
The coarse Baum–Connes conjecture for
Busemann nonpositively curved spaces

Tomohiro Fukaya and Shin-ichi Oguni

Abstract We prove that the coarse assembly maps for proper metric spaces that are

nonpositively curved in the sense of Busemann are isomorphisms, where we do not

assume that the spaces have bounded coarse geometry. Also it is shown that we can cal-

culate the coarseK-homology and theK-theory of the Roe algebra by using the visual

boundaries.

1. Introduction

For a proper metric space X , the coarse assembly map

μ(X) :KX∗(X)→K∗(C
∗X)

is defined as a coarse index map (see [3], [7], [11]). Here KX∗(X) is the coarse

K-homology of X and K∗(C
∗X) is the K-theory of the Roe algebra C∗X . It is

well known that KX∗(X), K∗(C
∗X), and μ(X) depend only on the large-scale

geometry of X , that is, the coarse structure given by the metric on X (refer to

[3, Section 6]). It would be interesting to know which proper metric space X

satisfies the property that μ(X) is an isomorphism (resp., a rational injection)

because the property is closely related to the analytic Novikov conjecture (resp.,

nonpermission of uniformly positive scalar curvatures). In particular, the follow-

ing is called the coarse Baum–Connes conjecture: if a proper metric space X is

reasonable, for example, uniformly contractible and with bounded coarse geome-

try, then μ(X) is an isomorphism (see the Appendix for more details on bounded

coarse geometry). Now we can recognize many spaces whose coarse assembly

maps are isomorphisms. For example, if X has bounded coarse geometry and

is coarsely embeddable into a Hilbert space, then μ(X) is an isomorphism (see

[12, Theorem 1.1]). Also Higson and Roe [3, Corollary 8.2] showed that if X is

geodesic and hyperbolic in the sense of Gromov, then μ(X) is an isomorphism,

where bounded coarse geometry is not assumed.
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Now we consider which proper metric space X has a boundary with informa-

tion about KX∗(X) and K∗(C
∗X). This question is a variant of the Weinberger

conjecture, which gives a sufficient condition for the property that the assembly

map is rationally injective (see [7, Conjecture 6.33 and Proposition 6.34]). Let

W be a boundary which gives a coarse compactification of a proper metric space

X (see Section 2). Then we have the following commutative diagram:

KX∗(X)

TW

μ(X)
K∗(C

∗X)

bW

K̃∗−1(W )

Here K̃∗−1(W ) is the reduced K-homology of W , TW is a transgression map,

and bW is a map defined in [3, Appendix] (refer to [2, Section 1.2]). There are

some classes of metric spaces X admitting coarse compactifications X ∪W such

that TW and bW are isomorphisms. Such a typical class consists of unbounded

proper geodesic hyperbolic spaces in the sense of Gromov (see [2, Corollary 5.3]).

Indeed, the Gromov completions are desired coarse compactifications. See [2] for

other classes.

In this note, we deal with proper metric spaces which are nonpositively

curved in the sense of Busemann (for short, proper Busemann spaces). Proper

CAT(0)-spaces are typical examples. The following is our main theorem.

THEOREM 1.1

Let X be an unbounded proper Busemann space (which does not necessarily have

bounded coarse geometry), and let ∂vX be the visual boundary. Then μ(X) is

an isomorphism. Also X ∪ ∂vX is a coarse compactification of X, and moreover

T∂vX and b∂vX are isomorphisms.

REMARK 1.2

A key in our proof of Theorem 1.1 is to show that the coarsening map

c(X) :K∗(X)→KX∗(X)

is an isomorphism for any proper Busemann space X . In general, when a proper

metric space is uniformly contractible and has bounded coarse geometry, the

coarsening map is an isomorphism (see [3, Proposition 3.8], [1, proof of Theo-

rem 4.8], [2, Section 3.2]). Proper Busemann spaces are uniformly contractible,

but they do not necessarily have bounded coarse geometry (see Example A.5).

Higson and Roe [3, below Corollary 7.5] claimed that a proper nonpositively

curved space X without necessarily bounded coarse geometry satisfies that the

coarsening map is an isomorphism, but they did not give details. Indeed, we

prove it for proper Busemann spaces (see Proposition 3.4).
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2. The visual boundaries of proper Busemann spaces

In this section, we study the visual boundaries of proper Busemann spaces from

a coarsely geometric viewpoint. We refer to [9], which deals with CAT(0)-spaces

(see also [10]).

