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Abstract We investigate quantization coefficients for probability measures μ on limit

sets, which are generated by systems S of infinitely many contractive similarities and

by probabilistic vectors. The theory of quantization coefficients for infinite systems has

significant differences from the finite case. One of these differences is the lack of finite

maximal antichains, and another is the fact that the set of contraction ratios has zero

infimum; another difference resides in the specific geometry of S and of its noncompact

limit set J . We prove that, for each r ∈ (0,∞), there exists a unique positive number κr,

so that for any κ < κr < κ′, the κ-dimensional lower quantization coefficient of order r

for μ is positive, and we give estimates for the κ′-upper quantization coefficient of order

r for μ. In particular, it follows that the quantization dimension of order r of μ exists,

and it is equal to κr . The above results allow one to estimate the asymptotic errors of

approximating the measure μ in the Lr-Kantorovich–Wasserstein metric, with discrete

measures supported on finitely many points.

1. Introduction and general setting

The theory of quantization studies the process of approximating probability mea-

sures, which are invariant for certain systems, with discrete probabilities having

a finite number of points in their support. Of particular interest are the types

of behaviors which may be encountered in this quantization process for various

measures.

Let us consider, in general, a probability measure μ on R
d, a number r ∈

(0,∞), and a natural number n ∈ N. Then, the nth quantization error of order

r of μ is defined by

Vn,r(μ) := inf
{∫

d(x,α)r dμ(x) : α⊂R
d, card(α)≤ n

}
,

where d(x,α) denotes the distance from an arbitrary point x to the set α with

respect to the Euclidean norm on R
d. If

∫
‖x‖r dμ(x) < ∞, then there exists

some set α for which the infimum is achieved (see [GL1]). A set α for which the

infimum is achieved is called an optimal set of n-means or an n-optimal set of

order r, for the probability μ and for 0< r <∞.

For s > 0, the s-dimensional upper and lower quantization coefficients of

order r for the probability measure μ are defined (see [GL1]), respectively, as
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QCr,s(μ) := limsup
n

nVn,r(μ)
s/r and

QCr,s(μ) := lim inf
n

nVn,r(μ)
s/r.

We will be interested below in quantization coefficients for self-similar prob-

ability measures μ for infinite systems of contractive similarities S = (S1, S2, . . .)

and for infinite probability vectors p= (p1, p2, . . .). In this case, the theory and

the techniques of the proof from the finite case do not work. In particular, we do

not have finite maximal antichains, and also the set of the contraction ratios for

the maps Si, i≥ 1, has zero infimum.

Recall that, in the finite case, a finite self-similar system is determined by

a set of contractive similarity mappings on R
d, namely, {S1, S2, . . . , SN} with

contraction rates s1, s2, . . . , sN , for N ≥ 2. By [H] for any probability vector

(p1, p2, . . . , pN ) there exists a unique Borel probability measure μ, known as a

self-similar measure, and a unique nonempty compact fractal subset J of Rd,

which is the support of μ, satisfying the self-similarity conditions:

μ=

N∑
j=1

pjμ ◦ S−1
j and J =

N⋃
j=1

Sj(J).

The finite iterated system {S1, S2, . . . , SN} satisfies the open set condition if

there exists a bounded nonempty open set U ⊂R
d such that

⋃N
j=1 Sj(U)⊂ U and

Si(U) ∩ Sj(U) = ∅ for 1 ≤ i �= j ≤N . The iterated system is said to satisfy the

strong open set condition if there is an open set U as above, so that U ∩ J �= ∅,
where J is the limit set of the system (see, e.g., [H], [F]).

The upper and lower quantization dimensions of order r of μ are defined,

respectively, as

Dr(μ) := limsup
n→∞

r logn

− logVn,r(μ)
, Dr(μ) := lim inf

n→∞
r logn

− logVn,r(μ)
.

If Dr(μ) and Dr(μ) coincide, then we call the common value the quantization

dimension of order r of the probability measure μ, and it is denoted by Dr(μ).

Quantization processes form a rich and far-reaching mathematical concept, with

many applications (see, e.g., [GG], [GL1], [Za]).

Under the open set condition, Graf and Luschgy (see [GL1], [GL3]) showed

that the quantization dimension Dr(μ) of order r of the probability measure μ

exists and satisfies the relation
∑N

j=1(pjs
r
j)

Dr
r+Dr = 1. In fact they proved more,

namely, that the quantization dimension Dr(μ) also satisfies the following growth

conditions for quantization errors (see [GL2]):

(1) 0< lim inf
n

nVn,r(μ)
Dr
r ≤ limsup

n
nVn,r(μ)

Dr
r <∞.

Under the open set condition, Lindsay and Mauldin (see [LM]) determined the

quantization dimension of an F -conformal measure m associated with a con-

formal iterated function system (IFS) determined by finitely many conformal

mappings. They established a relationship between the quantization dimension



Quantization coefficients in infinite systems 859

and the temperature function of the thermodynamic formalism arising in mul-

tifractal analysis, and proved that the upper quantization coefficient of m is

finite; however, they left it open as to whether the lower quantization coefficient

is positive. Using a class of finite maximal antichains, Zhu [Z] gave an answer.

