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Abstract We classify complete biharmonic surfaces with parallel mean curvature vec-

tor field and nonnegative Gaussian curvature in complex space forms.

1. Introduction

The biharmonic maps were suggested in 1964 by J. Eells and J. H. Sampson

as a generalization of harmonic maps (see [9]). Whereas a harmonic map ϕ :

(M,g) → (N,h) between two Riemannian manifolds is a critical point of the

energy functional

E(ϕ) =
1

2

∫
M

|dϕ|2vg,

a biharmonic map is a critical point of the bienergy functional

E2(ϕ) =
1

2

∫
M

∣∣τ(ϕ)∣∣2vg,
where τ(ϕ) = trace∇dϕ is the tension field that vanishes for harmonic maps. The

Euler–Lagrange equation corresponding to the bienergy functional was obtained

by G. Y. Jiang in 1986 (see [16]):

τ2(ϕ) = Δτ(ϕ)− trace R̄
(
dϕ, τ(ϕ)

)
dϕ

= 0,

where τ2(ϕ) is the bitension field of ϕ, Δ = trace(∇ϕ)2 = trace(∇ϕ∇ϕ − ∇ϕ
∇)

is the rough Laplacian defined on sections of ϕ−1(TN), and R̄ is the curvature

tensor of N , given by R̄(X,Y )Z = [∇̄X , ∇̄Y ]Z − ∇̄[X,Y ]Z. Since any harmonic

map is biharmonic, we are interested in nonharmonic biharmonic maps, which

are called proper-biharmonic.
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A biharmonic submanifold in a Riemannian manifold is a submanifold for

which the inclusion map is biharmonic. In Euclidean space the biharmonic sub-

manifolds are the same as those defined by Chen [6], characterized by ΔH = 0,

where H is the mean curvature vector field and Δ is the rough Laplacian.

Many classification results for proper-biharmonic submanifolds in space

forms, that is, spaces with constant sectional curvature, were obtained in the

last decade (see, e.g., [2]–[4]) and the next step was to look for such submanifolds

in spaces with nonconstant sectional curvature. Some very important examples

of such ambient spaces are the complex space forms, that is, simply connected

Kähler manifolds with constant holomorphic sectional curvature. Recent papers

such as [12], [13], [21], [24], and [27] treated the subject of proper-biharmonic sub-

manifolds in complex space forms, and several classification results and examples

were found.

On the other hand, submanifolds with parallel mean curvature vector (pmc

submanifolds) or with constant mean curvature (cmc submanifolds) in Riemann-

ian manifolds proved to be very good candidates for providing nice examples of

proper-biharmonic submanifolds (see, e.g., [2]–[4], [14], [22], [27]).

In this article, we first consider pmc surfaces in complex space forms and

prove a Simons-type formula for the Laplacian of the squared norm of the holo-

morphic differential Q(2,0), defined on such a surface, introduced in [11]. Then

we use this formula to show that if Σ2 is a complete pmc surface with non-

negative Gaussian curvature, then the surface is flat or Q(2,0) vanishes on Σ2.

Next, we investigate the biharmonicity of these surfaces, and using a reduction

of the codimension theorem of J. H. Eschenburg and R. Tribuzy in [10] and the

above-mentioned result, we obtain the following classification theorem.

THEOREM 4.10

Let Σ2 be a complete proper-biharmonic pmc surface with nonnegative Gaussian

curvature in CPn(ρ). Then Σ2 is totally real and one of the following holds.

(a) Σ2 is pseudo-umbilical and its mean curvature is equal to
√
ρ/2. More-

over,

Σ2 = π(Σ̃2)⊂CPn(ρ), n≥ 3,

where π : S2n+1(ρ/4)→CPn(ρ) is the Hopf fibration and the horizontal lift Σ̃2 of

Σ2 is a complete minimal surface in a small hypersphere S
2n(ρ/2)⊂ S

2n+1(ρ/4).

(b) Σ2 lies in CP 2(ρ) as a complete Lagrangian proper-biharmonic pmc sur-

face. Moreover, if ρ= 4, then

Σ2 = π
(
S
1
(√9±

√
41

20

)
× S

1
(√11∓

√
41

40

)
× S

1
(√11∓

√
41

40

))
⊂CP 2(4),

where π : S5(1)→CP 2(4) is the Hopf fibration.

(c) Σ2 lies in CP 3(ρ) and

Σ2 = γ1 × γ2 ⊂CP 3(ρ),
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where γ1 : R→ CP 2(ρ) ⊂ CP 3(ρ) is a holomorphic helix of order 4 with curva-

tures

κ1 =

√
7ρ

6
, κ2 =

1

2

√
5ρ

42
, κ3 =

3

2

√
ρ

42
,

and complex torsions

τ12 =−τ34 =
11

√
14

42
, τ23 =−τ14 =

√
70

42
, τ13 = τ24 = 0,

and γ2 :R→CP 3(ρ) is a holomorphic circle with curvature κ=
√
ρ/2 and com-

plex torsion τ12 = 0. Moreover, the curves γ1 and γ2 always exist and are unique

up to holomorphic isometries.

CONVENTIONS

We work in the C∞-category, which means that manifolds, metrics, connections,

and maps are smooth. The Lie algebra of vector fields on a surface Σ2 is denoted

by C(TΣ2). The surfaces are always assumed to be connected and orientable.

2. Preliminaries

Let Nn(ρ) be a complex space form with complex dimension n, complex structure

(J, 〈·, ·〉), and constant holomorphic sectional curvature ρ, that is, Nn(ρ) is either

CPn(ρ), Cn, or CHn(ρ), according to whether ρ > 0, ρ= 0, or ρ < 0, respectively.