The following is one of the equivalent definitions of Busemann spaces (see

[6, Proposition 8.1.2(viii)]).

DEFINITION 2.1

Let X be a space endowed with a metric d. We call X a nonpositively curved space

in the sense of Busemann (for short, a Busemann space) if X is geodesic and

satisfies the following: for any points x0, x1, y0, y1 ∈X , any geodesics x0x1, y0y1,

and any t ∈ [0,1], d(xt, yt) is smaller than or equal to (1− t)d(x0, y0)+ td(x1, y1),

where xt ∈ x0x1 and yt ∈ y0y1 with d(x0, xt) = td(x0, x1) and d(y0, yt) = td(y0, y1),

respectively.

Typical examples of Busemann nonpositively curved spaces include CAT(0)-

spaces and strictly convex Banach spaces like lp-spaces (1 < p < ∞; see also

Example 2.2).

We consider the visual boundaries. Let X be a proper Busemann space. Fix

a base point o ∈X . Since two points in a Busemann space are connected by a

unique geodesic, we have a continuous map

X × [0,1] � (x, t) �→ δt(x) ∈X,

where δt(x) is characterized as a point on a geodesic from o to x with d(o, δt(x)) =

td(o,x). For each t ∈ (0,∞), put B(o, t) := {a ∈ X | d(o, a) ≤ t}. For any s, t ∈
(0,∞) with s < t, we define a surjection πs,t : B(o, t) → B(o, s) as πs,t(a) := a

if d(o, a) ≤ s and πs,t(a) := δs/d(o,a)(a) if d(o, a) > s. Also for any t ∈ (0,∞),

we define a surjection πt : X → B(o, t) as πt(a) := a if d(o, a) ≤ t and πt(a) :=

δt/d(o,a)(a) if d(o, a) > t. We consider a projective system consisting of {πs,t :

B(o, t) → B(o, s)}0<s<t. Then the projective limit lim←B(o, t) contains X as

an open dense subset by the map lim←πt : X → lim←B(o, t). We put X :=

lim←B(o, t) and ∂vX := X \ X . We call ∂vX the visual boundary of X . The

visual boundary of X is independent (up to canonical homeomorphisms) of the

choice of base points by [5, Main Theorem].

EXAMPLE 2.2

Let p belong to (1,∞). For each positive integer n, denote by �p(n) the n-

dimensional �p-space. Then �p(n) is a proper Busemann space and the visual

boundary is homeomorphic to the (n− 1)-dimensional sphere Sn−1. We remark

that �p(n) is CAT(0) if and only if n= 1 or p= 2.

For each p ∈ (1,∞), we give an example which is a proper Busemann space

without bounded coarse geometry. First we consider a half-line [0,∞) with the

standard metric by absolute values. Next we identify the zero vector of �p(n) with

n ∈ [0,∞) for all positive integers n. Finally we endow the resulting spaceXp with
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the path metric, where the embeddings �p(n)→Xp for all n ∈N and [0,∞)→Xp

are isometric. Then Xp is a proper Busemann space and the visual boundary of

Xp is homeomorphic to the one-point compactification of
⊔

n∈N
∂v�p(n), that is,

the one-point compactification of
⊔

n∈N
Sn−1. Obviously Xp is CAT(0) if and

only if p= 2. In the Appendix we show that Xp does not have bounded coarse

geometry.

The following is implied by the argument in [9, proof of Lemma 4.6.1] for proper

CAT(0)-spaces and the visual boundaries.

PROPOSITION 2.3

Let X be a proper Busemann space. Then X ∪ ∂vX is contractible.

Now we recall a definition of coarse compactifications. Let X be a proper metric

space. We denote by Cb(X) the set of all bounded continuous functions of X .

An element f ∈Cb(X) is a Higson function if, for any ε > 0 and any R> 0, there

exists a bounded set K ⊂X such that x, y ∈X with d(x, y) < R and x, y /∈K

satisfy |f(x) − f(y)| < ε. We denote by Ch(X) the set of all Higson functions

of X . Let X be a compact metrizable space which is a compactification of X . We

denote by C(X) the set of all continuous functions of X . Then C(X) is naturally

identified with a subalgebra of Cb(X) by the Gelfand–Naimark theorem. After

the identification, if every element of C(X) is a Higson function, then we call X

a coarse compactification of X .

The following is known for proper CAT(0)-spaces and the visual boundaries

(see [9, Lemma 4.6.2]).

