Δ
1/3
1 or

Δ
1/3
2 . Similarly, if u(z) =w3 with the insertion Δ

2/6
3 , then the corresponding orbi-

insertion of a lifting ũ is Δ
1/3
3 . Here, we abused the notation for orbi-insertions

of P1
3,3,3 and P1

2,3,6.

For each holomorphic orbisphere u : P1
3,3,3 → P1

2,3,6 with orbi-insertion of type

(b), there are two liftings ũ : P1
3,3,3 → P1

3,3,3. Two liftings of u are related by the

Z2-action (i.e., the action of the deck transformation group) which switches w′
1

and w′
2. Therefore, if one lifting has orbi-insertion Δ

1/3
1 , then the other lifting has
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orbi-insertion Δ
1/3
2 . In summary, Lemma 6.1 gives rise to the following one-to-two

correspondences:

〈Δ2/6
3 ,Δ

2/6
3 ,Δ

2/6
3 〉P1

2,3,6
1:2←→ 〈Δ1/3

3 ,Δ
1/3
3 ,Δ

1/3
3 〉P1

3,3,3 ,

〈Δ1/3
2 ,Δ

1/3
2 ,Δ

2/6
3 〉P1

2,3,6
1:2←→ 〈Δ1/3

1 ,Δ
1/3
2 ,Δ

1/3
3 〉P1

3,3,3 + 〈Δ1/3
2 ,Δ

1/3
1 ,Δ

1/3
3 〉P1

3,3,3

= 2〈Δ1/3
1 ,Δ

1/3
2 ,Δ

1/3
3 〉P1

3,3,3 ,

〈Δ1/3
2 ,Δ

1/3
2 ,Δ

1/3
2 〉P1

2,3,6
1:2←→ 〈Δ1/3

1 ,Δ
1/3
1 ,Δ

1/3
1 〉P1

3,3,3 + 〈Δ1/3
2 ,Δ

1/3
2 ,Δ

1/3
2 〉P1

3,3,3

= 2〈Δ1/3
1 ,Δ

1/3
1 ,Δ

1/3
1 〉P1

3,3,3 .

(Since there are no corresponding liftings, 〈Δ1/3
2 ,Δ

2/6
3 ,Δ

2/6
3 〉P1

2,3,6 vanishes.)

Therefore, hi for 4≤ i≤ 7 is given as follows.

PROPOSITION 6.2

Let f
P
1
3,3,3

0 (q) and f
P
1
3,3,3

1 (q) be the coefficients of t1t2t3 and t3i of F
P
1
3,3,3

0 , respec-

tively. Then

h4(q) =
1

2
f
P
1
3,3,3

1 (q2) =
1

6
+ q6 + q18 + q24 + 2q42 +O(q48),

h5(q) = 0,

h6(q) = f
P
1
3,3,3

0 (q2) = q2 + q8 + 2q14 + 2q26 + q32 + 2q38 +O(q48),

h7(q) = f
P
1
3,3,3

1 (q2) =
1

3
+ 2q6 + 2q18 + 2q24 + 4q42 +O(q48).

Case (c) with the domain orbisphere P1
3,6,6

For these kinds of contributions, the lifting of holomorphic orbispheres on the

universal cover level is no longer a linear map, since the domain orbisphere is

hyperbolic. Hence, we cannot use our classification argument any longer. How-

ever, we may try to find such maps directly by looking at their image on the

universal cover C of the target P1
2,3,6.

For this, we consider rhombi in the universal covering of P1
2,3,6 whose ver-

tices lie in the p−1(w1,w2,w3). For example, observe that the rhombus v whose

set of vertices are {0, 2+τ
3 ,1, 1−τ

3 } gives one contribution from P1
3,6,6 to 〈Δ2/3

2 ,

Δ
1/6
3 ,Δ

1/6
2 〉 (see the rightmost rhombus in Figure 10). One can visualize this

holomorphic orbisphere by folding this rhombus along its longer diagonal. Pairs

of identified edges after this process are drawn in Figure 10.