Then the curvature tensor of (N(ρ), J, 〈·, ·〉) is given by

R̄(X,Y )Z =
ρ

4

{
〈Y,Z〉X − 〈X,Z〉Y + 〈JY,Z〉JX − 〈JX,Z〉JY

(2.1)
+ 2〈X,JY 〉JZ

}
.

Let Σ2 be a surface immersed in Nn(ρ). The second fundamental form σ of

Σ2 is defined by the equation of Gauss

∇̄XY =∇XY + σ(X,Y ),

while the shape operator A and the normal connection ∇⊥ are given by the

equation of Weingarten

∇̄XV =−AV X +∇⊥
XV,

for any vector fields X and Y tangent to the surface and any vector field V

normal to Σ2, where ∇̄ and ∇ are the Levi-Civita connections of Nn(ρ) and Σ2,

respectively.

DEFINITION 2.1

If the mean curvature vector H of the surface Σ2 is parallel in the normal bundle,

that is, ∇⊥H = 0, then Σ2 is called a pmc surface.

We end this section by recalling some notions and results from the theory of

Frenet curves in complex space forms, which we shall use later. Let γ : I ⊂ R→
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Nn(ρ) be a curve parameterized by arc length. Then γ is called a Frenet curve

of osculating order r, 1≤ r ≤ 2n, if there exist r orthonormal vector fields {X1 =

γ′, . . . ,Xr} along γ such that

∇̄X1X1 = κ1X2, ∇̄X1Xi =−κi−1Xi−1 + κiXi+1, . . . ,

∇̄X1Xr = −κr−1Xr−1,

for all i ∈ {2, . . . , r−1}, where {κ1, κ2, . . . , κr−1} are positive functions on I called

the curvatures of γ. These equations are called the Frenet equations of γ.

A Frenet curve of osculating order r is called a helix of order r if κi = const>

0 for 1≤ i≤ r− 1. A helix of order 2 is called a circle, and a helix of order 3 is

simply called a helix.

S. Maeda and Y. Ohnita [20] defined the complex torsions τij of the curve γ

by τij = 〈Xi, JXj〉, where 1≤ i < j ≤ r. A helix of order r is called a holomorphic

helix of order r if all its complex torsions are constant. We note that a circle is

always a holomorphic circle.

In [19] the following existence results are proved.

THEOREM 2.2 ([19])

For given positive constants κ1, κ2, and κ3, there exist four equivalence classes

of holomorphic helices of order 4 in CP 2(ρ) with curvatures κ1, κ2, and κ3 with

respect to holomorphic isometries of CP 2(ρ). The four classes are defined by

certain relations on the complex torsions and they are as follows. When κ1 �= κ3,

I1 : τ12 = τ34 = μ, τ23 = τ14 = κ2μ/(κ1 + κ3), τ13 = τ24 = 0,

I2 : τ12 = τ34 =−μ, τ23 = τ14 =−κ2μ/(κ1 + κ3), τ13 = τ24 = 0,

I3 : τ12 =−τ34 = ν, τ23 =−τ14 = κ2ν/(κ1 − κ3), τ13 = τ24 = 0,

I4 : τ12 =−τ34 =−ν, τ23 =−τ14 =−κ2ν/(κ1 − κ3), τ13 = τ24 = 0,

where

μ=
κ1 + κ3√

κ2
2 + (κ1 + κ3)2

and ν =
κ1 − κ3√

κ2
2 + (κ1 − κ3)2

,

and when κ1 = κ3 the classes I3 and I4 are substituted by

I ′3 : τ12 = τ34 = τ13 = τ24 = 0, τ23 =−τ14 = 1,

I ′4 : τ12 = τ34 = τ13 = τ24 = 0, τ23 =−τ14 =−1.

THEOREM 2.3 ([19])

For any positive number κ and for any number τ such that |τ |< 1, there exists a

holomorphic circle with curvature κ and complex torsion τ in any complex space

form.
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3. A Simons-type formula for pmc surfaces in complex space forms

Let (Nn(ρ), J, 〈·, ·〉) be a complex space form, with constant holomorphic sec-

tional curvature ρ and complex dimension n, and let Σ2 be a pmc surface in

Nn(ρ).

In [11] it is proved that the (2,0)-part Q(2,0) of the quadratic form Q defined

on Σ2 by

(3.1) Q(X,Y ) = 8|H|2〈AHX,Y 〉+ 3ρ〈X,T 〉〈Y,T 〉,

where T is the tangent part (JH)� of JH , is holomorphic.

Using this holomorphic differential we shall prove the following result.

THEOREM 3.1

Let Σ2 be a complete nonminimal pmc surface with nonnegative Gaussian curva-

ture K isometrically immersed in a complex space form Nn(ρ), ρ �= 0. Then one

of the following holds:

(a) the surface is flat; or

(b) there exists a point p ∈Σ2 such that K(p)> 0 and Q(2,0) vanishes on Σ2.

Proof

First, we recall a Simons-type equation obtained by S.-Y. Cheng and S.-T. Yau

[8, (2.8)], which generalizes a result of J. Simons [26]. Let M be an m-dimensional

Riemannian manifold, and consider a symmetric operator S on M that satisfies

the Codazzi equation (∇XS)Y = (∇Y S)X , where∇ is the Levi-Civita connection

on the manifold. Then, we have that

(3.2)
1

2
Δ|S|2 = |∇S|2 +

m∑
i=1

λi(traceS)ii +
1

2

m∑
i,j=1

Rijij(λi − λj)
2,

where λi, 1≤ i≤m, are the eigenvalues of S, and the Rijkl’s are the components

of the Riemannian curvature of M .