PROPOSITION 2.4

Let X be a proper Busemann space. Then X ∪ ∂vX is a coarse compactification

of X.

Proof

We need to modify the argument in [9, proof of Lemma 4.6.2] because that proof

uses the CAT(0)-inequality.

We recall that X ∪ ∂vX = lim←B(o, t). We naturally regard C(B(o, t)) as a

subset of Cb(X) by

C
(
B(o, t)

)
� f �→ f ◦ πt ∈Cb(X),

where C(B(o, t)) is the set of all continuous functions on B(o, t). Then C(X ∪
∂vX) is identified with the closure of

⋃
t>0C(B(o, t)). We take t ∈ (0,∞) and

f ∈ C(B(o, t)). Then it is enough to prove that F := f ◦ πt is a Higson function

of X . We take ε > 0 and R> 0. Since B(o, t+R) is compact, we have δ > 0 such

that |F (a′)−F (b′)|< ε for any a′, b′ ∈B(o, t+R) with d(a′, b′)< δ. We take any

a, b ∈X with d(a, b)<R and we have

r := min
{
ra := d(o, a), rb := d(o, b)

}
>S := max{t, tR/δ}.
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We put a′ = δt/r(a) and b′ = δt/r(b). Then we have

t≤ d(o, a′) = tra/r < t+R, t≤ d(o, b′) = trb/r < t+R,

F (a′) = F (a), and F (b′) = F (b). Since X is a Busemann space, we have

d(a′, b′) = d
(
δt/r(a), δt/r(b)

)
≤ t

r
d(a, b)<

tR

r
≤ δ.

Hence we have |F (a)− F (b)|< ε. �

3. The coarse assembly maps for proper Busemann spaces

In this section we prove that the coarse assembly maps for proper Busemann

spaces are isomorphisms. Let X be a proper metric space. Then we have the

following commutative diagram:

(1)

K∗(X)

c(X)

A(X)
K∗(C

∗X)

KX∗(X)

μ(X)

Here K∗(X) is the K-homology of X , C∗X is the Roe algebra of X , K∗(C
∗X) is

the K-theory of C∗X , A(X) is the assembly map for X , c(X) is the coarsening

map for X , and μ(X) is the coarse assembly map for X (see [3, Section 6] and

also [2, Section 1]).

If a proper metric space X is a scalable space (which does not necessarily

have bounded coarse geometry), then Higson and Roe proved that the assembly

map A(X) is an isomorphism by a so-called Eilenberg swindle (see [3, Theo-

rem 7.2], [4, Theorem 12.4.11]). Proper CAT(0)-spaces are such examples (see

[4, Exercise 12.7.4], [9, proof of Proposition 4.6.3]). Their proof works well for

proper Busemann spaces and thus we have the following result.

PROPOSITION 3.1

Let X be a proper Busemann space. Then X is scalable and thus A(X) is an

isomorphism.

We recall definitions of coarse maps. Let (X,dX) and (Y,dY ) be proper metric

spaces. A map f : Y →X is a coarse map if f satisfies the following:

• for any bounded subset K of X , f−1(K) is bounded;

• for any R > 0, there exists S > 0 such that y, y′ ∈ Y with dY (y, y
′) < R

satisfy dX(f(y), f(y′))< S.

Two coarse maps f, g : Y →X are close if there exists C > 0 such that dX(f(y),

g(y))<C for any y ∈ Y .

We need two lemmas to prove Proposition 3.4.
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LEMMA 3.2

Let X be a proper Busemann space, let Y be a connected locally finite simplicial

complex with the spherical metric, and let f : Y →X be a coarse map. Then there

exists a continuous coarse map g : Y →X such that g and f are close.

Here we briefly explain the spherical metric. Let Y be a connected locally finite

simplicial complex. Denote the 0th skeleton by Y (0) := {vi}i∈N. Then for every

nonnegative integer k, we identify every k-simplex with vertices {vi1 , . . . , vik+1
}

of Y with

Δk
S :=

{
(ui1 , . . . , uik+1

) ∈ [0,1]k+1
∣∣∣
k+1∑
j=1

u2
ij = 1

}
.

By using the identification, we have so-called spherical coordinates {ui : Y →
[0,1]}i∈N, where

∑
i∈N

ui(y)
2 is a finite sum and equal to 1. Now we have an

embedding Y � y �→ (u1(y), u2(y), . . .) ∈ S(�2(N)), where S(�2(N)) is the sphere

with radius 1 in �2(N). We endow Y with the metric dS induced from the path

metric of the image of the embedding and call dS the spherical metric. The

spherical metric is very familiar with the graph metric in the following sense: the

restriction of dS on the first skeleton Y (1) is equal to the graph metric on Y (1)

up to π/2-multiplication.