Later, following the same techniques as Lindsay and Mauldin and using Hölder’s

inequality, Roychowdhury [R1] gave a different proof of this fact.

In this paper, we are interested in the different case of infinite systems of

similarities (Sn)n≥1 with similarity ratios (sn)n≥1, respectively, satisfying the

strongly separated condition. This setting presents several challenges, different

from the finite case. For example in the infinite case, the fractal limit set J of

the system is not necessarily compact, in contrast to that of the finite case. The

Hausdorff dimension of the limit set J of an infinite conformal IFS is given in

general only as the infimum of the values which make the pressure negative; there

may be no zero of that pressure, unlike in the finite case. There are examples

of infinite systems where the lower box dimension dim(J) is strictly larger than

HD(J) = h and examples where the Hausdorff measure Hh(J) is zero while for

others Hh(J)> 0 (see [MaU]).

Also the boundary at infinity consisting of accumulation points of sequences

of type (Si(xi))i with distinct i’s plays a role in the geometric properties of the

system (see Mauldin and Urbański [MaU], Mihailescu and Urbański [MU1]). For

example, Mihailescu and Urbański [MU1] studied the effects of overlaps and of

the boundary at infinity on the dimensions of limit sets of infinite conformal

IFSs.

For the case of invariant measures for finite or infinite IFS, for which the

open set condition is not necessarily satisfied and there may exist overlaps, see

Mihailescu and Urbański [MU1], [MU], [MU2].

Moreover, pertaining to our problem of quantization processes, we do not

have finite maximal antichains, and the infimum of the contraction rates is zero,

which makes the proofs from the finite case not work in the infinite situation.

As it turns out, estimating quantization coefficients in the infinite case is also

very different from doing so in the finite case. By its intrinsic nature, quantization

is a procedure of “fitting” a finite set in the noncompact fractal limit set J

in such a way that we obtain as much information as possible about the self-

similar measure μ which is supported on J . However, when dealing with an

infinite system, usually no finite set F can be placed properly such that every

set Sj(X), j ≥ 1, contains a point from F . This makes quantization for infinite

systems very different from that for finite systems.

Let μ be the self-similar probability generated by the system (Sn)n≥1 and

by the probability vector (pn)n≥1 (see, e.g., [M]). The measure μ satisfies the

following recursive formula:

μ=

∞∑
j=1

pjμ ◦ S−1
j .
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The measure μ is supported on the compact closure J of the associated limit

set J . (The precise definition will be given below in the General setting.)

We will prove in Theorem 2.1 that, under the strongly separated condition,

for each r ∈ (0,∞) there exists a unique κr ∈ (0,∞) so that
∑∞

j=1(pjs
r
j)

κr
r+κr = 1,

and for any κ < κr, the κ-dimensional lower quantization coefficient of order r

for the measure μ satisfies the following asymptotic condition:

0< lim inf
n→∞

nVn,r(μ)
κ
r ≤ limsup

n→∞
nVn,r(μ)

κ
r .

We also show in Theorem 2.1 that, for any κ′ > κr, the κ′-dimensional upper

quantization coefficient for μ is finite,

limsup
n→∞

nVn,r(μ)
κ′/r = 0.

In particular, in Corollary 2.2 we prove that the quantization dimension of

order r of μ exists, and it is equal to κr setting. As a consequence of the main

results, we will prove in Corollary 2.5 a result about the asymptotic behavior

in n of the approximations in the Lr-Kantorovich–Wasserstein metric of the

self-similar probability measure μ, by discrete probability measures Q which are

supported on n points.

We also give examples of self-similar measures for infinite systems for which

we can obtain estimates on the quantization coefficients.

Some partial attempt to quantization in infinite IFS was tried by Roychowd-

hury [R2]. However, the proof of the main result in that paper is incorrect (see

Remark 2.3 below); therefore, it was not used in the current paper. The ideas

and methods in our current paper are completely different.

General setting. The nth quantization error for the probability μ gives, in

essence, the minimal average distance (average with respect to μ), from points

in the support of μ to finite sets of cardinality n, and is defined (see [GL1]) by

the formula:

Vn,r(μ) := inf
{∫

d(x,α)r dμ(x) : α⊂R
d, card(α)≤ n

}
.

Denote en,r(μ) := Vn,r(μ)
1
r . A set α⊂R

d with card(α)≤ n is called an n-optimal

set of centers for μ of order r or a Vn,r(μ)-optimal set whenever we have

Vn,r(μ) =

∫
d(x,α)r dμ(x).

Let X be a nonempty compact subset of Rd with X = cl(intX). Let (Sj)
∞
j=1

be an infinite set of contractive similarity mappings on X whose contraction

ratios are, respectively, (sj)
∞
j=1, that is, d(Sj(x), Sj(y)) = sjd(x, y) for all x, y ∈

X , 0< sj < 1, j ≥ 1. We shall assume in the rest of the paper that

s := sup
j≥1

sj < 1.