Next, let us consider the following operator S, defined on our surface Σ2 by

(3.3) S = 8|H|2AH + 3ρ〈T, ·〉T −
(3ρ
2
|T |2 + 8|H|4

)
I.

We shall prove that |S|2 is a bounded subharmonic function on the surface.

First, it is easy to see that

(3.4) 〈SX,Y 〉=Q(X,Y )− traceQ

2
〈X,Y 〉,

which implies that S is symmetric and traceless. It is also easy to see that Q(2,0)

vanishes on Σ2 if and only if S = 0 on the surface.

Using (3.4), since Q(2,0) is holomorphic, just as in [5, Proposition 3.3] one

can prove that S satisfies the Codazzi equation (∇XS)Y = (∇Y S)X , where ∇
is the Levi-Civita connection on the surface. Then, from (3.2) and the fact that
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traceS = 0, we easily get that

(3.5)
1

2
Δ|S|2 = 2K|S|2 + |∇S|2,

where K is the Gaussian curvature of the surface.

Now, let us consider the local orthonormal frame field {E3 = H/|H|,E4,

. . . ,E2n} in the normal bundle, and denote Aα =AEα . It follows that traceA3 =

2|H| and traceAα = 0, for all α> 3.

From the definition (3.3) of S, we have, after a straightforward computation,

that

detA3 =
1

|H|2 detAH = |H|2 − 1

128|H|6 |S|
2 − 9ρ2

256|H|6 |T |
4 +

3ρ

64|H|6 〈ST,T 〉,

and then, by using the equation of Gauss for Σ2 in N ,

R(X,Y )Z =
ρ

4

{
〈Y,Z〉X − 〈X,Z〉Y + 〈JY,Z〉JX − 〈JX,Z〉JY

(3.6)

+ 2〈X,JY 〉JZ
}
+

2n∑
α=3

{
〈AαY,Z〉AαX − 〈AαX,Z〉AαY

}
,

the Gaussian curvature can be written as

K =
ρ

4
(1 + 3cos2 θ) + |H|2 − 1

128|H|6 |S|
2 − 9ρ2

256|H|6 |T |
4

(3.7)

+
3ρ

64|H|6 〈ST,T 〉+
∑
α>3

detAα,

where θ = 〈JE1,E2〉 is the Kähler angle function of Σ2, {E1,E2} being a local

orthonormal positively oriented frame field in the tangent bundle.

Since traceAα = 0, it follows that detAα ≤ 0, for all α > 3. Therefore, as

K ≥ 0, we get the following global formula:

− 1

128|H|2 |S|
2 +

3ρ

64|H|6 〈ST,T 〉 −
9ρ2

256|H|6 |T |
4 + |H|2 + ρ

4
(1 + 3cos2 θ)≥ 0.

From |〈ST,T 〉| ≤ (1/
√
2)|T ||S|, since |T | ≤ |JH|= |H|, we have that ρ〈ST,T 〉 ≤

(|ρ|/
√
2)|H|2|S|, which implies that

− 1

128|H|6 |S|
2 +

3|ρ|
64

√
2|H|4

|S|+ |H|2 + ρ

4
(1 + 3cos2 θ)≥ 0.

In the following we shall prove that |S| is bounded. We have two cases: ρ < 0

or ρ > 0. If ρ < 0, then we have that

− 1

128|H|6 |S|
2 +

3ρ

64
√
2|H|4

|S|+ |H|2 ≥ 0

and then |S| ≤ (
√

9ρ2 + 256|H|4 − 3ρ)|H|2/
√
2. When ρ > 0, we get that

− 1

128|H|6 |S|
2 +

3ρ

64
√
2|H|4

|S|+ |H|2 + ρ≥ 0,

which is equivalent to |S| ≤ (
√

9ρ2 + 256ρ|H|2 + 256|H|4 + 3ρ)|H|2/
√
2.
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Since the surface is complete and has nonnegative Gaussian curvature, we

see, using a result of A. Huber [15], that Σ2 is a parabolic space. From the above

calculation and (3.5), we get that |S|2 is a bounded subharmonic function, which

implies that |S| is a constant. Then, from (3.5), we get that K = 0 on Σ2 or there

exists a point p ∈ Σ2 such that K(p)> 0 and then S = 0 on the surface, which,

as we have seen, is equivalent to Q(2,0) = 0. �

REMARK 3.2

For a surface Σ2 as in Theorem 3.1 we have |S|= const and ∇S = 0.

4. Biharmonic pmc surfaces in CPn(ρ)

To prove our main result we shall need the following theorem.

THEOREM 4.1 ([3])

A submanifold Σm in a Riemannian manifold N , with second fundamental form

σ, mean curvature vector field H , and shape operator A, is biharmonic if and

only if {
−Δ⊥H + traceσ(·,AH ·) + trace(R̄(·,H)·)⊥ = 0,
m
2 grad |H|2 + 2traceA∇⊥

· H(·) + 2 trace(R̄(·,H)·)� = 0,

where Δ⊥ is the Laplacian in the normal bundle and R̄ is the curvature tensor

of N .

Using the formula (2.1) of the curvature tensor of a complex space form N(ρ),

we get the following result.

COROLLARY 4.2

Let Σ2 be a pmc surface in a complex space form (N(ρ), J, 〈·, ·〉). Then Σ2 is

biharmonic if and only if

(4.1) traceσ(·,AH ·) = ρ

4

{
2H − 3(JT )⊥

}
and (JT )� = 0,

where T is the tangent part of JH and (JT )⊥ and (JT )� are the normal and

the tangent part of JT , respectively.

