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Abstract The structure of the Tate–Shafarevich groups of a class of elliptic curves over

global function fields is determined. These are known to be finite abelian groups and

hence they are direct sums of finite cyclic groups where the orders of these cyclic com-

ponents are invariants of the Tate–Shafarevich group. This decomposition of the Tate–

Shafarevich groups into direct sums of finite cyclic groups depends on the behaviour of

Drinfeld–Heegner points on these elliptic curves. These are points analogous to Heegner

points on elliptic curves over the rational numbers.
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Part 1. Preliminaries

1.1. Introduction

Let F be a global field of positive characteristic p > 0. Let E/F be an elliptic
curve with an origin, that is to say, a 1-dimensional abelian variety.

In [1] it is shown that, for a class of these elliptic curves E/F , the Tate–
Shafarevich group X(E/F ) is finite and, for prime numbers l belonging to a set
S of prime numbers given by arithmetic conditions, the l-primary component
X(E/F )l∞ has order which is explicitly bounded.

In this paper, we determine the structure of the finite abelian group
X(E/F )l∞ for the same class of elliptic curves and for all l in the same set
of prime numbers S . (In the notation of Theorem 4.1.4 below, S is the set P
with the exclusion of the prime divisors of the order of the Picard group Pic(A).)
We also determine the structure of the Selmer groups of the elliptic curves in
question.

Let E/F be an elliptic curve, and let K be an imaginary quadratic extension
of F with respect to the place ∞ of F (see Section 1.2). Let SpecA be the
nonsingular affine curve with function field F and whose point at infinity is ∞
(see Section 1.2). Assume that E,K,∞ satisfy (a), (b), and (c) of Section 4.1.1.
This provides an infinite set of prime numbers P of positive Dirichlet density and
defined by arithmetic conditions (see Section 3.1). Indeed, P contains all except
finitely many prime numbers l ∈ Z of the form 2sn+1 where s≥ 1 and n is odd
such that q is a 2sth-power nonresidue modulo l where q is the order of the exact
finite field of constants of F .

Fix a prime number l ∈ P . There are sets of divisors Λr(n), relative to l, on
F for all integers n ≥ 1 such that each divisor in Λr(n) is a sum of r distinct
prime divisors and there is a decreasing filtration on Λr(1):

Λr =Λr(1)⊇Λr(2)⊇ · · · .

For any divisor c ∈ Λr(n) there is a corresponding Drinfeld–Heegner point Pc of
E(K[c]), the group of K[c]-rational points of E, where K[c] is the ring class field
of K with conductor c (see Sections 1.4, 3.4.8).

On E(K[c]) there is the decreasing l-adic filtration

E
(
K[c]
)
⊇ lE

(
K[c]
)
⊇ l2E

(
K[c]
)
⊇ · · · .
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Define

Mr = min
c∈Λr

(
max
(
n ∈N

∣∣Pc ∈ lnE
(
K[c]
)))

for all integers r ∈N.

If the point P0 ∈ E(K) has infinite order in the group of K-rational points
E(K), then it can be shown that M0,M1, . . . is a decreasing sequence of non-
negative integers (see Lemma 5.1.2). One of the main results of this paper is the
following.

THEOREM 1.1.1

Suppose that P0 has infinite order in E(K), the group of K-rational points of E.
Let l be a prime number in P that is coprime to the order of the Picard group of
the affine curve SpecA. Let ε=±1 be the sign in the functional equation of the
L-function of E/F . Then the Tate–Shafarevich group X(E/F ) of E/F is finite
and its l-primary component is given by

X(E/F )l∞ ∼=
∏

(−1)i=ε

i≥0

(Z/lMi−Mi+1Z)2,

where the product runs over integers i ∈N such that (−1)i = ε.

A similar statement holds for the Tate–Shafarevich group of the elliptic curve
E×F K over K (see Theorem 4.1.4) as well as the Selmer groups of these curves
(see Corollary 4.1.11). The main results of this paper are stated in Section 4.1.

It may be conjectured that for every global field F of positive characteris-
tic there are infinitely many nonisomorphic elliptic curves E/F and infinitely
many imaginary quadratic field extensions K/F such that E,K,∞ satisfy the
hypotheses of Theorem 1.1.1 and those of Section 4.1. If this conjecture holds,
then the above theorem and those of Section 4.1 give infinitely many noniso-
morphic elliptic curves over a given global field of positive characteristic whose
l-primary components of the Tate–Shafarevich group are structurally known for
infinitely many prime numbers l satisfying arithmetic conditions.

The method of this paper is related to that of Kolyvagin’s determination
of the structure of Tate–Shafarevich groups of a class of elliptic curves over the
rational numbers (see [2], [3], [5]–[9]). The proofs of the main theorems of this
paper stated in Section 4.1 and Theorem 1.1.1 above require many preliminary
results which are explained in Parts 1–5.

Part 2 contains basics on Tate local duality, Selmer groups, and the Cassels
pairing on Tate–Shafarevich groups. In Section 3.1, the set P of prime numbers
is defined by arithmetic conditions. In Section 3.2, the sets Λr(n) of divisors on
the global field F are defined. Sections 3.3 and 3.4 construct the cohomology
classes γn(c), δn(c) in the cohomology of the elliptic curve E/F .

In Section 4.1, the main results of this paper are stated, which are then
proved in Sections 5.3–5.5 after some further properties of γn(c), δn(c) are proved
in Parts 4 and 5. We show, in particular, that the cohomology classes δn(c) define
characters via the Cassels pairing on X(E/F )l∞ , which determine the structure
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of this group. The method of proof of the main results in Section 4.1 is by
the construction of many independent elements of the Tate–Shafarevich group
X(E/F )l∞ . Finally, Section 5.6 contains complements to the main results.

While care has been taken to minimize the number of hypotheses required
for the main theorems of this paper, these hypotheses are still numerous (see,
e.g., Section 3.1, Definition 3.1.2). The assiduous reader will have an abundance
of interesting problems in their elimination.

1.2. Global fields of positive characteristic

The notation of this paper is mainly that of [1] and is detailed in the rest of
this section. A few differences arise, notably the sets of divisors Λ(n), which are
required for the more refined results of this paper.

Let

k be a finite field of characteristic p with q = pm elements;
k be an algebraic closure of k;
C/k be a smooth projective irreducible curve over k;
F be the function field of C. These hypotheses imply that the finite field

k is the exact field of constants of the global field F . Furthermore, let
ΣL, for any global field L, be the set of all places of the field L;
∞∈ΣF be a closed point of C/k;
κ(z) be the residue field at a place z ∈ΣF of F ;
Fv be the completion of F at the place v ∈ΣF ;
F sep be the separable closure of F ;
A be the coordinate ring Γ(C \ {∞},OC) of the affine curve C \ {∞};
Div+(A) be the semigroup of effective k-rational divisors on SpecA. That

is to say, Div+(A) is the semigroup of effective k-rational divisors on C/k which
are coprime to the place ∞; an element of Div+(A) may be written as a finite
linear combination

∑
i nizi where ni ∈N and zi are prime divisors on SpecA for

all i. Let
Supp(c), for a divisor c ∈Div+(A), be the support of the divisor c which

is the set of prime divisors with nonzero coefficient in c;
Pic(A) be the Picard group of A, the group of projective A-modules of

rank 1;
K be a separable imaginary quadratic extension field of F with respect

to ∞ (That is to say, K is a quadratic extension field of F in which the place ∞
remains inert.);

B be the integral closure of A in K;
τ be the nontrivial element of the Galois group Gal(K/F ).

1.3. Orders in imaginary quadratic field extensions

Let K/F be the imaginary quadratic field extension with respect to ∞ of Sec-
tion 1.2.
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An order O in K with respect to A is an A-subalgebra of B whose fraction
field is equal to K.

There is a bijection between orders Oc of K with respect to A and effective
k-rational divisors c in Div+(A) and it is given by

c �→A+BI(c),

where I(c) is the ideal of A cutting out the divisor c. The divisor c is the conductor
of the order Oc. For more details on orders in imaginary quadratic extensions,
see [1, Section 2.2].

1.4. Ring class fields

Let

Oc be the order of K with respect to A and with conductor c where
c ∈Div+(A) (see Section 1.3);

Av , for each place v of A, be the localization of A at v;
Ôc,v be the completion of the semilocal ring Oc ⊗A Av ;
Gc =K∗

∞
∏

v Ô
∗
c,v be the subgroup of the idèle group of the global field K

whose components are the units of Ôc,v for all places v 
=∞ of F and K∗
∞ for

the place v =∞ and where in the product v runs over all places of F ;
K[c], for any divisor c ∈Div+(A), be the ring class field with conductor c

with respect to ∞ (This is the finite abelian extension field of K defined by the
subgroup Gc of the idèle group of K via the reciprocity map.); and

G(c/c′) be the Galois group of the field extension K[c]/K[c′] for divisors
c≥ c′ of Div+(A).