There are various such rhombi, and their corresponding orbi-insertions can be

classified in the following way. Note that these rhombi are images of the smallest

rhombus v given above by linear maps z �→ λz for λ ∈ Z[τ ]. (This means that

we regard the vertices 2+τ
3 and 1−τ

3 of v as markings z2 and z3 of order 6 in

the domain P1
3,6,6, respectively.) Since (1 + τ) · 1−τ

3 = 2+τ
3 , insertions at z2 and

z3 are the same, and if λ · ( 2+τ
3 ) is contained in p−1(w3) (resp., p−1(w2)), then
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Figure 10. Images of holomorphic orbispheres P1
3,6,6 → P

1
2,3,6 visualized in the universal cover of P1

2,3,6.

the corresponding insertions are 〈Δ1/6
3 ,Δ

1/6
3 ,Δ

4/6
3 〉 (resp., 〈Δ2/3

2 ,Δ
1/6
3 ,Δ

1/6
3 〉).

Recall that h8 counts 〈Δ1/6
3 ,Δ

1/6
3 ,Δ

4/6
3 〉, whereas h9 counts 〈Δ2/3

2 ,Δ
1/6
3 ,Δ

1/6
3 〉.

Using the identity λ · 2+τ
3 = 2a−b

3 + a+b
3 τ and proceeding as in case (a), we

have

λ · 2 + τ

3
∈ p−1(w3) ⇐⇒ 3 |N (= a2 − ab+ b2)

and

λ · 2 + τ

3
∈ p−1(w2) ⇐⇒ 3 �N (= a2 − ab+ b2).

It is easy to see that the six rhombi related by Z6-rotation at the origin repre-

sent the same map, and the degrees of these rhombi are also given by |λ|2. By
comparing with the decomposition of F in terms of the qth power (mod 3) as

in Section 5.3, it follows that h8(q) =
1
6F0,3(q

2) and h9(q) =
1
6F1,3(q

2) if one can

prove that there are no other contributions.

CONJECTURE 6.3

We conjecture that there are no contributions from P1
3,6,6 other that these rhombi

or, equivalently,

h8(q) =
1

6
F0,3(q

2) =
1

2
f
P
1
3,3,3

1 (q2)

=
1

6
+ q6 + q18 + q24 + 2q42 + q54 + q72 + 2q78 +O(q96),

h9(q) =
1

6
F1,3(q

2) = f
P
1
3,3,3

0 (q2)

= q2 + q8 + 2q14 + 2q26 + q32 + 2q38 +O(q48).

REMARK 6.4

One way to see that the conjecture holds true is the following. It can be shown
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that the conjectural answer is modular on Γ(6) and the first few terms match with

the one given in [MR] (or [MSh]). Then by modularity, they must be identically

the same. (Hence, it is not a conjecture in the normal sense.) We left it as a

conjecture as the purpose of the article is the direct classification of holomorphic

orbispheres, which we failed to show for these particular 3-point invariants.

There is a nontrivial algebraic relation between h8(q) and h9(q) which basically

comes from the Frobenius structure on QH∗
orb(P

1
2,3,6;Q). This can be obtained

as follows. First,

h8 = (Δ
1/6
3 ∗Δ1/6

3 ,Δ
4/6
3 )

=
(
Δ

1/6
3 ∗Δ1/6

3 ,
1

6
(h6)

−1Δ
1/3
2 ∗Δ1/3

2 − 1

2
(h6)

−1h7Δ
2/3
2

)
=−1

2
(h6)

−1h7h9 +
1

6
(h6)

−1(Δ
1/6
3 ∗Δ1/6

3 ,Δ
1/3
2 ∗Δ1/3

2 )

(6.4)

where (·, ·) is the Poincaré paring and, in the second equality, we used

Δ
1/3
2 ∗Δ1/3

2 = 6h6Δ
4/6
3 + 3h7Δ

2/3
2 ,

which is completely known from cases (b) and (c).