A word with n letters in N = {0,1,2, . . .}, ω := ω1ω2 · · ·ωn ∈ N
n, is said to

have length n, for n≥ 1. Define also N
fin :=

⋃
n≥1N

n to be the set of finite words

of any length with letters in N. For ω = ω1ω2 · · ·ωn ∈N
n, define
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Sω = Sω1 ◦ Sω2 ◦ · · · ◦ Sωn and sω = sω1sω2 · · ·sωn .

The empty word ∅ is the only word of length 0 and S∅ = IdX . For ω ∈N
fin ∪N

∞

and for a positive integer n smaller than the length of ω, we denote by ω|n the

word ω1ω2 · · ·ωn. Notice that, given ω ∈ N
∞, the compact sets Sω|n(X), n≥ 1,

are decreasing and their diameters converge to zero. In fact, we have that

(2) diam
(
Sω|n(X)

)
= sω1sω2 · · ·sωn diam(X)≤ sn diam(X).

Hence for an infinite word ω, the set π(ω) :=
⋂∞

n=1 Sω|n(X) is a singleton, and we

can define a map π : N∞ →X which, in view of (2), is continuous. One obtains

then the following limit set for the above infinite system of similarities:

J := π(N∞) =
⋃

ω∈N∞

∞⋂
n=1

Sω|n(X).

This fractal limit set J is not necessarily compact in the infinite case in contrast to

that of the finite case (see [MaU], [MU1]). Let σ :N∞ →N
∞ be the shift map on

N
∞, that is, σ(ω) = ω2ω3 · · · where ω = ω1ω2 · · · . Note that π◦σ(ω) = S−1

ω1
◦π(ω),

and hence, rewriting π(ω) = Sω1(π(σ(ω))), we see that J satisfies the invariance

condition:

J =
∞⋃
i=1

Si(J).

One says that the above IFS satisfies the open set condition if there exists a

bounded nonempty open set U ⊂X (in the topology of X), so that Si(U)⊂ U

for every i ∈ N and Si(U) ∩ Sj(U) = ∅ for every pair i, j ∈ N with i �= j; and it

satisfies the strong open set condition if U can be chosen so that U ∩ J �= ∅ (see,

e.g., [H], [M]). Since in our infinite case, the limit set J may be noncompact, we

will use a stronger condition; namely, we say that S is strongly separated if S
satisfies the strong open set condition with a bounded open set U and in addition

d(Si(U), Sj(U))> 0 for any i �= j.

In the current paper, we assume that the infinite set of similarities satisfies

the strongly separated condition. In the infinite systems case, the open set con-

dition and the strong open set condition are not equivalent, unlike in the finite

case (see [SW]).

Let (p1, p2, . . . ) be an infinite probability vector, with pj > 0 for all j ≥ 1.

Then there exists a unique Borel probability measure μ on R
d (see, e.g., [H],

[MaU], [M]) such that

μ=

∞∑
j=1

pjμ ◦ S−1
j .

This measure μ is called the self-similar measure induced by the infinite IFS of

self-similar mappings (Sj)j≥1 and by the infinite probability vector (p1, p2, . . . ),

and is obtained as the projection π∗(ν(p1,p2,...)), where ν(p1,p2,...) is the product

measure on N
∞ induced by (p1, p2, . . .). One defines the boundary at infinity

S(∞) as the set of accumulation points of sequences of type (Sij (xij ))j , for
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distinct integers ij (see [MaU]). The self-similar measure μ is supported in the

closure J of the limit set J , which is given by J = J ∪
⋃

ω∈Nfin Sω(S(∞)).

For the above fixed probability vector (p1, p2, . . .) and contraction vector

(sj)j≥1 and for arbitrary q, t ∈R, we define the pressure function

(3) P (q, t) = log

∞∑
j=1

pqjs
t
j .

Assume moreover that, for every q ∈ [0,1], there exists a u ∈R such that

(4) 0≤ P (q, u)<∞.

In this case, for an arbitrary q ∈R, let θ(q) = inf{t ∈R :
∑∞

j=1 p
q
js

t
j <∞}. Then,

for q ∈R and t ∈ (θ(q),∞), we have P (q, t)<∞. This is similar to the condition

of finiteness of entropy in the case of endomorphisms of Lebesgue spaces.

A particular case when the pressure is finite is when the infinite probability

vector (p1, p2, . . . ) and the contraction ratios (sj)j≥1 satisfy the following con-

dition: there exists a constant a > 0 such that supj | log pj − a log sj |<∞. Then

there exists a constant K ≥ 1 such that, for j ≥ 1,

(5) K−1saj ≤ pj ≤Ksaj .

Condition (4) is then satisfied if we have (5), since we know that saj ≤Kpj , j ≥ 1,

and since (p1, p2, . . .) is a probability vector; hence, for every q ∈ [0,1] there exists

some t ∈R such that
∑∞

j=1 p
q
js

t
j <∞.

The following lemmas are easy to prove.

LEMMA 1.1

Assuming that condition (4) is satisfied above, it follows that if q ∈ R is fixed,

then the function t �→ P (q, t) is strictly decreasing, convex, and continuous on

(θ(q),∞).