We have the following properties of the decomposition of primes in ring class
fields (for the proofs, see [1, Section 2.3.13])

(a) The primes ramified in K[c]/K are precisely the primes in the support
of c.

(b) The extension K[c]/K is split completely at the place of K lying
above ∞.

(c) If z /∈ Supp(c), then for any positive integer n, the Galois extension K[c+

nz]/K[c] is totally ramified at all places of K[c] above z.

See [1, Section 2.3] for more details on ring class fields.

1.5. Elliptic curves over global fields of positive characteristic

Let

C/k be a smooth projective irreducible curve over k (as in Section 1.2);
X/k be an elliptic surface over C (That is to say, X/k is a smooth projec-

tive irreducible surface equipped with a morphism f :X →C which has a section
such that all fibers of f , except a finite number, are elliptic curves.);
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E/F be the generic fiber of f :X → C, which is an elliptic curve E over
F equipped with an origin where F is the function field of C.

The conductor of an elliptic curve E/F is an effective k-rational divisor on F

supported only at the places of bad reduction of E and whose multiplicities are
defined in terms of the Galois representation of Gal(F sep/F ) given by E. (See
[1, Sections B.11.1–B.11.4] for the definition of the conductor of E/F .)

1.6. The Drinfeld modular curve XDrin
0 (I)

Let I be a nonzero ideal of A, and let XDrin
0 (I) be the curve which is the coarse

moduli scheme of Drinfeld modules of rank 2 for A equipped with an I-cyclic
structure (see [1, Definition 2.4.2, p. 23]). This curve is compactified by a finite
number of cusps which correspond to “degenerate” Drinfeld modules. This curve
XDrin

0 (I) is an analogue for the global field F of the classical modular curve
X0(N), which is the coarse moduli scheme of elliptic curves equipped with a
cyclic subgroup of order N , where N ∈N (for more details, see [1, Section 2.4]).

1.7. Analogue for F of the Shimura–Taniyama–Weil conjecture

Let E/F be an elliptic curve with split (Tate) multiplicative reduction at ∞. Let
I be the nonzero ideal of the ring A which is the conductor, without the place
at ∞, of the elliptic curve E/F .

According to the work of Drinfeld on the Langlands conjecture, there is a
finite surjective morphism of curves over F

XDrin
0 (I)→E.

This result is an analogue for the global field F of the Shimura–Taniyama–
Weil conjecture proved by Wiles for semistable elliptic curves over the rational
numbers.

For more details, see [1, Section 4.7, Appendix B].

1.8. Drinfeld–Heegner points

Let K be an imaginary quadratic extension field of F with respect to ∞ (as in
Section 1.2), and let I be a nonzero ideal of A.

Let D be a rank 2 Drinfeld module for A with complex multiplication by
an order O of the field K with respect to A; that is to say, O is a subring of
K which is integral over A. Let Z be an I-cyclic subgroup of D. Then the pair
(D,Z) represents a noncuspidal point of the modular curve XDrin

0 (I). Such points
(D,Z) exist if the prime divisors in the support of I split completely in the field
extension K/F .

If the quotient Drinfeld module D/Z has the same ring of endomorphisms
O as D, then the point (D,Z) on XDrin

0 (I) is called a Drinfeld–Heegner point.
If f :XDrin

0 (I)→ E is a finite morphism of curves where E/F is an elliptic
curve (see Sections 1.5–1.7), then the point f(D,Z) of the elliptic curve E is also
called a Drinfeld–Heegner point.
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The Drinfeld–Heegner points (D,Z) and f(D,Z) are rational over the ring
class field K[c] where c is the conductor of the order O of K relative to A.

See [1, Sections 2.2, 2.3] or Section 3.4 below for more details.

1.9. Groups and cohomology

If G is a discrete abelian group, denote by

Gm the kernel of multiplication by the integer m ∈N on G;
mG the cokernel G/mG of multiplication by the integer m ∈N;
|G| the order of the group G, which is either a positive integer or +∞;
ord(g) the order of an element g ∈ G, which is the cardinality of the

subgroup generated by g;
exp(G) the exponent of G, which is the maximum order of an element

of G;
Ĝ the Pontryagin dual of G, namely, the topological group Hom(G,Q/Z).

If G is a finite abelian group, then Ĝ may be identified with the group of
1-dimensional complex characters of G, that is to say, the group of homomor-
phisms Hom(G,C∗). A character of a finite abelian group is always assumed to
be irreducible.

If F ′/F is a Galois extension of a global field F and if z ∈ ΣF is a prime
divisor of F unramified in F ′, then we denote by Frob(z) or FrobF ′/F (z), the
conjugacy class in Gal(F ′/F ) of Frobenius substitutions associated to z.

If L is a field, then we write Hi(L,M) for the Galois cohomology group
Hi(Gal(Lsep/L),M), where Lsep is the separable closure of L. If L′/L is a finite
Galois field extension, then we write Hi(L′/L,M) for Hi(Gal(L′/L),M).

If F is a global field and z is a place of F , then the restriction, or localization,
of a class c ∈Hi(L,M) is written cz ∈Hi(Fz,M), where Fz is the completion of
F at z.

1.10. Torsion on elliptic curves E/F

Let E be an elliptic curve over a global field F of positive characteristic p > 0 as
in Section 1.5. Let K be an imaginary quadratic extension field of F with respect
to the place ∞ of F . As in Section 1.4, let K[c] be the ring class field over K

with conductor c ∈Div+(A). Put

K[A] =
⋃

c∈Div+(A)

K[c].

That is to say, K[A] is a field which is the union of all the ring class fields K[c]

in some algebraic closure of K.
Let S be a subset of N∗ such that if n1 ∈ S and n0 is any divisor of n1, then

n0 ∈ S. A quasigroup {Gn}n∈S relative to S is a family of abelian groups Gn

indexed by the elements n of S such that nGn = 0 and if n0, n1 ∈ S are elements
where n0 divides n1, then there is a group homomorphism fn1n0 : Gn1 → Gn0
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satisfying the compatibility condition that if n0, n1, n2 ∈ S, n0 divides n1, and
n1 divides n2, then fn2n0 = fn1n0 ◦ fn2n1 (see [1, Section 7.1, p. 330]).

PROPOSITION 1.10.1 ([1, PROPOSITION 7.3.8])

The quasigroup {
E
(
K[A]

)
n

}
n∈N

is trivial; that is to say, the order of the torsion group E(K[A])n is bounded
independently of n and there is a finite set E of prime numbers such that for all
integers n prime to all elements of E we have

E
(
K[A]

)
n
∼= 0.

PROPOSITION 1.10.2 ([1, PROPOSITION 7.14.2])

Let E be the finite set of prime numbers of Proposition 1.10.1. For any divisor c

of Div+(A), the restriction homomorphism

H1(K,En)→H1
(
K[c],En

)Gc

is an isomorphism for all integers n prime to E where Gc =Gal(K[c]/K).

This follows from Proposition 1.10.1 and the Hochschild–Serre spectral sequence

Hi
(
Gc,H

j
(
K[c],En(K

sep)
))

⇒Hi+j
(
K,En(K

sep)
)

(more details are given in [1, Proposition 7.14.2]).

1.11. Igusa’s theorem

This section is a summary of the results of Igusa for the Galois action on torsion
points of elliptic curves over global fields of positive characteristic.

1.11.1.
As in Section 1.2, let F be a global field of positive characteristic p where k is
the exact field of constants of F , and let E/F be an elliptic curve. Let

G=Gal(F sep/F ), where F sep is the separable closure of F ;
n be an integer prime to p;
En be the finite F -group scheme of n-torsion points of E;
E∞ be the torsion subgroup of E(F sep) of order prime to p.

The elliptic curve E/F is said to be isotrivial if there is a finite Galois extension
field F ′ of F such that the curve E×F F ′ is definable over a finite subfield of F ′.

1.11.2.
The action of the Galois group G on En provides a homomorphism

ρn :G→Aut(En)∼=GL2(Z/nZ).
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The determinant

det : Aut(En)→ (Z/nZ)∗

induces a homomorphism

G→ (Z/nZ)∗.

Let Hn be the subgroup of (Z/nZ)∗ generated by the powers of q = |k| modulo
n. Then Hn is naturally isomorphic to the Galois group of the field of nth roots
of unity over k. Let Γn be the subgroup of GL2(Z/nZ) defined by the exact
sequence of finite groups, where det is the restriction to Γn of the determinant
homomorphism on GL2(Z/nZ),

(1.11.1) 0 → SL2(Z/nZ) → Γn
det→ Hn → 0.