REMARK 4.3

It is easy to see, from the first equation of (4.1), that for a proper-biharmonic

pmc surface

0< |AH |2 = ρ

4

{
2|H|2 + 3|T |2

}
,

which implies that ρ > 0, and therefore, such surfaces exist only in CPn(ρ).

PROPOSITION 4.4

If Σ2 is a proper-biharmonic pmc surface in CPn(ρ), then T has constant length.
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Proof

The map p ∈Σ2 → (AH −μI)(p), where μ is a constant, is analytic, and therefore,

either Σ2 is a pseudo-umbilical surface (at every point), or H is an umbilical

direction on a closed set without interior points (see [1], [11]). We shall denote

by W the set of points where H is not an umbilical direction. Since in the second

case this set is open and dense in Σ2, when the surface is not pseudo-umbilical

we shall work on W and then extend our results throughout Σ2 by continuity. If

Σ2 is pseudo-umbilical, then JH is normal to the surface, that is, T = 0 on the

surface (see [25]).

Let us assume now that Σ2 is not pseudo-umbilical, and let N be the normal

part of JH . Then, for any vector field X tangent to the surface, we have that

∇̄XJH = −J∇̄XH =−JAHX

=∇XT + σ(X,T )−ANX +∇⊥
XN

and, therefore,

(4.2) 〈∇XT,T 〉= 〈ANX,T 〉+ 〈AHX,JT 〉= 〈ANX,T 〉,

since, from the second equation of (4.1), we know that JT is normal.

It is easy to see that

〈N,H〉= 0 and 〈N,JT 〉= 0

and, again by using (4.1), that

〈N,JX〉= 0, ∀X ∈C(TΣ2).

Then, from the first equation of (4.1), we get that

(4.3) trace(AHAN ) = 0.

Moreover, using the Ricci equation

(4.4)
〈
R⊥(X,Y )H,V

〉
=
〈
[AH ,AV ]X,Y

〉
+
〈
R̄(X,Y )H,V

〉
, ∀V ∈C(NΣ2),

we obtain that

(4.5) [AH ,AN ]T = 0,

since R⊥(X,Y )H = 0 and 〈R̄(X,T )H,N〉= 0, for tangent vector fields X and Y .

Next, consider a point p ∈W and an orthonormal basis {e1, e2} in TpΣ
2 such

that AHei = λiei, i ∈ {1,2}. Obviously, we have that λ1 �= λ2 and we can write

AH and AN with respect to {e1, e2} as

AH =

(
λ1 0

0 λ2

)
and AN =

(
a b

b −a

)
,

since N ⊥ H , that is, traceAN = 0. From (4.3) we get a = 0 and then (4.5)

becomes

(λ2 − λ1)b
(
〈T, e2〉e1 − 〈T, e1〉e2

)
= 0.
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Therefore, at p, we have that either T = 0 or b= 0. We can see that in both cases

〈ANX,T 〉= 0, which implies that (4.2) reduces to

X
(
|T |2

)
= 2〈∇XT,T 〉= 0

for any tangent vector X . It follows that X(|T |2) = 0 for any tangent vector field

X on Σ2, which means that |T | is constant on the surface. �

REMARK 4.5

If |T | = const �= 0, then we have that ∇XT = ANX = 0 for any tangent vector

field X . Indeed, if T �= 0 everywhere, then since JT is a normal vector field, it

follows that Σ2 is a totally real surface. Then we get that

∇̄XJH =−J∇̄XH =−JAHX ∈C(NΣ2),

which means that ∇XT = ANX . On the other hand, we have that 〈R̄(X,Y )H,

N〉= 0 for any tangent vector fields X and Y , and then, from the Ricci equation

(4.4), one sees that [AH ,AN ] = 0. Using this equation and (4.3) in the same way

as in the proof of Proposition 4.4 and since T �= 0 implies that H is not umbilical

on an open dense set, we obtain that AN = 0 on this set and, therefore, on the

whole surface.

PROPOSITION 4.6

If Σ2 is a complete proper-biharmonic pmc surface in CPn(ρ) with nonnegative

Gaussian curvature K and T = 0, then n ≥ 3 and Σ2 is pseudo-umbilical and

totally real. Moreover, the mean curvature of Σ2 is |H|=√
ρ/2.

Proof

From Corollary 4.2 we see that the pmc surface Σ2 with T = 0 is proper-

biharmonic if and only if

(4.6) traceσ(·,AH ·) = ρ

2
H.

Now, from Theorem 3.1, we know that either the Gaussian curvature K van-

ishes identically on the surface, or there exists a point p ∈Σ2 such that K(p)> 0

and Q(2,0) = 0 on Σ2.

In the second case, since T = 0 and Q(2,0) = 0, it is easy to see that Σ2 is

pseudo-umbilical and then totally real (see [25]). From (4.6), we get that |AH |2 =
(ρ/2)|H|2, but since Σ2 is pseudo-umbilical, we also have that |AH |2 = 2|H|4,
which means that |H|=√

ρ/2.

If the surface is flat, then we shall prove first that it is also totally real. Since

JH is a normal vector field to Σ2, we have that

∇̄XJH = J∇̄XH =−JAHX

= −AJHX +∇⊥
XJH.

Let us now consider an orthonormal basis {e1, e2} in TpΣ
2, where p ∈ Σ2,

such that AHei = λiei, i ∈ {1,2}. It follows that JAHei = λiJei, and for i �= j,
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we have that

〈AJHei, ej〉= 〈JAHei, ej〉= λi〈Jei, ej〉.