Proof of Lemma 3.2

We denote by Y (0) the 0th skeleton of Y . Then we construct a continuous coarse

map g : Y →X with g|Y (0) = f |Y (0) such that g and f are close.

Every point y of Y is uniquely presented by the barycentric coordinate

{(v1, t1), . . . , (vn, tn)}, where vi ∈ Y (0) and ti ∈ (0,1] with
∑n

i=1 ti = 1. Now for

such a point y, we define g(y) ∈ X as the barycenter of {(f(v1), t1), . . . ,
(f(vn), tn)}; that is, g(y) is a unique point which attains the minimum of (see

[6, Definition 8.4.10])

X � x �→
n∑

i=1

tidX
(
x, f(vi)

)2 ∈ [0,∞).

Then we have a map g : Y →X with g|Y (0) = f |Y (0) . Since the barycenter con-

tinuously depends on weights ti, the map g is continuous.

Now we prove that g is close to f . Since f is coarse, we have C > 0 such

that, for any point y, y′ ∈ Y contained in the same simplex, dX(f(y), f(y′))<C.

Take a point y ∈ Y which is presented by the barycentric coordinate {(v1, t1), . . . ,
(vn, tn)}. Then we have i0 ∈ {1, . . . , n} satisfying d(g(y), f(vi0)) ≤ d(g(y), f(vi))

for any i ∈ {1, . . . , n}. Since g(y) is the barycenter of {(f(v1), t1), . . . , (f(vn), tn)}
with

∑n
i=1 ti = 1, we have

d
(
g(y), f(vi0)

)2
=

n∑
i=1

tid
(
g(y), f(vi0)

)2 ≤
n∑

i=1

tid
(
g(y), f(vi)

)2
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<

n∑
i=1

tid
(
f(vi0), f(vi)

)2 ≤
n∑

i=1

tiC
2 =C2.

Since we have d(f(y), f(vi0)) < C and f(vi0) = g(vi0), the triangle inequality

implies d(g(y), f(y))< 2C. Since g is close to the coarse map f , g is also a coarse

map. �

LEMMA 3.3

Let X be a proper Busemann space, and let φ :X →X be a continuous coarse

map which is close to idX . Then idX and φ are properly homotopic.

Proof

We consider the map

h :X × [0,1] � (x, t) �→ h(x, t) ∈X,

where h(x, t) is characterized as a point on the geodesic from x to φ(x) with

d(x,h(x, t)) = td(x,φ(x)). Then h is continuous in view of Definition 2.1. Hence,

h is a proper homotopy between idX and φ. �

PROPOSITION 3.4

Let X be a proper Busemann space. Then c(X) is an isomorphism.

Proof

The argument in [3, proof of Proposition 3.8] works well in our situation when

we use Lemmas 3.2 and 3.3 instead of [3, Lemmas 3.3 and 3.4]. We give a sketch

for the reader’s convenience. First of all, we take an anti-Čech system U1,U2, . . .

of X and a partition of unity of U1. When we denote by |Ui| the geometrization

of Ui as a nerve complex for each i ∈N, we have a coarsening sequence

X
ϕ |U1|

ϕ1 |U2|
ϕ2 · · · ,

where all maps are proper continuous maps and coarse equivalences. By Lemma

3.2, we have a continuous coarse map gi : |Ui| → X for each i ∈ N satisfying

that gi ◦ (ϕi−1 ◦ · · · ◦ ϕ1 ◦ ϕ) and (ϕi−1 ◦ · · · ◦ ϕ1 ◦ ϕ) ◦ gi are close to idX and

id|Ui|, respectively. Then Lemma 3.3 implies that gi ◦ (ϕi−1 ◦ · · · ◦ϕ1 ◦ϕ) and idX
are properly homotopic. Since (ϕi−1 ◦ · · · ◦ ϕ1 ◦ ϕ) ◦ gi and id|Ui| are close, we

have k ≥ i such that (ϕk ◦ · · · ◦ ϕ1 ◦ ϕ) ◦ gi and ϕk ◦ · · · ◦ ϕi are contiguous and

thus properly homotopic. Then the coarsening sequence implies that K∗(X) ∼=
lim−→K∗(|Ui|), where the right-hand side is KX∗(X) by definition. �

Propositions 3.1 and 3.4 imply that μ(X) is an isomorphism for a proper Buse-

mann space (see the commutative diagram (1)).