The last term in (6.4) can be computed with the help of the Frobenius

structure:

(Δ
1/6
3 ∗Δ1/6

3 ,Δ
1/3
2 ∗Δ1/3

2 ) = (Δ
1/6
3 ,Δ

1/6
3 ∗Δ1/3

2 ∗Δ1/3
2 )

=
(
Δ

1/6
3 , (6h1Δ

3/6
3 + 2h0Δ

1/2
1 ) ∗Δ1/3

2

)
= 6h1(Δ

1/6
3 ,Δ

3/6
3 ∗Δ1/3

2 ) + 2h0(Δ
1/6
3 ,Δ

1/2
1 ∗Δ1/3

2 )

= 6(h1)
2 + 2(h0)

2.

Plugging it into (6.4), we obtain the relation

(6.5) 6h6h8 =−3h7h9 + 6(h1)
2 + 2(h0)

2.

One can check (6.5) numerically up to a high enough order using Mathematica

with our conjectural h8 and h9.

REMARK 6.5

A similar kind of lifting argument as in case (b) tells us that the (3,6,6)-

contribution for P1
3,3,3 is equivalent to a certain kind of 4-point Gromov–Witten

invariant of P1
3,3,3 which counts holomorphic orbispheres P1

3,3,3,3 → P1
3,3,3.

6.2. The product on QH∗
orb(P

1
2,4,4)

Let E′ be the elliptic curve associated with the lattice Z〈1, i〉, where i =
√
−1.

(In fact, E and E′ are isomorphic as symplectic manifolds.) Then the quotient of

E′ by the Z4-action which is generated by i-multiplication is the elliptic orbifold

projective line P1
2,4,4 = [E′/Z4] with three singular points w1,w2,w3. Here, w1 is
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the point with the local group isomorphic to Z2, and w2,w3 have local groups

isomorphic to Z4.

The inertial orbifold I P1
2,4,4 consists of the smooth sector together with a

BZ2 and two BZ4’s. As usual, the Q-basis of H∗
orb(P

1
2,4,4,Q) is taken as

1,Δ
1/2
1 ,Δ

1/4
2 ,Δ

2/4
2 ,Δ

3/4
2 ,Δ

1/4
3 ,Δ

2/4
3 ,Δ

3/4
3 , [pt].

Then the cohomology of the smooth sector is given by

H0
orb(P

1
2,4,4,Q) =Q · 1, H2

orb(P
1
2,4,4,Q) =Q · [pt].

For twist sectors, Δ
1/2
1 ∈ H1

orb(P
1
2,4,4,Q), Δ

j/4
k ∈ H

2j
4

orb(P
1
2,3,6,Q) (j = 1,2,3,

k = 2,3) are generators supported at singular points w1,w2,w3, respectively. In

a similar way to the P1
2,3,6 case, we classify all the triple orbi-insertions with

expected dimension 0 and their domain orbifolds:

(a) P1
2,4,4: 〈Δ1/2

1 ,Δ
1/4
j ,Δ

1/4
k 〉, 〈Δ2/4

j ,Δ
1/4
j ,Δ

1/4
k 〉, 〈Δ2/4

j ,Δ
1/4
k ,Δ

1/4
k 〉 for j,

k = 2,3;

(b) P1
2,2: 〈1,Δ

1/2
1 ,Δ

1/2
1 〉, 〈1,Δ1/2

1 ,Δ
2/4
k 〉, 〈1,Δ2/4

j ,Δ
2/4
k 〉 for j, k = 2,3;

(c) P1
4,4: 〈1,Δ

1/4
j ,Δ

3/4
k 〉 for j, k = 2,3.