Thus, we obtained that λ1〈Je1, e2〉= λ2〈Je2, e1〉, which means that

0 = (λ1 + λ2)〈Je1, e2〉= 2|H|2〈Je1, e2〉.

Therefore, we have that 〈Je1, e2〉= 0; that is, Σ2 is totally real.

In the following, we will prove that Σ2 is also pseudo-umbilical. Assume that

it is not so, and we will work on the set W defined in the proof of Proposi-

tion 4.4. Let p be a point in W , consider a basis {e1, e2} in TpΣ
2 such that

AHei = λiei, and extend the ei’s to vector fields Ei in a neighborhood of p.

First, using the expression (2.1) of the curvature tensor of CPn(ρ), we obtain that

〈R̄(E2,E1)H,JE1〉= 0 and then, from the Ricci equation (4.4), 〈[AH ,AJE1 ]E1,

E2〉= 0, which can be written at p as

(λ2 − λ1)〈AJE1E1,E2〉= 0.

In the same way, we can also show that (λ1 − λ2)〈AJE2E2,E1〉= 0.

First, since λ1 �= λ2, we get that 〈AJE1E1,E2〉 = 〈AJE2E2,E1〉 = 0. Using

the fact that Σ2 is totally real, it is easy to verify that〈
σ(X,Y ), JZ

〉
=
〈
σ(X,Z), JY

〉
, ∀X,Y,Z ∈C(TΣ2),

and then, at p, we obtain that

〈AJE2E1,E1〉=
〈
σ(E1,E1), JE2

〉
=
〈
σ(E1,E2), JE1

〉
= 〈AJE1E1,E2〉= 0

and

〈AJE1E2,E2〉= 〈AJE2E2,E1〉= 0.

Since JH being normal to Σ2 is equivalent to traceAJE1 = traceAJE2 = 0, we

have just proved that AJE1 =AJE2 = 0 at p.

Next, for any normal vector field U which is also orthogonal to H , JE1, and

JE2, we have that 〈R̄(X,Y )H,U〉= 0 and then, from the Ricci equation (4.4),

[AH ,AU ] = 0. Since H is not umbilical on W , this implies that, with respect to

{E1,E2}, at p,

AH =

(
a+ |H|2 0

0 −a+ |H|2
)

and AU =

(
b 0

0 −b

)
,

with a �= 0. From (4.6) we have that trace(AHAU ) = 0, which implies, using the

above expressions, that AU = 0.

Now, we consider a local orthonormal frame field in the normal bundle of Σ2

as follows: {E3 =H/|H|,E4 = JE1,E5 = JE2,E6, . . . ,E2n}. Since the surface is

flat, by the Gauss equation (3.6) of Σ2 in CPn(ρ), at p we get that

0 =K =
ρ

4
+

2n∑
α=3

detAα =
ρ

4
+ detA3 =

ρ

4
+ |H|2 − a2

|H|2 .
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From (4.6) we have that |AH |2 = 2a2 + 2|H|4 = (ρ/2)|H|2 and, therefore, K =

2|H|2 at p, which means that |H|= 0. This is a contradiction, since Σ2 is proper

biharmonic. Hence, the surface is pseudo-umbilical in this case too.

Finally, we have that, for any vector field X tangent to the surface, the vector

field JX is normal and orthogonal to both H and JH , which are also normal

vector fields. Therefore, one obtains that n≥ 3 and we conclude. �

PROPOSITION 4.7

If Σ2 is a complete proper-biharmonic pmc surface in CPn(ρ) with nonnegative

Gaussian curvature K and T �= 0, then the surface is flat and ∇AH = 0.

Proof

Since |T | = const �= 0 on Σ2, from the second equation of (4.1), we know that

our surface is totally real. In [7] it is proved that the (2,0)-part Q̃(2,0) of the

quadratic form

Q̃(X,Y ) = 〈AHX,Y 〉,

defined on a pmc totally real surface, is holomorphic. Consider the traceless part

φH = AH − |H|2I of AH . Since Q̃(2,0) is holomorphic, working in the same way

as in [5, Proposition 3.3], we can prove that φH satisfies the Codazzi equation

(∇X∅H)Y = (∇Y ∅H)X . Hence, from (3.2), we have that

1

2
Δ|φH |2 = 2K|φH |2 + |∇φH |2.

Let us assume now that there exists a point p ∈Σ2 such that K(p)> 0. Then,

from Theorem 3.1, we have that S = 0, which implies that

|φH |2 = |AH |2 − 2|H|4 = 9ρ2

128|H|4 |T |
4 = const �= 0,

which means that K = 0 on Σ2. This is a contradiction.

Hence, the surface is flat. Since Σ2 is proper-biharmonic, it follows, from

the first equation of (4.1), that |φH |2 is bounded. Thus, |φH |2 is a bounded

subharmonic function on a parabolic space and, therefore, a constant, which

implies that ∇AH =∇φH = 0. �

REMARK 4.8

In the proof of Proposition 4.7 we used the fact that Q̃(2,0) is holomorphic when

Q̃ is defined on a totally real pmc surface in a complex space form. In [18] it is

proved that if Σ2 is a proper-biharmonic surface with constant mean curvature

in a Riemannian manifold, then Q̃(2,0) is holomorphic.