4. Proof of Theorem 1.1

In this section we complete a proof of Theorem 1.1.
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When X is an unbounded proper metric space and X ∪W is a coarse com-

pactification of X , we have the following commutative diagram:

K∗(X)

c(X)

A(X)

∂W

K∗(C
∗X)

bW
KX∗(X)

μ(X)

TW

K̃∗−1(W )

where ∂W is a boundary map of the homological long exact sequence for a pair

(X ∪W,W ) and bW is a map defined in [3, Appendix] (see also [2, Section 1.2]).

Proof of Theorem 1.1

Let X be an unbounded proper Busemann space, and consider the visual bound-

ary ∂vX . We already proved that A(x), c(X), and μ(X) are isomorphisms in

Section 3. Since X ∪ ∂vX is contractible by Proposition 2.3, ∂∂vX is an isomor-

phism. Now the assertion follows from the commutative diagram above. �

EXAMPLE 4.1

Let p belong to (1,∞). We consider Xp in Example 2.2. Then Theorem 1.1

implies the following:

KX∗(Xp)∼=K∗(C
∗Xp)∼= K̃∗−1(∂vXp)

∼=K∗−1

(⊔
n∈N

Sn−1
)
∼=

∏
n∈N

K∗−1(S
n−1)∼=

∏
n∈N

Z,

where we used the strong excision property and the cluster axiom (see [4, Defi-

nition 7.3.1]).

5. Coarse K-theories and coarse cohomologies of proper Busemann spaces

In this section we briefly consider coarse K-theories and coarse cohomologies of

proper Busemann spaces. Let X be a proper metric space, and let X ∪W be a

coarse compactification of X . Then we have the following commutative diagram:

K∗(X) K∗−1(c
rX)

A(X)

μ(X)

KX∗(X)

c(X)

K̃∗−1(W )

∂W

TW

bW
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Here K∗(X), crX , K∗(c
rX), KX∗(X), K̃∗(W ), A(X), μ(X), c(X), ∂W , bW ,

and TW are the K-theory of X , the reduced stable Higson corona of X , the

K-theory of crX , the coarse K-theory of X , the reduced K-theory of W , the

co-assembly map of X , the coarse co-assembly map of X , the character map of

X , the boundary map of the cohomological long exact sequence of (X ∪W,W ),

the map induced by the inclusion of C(W ) into crX , and the transgression map,

respectively (see [1, Section 4], [9, Chapter 4], [2, Sections 3, 4] for details).

When we consider a proper Busemann spaceX and the visual boundary ∂vX ,

we have the following by a similar argument to that in the proof of Theorem 1.1,

but we omit details.

THEOREM 5.1

Let X be an unbounded proper Busemann space (which does not necessarily have

bounded coarse geometry), and let ∂vX be the visual boundary. Then in the above

commutative diagram, all maps A(X), c(X), μ(X), ∂∂vX , b∂vX , and T∂vX are

isomorphisms.

If X is an unbounded proper CAT(0)-space with bounded coarse geometry, then

the above is already known (see [1, Theorem 4.8], [9, Section 4.6]).

Similarly we have the following result.

THEOREM 5.2

Let X be an unbounded proper Busemann space (which does not necessarily have

bounded coarse geometry), and let ∂vX be the visual boundary. Then all maps in

the commutative diagram

H∗
c (X) HX∗(X)

c(X)

H̃∗−1(∂vX)

∂∂vX

T∂vX

are isomorphisms. Here H∗
c (X), HX∗(X), H̃∗(W ), c(X), ∂W , and TW are the

compactly supported Alexander–Spanier cohomology of X, the coarse cohomology

of X, the reduced Alexander–Spanier cohomology of W , the character map of X,

the boundary map of the cohomological long exact sequence of (X ∪W,W ), and

the transgression map, respectively (see [7], [2, Section 3] for details).

In the above statement, we can show that c(X) is an isomorphism in a differ-

ent way. Indeed, it is known that the compactly supported Alexander–Spanier

cohomology and the coarse cohomology are isomorphic by the character map

for any uniformly contractible proper metric space without necessarily bounded

coarse geometry (see [7, Proposition 3.33]). We note that Busemann spaces are

uniformly contractible.