1.11.3.
Passing to the projective limit of the previous exact sequence over all integers n

prime to p, we obtain the exact sequence of profinite groups

0 −→ SL2(Ẑ
(p)) −→ Γ̂ −→ Ĥ −→ 0,

where Ĥ is the subgroup of Ẑ(p)∗ topologically generated by q, where

Ẑ(p) =
∏
l �=p

Zl

is the profinite prime-to-p completion of Z, and Γ̂ is a closed subgroup of
GL2(Ẑ

(p)).

1.11.4.
Passing to the projective limit of the exact sequence (1.11.1) where n runs over
all powers of a prime number l where l 
= p, we obtain the exact sequence

0 −→ SL2(Zl) −→ Γ̂l −→ Ĥl −→ 0.

THEOREM 1.11.1 (IGUSA [4])

Suppose that E/F is not isotrivial. Then the profinite group Gal(F (E∞)/F ) is
an open subgroup of Γ̂.

This result has the following consequence.

THEOREM 1.11.2

Suppose that E/F is not isotrivial. Then for all prime numbers l 
= p the profinite
group Gal(F (El∞)/F ) is an open subgroup of Γ̂l and is equal to Γ̂l for all but
finitely many l.

REMARKS 1.11.3

(a) Suppose that the curve E/F is isotrivial. Then it is easy to show that the
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group Gal(F (E∞)/F ) is an extension of a finite group by the abelian profinite
group Ẑ(p).

(b) Let E be an elliptic curve defined over a number field L. The Galois action
on the torsion points of E/L is known and depends principally on whether or
not E has complex multiplication.

See [12] and [12, Section 4.5] for the cases of complex multiplication and without
complex multiplication. See also [1, Remarks 7.2.8] for more details.

1.12. Consequences of Igusa’s theorem

For a finite group G and a Z[G]-module M , let Hi(G,M) denote the standard
cohomology groups of G acting on M (see [1, Section 5.6]; see also [10, Chapter I]
for the Tate modified cohomology groups).

PROPOSITION 1.12.1

Let E/F be an elliptic curve, and let N(p) be the set of positive integers coprime
to p, where p is the characteristic of F . Write Gn for the group Gal(F (En)/F ).

(a) Let i= 0 or 1. Then {
Hi(Gn,En)

}
n∈N(p)

is a trivial quasigroup.
(b) There is a finite set N of prime numbers including p such that for all

prime numbers l /∈N we have

Hi(Gln ,Eln) = 0 for all n≥ 1 and all i≥ 0.

Proposition 1.12.1(a) may be restated as follows: for i = 0 or 1 and for all n

coprime to p, the order of the group Hi(Gn,En) is bounded independently of n
and there is a finite set of prime numbers such that for all integers n coprime
to this set of prime numbers we have Hi(Gn,En) ∼= 0. For the proof of this
proposition, see [1, Proposition 7.3.1].

1.12.1.
For each prime number l different from p, select once and for all a basis of the
Tate module Tl(E) over Zl, the l-adic completion of Z; this fixes for the rest
of this paper, for every prime number l 
= p, an isomorphism of Gal(F (El∞)/F )

with a subgroup of GL2(Zl) and the two groups may then be identified with each
other.

PROPOSITION 1.12.2

Let E/F be an elliptic curve which is not isotrivial. Let L be a finite extension
field of F in which k is algebraically closed. Then there is an infinite set S of
prime numbers of positive Dirichlet density such that for all l ∈ S we have that
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(a) the fields F (El∞) and L are linearly disjoint over F ;
(b) E(L)l∞ = 0;
(c)
(
1 0
0 −1

)
∈Gal(F (El∞)/F ).

For the proof, see [1, Proposition 7.3.10].

Part 2. Local duality, Cassels pairings, and Tate–Shafarevich groups

2.1. Local duality of elliptic curves

This section is a brief summary of Tate–Poitou local duality for elliptic curves
over a local field. For more details on local duality of abelian varieties, see [10,
Chapter I; Chapter III, Section 7].

2.1.1.
Let

L be a nonarchimedean complete local field;
Lsep be the separable closure of L;
E/L be an elliptic curve over L;
n≥ 1 be an integer coprime to the characteristic of L;
G be the Galois group Gal(Lsep/L).

2.1.2.
Let μn be the multiplicative subgroup of Lsep of nth roots of unity. Then μn is
a finite G-module. Let En denote the G-module of n-torsion points of E(Lsep).
We have an abelian group isomorphism

En
∼= Z

nZ
⊕ Z

nZ
.

Denote by {·, ·} the Weil pairing

{·, ·} :En ×En → μn.

This is a perfect pairing of G-modules. In particular, we have an isomorphism of
G-modules

En
∼=HomG(En, μn).

2.1.3.
The Weil pairing induces a cup-product pairing in Galois cohomology

H1(L,En)×H1(L,En)→H2(L,μn).

This is a nondegenerate antisymmetric pairing of abelian groups. By local class
field theory, we have a canonical isomorphism of groups, where Br(L) is the
Brauer group of L,

Br(L)∼= Q

Z
.
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This induces an isomorphism

H2(L,μn) = Br(L)n ∼= Z

nZ
.

THEOREM 2.1.1 (TATE–POITOU LOCAL DUALITY)

The cup-product pairing

(2.1.1) 〈·, ·〉v :H1(L,En)×H1(L,En)→
Z

nZ

obtained from the Weil pairing is an alternating and nondegenerate pairing of
Z/nZ-modules.

For the proof, see [10, Chapter I, Corollary 2.3].

THEOREM 2.1.2

Assume that n is prime to the residue field characteristic of L.

(a) The subgroup nE(L) of H1(L,En) is isotropic for the alternating pairing
〈·, ·〉v.

(b) The cup-product pairing 〈·, ·〉v on H1(L,En) induces a nondegenerate
pairing of abelian groups, where nE(L) =E(L)/nE(L),

[·, ·]v : nE(L)×H1(L,E)n → Z

nZ
.

For the proof, see [1, Theorem 7.15.6, p. 403] for part (a) and [10, Chapter I,
Corollary 3.4 and Remark 3.6; Chapter 3, Theorem 7.8] for part (b). Note that
part (b) holds without the hypothesis that n be coprime to the characteristic of
L (see [10, Chapter III, Section 7]).

2.1.4.
Suppose now that K is a global field of positive characteristic, that ΣK is the
set of all places of K, and that the integer n is coprime to the characteristic of
K. Let E/K be an elliptic curve.

PROPOSITION 2.1.3

Let c and c′ be two elements of H1(K,En). Denote by cv and c′v the induced
elements of H1(Kv,En) for all places v ∈ΣK of K, where Kv is the completion
of K at v. Then we have ∑

v∈ΣK

〈cv, c′v〉v = 0.

Proof
The sum of the local invariants of a global class in H2(K,Gm) is zero. �
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2.2. Selmer groups and Tate–Shafarevich groups

2.2.1.
Let E/F be an elliptic curve as in Section 1.5, and let n ∈N be an integer coprime
to the characteristic p of the global field F .

2.2.2.
For a place v of the field F , we write Fv for the completion of F at the place v

(as in Section 1.2). The exact sequence of commutative group schemes over F ,
obtained from the morphism of multiplication by n,

0−→En −→E
n−→E −→ 0

gives rise to a commutative diagram, where the maps resv are the restriction
homomorphisms at v and the rows are exact sequences of abelian groups:

0 → nE(F ) → H1
(
F,E(F sep)n

)
→ H1

(
F,E(F sep)

)
n

→ 0

↓ resv ↓ resv ↓ resv

0 → nE(Fv) → H1
(
Fv,E(F sep

v )n
)

→ H1
(
Fv,E(F sep

v )
)
n

→ 0

As in Section 1.9, nE(F ) denotes the cokernel E(F )/nE(F ) and E(F sep)n
denotes the n-torsion subgroup of E(F sep).

2.2.3.
The Tate–Shafarevich group X(E/F ) of E/F is defined as

X(E/F ) = ker
{
H1(F,E)→

∏
v∈ΣF

H1(Fv,E)
}
.

This group X(E/F ) is known to be a torsion of cofinite type (see [11]).
The n-Selmer group is defined as

Seln(E/F ) =
⋂

v∈ΣF

res−1
v

(
n
E(Fv)

)
in terms of the commutative diagram of Section 2.2.2 and where resv denotes
the middle vertical homomorphism of the diagram. Therefore, Seln(E/F ) is a
subgroup of H1(F,E(F sep)n) and is a finite abelian group. We then have the
exact sequence of torsion abelian groups from the commutative diagram of Sec-
tion 2.2.2, where X(E/F )n is the n-torsion subgroup of X(E/F ),

0→ nE(F )→ Seln(E/F )→X(E/F )n → 0.