Again, (b) and (c) do not occur because of Lemma 4.1. If we denote t :=∑
tj,iΔ

i
j , then the genus 0 Gromov–Witten potential of P1

2,4,4 is written up to

order t3 as

F
P
1
2,4,4

0 (t) =
1

2
t20 log q+

1

2
t0t1, 12 t1,

1
2
+

1

4
t0t2, 24 t2,

2
4

+ t2, 14 t2,
3
4
+ t3, 24 t3,

2
4
+ t3, 14 t3,

3
4
+

1

2
t1, 12 (t

2
2, 14

+ t23, 14
) · g0(q)

+ t1, 12 t2,
1
4
t3, 14 · g1(q) +

1

2
(t2, 24 t

2
2, 14

+ t3, 24 t
2
3, 14

) · g2(q)

+
1

2
(t2, 24 t

2
3, 14

+ t3, 24 t
2
2, 14

) · g3(q)

+ (t2, 24 t2,
1
4
t3, 14 + t3, 24 t3,

1
4
t2, 14 ) · g4(q) +O(t4).

(6.6)

The classification in (a) shows that the domain orbisphere should have the

same orbifold structure, that is, the contributions only come from maps P1
2,4,4 →

P1
2,4,4. Let p : C → P1

2,4,4 be the universal covering which factors through the

Z4-quotient map E′ → P1
2,4,4. We abuse the notation p for covering maps of

both the domain and the target P1
2,4,4. From the obvious symmetry between w2

and w3, we may fix one of the orbi-insertions by Δ
1/4
2 (similar to what we did

for the P1
3,3,3 case). So, we assume that our holomorphic orbisphere sends z2

to w2.

As before, any holomorphic orbisphere u that we are considering can be lifted

to a linear map ũ : z → λz by Lemmas 4.2 and 4.4. We set the lattice structure

on C induced by the covering C→ P1
2,4,4 for both the domain and the target as



Holomorphic orbispheres in elliptic curve quotients 237

follows:

p−1(w1) =
{1

2
(a+ ib)

∣∣∣ either a or b is an odd number, but not both
}
,

p−1(w2) = Z〈1, i〉 (� 0),

p−1(w3) =
{1

2
(a+ ib)

∣∣∣ both a and b are odd numbers
}
.

Here, we think of w2 as the base point associated with the universal cover (C,0)
(see Figure 11).

Since we have assumed that the orbifold singular point z2 is mapped to w2,

the lifting ũ of u : P1
2,4,4 → P1

2,4,4 maps p−1(z2) to p−1(w2), fixing the origin.

Therefore, ũ(z) = λz for some λ ∈ Z[i]. As mentioned, the degree of a holomorphic

orbisphere u is |λ|2 = a2 + b2 if the lifting of u is ũ(z) = λz with λ= a+ bi. Let

G(q) denote the power series

(6.7) G(q) =
∑
a,b∈Z

qa
2+b2 .

See (A.1) for the first few terms of G. Note that if we divide a2 + b2 by 4, then 3

cannot appear as a remainder for any a, b ∈ Z. Thus, we can decompose G into

G=G0,4 +G1,4 +G2,4 in accordance with the exponent of q modulo 4.

We determine the orbi-insertion for each λ= a+bi in the same way as before.

Note that the right-angled isosceles triangle with vertices {0, 12 ,
1+i
2 } is one of the

fundamental domains of the upper hemisphere of P1
2,4,4 (see the shaded region in

Figure 11).

Figure 11. Lattices on the universal cover of P1
2,4,4: p

−1(w1) = {◦}, p−1(w2) = {•}, and p−1(w3) = {�}.



238 Hansol Hong and Hyung-Seok Shin

Observe that the two marked points other than the origin in this fundamental

domain map to

(a+ bi) · 1
2
=

a

2
+

b

2
i and (a+ bi) · 1 + i

2
=

a− b

2
+

a+ b

2
i

by the linear map z �→ (a+ bi)z. By proceeding as in the case of P1
2,3,6, we see

that there are only three possibilities for the types of insertions, which are listed

as follows:

(1) “ a
2 + b

2 ∈ p−1(w1) and a−b
2 + a+b

2 ∈ p−1(w3)” if and only if a2 + b2 ≡ 1

mod 4;

(2) “ a
2 + b

2 ∈ p−1(w2) and a−b
2 + a+b

2 ∈ p−1(w2)” if and only if a2 + b2 ≡ 0

mod 4;

(3) “ a
2 + b

2 ∈ p−1(w3) and a−b
2 + a+b

2 ∈ p−1(w2)” if and only if a2 + b2 ≡ 3

mod 4.