LEMMA 1.2

Assume that condition (4) is satisfied. Then for any q ∈ [0,1], there exists a

unique t= β(q) ∈ (θ(q),∞) such that P (q, β(q)) = 0.

Proof

By Lemma 1.1, for a given q ∈ [0,1], the function P (q, t) is strictly decreasing and

continuous on (θ(q),∞). Since 0< P (q, u)<∞ for some u ∈ (θ(q),∞), in order

to conclude the proof it therefore suffices to show that limt→∞P (q, t) =−∞. For

t > u,

P (q, t) = log

∞∑
j=1

pqjs
t
j = log

∞∑
j=1

pqjs
u
j s

t−u
j ≤ log

∞∑
j=1

pqjs
u
j s

t−u

= P (q, u) + (t− u) log s.

Since s < 1, it follows that limt→∞P (q, t) =−∞, and thus the lemma is obtained.

�
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LEMMA 1.3

The function q �→ β(q) given in Lemma 1.2 is strictly decreasing, convex, and

continuous on [0,1].

Proof

Let p= sup{p1, p2, . . .}. Clearly, p < 1. For any two points q, q+ δ ∈ [0,1], where

δ > 0, we have to show that β(q + δ) < β(q). If not, then let β(q + δ) ≥ β(q).

Then

0 = P
(
q+ δ, β(q+ δ)

)
≤ P

(
q+ δ, β(q)

)

= log

∞∑
j=1

pq+δ
j s

β(q)
j ≤ log

∞∑
j=1

pqjp
δs

β(q)
j ;

hence, 0≤ P (q, β(q)) + δ logp= δ logp < 0, which is a contradiction. Thus β(q+

δ) < β(q). To show that β(q) is convex, let q1, q2 ∈ [0,1] and a1, a2 > 0 with

a1+a2 = 1. If β(·) is not convex, then there exist a1, a2, q1, q2 such that β(a1q1+

a2q2)> a1β(q1) + a2β(q2). Then using Hölder’s inequality, we have that

0 = P
(
a1q1 + a2q2, β(a1q1 + a2q2)

)
<P

(
a1q1 + a2q2, a1β(q1) + a2β(q2)

)

= log

∞∑
j=1

pa1q1+a2q2
j s

a1β(q1)+a2β(q2)
j

≤ log
( ∞∑
j=1

pq1j s
β(q1)
j

)a1
( ∞∑
j=1

pq2j s
β(q2)
j

)a2

= a1P
(
q1, β(q1)

)
+ a2P

(
q2, β(q2)

)
= 0,

a contradiction. So β(a1q1 + a2q2) ≤ a1β(q1) + a2β(q2), that is, β(q) is convex

and hence continuous. �

The function (q, t) �→ P (q, t) is called the topological pressure function corre-

sponding to the given infinite IFS. The function β(q), sometimes denoted by

T (q), is called the temperature function (as in [HJK+]).

REMARK 1.4

If q = 0, then from (3) we have that
∑∞

j=1 s
β(0)
j = 1, that is, β(0) gives the

Hausdorff dimension dimH(J) of the infinite self-similar set J . (It was shown in

[M] that this is the case.) Moreover, P (1,0) = 0, which gives β(1) = 0.

2. The quantization coefficients for self-similar measures in the case of infinite
systems

For arbitrary r > 0, let us define the auxiliary function h : (0,1]→R by h(x) :=

β(x)/(rx), x ∈ (0,1], where β(·) was defined in Section 1, in terms of the pressure
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function P (·) of our infinite system. We know that β(1) = 0 and β(0) = dimH(J),

and so h(1) = 0 and limx→0+ h(x) =∞. Moreover, the function h is continuous

and strictly decreasing on (0,1]. Hence, there exists a unique qr ∈ (0,1) such

that h(qr) = 1, that is, β(qr) = rqr; hence, P (qr, β(qr)) = 0. We assume also

condition (4). Then, from the above definitions and lemmas it follows that for

every r > 0 there exists a unique number κr ∈ (0,∞), κr = β(qr)/(1− qr), and

thus we have the formula

(6) P
( κr

r+ κr
,

rκr

r+ κr

)
= 0.

We now give the main result about quantization coefficients of the self-similar

measure μ in the infinite system case.

THEOREM 2.1

Consider an infinite IFS of contractive similarities S = (S1, S2, . . .) which satis-

fies the strongly separated condition, and let J be its possibly noncompact limit

set. Consider the infinite vector (s1, s2, . . .) consisting of the contraction rates

of S, and consider also an infinite probability vector (p1, p2, . . . ) such that con-

dition (4) above is satisfied. Let us consider μ to be the self-similar probability

measure associated to S and to (p1, p2, . . .). Denote by P (q, t) the corresponding

pressure function, denote by β(q) the zero of the function P (q, ·), and for r > 0,

let κr = β(qr)/(1− qr).

Then, for any r ∈ (0,∞) and for any κ < κr < κ′, the following estimates on

the lower/upper quantization coefficients of order r for the self-similar measure

μ (supported on J) are true:

0< lim inf
n→∞

nVn,r(μ)
κ/r and limsup

n→∞
nVn,r(μ)

κ′/r = 0.