2.2.4.
Let F ′/F be a finite separable Galois field extension. We write X(E/F ′) in place
of X(E ×F F ′/F ′) for the Tate–Shafarevich group of E ×F F ′ over F ′ obtained
by ground field extension from F to F ′; similarly, for the Selmer quasigroup, we
write Seln(E/F ′) in place of Seln(E ×F F ′/F ′).
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PROPOSITION 2.2.1

Let r be the degree of the finite separable field extension F ′/F . For any torsion
abelian group A write A(non-r) for the torsion subgroup of A of order coprime
to r. The restriction homomorphism provides isomorphisms for all integers n

coprime to r

X(E/F )(non-r)
res∼=−→X(E/F ′)(non-r)Gal(F ′/F ),

Seln(E/F )
res∼=−→ Seln(E/F ′)Gal(F ′/F ).

Proof
The definition of the Tate–Shafarevich groups provides a commutative diagram
with exact rows:

0→X(E/F ′)Gal(F ′/F ) →H1(F ′,E)Gal(F ′/F ) →
( ∏
v∈ΣF ′

H1(F ′
v,E)

)Gal(F ′/F )

↑ ↑ ↑

0→ X(E/F ) → H1(F,E) →
∏

v∈ΣF

H1(Fv,E)

For any place v of F , the Fv-algebra Fv ⊗F F ′ is étale and is the product of the
completions of F ′ at the places lying over v. The inflation restriction sequence
provides isomorphisms for any integer s coprime to the order of Gal(F ′/F )

H1(F,E)s ∼=H1(F ′,E)Gal(F ′/F )
s ,

H1(Fv,E)s ∼=H1(Fv ⊗F F ′,E)Gal(F ′/F )
s for all places v of F.

The isomorphism of the proposition for the Tate–Shafarevich groups now follows
by a diagram chase. The corresponding isomorphism for the n-Selmer groups
follows from the commutative diagram with exact rows:

0 → nE(F ) → Seln(E/F ) → X(E/F )n → 0

↓ ∼= ↓ ↓ ∼=

0 →
(
nE(F ′)

)Gal(F ′/F ) → Seln(E/F ′)Gal(F ′/F ) → X(E/F ′)
Gal(F ′/F )
n → 0

as required. �

REMARK 2.2.2

This section is a generalized form of [1, Section 7.9].

2.3. The Cassels pairing

2.3.1.
Let E/F be an elliptic curve over the global field F of characteristic p > 0 as in
Section 1.5. The Tate–Shafarevich group X(E/F ) of E/F is equipped with the
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antisymmetric Cassels pairing

〈·, ·〉Cassels :X(E/F )×X(E/F )→Q/Z,

which is nondegenerate if X(E/F ) is finite. The Tate–Shafarevich group
X(E/F ) is a torsion group of cofinite type (see [11]).

In this section, the Cassels pairing is defined for E/F for the non-p part
X(E/F )(non-p) of X(E/F ), that is to say, the subgroup of the Tate–Shafarevich
group of order coprime to the characteristic p.

2.3.2.
For any place v ∈ ΣF of F , we have the commutative diagram with exact rows
obtained from restriction from F to Fv for any integer m where ∂m is the con-
necting homomorphism induced from the morphism of multiplication by m on E:

0 → E(F )m → E(F ) → E(F )
∂m→ H1(F,Em) → H1(F,E)m

↓ ↓ ↓ ↓ ↓

0 → E(Fv)m → E(Fv) → E(Fv)
∂m→ H1(Fv,Em) → H1(Fv,E)m

2.3.3.
Let a, b ∈X(E/F )(non-p). Let m≥ 1 be the order of a, and let n≥ 1 be the order
of b where m,n are coprime to the characteristic p of F . Then we have that

a ∈X(E/F )m and b ∈X(E/F )n.

Select elements

a(1) ∈H1(F,Em) and b(1) ∈H1(F,En)

mapping to a and b, respectively, in the commutative diagram of Section 2.3.2.
For any element h ∈H1(F,E) denote by hv the restriction of h to H1(Fv,E)

for any place v of F and similarly for cochains.

2.3.4.
Suppose first that a is divisible by n in H1(F,E), say, a = na1 where a1 ∈
H1(F,E)mn. We may select local points yv ∈ nE(Fv) such that

∂n(yv) = b(1)v for all places v ∈ΣF ,

as b(1)v maps to zero in H1(Fv,E). Let a1,v denote the localization in H1(Fv,E)mn

of a1. Note that since a ∈X(E/F )m we have that a1,v ∈H1(Fv,E)n for all v.
For any v ∈ΣF , denote by

[·, ·]v :H1(Fv,E)n × nE(Fv)→
Z

nZ

the local pairing as in Theorem 2.1.2. Then the Cassels pairing is given in terms
of the local pairing by the formula
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(2.3.1) 〈a, b〉Cassels =
∑
v∈ΣF

[a1,v, yv]v,

where the sum runs over all places of F .

2.3.5.
We have that

a1,v = i∗(c1,v)

for some c1,v ∈ H1(Fv,En) for all v where i is the inclusion of group schemes
En ↪→ E. We then have that the Cassels pairing is also given in terms of the
cup-product pairing 〈·, ·〉v of Theorem 2.1.1 by

(2.3.2) 〈a, b〉Cassels =
∑
v

〈c1,v, b(1)v 〉v

as we have for all places v

[a1,v, yv]v =
〈
c1,v, ∂n(yv)

〉
v
.

2.3.6.
In Sections 2.3.4 and 2.3.5, the global element a1 ∈H1(F,E)mn such that na1 = a

may not exist. Nevertheless, in a suitable sense it always exists locally, and in
general, the Cassels pairing is defined as follows.

Select elements a(1) and b(1) of H1(F,Em) and H1(F,En) mapping to a

and b, respectively. For each valuation v of F , let a
(1)
v be the localization in

H1(Fv,Em) of a(1) ∈H1(F,Em). For each valuation v of F , a maps to zero in
H1(Fv,E) and hence a

(1)
v lies in the image of E(Fv) under ∂m. Then we can lift,

by the diagram where id is the identity map,

E(Fv)
∂m→ H1(Fv,Em)

id ↑ ↑ n

E(Fv)
∂mn→ H1(Fv,Emn)

a
(1)
v ∈ H1(Fv,Em) to an element a

(1)
v,1 ∈ H1(Fv,Emn) so that na

(1)
v,1 = a

(1)
v and

a
(1)
v,1 is in the image of E(Fv) under ∂mn.

Let β be a cocycle in Cocy1(F,Em) representing a(1) ∈H1(F,Em), and lift it
to a cochain β1 ∈ Coch1(F,Emn). Select a cocycle βv,1 ∈ Cocy1(Fv,Emn) repre-
senting the element a

(1)
v,1 ∈H1(Fv,Emn), and select a cocycle β′ ∈ Cocy1(F,En)

representing b(1) ∈H1(F,En).
The coboundary dβ1 of β1 takes values in En, as β1 is a cochain lifting the

cocycle β with values in Em. The cup product dβ1 ∪ β′ represents an element
of H3(Gal(F sep/F ),Gm) where Gm is the multiplicative group scheme over F

and where this cup product is induced by the Weil pairing En ×En →Gm (see
Section 2.1.2). But this last cohomology group H3(Gal(F sep/F ),Gm) is zero (see
[10, Chapter I, Corollary 4.18 or 4.21]). Hence we have that
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dβ1 ∪ β′ = dε

for some 2-cochain ε ∈Coch2(F,Gm).
The cochain localized at v(

(βv,1 − β1,v)∪ β′
v

)
+ εv

is a 2-cocycle in Cocy2(Fv,Gm). Denote by

invv : Br(Fv) =H2(Fv,Gm)→Q/Z

the canonical isomorphism (the invariant map) given by local class field theory.
Define

〈a, b〉Cassels =
∑
v∈ΣF

invv
((
(βv,1 − β1,v)∪ β′

v

)
+ εv
)
∈Q/Z.

This can be checked to be independent of the selections made and defines the
pairing on X(E/F )(non-p).

REMARKS 2.3.1

(a) For this paper, only that part of the construction of the Cassels pairing in
Sections 2.3.2–2.3.5 is required. This is because, under the hypotheses of the main
theorems of this paper stated in Section 4.1, the subgroup X(E/K) of H1(K,E)

has the following divisibility property.
Under the hypotheses and notations of the main theorems of this paper

stated in Section 4.1, for all prime numbers l ∈ P where l is coprime to Pic(A)

and for any integer n≥ 0 there is a subgroup H of H1(K,E) such that lnH =

X(E/K)l∞ .
This divisibility holds because for any sufficiently large positive integer a

the group X(E/K)l∞ is generated by the cohomology classes δM0(c) where c

ranges over the elements of Λ(a) (Theorem 5.6.2) and lnδM0+n(c) = δM0(c) if
c ∈ Λ(M0 + n) (Lemma 4.2.1(c)).

It would be interesting to have examples of elliptic curves E/K and prime
numbers l for which X(E/K)l∞ is nonzero but does not have this divisibility
property as a subgroup of H1(K,E).