By the definition of coefficients gi in (6.6), holomorphic orbispheres with inser-

tions (i), (ii), and (iii) precisely give rise to g1, g2, and g3, respectively. Therefore,

we conclude that g0(q) = g4(q) = 0, and

g1(q) =
1

4

∞∑
N=1

N≡1mod4

∑
a2+b2=N

a,b∈Z

qN =
1

4
G1,4,

g2(q) =
1

4

∞∑
N=1

N≡0mod4

∑
a2+b2=N

a,b∈Z

qN ,

g3(q) =
1

4

∞∑
N=1

N≡2mod4

∑
a2+b2=N

a,b∈Z

qN .

Again, 1
4 is due to the Z4-symmetry at the origin in the universal cover C (from

the action of the local group at w2) which is generated by i-multiplication.

Appendix A: Theta series

Recall that our results were expressed in terms of the following two power series:

F (q) =
∑
a,b∈Z

qa
2−ab+b2

= 1+ 6q+ 6q3 + 6q4 + 12q7 + 6q9

+ 6q12 + 12q13 + 6q16 + 12q19 + 12q21 +O(q24),

G(q) =
∑
a,b∈Z

qa
2+b2

= 1+ 4q+ 4q2 + 4q4 + 8q5 + 4q8

+ 4q9 + 8q10 + 8q13 + 4q16 + 8q17 + 4q18 + o(q20).

(A.1)
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In this section, we briefly explain several number-theoretic features of F and G

(for more details, see [B, Chapter 4] or [G]). We first provide a description of the

Fourier coefficients of F and G.

PROPOSITION A.1

Write F (q) =
∑

N≥0 aNqN , and write G(q) =
∑

N≥0 bNqN . Then

aN = 6
(
d1/3(N)− d2/3(N)

)
,

bN = 4
(
d1/4(N)− d3/4(N)

)
,

where dj/3(N) denotes the number of divisors of N which are j modulo 3, and

dj/4(N) denotes the number of divisors of N which are j modulo 4.

Proof

We only prove the first identity for aN , and we refer the reader to [G, Theorem 3]

for G. The following is a simple modification of the argument given in [G], but

we repeat it here for completeness.

Recall that, for τ = e2π
√
−1/3, |a+bτ |2 = a2−ab+b2. This gives the structure

of a Euclidean domain in Z[τ ]. (This ring is usually called the ring of Eisenstein

integers or Eulerian integers.) In particular, Z[τ ] is a unique factorization domain,

and hence, a prime factorization in this ring makes sense up to units which are

equal to {±1,±τ,±τ2} = {(1 + τ)k | 0 ≤ k ≤ 5} (and also up to the order of

factors). It is known that a prime number in Z[τ ] is either a prime number in

Z that is 2 modulo 3, or a + bτ whose modulus square |a + bτ |2 is a prime

number in Z. In the latter case, |a + bτ |2 is always 1 modulo 3 unless it is

3 = (1− τ)(1− τ) = (1− τ)(2 + τ) itself. (Of course, a prime number multiplied

by a unit is also prime.)