Proof

We first want to show that for κ < κr, the lower quantization coefficient QCκ,r(μ)

is positive; that is, that lim infn→∞ nVn,r(μ)
κ/r > 0, where μ is the self-similar

measure associated to (Sj)j and to the probabilistic vector (pj)j≥1 and where κr

is the unique number satisfying the sum condition

∞∑
j=1

(pjs
r
j)

κr
r+κr = 1.

Let ν̃ be the self-similar probability measure corresponding to the infinite

system (S,γ) where S = {S1, S2, . . .} and γ = (γ1, γ2, . . . ) is the probability vector

with γj = (pjs
r
j)

κr
r+κr , j ≥ 1. This measure ν̃ can be constructed as the image,

through the canonical projection π, of the product measure ν(γ1,γ2,...) on N
∞

associated to the probability vector (γ1, γ2, . . .); so we have ν̃ = π∗(ν(γ1,γ2,...)).

Consider now U to be an open set satisfying the strongly separated condition;

that is, U ∩ J �= ∅, Sj(U)⊂ U , and d(Si(U), Sj(U))> 0, i �= j. Then it is easy to

show that there exists a finite sequence of integers ξ such that Jξ ⊂ U , where we

denote by Jζ := Sζ(J) for an arbitrary finite sequence ζ . Let us take then a finite
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sequence ξ as above, and define the positive constant η0 := 1− 1
2γξ. Then, for

every nonempty set V ⊂ J which is open with respect to the induced topology

on J , it can be proved as in [GL3] that there exists an integer n ∈ N and finite

sequences (σ(k))1≤k≤n in N
fin \{∅} such that the sets Jσ(1) , . . . , Jσ(n) are pairwise

disjoint in V and satisfy the following condition (saying basically that their union

has large ν̃-measure):

(7) ν̃
(
V \

n⋃
k=1

Jσ(k)

)
≤ η0 · ν̃(V ).

Moreover, employing the last inequality, one can then show that there exists

a sequence (σ(i))i in N
fin \ {∅} such that the associated sets Jσ(i) , i ≥ 1, are

pairwise disjoint and satisfy

(8)

∞∑
i=1

ν̃(Jσ(i)) = 1.

We are now ready to prove the lower bound of the quantization coefficients

for μ. Let 0< r <∞ be fixed, and let κr be as in (6), and let an arbitrary κ < κr.

Then, we want to show that lim infn→∞ nVn,r(μ)
κ/r > 0.

By the formula in (8) and from the mutual disjointness of the sets Jσ(i) , i≥ 1,

we have that

1 =

∞∑
i=1

ν̃(Jσ(i)) =

∞∑
i=1

(pσ(i)srσ(i))
κr

r+κr .

However κ
r+κ < κr

r+κr
; hence, there exists an associated positive integerm=m(κ),

such that
m∑
i=1

(pσ(i)srσ(i))
κ

r+κ ≥ 1.

Now from [GL1] it follows that, for every n ∈N, there exists an optimal set

Zn ⊂R
d with Card(Zn)≤ n and

ern,r(μ) =

∫
J

d(x,Zn)
r dμ(x).

Let us define now δn = supx∈J d(x,Zn). Then one has limn→∞ δn = 0. But the sets

Jσ(1) , . . . , Jσ(m) are pairwise disjoint, and moreover from the strongly separated

condition d(Si(J), Sj(J))> 0 for any i �= j; therefore, we obtain the inequality

δ := min
{
d(Jσ(i) , Jσ(j)) : 1≤ i, j ≤m, i �= j

}
> 0,

and from the above, δ = δ(m) is independent of s. Thus, there must exist an

integer n0 ∈N, such that δn < δ
2 , for all n≥ n0.

For n≥ n0 and i ∈ {1,2, . . . ,m}, define the set Zn,i = {a ∈ Zn : d(a,Jσ(i))≤
δn}, and denote ki(n) = Card(Zn,i). By definition, ki(n) ≥ 1. Since the Zn,i’s

(i= 1,2, . . . ,m) are mutually disjoint and contained in Zn, we get moreover that∑m
i=1 ki(n)≤ n; hence, ki(n)≤ n− 1 (i= 1,2, . . . ,m). Also as in [GL3] we obtain
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that

ern,r =

∫
d(x,Zn)

r dμ(x)≥
m∑
i=1

∫
J
σ(i)

d(x,Zn)
r dμ(x)

=

m∑
i=1

∫
J
σ(i)

d(x,Zn,i)
r dμ(x)

=
m∑
i=1

pσ(i)srσ(i)

∫
J

d
(
x,S−1

σ(i)(Zn,i)
)r

dμ(x)≥
m∑
i=1

pσ(i)srσ(i)e
r
ki(n),r

.

Define now χ= χ(κ) = min{neκn,r : n≤ n0}; then χ > 0. We show by induc-

tion that χ≤ neκn,r for n≥ n0. In the induction step, let us assume that χ≤ jeκj,r
for j ≤ n− 1 and n− 1 ≥ n0. Since ki(n) ≤ n− 1, we can apply the induction

step in the last displayed inequality, thus:

ern,r ≥
m∑
i=1

pσ(i)srσ(i)χ
r
κ ki(n)

− r
κ .