(b) The Cassels pairing for abelian varieties over global fields can be defined
in several ways. For a more geometric construction of the pairing than that given
above, see [10, Chapter I, Remark 6.11, p. 98]. For the special case of Jacobians
of curves, see [10, Chapter I, Remark 6.12, p. 100]. For the construction of the
pairing including the p-torsion part of the Tate–Shafarevich group, where p is the
characteristic of the base field, see [10, Chapter II, Theorem 5.6, pp. 247–248].

Part 3. The cohomology classes γn(c), δn(c)

3.1. The set P of prime numbers

We define a set P of prime numbers by arithmetic conditions. For prime numbers
l of P we shall consider in Parts 4 and 5 the structure of the l-primary component
of the Tate–Shafarevich group X(E/F ) of elliptic curves E/F .
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3.1.1.
For a place v ∈ΣF of the global field F , let

Fv denote the completion of F at v;
F nr
v denote the maximal unramified extension of the local field Fv (that

is, F nr
v is the field of fractions of the strict Henselization of the valuation ring

of Fv);
Ov denote the discrete valuation ring of the local field Fv ;
∞∈ΣF be a place of F ;
K be a separable imaginary quadratic extension field of F with respect

to the place ∞ as in Section 1.2;
E/F be an elliptic curve (as in Section 1.5);
E denote the Néron model over Ov of the elliptic curve E ×F Fv/Fv ;
E0 denote the closed fiber of E/Ov ;
π0(E0) be the group of connected components of E0 as a Gal(F nr

v /Fv)-
module.

Define similarly Kw, Knr
w for a place w ∈ΣK of the imaginary quadratic extension

field K of F .

THEOREM 3.1.1 ([10, CHAPTER I, PROPOSITION 3.8, P. 57])

Write G=Gal(F nr
v /Fv). There is an isomorphism

H1
(
G,E(F nr

v )
)∼=H1

(
G,π0(E0)

)
.

In particular, H1(G,E(F nr
v )) is a finite group for all v and if the elliptic curve

E has good reduction at v, then H1(G,E(F nr
v )) = 0.

DEFINITION 3.1.2

Let P be the set of all prime numbers such that for all l ∈ P we have that

(a) p, 2, and the prime factors of |B∗|/|A∗| are not in P ;
(b) Hi(K(Eln)/K,Eln) = 0 for all integers n≥ 1 and for all i≥ 0 (see Propo-

sition 1.12.1);
(c) the natural injection Gal(F (El∞)/F )→ Γ̂l is an isomorphism (see Sec-

tion 1.11 and Igusa’s Theorem 1.11.2);
(d) H1(Knr

z /Kz,E)l∞ = 0 for all places z of K (see Theorem 3.1.1 above);
(e) K and F (El∞) are linearly disjoint over F (see Proposition 1.12.2 or [1,

Proposition 7.3.10]);
(f) P excludes the prime numbers of the finite set E of Proposition 1.10.1,

that is to say, we have E(K[A])lm = 0 for all l ∈ P , for all m≥ 1, where K[A] is
defined in Section 1.10;

(g)
(
1 0
0 −1

)
∈Gal(F (El∞)/F ) (see Proposition 1.12.2, which is a consequence

of Igusa’s Theorem 1.11.1).

REMARKS 3.1.3

(a) The first six conditions of Definition 3.1.2 hold for all except finitely many
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prime numbers l. Only condition (g) of Definition 3.1.2 fails to hold in general
for all but finitely many prime numbers. The set P is infinite and has positive
Dirichlet density.

The set P can therefore be obtained from the set S of prime numbers pro-
vided by Proposition 1.12.2 by deleting a finite number of elements. More pre-
cisely, the set P consists of all but finitely many prime numbers l of the form
2sn+ 1 where s ≥ 1 and n is odd such that q = |k| is a 2sth-power nonresidue
modulo l (see [1, Remarks 7.3.14(1) and Remarks 7.7.6(1)]).

(b) The set P of prime numbers of Definition 3.1.2 above coincides with the
set of prime numbers written P \ F of [1, Lemma 7.14.11]. The only difference
between Definition 3.1.2 of the set of prime numbers P and the similar definition
[1, Definition 7.10.3] is the extra hypothesis of Definition 3.1.2(f) above, which
excludes from P the finitely many prime numbers of the exceptional set E of
Proposition 1.10.1.

LEMMA 3.1.4

For any integers 0 ≤ m ≤ n and for all prime numbers l ∈ P the inclusion of
group schemes Elm →Eln induces an injection of cohomology groups

H1(K,Elm)−→H1(K,Eln).

Proof
This follows from the long exact sequence induced by the isogeny on the finite
group scheme En of multiplication by lm

0→Elm(K)→Eln(K)→Eln−m(K)

→H1(K,Elm)→H1(K,Eln)→H1(K,Eln−m)→ · · ·

together with the nonexistence of K-rational l-torsion on E (by Proposition 1.10.1
and the definition of P , Definition 3.1.2(f)). �

3.1.2.
We write, where the limits are set-theoretic unions by Lemma 3.1.4,

H1(K,El∞) = lim
−→
n

H1(K,Eln)

and

Sell∞(E/K) = lim
−→
n

Selln(E/K).

3.1.3.
Let Q(l), for any prime number l, be the additive group of rational numbers with
denominators a power of l; the quotient group Q(l)/Z is a divisible abelian group
where every element is annihilated by a power of l.

We have the exact sequence of abelian groups for all prime numbers l ∈ P
where E(K)tors denotes the torsion subgroup of E(K)
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(3.1.1) 0−→ E(K)

E(K)tors
⊗Z

Q(l)

Z
−→ Sell∞(E/K)−→X(E/K)l∞ −→ 0.

This exact sequence (3.1.1) is obtained from Lemma 3.1.4, the exact sequence of
Section 2.2.3, and because E(K) has no l-torsion (see Definition 3.1.2(f)).

The exact sequence (3.1.1) splits and gives the isomorphism

(3.1.2) Sell∞(E/K)∼= E(K)

E(K)tors
⊗Z

Q(l)

Z
⊕X(E/K)l∞ .

This holds because the abelian group E(K)/E(K)tors⊗Z Q(l)/Z, where E(K) is
a finitely generated group, is injective in the category of abelian groups.

It follows from the isomorphism (3.1.2) that Sellm(E/K) is precisely the
subgroup of Sell∞(E/K) annihilated by lm; that is to say, we have for all m≥ 0

and all l ∈ P that

(3.1.3) Sellm(E/K)∼=
(
Sell∞(E/K)

)
lm
.

3.2. Frobenius elements and the set Λ(n) of divisors

3.2.1.
Let

F be the function field of the curve C/k as in Section 1.2;
∞∈ΣF be a closed point of C/k;
K be a separable imaginary quadratic extension field of F with respect

to ∞ as in Section 1.2;
τ ∈Gal(K/F ) be the nontrivial element of the Galois group of K/F ;
E/F be an elliptic curve with conductor I ;
P be the set of prime numbers associated to E,F,K as in Section 3.1;
l ∈ P be a prime number in P .

As in Section 1.12.1, for every prime number l 
= p, an isomorphism is fixed
between Gal(F (El∞)/F ) and a subgroup of GL2(Zl) by fixing a basis of the
corresponding Tate module.

3.2.2.
For each integer n ≥ 1 and the chosen l ∈ P , let τ∞ ∈ Gal(K(Eln)/F ) be the
unique element of this Galois group satisfying the two conditions:

(a) τ∞|F (Eln ) =
(
1 0
0 −1

)
; that is to say, the restriction of τ∞ to the field exten-

sion F (Eln)/F is
(
1 0
0 −1

)
;

(b) τ∞|K = τ is the nontrivial element of Gal(K/F ).

The elements τ and τ∞ have exact order 2.

3.2.3.
For any Z[Gal(K/F )]-module M on which multiplication by 2 is an isomorphism,
we have a decomposition of M as a sum of eigenspaces under the action of τ , the
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nontrivial element of Gal(K/F ),

M ∼=M+ ⊕M−,

where M+ is the submodule of M on which τ acts as 1 and where M− is similarly
the submodule of M on which τ acts as −1.

DEFINITION 3.2.1

(a) For a prime divisor z ∈ΣF , unramified in the field extension K(Eln)/F , let

Frob(z)

denote the conjugacy class of Gal(K(Eln)/F ) containing the Frobenius substi-
tutions of the prime divisors above z.

(b) For l ∈ P , let Λ1(n) be the set of prime divisors z in ΣF , of support
coprime to ∞ and Supp(I) and the discriminant of K/F , which satisfy

Frob(z) = [τ∞],

where [τ∞] denotes the conjugacy class in Gal(K(Eln)/F ) of τ∞.
(c) For r ≥ 0, let Λr(n) be the set of effective divisors z1+ · · ·+zr on the affine

curve SpecA which have r prime components zi, all of which have multiplicity 1
and belong to Λ1(n).