Before proving our main result, let us briefly recall a property of the Hopf fibra-

tion (see [23]). Let π : Cn+1 \ {0} → CPn(ρ) be the natural projection, and

let S2n+1(ρ/4) = {z ∈ Cn+1 : 〈z, z〉 = 4/ρ}. The restriction of π to the sphere

S
2n+1(ρ/4) ⊂ C

n+1 is the Hopf fibration π : S2n+1(ρ/4) → CPn(ρ) and it is a
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Riemannian submersion. Now, let i : Σm → CPn(ρ) be a totally real isometric

immersion. Then this immersion can be lifted locally (or globally, if Σm is sim-

ply connected) to a horizontal immersion ĩ : Σ̃m → S
2n+1(ρ/4). Conversely, if ĩ :

Σ̃m → S
2n+1(ρ/4) is a horizontal isometric immersion, then π(̃i) : Σm →CPn(ρ)

is a totally real isometric immersion. Moreover, we have that π∗σ̃ = σ, where σ̃

and σ are the second fundamental forms of the immersions ĩ and i, respectively.

We shall also use the following theorem.

THEOREM 4.9 ([2])

Let Σm be a proper-biharmonic cmc submanifold in S
n(ρ/4) with mean curvature

vector field H . Then |H| ∈ (0,
√
ρ/2] and, moreover, |H| =√

ρ/2 if and only if

Σm is minimal in a small hypersphere S
n−1(ρ/2)⊂ S

n(ρ/4).

We are now ready to prove our main result.

THEOREM 4.10

Let Σ2 be a complete proper-biharmonic pmc surface with nonnegative Gaussian

curvature in CPn(ρ). Then Σ2 is totally real, and one of the following holds.

(a) Σ2 is pseudo-umbilical and its mean curvature is equal to
√
ρ/2. More-

over,

Σ2 = π(Σ̃2)⊂CPn(ρ), n≥ 3,

where π : S2n+1(ρ/4)→CPn(ρ) is the Hopf fibration and the horizontal lift Σ̃2 of

Σ2 is a complete minimal surface in a small hypersphere S
2n(ρ/2)⊂ S

2n+1(ρ/4).

(b) Σ2 lies in CP 2(ρ) as a complete Lagrangian proper-biharmonic pmc sur-

face. Moreover, if ρ= 4, then

Σ2 = π
(
S
1
(√9±

√
41

20

)
× S

1
(√11∓

√
41

40

)
× S

1
(√11∓

√
41

40

))
⊂CP 2(4),

where π : S5(1)→CP 2(4) is the Hopf fibration.

(c) Σ2 lies in CP 3(ρ) and

Σ2 = γ1 × γ2 ⊂CP 3(ρ),

where γ1 : R→ CP 2(ρ) ⊂ CP 3(ρ) is a holomorphic helix of order 4 with curva-

tures

κ1 =

√
7ρ

6
, κ2 =

1

2

√
5ρ

42
, κ3 =

3

2

√
ρ

42
,

and complex torsions

τ12 =−τ34 =
11

√
14

42
, τ23 =−τ14 =

√
70

42
, τ13 = τ24 = 0,

and γ2 :R→CP 3(ρ) is a holomorphic circle with curvature κ=
√
ρ/2 and com-

plex torsion τ12 = 0. Moreover, the curves γ1 and γ2 always exist and are unique

up to holomorphic isometries.
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Proof

Let Σ2 be a complete proper-biharmonic pmc surface with nonnegative Gaussian

curvature K and mean curvature vector field H in CPn(ρ). Let T and N be the

tangent and the normal parts of JH , respectively. As we have seen in Propo-

sition 4.4, the length of T is constant along the surface. We shall consider two

cases: T = 0 or T �= 0 on Σ2.

Case I: T = 0. From Proposition 4.6 we know that n ≥ 3 and the surface

is pseudo-umbilical and totally real with mean curvature |H|=√
ρ/2. Consider

the Hopf fibration π : S2n+1(ρ/4)→ CPn(ρ) and the horizontal lift Σ̃2 of Σ2 to

S
2n+1(ρ/4). Then, from [23, Theorem 1], we have that Σ̃2 is pseudo-umbilical

in S2n+1(ρ/4) and has parallel mean curvature vector field. Moreover, its mean

curvature is constant and equal to
√
ρ/2. Next, using the relation between the

bitension fields of the immersions i : Σ2 →CPn(ρ) and ĩ : Σ̃2 → S2n+1(ρ/4), given

in [12, Theorem 3.3], together with (JH)� = T = 0, we get that Σ2 is proper-

biharmonic if and only if Σ̃2 is proper biharmonic. We apply Theorem 4.9 to

conclude that Σ̃2 is a complete minimal surface in a small hypersphere S2n(ρ/2)⊂
S
2n+1(ρ/4).

Case II: T �= 0. In this case Σ2 is totally real and, from Proposition 4.7, flat.

From the same Proposition 4.7 we also know that ∇AH = 0, which means that

the eigenfunctions of AH are actually constants. Since Σ2 being pseudo-umbilical

implies that T = 0, it follows that the surface does not have umbilical points.

Now, let U be a normal vector field orthogonal to H and to J(TΣ2). Then,

it is easy to see that 〈R̄(X,Y )H,U〉= 0, and from the Ricci equation (4.4), we

get that [AH ,AU ] = 0. Since H is not umbilical, this implies that AH and AU

can be simultaneously diagonalized.

On the other hand, the first equation of (4.1) shows that trace(AHAU ) = 0

and, therefore, that AU = 0.

Let us consider the global orthonormal frame field {E1 = T/|T |,E2} on the

surface. We know, from Remark 4.5, that ∇E1 = 0 and then ∇E2 = 0.