Now, by the generalized Hölder’s inequality, we have
m∑
i=1

pσ(i)srσ(i)ki(n)
− r

κ ≥
( m∑

i=1

(pσ(i)srσ(i))
κ

κ+r

)1+ r
κ ·

( m∑
i=1

ki(n)
)− r

κ

.

Recall however that
∑m

i=1(pσ(i)srσ(i))
κ

r+κ ≥ 1 and
∑m

i=1 ki(n) ≤ n, hence ern,r ≥
χ

r
κn− r

κ , and neκn,r ≥ χ. Then by induction, for all n≥ n0, ne
κ
n,r ≥ χ > 0. Hence

we obtain:

(9) lim inf
n→∞

neκn,r ≥ χ(κ)> 0,

and therefore for arbitrary κ < κr, the κ-lower quantization coefficient of order

r for μ is positive.

We prove now the upper bound of the upper quantization coefficientsQCr,κ′(μ)

in the infinite self-similar case, where κ′ > κr is arbitrary.

Let us first fix a number κ > κr, and denote by η := κ/(r+ κ). Then by the

definition of κr, we have
∑

i≥1(pis
r
i )

κr
r+κr = 1. So since η > κr/(r+ κr), there

exists some number α= α(η) such that

(10)
∑
i≥1

(pis
r
i )

η <α< 1.

Notice now that, since J is compact, we can find a finite number of contrac-

tive similarities T1, . . . , TK on X such that Si(X)⊂ T1(X) ∪ · · · ∪ TK(X), i≥ 1.

Without loss of generality we can assume that all sets Sj(X) are contained in

T1(X) for all j ≥ j0, for some large fixed integer j0. Since α = α(η) < 1, there

exists some integer N ≥ j0 such that(∑
j>N

pj

)η

<
1− α

2
.

As α depends on η, the above integer N = N(η) also depends on η. Let us

define now the finite system of contractive similarities S̃i, 1≤ i≤N + 1, where
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S̃i = Si, 1≤ i≤N , and S̃N+1 = T1, under the above assumption about T1. And

define p̃i = pi, 1≤ i≤N , p̃N+1 =
∑

i>N pi. We shall denote by s̃i the contraction

ratio of S̃i, for 1≤ i≤N + 1. Recall that, by our assumption, we have Si(X)⊂
S̃N+1(X),∀i > N . On the other hand, from the self-similarity condition of the

measure μ, we have the decomposition

(11) μ=
∑
i≥1

piμ ◦ S−1
i =

N∑
i=1

piμ ◦ S−1
i +

∑
j>N

pjμ ◦ S−1
j .

For η and N as above, let us introduce also the following numbers from (0,1):

γi := (p̃is̃
r
i )

η, 1≤ i≤N + 1.

For a finite set F of integers, denote by F∗ the set of all finite sequences of any

length, with elements in F . For a finite sequence ω = (ω1, . . . , ωp) ∈ {1, . . . ,N +

1}∗, p ≥ 1, denote by γω := γω1 · · ·γωp . Also we denote by ω− = (ω1, . . . , ωp−1)

the truncation of ω obtained by cutting the last element.

We now want to decompose μ successively, using (11) up to certain maximal

finite sequences ω ∈ {1, . . . ,N + 1}∗, until we achieve that all the correspond-

ing γω ’s are “almost equal” to 1
n . Let us define then the following set of finite

sequences determined by N and n:

Fn :=
{
ω ∈ {1, . . . ,N + 1}∗, γω ≤ 1

n
· ρ(N)−1, γω− >

1

n
ρ(N)−1

}
,

where ρ(N) := inf{γ1, . . . , γN+1}. It follows that if ω ∈ Fn, then γω > 1
n . Also

since we assumed that p̃ηN+1 < (1− α)/2 and
∑N

i=1 γi < α, and recalling the

definition of the γi’s, we obtain that

(12)

N+1∑
i=1

γi < 1.

Then, recalling that γω > 1
n , ω ∈ Fn, and since we have 1 >

∑
ω∈Fn

γω ≥
Card(Fn) · 1

n , we obtain that

(13) Card(Fn)≤ n.

In the identity (11) for μ, we can then continue decomposing successively until

reaching the value 1
n for γω , that is, we can split μ according to all finite sequences

ω ∈ Fn. In order to see this, let us deduce from (11) the following decomposi-

tion:

μ=
N∑
i=1

pi ·
( N∑
j=1

pjμ ◦ S−1
j

)
◦ S−1

i +
N∑
i=1

pi ·
(∑
j>N

pjμ ◦ S−1
j

)
◦ S−1

i

+
∑
j>N

pj ·
( N∑
k=1

pkμ ◦ S−1
k

)
◦ S−1

j +
∑
j>N

pj ·
(∑
k>N

pkμ ◦ S−1
k

)
◦ S−1

j .
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Notice that if a set B has a point in SiS̃j(X) for some i, j ∈ {1, . . . ,N}, then we

have ∫
d(x,B)rd(μ ◦ S−1

j ◦ S−1
i )≤ sri s

r
jC,

for a constant C > 0. And if B has a point in SiSj(X) for some 1≤ i≤N and

j >N , then ∫
d(x,B)rd(μ ◦ S−1

j ◦ S−1
i )≤ sri s̃

r
N+1C,

since Sj(X) ⊂ S̃N+1(X). If we take a set B with at least (N + 1)2 points such

that B has a point in each of the sets S̃iS̃j , i, j ∈ {1, . . . ,N + 1}, then, since
Si(X) ⊂ S̃N+1(X), i > N , we obtain the following estimate for the nth quanti-

zation error of order r of μ:

Vn,r(μ)≤C ·
( N∑
i,j=1

pipjs
r
i s

r
j +

N∑
i=1

pis
r
i

(∑
j>N

pj

)
s̃rN+1

+

N∑
j=1

pjs
r
j

(∑
i>N

pi

)
s̃rN+1 +

∑
j,k>N

pjpks̃
2r
N+1

)
,

where C is a positive constant independent of N . Similarly we can do this argu-

ment for the set Fn instead of {1, . . . ,N + 1}, and we can take a set B of

cardinality n which has points in each of the sets S̃ω(X) for ω ∈ Fn; this is

possible since, as we saw in (13), Card(Fn) ≤ n. It similarly follows as above

that

Vn,r(μ)≤C ·
∑
ω∈Fn

p̃ω s̃
r
ω

=C ·
( 1

n

) 1−η
η

ρ(N)
1−η
η ·

∑
ω∈Fn

γω ≤C ·
(ρ(N)

n

) 1−η
η

.

(14)

Recalling that N depends on η (and hence on κ), we obtain the following estimate

for the κ-dimensional upper quantization coefficient of order r of μ:

limsup
n→∞

nVn,r(μ)
κ/r ≤C(κ)<∞,

where C(κ) is a positive constant depending on κ. In fact if we now take κ′

arbitrarily larger than κ and since limn→∞ Vn,r(μ) = 0, then we see that

limsup
n→∞

nVn,r(μ)
κ′/r = 0. �

From the above inequalities (9) and (14) we obtain also computable estimates for

the lower and the upper quantization coefficients of order r for the probability

measure μ. We do not know if the κr-dimensional upper quantization coefficient

for μ of order r is always finite in the case of infinite systems. In particular, from

the estimates above for lower/upper quantization coefficients for μ and by taking
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κ,κ′ → κr, we obtain that the quantization dimension of order r of μ exists, and

it is equal to κr.

COROLLARY 2.2

In the setting of Theorem 2.1, it follows that the quantization dimension Dr(μ)

exists and Dr(μ) = κr.

REMARK 2.3

We notice that, in order to obtain the proof of Theorem 2.1 and of Corollary 2.2,

it is not possible to use finite truncations with M elements SM of the system and

associated self-similar measures μM , and then to consider logVnk,r(μM ) when

nk → ∞, followed by the use of the estimates for the quantization dimension

of μM from the finite case. This problem is due to the fact that the speed of

convergence in nk, in the formula for the quantization dimension of μM , actually

depends on each M (when M →∞).

We give now some infinite systems where one can say more about the quantization

process.

Examples. Consider a sequence of numbers (si)i≥1 in the interval (0,1) such

that si = γi, i ≥ 1, for some γ ∈ (0,1/2). Let us also take pi = sai = γai, i ≥ 1,

and p = (p1, p2, . . .); in order to make p a probabilistic vector, we will choose

a= log 2/| logγ|.
We then take the strongly separated infinite IFS S , formed by the sequence

of similarities S = (Si)i≥1 of the unit disk Δ(0,1) having contraction rates si,

respectively, and such that the boundary at infinity S(∞) is equal to the unit

circle S1. Consider also the self-similar probability measure μ, associated to S
and p. Then, the self-similar measure μ is supported on the closure J , which in

this case is given by

J = J ∪
⋃

ω∈Nfin

Sω

(
S(∞)

)
= J ∪

⋃
ω∈Nfin

Sω(S
1).

We notice that in this case HD(J)< 1, but the lower box dimension of J is larger

than or equal to 1, since dimB(J)≥ dimB(S(∞)) = 1. Now, one wants to estimate

the quantization coefficients for the measure μ. According to Theorem 2.1, the

quantization dimension of μ is equal to κr, where κr satisfies∑
i≥1

(pis
r
i )

κr
r+κr = 1.

In our case, the above sum is just the sum for a geometric series; hence, we obtain

with the above expression for si, pi, and the above exponent a that∑
i≥1

(γ(a+r)t)i = 1,
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where t= κr/(r+ κr). Hence t= log 2/((a+ r)| logγ|) = κr/(r+ κr). Therefore,

we obtain the quantization dimension

Dr(μ) = κr =
r log 2

(a+ r)| logγ| − log 2
=

log 2

| logγ| .