We conventionally put for all n≥ 1

Λ0(n) = {0},
which is the set consisting of the zero divisor on C/k.

(d) Put

Λr = Λr(1),

Λ(n) =
⋃
r≥0

Λr(n),

Λ =
⋃
n≥1

Λ(n).

We have that

Λr(n) =

⎧⎪⎪⎨⎪⎪⎩z1 + · · ·+ zr ∈Div+(A)

∣∣∣∣∣∣∣∣
z1, . . . , zr are distinct prime divisors such
that, for all i, zi is prime to ∞,Supp(I),

and the discriminant of K/F and
Frob(zi) = [τ∞] on K(Eln)

⎫⎪⎪⎬⎪⎪⎭ .

The set Λr has a decreasing filtration

Λr =Λr(1)⊇ Λr(2)⊇ Λr(3)⊇ · · · .

REMARKS 3.2.2

(a) The prime divisors in Λ(n) are infinite in number, by the Chebotarev density
theorem, and remain prime in the field extension K/F , and their liftings to K

split completely in K(Eln)/K. Furthermore, E has good reduction at all prime
divisors of Λ(n).
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Note that the prime number l ∈ P is considered to be fixed and the sets
Λr(n) depend on l.

(b) The set Λ(n) is defined for any prime number l in P and contains only
effective divisors on SpecA consisting of sums of distinct prime divisors whose
corresponding Frobenius conjugacy classes in Gal(K(Eln)/F ) are all the same
and equal to [τ∞]. This unique Frobenius conjugacy class is of a special kind; in
particular, its elements have order 2.

3.2.4.
For any prime number λ distinct from the characteristic of F , let

ρ : Gal(F sep/F )→AutQλ

(
Tλ(E)⊗Zλ

Qλ

)
denote the Galois representation on the λ-adic Tate module Tλ(E) of the elliptic
curve E; that is to say,

Tλ(E)⊗Zλ
Qλ =H1

ét(E ⊗F F sep,Qλ)
∗,

where ∗ denotes the dual Qλ-vector space.
For z a prime of F , let Iz be an inertia subgroup of Gal(F sep/F ) at z, and

let

az =Tr
(
ρ
(
Frob(z)

) ∣∣ (Tλ(E)⊗Zλ
Qλ

)Iz)
.

That is to say, az is the trace of the Frobenius at z on the part of the Tate
module invariant under Iz . Then we have az ∈ Z (see [1, Examples 5.3.18(1)]).

LEMMA 3.2.3

Suppose that z ∈ΣF is a prime divisor of F , and suppose that l ∈ P . Write κ(z)

for the residue field at z.

(a) If z ∈ Λ1(n), then we have az ≡ |κ(z)|+ 1≡ 0 (mod ln).
(b) If z ∈ Λ1(n), E0,z denotes the closed fiber over z of the Néron model of

E/F , and y is the prime divisor of K lying over z, then we have group isomor-
phisms, for δ =+1 or −1,

E0,z
(
κ(y)
)δ
ln

∼= E0,z
(
κ(z)
)
ln

∼= Z/lnZ.

Proof
(a) As az is the trace of a Frobenius above z on the Tate module of E/F , we
have by the Grothendieck–Lefschetz trace formula, where κ(z) is the residue field
of F at z and E0,z is the closed fiber over z of the Néron model of E/F ,

az =
∣∣κ(z)∣∣+ 1−

∣∣E0,z(κ(z))∣∣.
On the one hand, let K ′ be the field K(Eln). The characteristic polynomial

of the Frobenius FrobK′/F (z) above z acting on the l-adic Tate module of E/F

is equal to

X2 − azX +
∣∣κ(z)∣∣.



Tate–Shafarevich groups 709

On the other hand as z ∈ Λ1(n), the prime z is a place of good reduction
of E/F (see Remark 3.2.2(a)). Therefore, the characteristic polynomial of the
Frobenius FrobK′/F (z) = [τ∞] above z acting on Eln , the group scheme of ln-
torsion points of E, is equal to

X2 − 1 (mod ln)

by condition (a) of Section 3.2.2.
Comparing these two quadratic polynomials modulo ln proves the congru-

ences in part (a) of the lemma.
(b) Let y be the unique place of K lying over the place z of F where z ∈ Λ1(n).

Then κ(y) is a quadratic extension of κ(z). Furthermore, as FrobK′/F (z) = [τ∞]

where τ∞ has order 2 (see Section 3.2.2, Remark 3.2.2(b)), the prime y splits
completely in the extension K ′/K. The map of reduction modulo a prime of K ′

over z

E(K ′)ln →E0,z
(
κ(y)
)
ln

is an isomorphism. Hence, we have that

E0,z
(
κ(y)
)
ln

∼=
( Z

lnZ

)2
.

As l is an odd prime number and the roots ±1 of the characteristic polynomial
X2 − 1 of τ∞ on Eln are rational over the prime field Z/lZ, the action of τ∞ on
E0,z(κ(y))ln decomposes into a sum over the eigenspaces of τ∞. Hence, we have
that for δ =±1

E0,z
(
κ(y)
)δ
ln

∼= Z/lnZ.

Furthermore, we have that

E0,z
(
κ(y)
)+

= E0,z
(
κ(z)
)
.

The result follows from this. �

REMARKS 3.2.4

(a) Let z ∈ ΣF be a prime divisor which is coprime to ∞, Supp(I), and the
discriminant of K/F and which is inert in the field extension K/F . Then it can
be shown, in a similar way to the proof of Lemma 3.2.3, that z ∈ Λ1(n) if and
only if

az ≡
∣∣κ(z)∣∣+ 1≡ 0 (mod ln)

and the Frobenius Frob(z) does not act as a homothety on Tl(E)⊗Zl
Z/lnZ where

az is the trace of the Frobenius Frob(z) on the Tate module as in Section 3.2.4.
(b) Fix a prime l ∈ P . For two integers a, b ∈ Z denote by vl(a, b) the valuation

at l of the greatest common divisor of a and b. For a prime divisor z of SpecA
define α(z) by the equation

α(z) = vl
(∣∣κ(z)∣∣+ 1, az

)
,
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where as in Section 3.2.4

az =
∣∣κ(z)∣∣+ 1−

∣∣E0(κ(z))∣∣
and where E0 is the closed fiber of the Néron model of E at z.

The prime divisors z of SpecA in the set Λ1 have the property that they are
coprime to I , remain prime in K/F , and satisfy

α(z) = vl
(∣∣κ(z)∣∣+ 1, az

)
≥ 1.

(c) If r > 0 and c ∈ Λr, then we write

α(c) = min
z∈Supp(c)

α(z), α(0) = +∞.

We have the equation

Λr(n) =
{
c ∈ Λr

∣∣α(c)≥ n
}
,

where n is any integer ≥ 1; α(c) is the greatest integer n such that c ∈ Λr(n).
The set Λr is then equipped with a decreasing filtration

Λr =Λr(1)⊇ Λr(2)⊇Λr(3)⊇ · · · .

(d) In the notation of the monograph [1, Section 7.11], we have Λ(n) =Dln .

3.3. A refined Hasse principle for finite group schemes

The finite group schemes in question are Eln/F , and the Hasse principle concerns
the localization at places of F of finite groups of their principal homogenous
spaces.

3.3.1.
Suppose that

E is an elliptic curve defined over F ;
K is an imaginary quadratic field over F with respect to ∞;
l ∈ P is a necessarily odd prime number in the set P (see Section 3.1);
n≥ 1 is an integer;
Ln is the field K(Eln) which is Galois over F .

LEMMA 3.3.1

The restriction map from K to Ln induces an isomorphism

H1
(
K,Eln(Ln)

) ∼=−→HomGal(Ln/K)

(
Gal(Lab

n /Ln),Eln(Ln)
)
,

where Lab
n is the maximal separable abelian extension of Ln.

Proof
The Hochschild–Serre spectral sequence, where as in Section 3.3.1 Ln =K(Eln),

Hp
(
Ln/K,Hq

(
Ln,Eln(Ln)

))
⇒Hp+q

(
K,Eln(Ln)

)
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gives rise to a short exact sequence of low-degree terms

0→H1
(
Ln/K,Eln(Ln)

)
→H1

(
K,Eln(Ln)

)
→H1

(
Ln,Eln(Ln)

)Gal(Ln/K)

→H2
(
Ln/K,Eln(Ln)

)
→H2

(
K,Eln(Ln)

)
.