Next, if |T |= |H|, that is, if JH is a tangent vector field, then we consider

the subbundle L= span{JE1, JE2} of the normal bundle. Since JH is tangent,

we get that H ∈ L, and therefore, for any normal vector field U ⊥ L, we have that

AU = 0, which means that Imσ ⊂ L. It is also easy to see that dim(TΣ2⊕L) = 4

and J(TΣ2 ⊕ L) = TΣ2 ⊕ L, which implies that R̄(X,Y )Z ∈ L, for all vector

fields X,Y,Z ∈ TΣ2 ⊕ L; that is, TΣ2 ⊕ L is invariant by R̄. In the following,

we shall prove that L is parallel; that is, if U is a normal vector field orthogonal

to L, then U is also orthogonal to ∇⊥L. Indeed, for all tangent vector fields X

and Y , we obtain that

〈∇⊥
XJY,U〉= 〈∇̄XJY,U〉= 〈J∇̄XY,U〉=

〈
J∇XY + Jσ(X,Y ),U

〉
= 0,

since Imσ ⊂ L and J(TΣ2 ⊕ L) = TΣ2 ⊕ L. Therefore, since ∇̄R̄ = 0, we can

use [10, Theorem 2] to show that there exists a 4-dimensional totally geodesic

submanifold of CPn(ρ) such that Σ2 lies in this submanifold. Since J(TΣ2⊕L) =

TΣ2⊕L, we get that Σ2 is a complete Lagrangian proper-biharmonic pmc surface
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in CP 2(ρ). When ρ= 4, these surfaces were determined in [24] as follows:

Σ2 = π
(
S
1
(√9±

√
41

20

)
× S

1
(√11∓

√
41

40

)
× S

1
(√11∓

√
41

40

))
⊂CP 2(4).

Now, assume that |T | < |H|. Since Σ2 is totally real, we can consider the

following local normal orthonormal frame field:{
E3 = JE1,E4 = JE2,E5 =

1

|N |JN,E6 =
1

|N |N,E7, . . . ,E2n

}
,

where E3, E4, E5, and E6 are globally defined. It can be easily verified that H

is orthogonal to E4, E6, and Eα, where α ∈ {7, . . . ,2n}, and, therefore, that

(4.7) H =−|T |E3 − |N |E5.

All vector fields Eα, α≥ 7, are orthogonal to H and to J(TΣ2), which means

that Aα = 0, α ≥ 7, and therefore, Imσ ⊂ L = span{E3,E4,E5,E6}. Moreover,

the bundle TΣ2 ⊕L is invariant by J and by R̄. Let U be a normal vector field,

orthogonal to L. Using the facts that ∇T = 0, Imσ ⊂ L= span{E3,E4,E5,E6},
and J(TΣ2 ⊕L) = TΣ2 ⊕L, one obtains that

〈∇⊥
XJY,U〉 = 〈∇̄XJY,U〉= 〈J∇̄XY,U〉=

〈
J∇XY + Jσ(X,Y ),U

〉
= 0,

〈∇⊥
XN,U〉 =

〈
∇̄X(JH − T ),U

〉
=
〈
−JAHX − σ(X,T ),U

〉
= 0

and

〈∇⊥
XJN,U〉=

〈
∇̄X(−H − JT ),U

〉
=
〈
−Jσ(X,T ),U

〉
= 0,

which show that L is parallel. We again use [10, Theorem 2] to conclude that Σ2

lies in CP 3(ρ).

In the following we shall determine the shape operators A3, A4, A5, and A6.

First, since N is orthogonal to H and to J(TΣ2), we have that A6 = 0. Next,

since Σ2 is totally real, we have that〈
σ(X,Y ), JZ

〉
=
〈
σ(X,Z), JY

〉
, ∀X,Y,Z ∈C(TΣ2),

and using this property together with

traceA3 = 2〈E3,H〉=−2|T | and traceA4 = 2〈E4,H〉= 0,

we see that A3 and A4 can be written as

A3 =

(
a− |T | b

b −a− |T |

)
and A4 =

(
b −a− |T |

−a− |T | −b

)
.

As for A5, we have that traceA5 = 2〈E5,H〉=−2|N | and then

A5 =

(
c− |N | d

d −c− |N |

)
.

Taking into account that E5 is orthogonal to J(TΣ2) we obtain that 〈R̄(X,

Y )H,E5〉= 0, and from the Ricci equation (4.4), we see that [AH ,A5] = 0. Then,

from (4.7), we see that [A3,A5] = 0. After a straightforward computation, we get
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that

(4.8) ad= bc.

Next, we have 〈R̄(E2,E1)H,JE2〉 = −(ρ/4)|T | and then, again using the

Ricci formula (4.4),〈
[AH ,A4]E1,E2

〉
=
〈
R̄(E2,E1)H,JE2

〉
=−ρ

4
|T |,

which can be written as

(4.9) b
(
b|T |+ d|N |

)
+
(
a+ |T |

)(
a|T |+ c|N |

)
=

ρ

8
|T |.

Since Σ2 is proper biharmonic, from the first equation of (4.1), taking into

account that E4 is orthogonal to H and to E3, we see that trace(AHA4) = 0,

which, using (4.8), gives that

(4.10) b|T |+ d|N |= 0.

Assume now that there exists a point p ∈Σ2 such that b �= 0 or d �= 0 at p. Then,

from (4.8), (4.9), and (4.10), we obtain that |T |= 0 at p, which is a contradiction.

Therefore, from (4.10), it follows that b= d= 0 on Σ2, and then (4.9) becomes

(4.11)
(
a+ |T |

)(
a|T |+ c|N |

)
=

ρ

8
|T |.