It is interesting to note that, in this particular case, the quantization dimension

Dr(μ) does not depend on r. In general, however, if the pj ’s are not of the form

above, then the quantization dimension Dr(μ) should depend on r. We have also

from Theorem 2.1 that the lower/upper quantization coefficients for μ satisfy:

0< lim inf
n→∞

nVn,r(μ)
κ
r and

limsup
n→∞

nVn,r(μ)
κ′
r = 0, ∀κ < log 2/| logγ|< κ′.

We notice that this example can be modified so that the images Si(Δ) are

arranged differently inside Δ, and that the boundary at infinity S(∞) is more

complicated, for instance, we can imagine an example where it is a countable

union of concentric circles Cn, n≥ 1, centered at 0, with radii cn going to 0. The

corresponding self-similar measure μ will then be supported on the closure of the

limit set J , namely, on the compact set

J = J ∪
⋃

ω∈Nfin

Sω

(⋃
n

Cn ∪ {0}
)
.

Still, if we keep the same contraction rates si and the probability vector p =

(p1, p2, . . .) as before, then we will obtain the same quantization dimension κr

and quantization coefficient estimates as above.

We want now to approximate the self-similar measure μ with discrete mea-

sures of finite support. Denote by M the set of probability measures on the

compact set X ⊂R
d. Then,

dH(μ, ν) := sup
{∣∣∣

∫
X

g dμ−
∫
X

g dν
∣∣∣ : Lipg ≤ 1

}
, (μ, ν) ∈M×M,

defines a metric on M. Then (M, dH) is a compact metric space (see [B]). It

is known that the dH -topology and the weak topology coincide on the space

of probabilities with compact support (see [Mat]). In our case all measures are

compactly supported.

First, since X is compact we have
∫
‖x‖r dμ(x) < ∞, for any probability

measure μ on X . For r ∈ (0,∞) and for two arbitrary probabilities μ1, μ2, the

Lr-Kantorovich–Wasserstein metric is defined by the following formula (see, e.g.,

[GL1]):

ρr(μ1, μ2) = inf
ν

(∫
‖x− y‖r dν(x, y)

) 1
r

,

where the infimum is taken over all Borel probabilities ν on X ×X with fixed

marginal measures μ1 and μ2 such that (π1)∗(ν) = μ1 and (π2)∗(ν) = μ2 for the

canonical projections π1, π2 on the first and second coordinates, respectively.
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Note that the weak topology, the topology induced by dH , and the topology

induced by the Lr-metric ρr all coincide on the space M (see for example [Ru]).

Let us notice also that, for r = 1, the ρ1-metric is in fact equal to the dH -metric

in the compact case, as shown by Kantorovich (see [GL1]).

The next lemma relates the quantization errors for a probability measure

P to the Lr-Kantorovich–Wasserstein distances between P and discrete mea-

sures.

LEMMA 2.4 ([GL1, LEMMA 3.4])

Let Pn denote the set of all discrete probability measures Q on X with

| supp(Q)| ≤ n. Then for any probability P , we have that

Vn,r(P ) = inf
Q∈Pn

ρrr(P,Q).

Now by using Lemma 2.4 and Theorem 2.1, we obtain the following result about

the asymptotic behavior in n of the approximations in the Lr-metric of μ, with

discrete measures supported on n points, when n increases to ∞.

COROLLARY 2.5

In the setting of Theorem 2.1, let us consider the associated self-similar probability

measure μ. Then, for every r ∈ (0,∞), there exists a unique number κr ∈ (0,∞)

such that for arbitrary κ,κ′ with κ < κr < κ′, the Lr-approximations of μ with

discrete measures on n points behave asymptotically as:

0< lim inf
n→∞

n
1
κ · inf

Q∈Pn

ρr(μ,Q), and limsup
n→∞

n
1
κ′ · inf

Q∈Pn

ρr(μ,Q) = 0.
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[MU] E. Mihailescu and M. Urbański, Hausdorff dimension of the limit set of

conformal iterated function systems with overlaps, Proc. Amer. Math. Soc.

139 (2011), 2767–2775. MR 2801617.

DOI 10.1090/S0002-9939-2011-10704-4.

[MU1] , “Hausdorff dimension of the limit set of countable conformal

iterated function systems with overlaps” in Fractal Geometry and

Dynamical Systems in Pure and Applied Mathematics, I: Fractals in Pure

Mathematics, Contemp. Math. 600, Amer. Math. Soc., Providence, 2013,

273–289. MR 3203406. DOI 10.1090/conm/600/11950.

[MU2] , Random countable iterated function systems with overlaps and

applications, preprint, arXiv:1405.2942v2 [math.DS].

[M] M. Moran, Hausdorff measure of infinitely generated self-similar sets,

Monatsh. Math. 122 (1996), 387–399. MR 1418125.

DOI 10.1007/BF01326037.

[R1] M. K. Roychowdhury, Lower quantization coefficient and the F -conformal

measure, Colloq. Math. 122 (2011), 255–263. MR 2775174.

DOI 10.4064/cm122-2-11.

[R2] , Quantization dimension for infinite self-similar probabilities,

J. Math. Anal. Appl. 383 (2011), 499–505. MR 2812400.

DOI 10.1016/j.jmaa.2011.05.044.
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