Note that finding solutions of

(A.2) a2 − ab+ b2 = (a+ bτ)(a+ bτ) =N ∈ Z

is equivalent to finding factorizations N = αβ of N in Z[τ ] such that β = ᾱ where

ᾱ is the complex conjugation of α. Let N = 3fn1n2 with n1 =
∏

p≡1 (mod3) p
r and

n2 =
∏

q≡2 (mod3) q
s. Then the prime factorization of N in Z[τ ] can be written

as

N =
{
(1− τ)(2 + τ)

}f ∏
c2−cd+d2=p
p≡1 (mod3)

{
(c+ dτ)(c+ dτ)

}r ∏
q≡2 (mod3)

qs,

where c+ dτ and c+ dτ come in a pair for each p since N is an integer. Now the

condition β = ᾱ forces them to be of the following forms:

α= (1+ τ)t(1− τ)f1(2 + τ)f2
∏{

(c+ dτ)r1(c+ dτ)
r2}∏

qs1 ,

β = (1+ τ)−t(1− τ)f2(2 + τ)f1
∏{

(c+ dτ)r2(c+ dτ)
r1}∏

qs2
(A.3)

with 0≤ t≤ 5, f1 + f2 = f , r1 + r2 = r, and s1 + s2 = s. Also β̄ = α implies that

s1 = s2, so there is no solution to (A.2) if s is odd. Let us assume that s is
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even from now on. Then, the si’s are uniquely determined (as the halves of s).

Observe that t has six choices, and note that f1 and r1 determine f2 = f − f1
and r2 = r− r1, respectively. Thus, there are seemingly 6(f +1)

∏
(r+1) choices

for α and β satisfying (A.3). However, replacing one (1− τ) by (2 + τ) in the

expression of α (A.3) affects α by a unit multiplication since (2+τ)/(1−τ) = 1+τ

is a multiplicative generator of the group of units in Z[τ ]. Getting rid of this

redundancy, the number of pairs (α,β) satisfying N = αβ and β = ᾱ is given

by 6
∏
(r + 1). It is easy to check that this number is the same as 6(d1/3(N)−

d2/3(N)). �

REMARK A.2

From the proof, we see that 6 in the expression of aN is related to the number of

units in the ring Z[τ ], which give the symmetries on the associated moduli space

of orbispheres (see the last paragraph of Section 5.2).

We next describe F and G in terms of the famous Jacobi theta functions. The

definitions of the related Jacobi theta functions are given as follows.

DEFINITION A.3

The second and third Jacobi theta functions are the power series θ2 and θ3 in q

which are defined as follows:

θ2(q) :=

∞∑
−∞

q(n+1/2)2 ,

θ3(q) :=

∞∑
−∞

qn
2

.

REMARK A.4

Originally, theta functions are two variable functions depending on z and q.

Above, θi is indeed obtained by putting z = 0.

Let us now express F (q) and G(q) in terms of the θi’s (i = 2,3). First, for F ,

observe that the number of integer solutions of x2 − xy + y2 =N is equivalent

to that of solutions of (m2 +3n2)/4 =N . To see this, simply put m= x+ y and

n = x− y into (m2 + 3n2)/4. Note that m and n should have the same parity.

Therefore,

F (q) =
∑
x,y∈Z

qx
2−xy+y2

=
∑

m,n:even

q
m2+3n2

4 +
∑

m,n:odd

q
m2+3n2

4

=
∑
k,l∈Z

qk
2+3l2 +

∑
k,l∈Z

q((k+1)/2)2+3((l+1)/2)2
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= θ3(q)θ3(q
3) + θ2(q)θ2(q

3).

The expression of G(q) is even simpler since

G(q) =
∑
x,y∈Z

qx
2+y2

=
(
θ3(q)

)2
.

In general, the theta function associated with a binary quadratic form

Q(x, y) = ax2 + bxy+ cz2 is defined by

θQ(z) =
∑

(x,y)∈Z2

exp
(
2πizQ(x, y)

)
,

where we have used the substitution q = exp(2πiz) mostly in this article. In the

Fourier expansion

θQ(z) =

∞∑
N=0

RQ(N) exp(2πiNz),

the numbers RQ(N) are called the representation numbers of the form Q, and

hence aN and bN above are given as RF (N) and RG(N), respectively.

These theta functions are known to be modular forms of weight 1 on (an

appropriately defined subgroup of) the modular group. We believe that this mod-

ularity of F and G may help to compare our results with those given in [ST] and

[MR].
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