The two cohomology groups H1(Ln/K,Eln(Ln)) and H2(Ln/K,Eln(Ln)) are
zero by the definition of P (see Definition 3.1.2(b)); hence, this exact sequence
shows that the restriction map of the lemma is an isomorphism. We have that

H1
(
K,Eln(Ln)

)
→H1

(
Ln,Eln(Ln)

)Gal(Ln/K)

is an isomorphism of Gal(Ln/F )-modules. The isomorphism of the lemma follows
immediately. �

PROPOSITION 3.3.2

If S is a finite subgroup of H1(K,Eln), then there is a finite abelian extension
LS,n of Ln, an isomorphism of Gal(Ln/K)-modules

Gal(LS,n/Ln) ∼= Hom
(
S,Eln(Ln)

)
,

(3.3.1)
σ �→ φσ,

and an isomorphism of abelian groups (if S is a Z[Gal(K/F )]-module, then an
isomorphism of Z[Gal(K/F )]-modules)

S ∼=HomGal(Ln/K)

(
Gal(LS,n/Ln),Eln(Ln)

)
.

For the proof of Proposition 3.3.2, see [1, Corollary 7.18.10]. Note that the set
of prime numbers P \ F of [1, (7.18.1) and Corollary 7.18.10] coincides with the
set P of prime numbers defined in Section 3.1 above.

3.3.2.
For a prime divisor v of K, denote by

resv :H
1(K,Eln)−→H1(Kv,Eln)

the restriction homomorphism at v where Kv is the completion of K at v.
Let S be a finite subgroup of H1(K,Eln). For s ∈ S and v a place of K, we

have in the notation of Proposition 3.3.2 applied to the subgroup S

resv(s) = 0⇔ φσ(s) = 0 for all σ ∈Dv′ ,

where v′ is a prime divisor of Ln above v, Dv′ is the decomposition group of a
prime divisor of LS,n above v′, and φσ ∈Hom(S,Eln(Ln)) as in (3.3.1).

3.3.3.
Let τ∞ ∈Gal(Ln/F ) be the element of order 2 of Section 3.2.2. The element τ∞
acts as −1 on the lnth roots of unity and preserves the Weil pairing on Eln .
(With reference to the exact sequence (1.11.1), det(τ∞) = −1 acts on the lnth
roots of unity.)
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We obtain (see Section 3.2.3), because l is odd, the decompositions into
eigenspaces under the action of τ∞

H1(K,Eln) ∼=H1(K,Eln)
+ ⊕H1(K,Eln)

−,

Eln(Ln) ∼= Eln(Ln)
+ ⊕Eln(Ln)

−.

We obtain that the +1 eigenspace

Hom
(
H1(K,Eln),Eln(Ln)

)+
is isomorphic to the profinite group of Z[τ∞]-homomorphisms from H1(K,Eln)

to Eln(Ln) and hence we obtain an isomorphism between this τ∞-invariant sub-
group and the profinite Pontryagin dual of the discrete torsion abelian group
H1(K,Eln); namely, we have an isomorphism, where a basis of Tl(E) is fixed as
in Section 1.12.1,

Hom
(
H1(K,Eln),Eln(Ln)

)+ ∼=H1(K,Eln)
∗,

where the Pontryagin dual is given by

H1(K,Eln)
∗ =Hom

(
H1(K,Eln),Q/Z

)
.

For a finite subgroup S of H1(K,Eln) there is similarly an isomorphism

Ŝ ∼=Hom
(
S,Eln(Ln)

)+
.

PROPOSITION 3.3.3

Let S be a finite subgroup of H1(K,Eln), and let χ ∈ Ŝ. For any integer t ≥
n, there is a set of positive Dirichlet density of prime divisors z ∈ Λ1(t) of F

unramified in Lt =K(Elt) such that

χ= φFrob(z×)

for some prime divisor z× of Lt lying above z, where φFrob(z×) ∈Hom(S,Elt(Lt))
+

is as in (3.3.1).

Proof
By Lemma 3.1.4, there is an injection of cohomology groups for all t≥ n

H1(K,Eln)→H1(K,Elt)

obtained from the inclusion of finite group schemes Eln ⊆Elt . The finite subgroup
S is then a subgroup of H1(K,Elt) for all t≥ n. Applying Proposition 3.3.2 to S

as a subgroup of H1(K,Elt) we obtain the abelian extension LS,t/Lt where we
write Lt =K(Elt).

By Proposition 3.3.2 there is an element σ ∈Gal(LS,t/Lt) such that

χ= φσ.

We have that

Gal(LS,t/Lt)
+ ∼= Ŝ
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from the isomorphism of (3.3.1) and the isomorphism of Section 3.3.3

Ŝ ∼=Hom
(
S,Elt(Lt)

)+
.

In particular, we have that φτ∞
σ = φσ . As the order of Gal(LS,t/Lt) is odd, we

then have that σ = ρτ∞ .ρ for some ρ ∈Gal(LS,t/Lt). By the Chebotarev density
theorem there is a set of positive Dirichlet density of prime divisors z ∈ ΣF of
F such that Frob(z) in Gal(LS,t/F ) contains τ∞ρ and where z is unramified in
LS,t/F . Note that the finitely many prime divisors ramified in the field extension
LS,t/F depend only on S and not on t.

Since the restriction of τ∞ρ to Lt is τ∞, we have z ∈ Λ1(t). We then have
that z has residue class extension degree 2 in Lt/F for any prime divisor above
z in Lt. Hence for any z×, a prime divisor of Lt lying above z, we have that

Frob(z×) = (τ∞ρ)2 = ρτ∞ .ρ= σ. �

PROPOSITION 3.3.4

Let S be a finite subgroup of H1(K,Eln), and let χ ∈ Ŝ. Then for any integer
t≥ 1 there is a set of positive Dirichlet density of prime divisors z ∈ Λ1(t) such
that, for the prime divisor y of K lying over z, there is a commutative diagram
of group homomorphisms

S
resy−→ resy(S)

χ↘ ∼= ↓ ψ

χ(S)

where ψ is an isomorphism of finite cyclic groups.

Proof
As Λ1(m), m≥ 1, is a decreasing filtration of Λ1(1), we may assume that t≥ n.
By Lemma 3.1.4, there is an injection of cohomology groups for all t≥ n

H1(K,Eln)→H1(K,Elt)

obtained from the inclusion of finite group schemes Eln ⊆Elt . The finite subgroup
S is then a subgroup of H1(K,Elt) for all t≥ n.

Select the prime divisor z ∈ ΣF as in Proposition 3.3.3 applied to S,χ and
where the divisors z are different from the finitely many prime divisors of F where
the cohomology classes of the finite group S ramify, that is to say, the finitely
many prime divisors where the field extension LS,t/F of (3.3.1) is ramified. For
such a z, let y be the prime divisor of K above z.

The decomposition group of y in Gal(LS,t/K) is generated by the Frobenius
element Frob(y) as the field extension LS,t/K is unramified at y. By Section 3.3.2
we then have that

ker
(
S

resy−→H1(Ky,Elt)
)
= ker(χ).
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That is to say, the kernel in S of the restriction homomorphism at y of the
classes of S is equal to ker(χ). Hence, the two finite cyclic groups resy(S), χ(S)
are isomorphic and we obtain the isomorphism ψ of the commutative diagram of
the proposition. �

COROLLARY 3.3.5

We have that

Λr(n) is infinite for all integers r,n≥ 1;

Λ0(n) = {0} for all n≥ 1.

Proof
We have from Proposition 3.3.4 that Λ1(n) has infinitely many elements for all
integers n≥ 1. As Λr(n) consists of all sums of r distinct prime divisors of Λ1(n)

(see Definition 3.2.1) and as Λ0(n) = {0}, the corollary then follows. �

REMARK 3.3.6

Proposition 3.3.4 implies that, under the hypotheses of the proposition, the kernel
of the natural homomorphism

ψ :H1(K,Eln)→
∏

z∈Λ1(n)

H1(Ky(z),Eln)

is zero, where y(z) is the place of K over z ∈ Λ1(n). To show this, it is sufficient
to apply the proposition to a faithful character χ of the finite cyclic group S

generated by any element of H1(K,Eln).

The Hasse principle for the group scheme Eln and the set of prime divisors Λ1(n)

is precisely that the kernel of the homomorphism ψ is zero. It says that a principal
homogeneous space of Eln which is locally trivial at all places of F in Λ1(n) must
be globally trivial.

In this way, Proposition 3.3.4 is a refined form of the Hasse principle for the
finite group scheme Eln . It would be interesting to know to what other group
schemes the localization properties of finite subgroups of cohomology groups
given in Proposition 3.3.4 also hold. For more details on the Hasse principle, see
[10, pp. 142–150].

3.4. Drinfeld–Heegner points and the cohomology classes γn(c), δn(c)

3.4.1.
Let

E/F be an elliptic curve equipped with an origin, that is to say, E/F is
a 1-dimensional abelian variety;

I be the ideal of A which is the conductor of E/F without the component
at ∞;
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ε = ±1 be the sign in the functional equation of the L-function of the
elliptic curve E/F .