Finally, again using the first equation of (4.1), we have that

trace(AHA3) =−5ρ

4
|T | and trace(AHA5) =−ρ

2
|N |,

or equivalently,

(4.12) a
(
a|T |+ c|N |

)
=

(5ρ− 8|H|2)|T |
8

and

(4.13) c
(
a|T |+ c|N |

)
=

(ρ− 4|H|2)|N |
4

,

respectively. From (4.11), (4.12), and (4.13) one obtains that

(4.14) a=
(5ρ− 8|H|2)|T |
4(2|H|2 − ρ)

, c=
(ρ− 4|H|2)|N |
2(2|H|2 − ρ)

,

and

(4.15) 16|H|4 − 10ρ|H|2 − 3ρ|T |2 + 2ρ2 = 0.

The surface Σ2 is flat, and therefore, by its Gauss equation from (3.6) in

CPn(ρ), it follows that

0 =K =
ρ

4
+

5∑
α=3

detAα,

which, together with (4.14), gives that

(4.16) 16|H|4 + 4ρ|H|2 − 48|T |2|H|2 + 22ρ|T |2 − 4ρ2 = 0.
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From (4.15) and (4.16) we obtain that |H|2 = ρ/3, |T |2 = 4ρ/27, and |N |2 =

5ρ/27. Hence, the shape operator A is given by

A3 =
1

2

√
ρ

3

(
−11

3 0

0 1

)
, A4 =

1

2

√
ρ

3

(
0 1

1 0

)
,

(4.17)

A5 = −1

2

√
5ρ

3

(
−1

3 0

0 1

)
.

Now, since E1 and E2 are parallel, they determine two distributions which

are mutually orthogonal, smooth, involutive, and parallel. Therefore, from the

de Rham decomposition theorem and by taking into account that the surface

is complete and using its universal cover if necessary, it follows that Σ2 is the

standard product γ1 × γ2, where γk :R→CP 3(ρ), k ∈ {1,2}, are integral curves

of E1 and E2, respectively, parameterized by arc length, that is, γ′
1 = E1 and

γ′
2 =E2 (see [17]). In the following, we shall determine these curves in terms of

their curvatures and complex torsions.

Let us denote by κi, 1≤ i < 6, the curvatures of γ1 and by {X1
j }, 1≤ j < 7,

its Frenet frame field. Using (4.17), we first have that

∇̄E1E1 = σ(E1,E1) =−11

6

√
ρ

3
E3 −

1

6

√
5ρ

3
E5,

and then, the first Frenet equation of γ1 gives that

κ1 =

√
7ρ

6
and X1

2 =−11
√
14

42
E3 −

√
70

42
E5.

Next, since ∇E1 =∇E2 = 0 and 0 =∇⊥H =−|T |∇⊥E3 − |N |∇⊥E5, we get

that

〈∇⊥
E1

E3,E4〉= 0, 〈∇⊥
E1

E3,E5〉= 0,

and

〈∇⊥
E1

E3,E6〉 =
1

|N | 〈∇̄E1JE1, JH − T 〉= 1

|N |
(
〈AHE1,E1〉+ |T |〈∇̄E1E1,E3〉

)
= −〈A5E1,E1〉=

1

6

√
5ρ

3
.

It follows that ∇⊥
E1

E3 = (1/6)
√
5ρ/3E6. In the same way, one obtains that

∇⊥
E1

E5 = (−1/3)
√
ρ/3E6. Thus, after a straightforward computation,

∇̄E1X
1
2 =−κ1E1 −

1

2

√
5ρ

42
E6,

which means that

κ2 =
1

2

√
5ρ

42
and X1

3 =−E6.

It follows that

∇̄E1X
1
3 =

1

6

√
5ρ

3
E3 −

1

3

√
ρ

3
E5
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and then

κ3 =
3

2

√
ρ

42
and X1

4 =

√
70

42
E3 −

11
√
14

42
E5.

Finally, we get that ∇̄E1X
1
4 =−κ3X

1
3 , and therefore, γ1 is a helix of osculating

order 4. A simple computation gives its complex torsions

τ12 =−τ34 =
11

√
14

42
, τ23 =−τ14 =

√
70

42
, τ13 = τ24 = 0.

Hence, γ1 is a holomorphic helix of order 4.

Consider now the subbundle L = span{E3,E5,E6} in the normal bundle

of γ1. It is easy to see that L is parallel and Tγ1 ⊕ L is invariant by J and R̄.

Then, since X1
2 ∈ L, we apply [10, Theorem 2] to conclude that γ1 lies in CP 2(ρ).

Moreover, it can be easily verified that γ1 is of class I3.

For the curve γ2 we have that

∇̄E2E2 = σ(E2,E2) =
1

2

√
ρ

3
E3 −

1

2

√
5ρ

3
E5,

and then its first curvature is κ=
√

ρ/2 and X2
2 = (

√
6/6)E3− (

√
30/6)E5. It can

be easily verified that ∇⊥
E2

E3 =∇⊥
E2

E5 = 0, and then one obtains that ∇̄E2X
2
2 =

−κE2. Therefore, the curve γ2 is a holomorphic circle in CP 3(ρ) with curvature

κ =
√
ρ/2 and complex torsion τ12 = 0. Then, we use Theorems 2.2 and 2.3 to

conclude. �

REMARK 4.11

By working in the same way as in the case when ρ = 4, considered in [24], the

result in Theorem 4.10(b) can be extended to surfaces in CPn(ρ). However, for

the sake of simplicity we present here only this particular case.
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