10 Tomohiro Fukaya and Shin-ichi Oguni

Appendix: Bounded coarse geometry

In this appendix we collect some equivalent definitions of bounded coarse geom-

etry for the reader’s convenience (see also [8, Section 3.1]) and prove that Xp in

Example 2.2 does not have bounded coarse geometry.

DEFINITION A.1

Let Γ be a discrete metric space. Then Γ is said to have bounded geometry if, for

any R> 0,

sup
{
#B(γ,R)

∣∣ γ ∈ Γ
}
<∞.

When a discrete metric space has bounded geometry, so does every subset with

the restricted metric.

The following was introduced by Fan (see [3, Definition 3.6], [8, Defini-

tion 3.9]).

DEFINITION A.2

Let X be a metric space. Then X is said to have bounded coarse geometry if

there exists ε > 0 satisfying the following: for any R> 0,

sup
{
l
∣∣ x ∈X,x1, . . . , xl ∈B(x,R), i = j, d(xi, xj)> ε

}
<∞.

When a metric space has bounded coarse geometry, so does every subset with

the restricted metric.

Bounded coarse geometry is simply called bounded geometry in much of the

literature. However, a discrete metric space with bounded coarse geometry does

not necessarily have bounded geometry in the sense of Definition A.1. Therefore,

we adopt the notion of bounded coarse geometry.

DEFINITION A.3

Let X be a metric space, and let Γ be a discrete subset of X . For ε > 0 and

C ≥ 0, Γ is said to be ε-separated if every pair of two distinct elements γ1, γ2 ∈ Γ

satisfies d(γ1, γ2)> ε. For C ≥ 0, Γ is said to be C-dense if every x ∈X satisfies

d(x,γ)≤ C for some γ ∈ Γ. Also Γ is called a net of X if Γ is C-dense for some

C ≥ 0.

We can show that every metric space has an ε-separated net for any ε > 0 by

using Zorn’s lemma.

PROPOSITION A.4

Let X be a metric space. The following are equivalent.

(a) X has bounded coarse geometry.

(b) X has a net with bounded geometry.
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(c) X is coarsely equivalent to a discrete metric space with bounded geom-

etry.

(d) There exists ε > 0 such that every ε′-net of X for any ε′ ≥ ε has bounded

geometry.

(e) There exists ε > 0 satisfying the following: for any R > 0, there exists

N > 0 such that, for any x ∈X,

B(x,R)⊂
⋃

i=1,...,N

B(xi, ε)

for some x1, . . . , xN ∈X.

Proof

Conditions (a) and (e) are equivalent by [8, Proposition 3.2(d)]. It is easy to

show equivalence between conditions (b) and (c). Trivially, condition (d) implies

condition (b).

Now we prove that condition (a) implies condition (d). Take ε in Defini-

tion A.2. We consider any ε′-separated net Γ where ε′ ≥ ε. Then for any R > 0

and any γ ∈ Γ,

#
(
B(γ,R)∩ Γ

)
≤ sup

{
l
∣∣ x ∈X,x1, . . . , xl ∈B(x,R), i = j, d(xi, xj)> ε

}
.

Hence, Γ has bounded geometry.

Finally we show that condition (b) implies condition (e). Suppose that Γ has

bounded geometry and is a C-dense net of X for some C ≥ 0. For each x ∈X ,

we choose γx ∈ Γ with d(x,γx)≤C. Then for any R> 0 and any x ∈X , we have

B(x,R)⊂
⋃

γ∈B(x,R+C)∩Γ

B(γ,C)⊂
⋃

γ∈B(γx,R+2C)∩Γ

B(γ,C).

Since Γ has bounded geometry,

sup
{
#
(
B(γx,R+ 2C)∩ Γ

) ∣∣ x ∈X
}
<∞. �

It follows from condition (c) that having bounded coarse geometry is a coarse

geometric property; that is, for two coarsely equivalent metric spaces X and Y ,

X has bounded coarse geometry if and only if Y does as well. Conditions (b) and

(c) are useful when we show that some spaces have bounded coarse geometry.

On the other hand we can use condition (d) to prove that some space does not

have bounded coarse geometry.

EXAMPLE A.5

Let Xp be a metric space in Example 2.2. Let k be a positive integer. We take

the subset (kZ)n of �p(n) for n ∈N. When we naturally regard Γk :=
⊔

n∈N
(kZ)n

as a subset of Xp, Γk is a (k− 0.01)-separated net of Xp. Since Γk does not have

bounded geometry, it follows from condition (d) that Xp does not have bounded

coarse geometry.
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