Assume that (see also [1, Sections 4.3, 4.7, or 7.6]):

(α) E/F has split Tate multiplicative reduction at ∞ (see Section 1.7 or [1,
Section 4.7]);

(β) K is an (separable) imaginary quadratic field extension of F , with respect
to ∞, such that all primes dividing the conductor I split completely in K.

The hypothesis (α) implies that E/F is covered by the Drinfeld modular
curve XDrin

0 (I) (see Section 3.4.4 below). The hypothesis (β) ensures the existence
of Drinfeld–Heegner points on XDrin

0 (I). The two hypotheses together ensure that
there are Drinfeld–Heegner points on the elliptic curve E/F . Note that, from
Section 3.4.6 to the end of this Section 3.4, it is assumed that K 
= F ⊗Fq Fq2

where Fq is the exact field of constants of F .
In this section we detail this construction of Drinfeld–Heegner points as well

as define the cohomology classes γn(c), δn(c).

3.4.2.
Let λ be any prime number of Z distinct from the characteristic of F . Let ρ

be the 2-dimensional λ-adic representation of Gal(F sep/F ) corresponding to E

where F sep is the separable closure of F ; that is to say, ρ is the continuous
homomorphism

ρ : Gal(F sep/F )→ EndQλ

(
H1

ét(E ⊗F F sep,Qλ)
)
.

For each place v of F put

av =Tr
(
ρ
(
Frob(v)

) ∣∣H1
ét(E ⊗F F sep,Qλ)

Tv
)

where Tv is the inertia subgroup of Gal(F sep/F ) over v. The representation ρ

satisfies (see [1, Example 5.3.18])

av ∈ Z for all v ∈ΣF .

3.4.3.
Let

B be the integral closure of A in K;
Oc be the order of K, with respect to A, and of conductor c for any divisor

c ∈Div+(A) (see [1, Section 2.2]);
τ be the nontrivial element of Gal(K/F );
IB = I1I2 be a factorization of ideals of B where I1, I2 are ideals of B such

that Iτ2 = I1 where I is the ideal of A which is the conductor of E/F without
the place at ∞, as in Section 3.4.1; such a factorization exists because of the
hypothesis that the prime ideal components of I split completely in K/F (by
hypothesis (β) of Section 3.4.1).
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As in Section 1.4, K[c] denotes the ring class field of K of conductor c ∈
Div+(A). In particular, K[0] is the Hilbert class field of K; that is to say, K[0] is
the maximal unramified abelian extension of K which is split completely at ∞.

3.4.4.
Let H(ρ) be the Heegner module of ρ and K/F with exceptional set of primes
those dividing I and the place ∞ with coefficients in Z (see [1, Section 5.3]),
where I is the conductor of E, without the component at ∞.

As in Section 1.7 (see also [1, Section 4.7 and Appendix B]), there is a finite
surjective morphism of curves over F under the hypothesis (α),

π :XDrin
0 (I)→E.

We may translate π in the group scheme E so that π−1(0) consists of at least
one cusp of XDrin

0 (I) (as in [1, (4.8.1)]); this rigidifies the map π. The cusps of
the modular curve XDrin

0 (I) generate a torsion subgroup of the Jacobian of this
curve (see [1, Theorem 2.4.9]).

Let a be a divisor class in the Picard group Pic(Oc) of the order Oc. Assume
that c and I are coprime. Then there is a Drinfeld–Heegner point

(a, I1, c) ∈XDrin
0 (I)

(
K[c]
)

which is a noncuspidal point of XDrin
0 (I) and is rational over the ring class field

K[c].
This point (a, I1, c) is constructed as follows. Fix an embedding K → F̂∞

where F̂∞ is the completion of the algebraic closure of F∞, which is the com-
pletion of F at ∞. Let L be a projective Oc-module of rank 1 in the class a

and contained as a lattice in F̂∞. Then I1(Oc) = I1 ∩ Oc is an invertible ideal
of Oc and L′ = I1(Oc)

−1L is a projective Oc-module of rank 1 contained as a
lattice in F̂∞. Let D and D′ be the rank 2 Drinfeld modules for A over the
field F̂∞ corresponding, respectively, to the lattices L and L′. Then D and D′

have general characteristic and complex multiplication by Oc. The inclusion of
Oc-modules L⊂ L′ corresponds to an I-cyclic isogeny f :D→D′, as its kernel is
isomorphic as an A-module to Oc/I1(Oc)∼=A/I . The pair (D,ker(f)) defines the
point (a, I1, c) on XDrin

0 (I)(F̂∞). That this point (a, I1, c) is defined over K[c]

results from the main theorem of complex multiplication (see [1, Section 4.3] for
more details).

3.4.5.
The image

π(a, I1, c) ∈E
(
K[c]
)

is a Drinfeld–Heegner point of E rational over the ring class field K[c] and is
written in the notation of [1, Section 4.8] as

(a, I1, c, π) ∈E
(
K[c]
)
.
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By [1, Example 5.3.18] there is a homomorphism of discrete Gal(Ksep/K)-
modules

H(π) :H(ρ)(0) → E(F sep),

〈a, c〉 �→ (a, I1, c, π)

for all c ∈Div+(A) coprime to I , a ∈ Pic(Oc). The image of this homomorphism
H(π) consists of the Z-linear combinations of Drinfeld–Heegner points of E ratio-
nal over all the ring class fields K[c] for all c.

Let 〈0,0〉 be the element of the Heegner module H(ρ)(0) given by the principal
class of Pic(B), where B is the integral closure of A in K. Let

(0, I1,0, π) =H(π)
(
〈0,0〉

)
be the corresponding Drinfeld–Heegner point of E(K[0]) (see [1, (4.8.2)]). Let

(3.4.1) P0 =TrK[0]/K(0, I1,0, π) ∈E(K).

That is to say, P0 is the trace from K[0] to K of the point (0, I1,0, π); the point
P0 belongs to E(K) and the point (0, I1,0, π) belongs to E(K[0]).

3.4.6.
We now impose for the rest of this section the hypothesis that K 
= F ⊗Fq Fq2

where Fq is the exact field of constants of F ; that is to say, K is not obtained
from F by ground field extension.

Let c ∈ Λ(1); that is to say, c is a sum of distinct prime divisors of Λ1(1)

with multiplicity 1. Let

yc = π(0, I1, c) ∈E
(
K[c]
)
,

so that yc = (0, I1, c, π). The field K[0] is the Hilbert class field of K. Let

Gc =Gal
(
K[c]/K[0]

)
.

As K 
= F ⊗Fq Fq2 by hypothesis, we have that B∗ = A∗, where A∗,B∗ are the
unit groups of A,B, and hence (by [1, (2.3.8), p. 19]) there is a group isomorphism

Gc
∼=
∏
z

Gz,

where the product runs over the prime divisors z in the support of c and

Gz =Gal
(
K[c]/K[c− z]

)
is a cyclic group of order |κ(z)|+1 as z is inert in K/F (by [1, (2.3.12), p. 20]).
Fix a generator σz of the cyclic group Gz for all prime divisors z ∈ Λ1(1).

3.4.7.
Write for any prime divisor z ∈ Λ1(1) of F , where Dz ∈ Z[Gz],

Dz =−
|κ(z)|∑
i=1

i.σi
z.
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Here Dz is the Kolyvagin element of the map hz :Gz → Z where σ−i
z �→ −i for all

0≤ i≤ |κ(z)|. Note the minus sign here which agrees with the Kolyvagin elements
of [1, Chapter 5, pp. 175–178].

3.4.8.
For any divisor c ∈ Λ(1), put

Dc =
∏

z∈Supp(c)

Dz,

where Dc ∈ Z[Gc]. Then Dc is the Kolyvagin element of the map h :Gc → Z given
by h=

∏
z∈Supp(z) hz . Let

Gc =Gal
(
K[c]/K

)
,

where there is an exact sequence of finite abelian groups

0−→Gc −→Gc −→Gal
(
K[0]/K

)
−→ 0.

Let S be a set of coset representatives for Gc in Gc. Define the point Pc ∈E(K[c])

by

Pc =
∑
s∈S

sDcyc,

where yc = π(0, I1, c) is the element of E(K[c]) in Section 3.4.6.

3.4.9.
Suppose now that c ∈ Λ(n). We write Pc (mod ln) for the image of Pc in the
quotient group lnE(K[c]). Then we have that Pc (mod ln) belongs to

Pc (mod ln) ∈
(
lnE
(
K[c]
))Gc

.

This inclusion follows immediately from the formula in Z[Gc]

(σz − 1)Dz =−
∣∣G(c/c− z)

∣∣+ ∑
g∈G(c/c−z)

g

for all z ∈ Supp(c) and that |G(c/c − z)| = |κ(z)| + 1 is divisible by ln for all
z ∈ Supp(c). (For a detailed proof of this inclusion Pc (mod ln) ∈ (lnE(K[c]))Gc

see [1, Lemma 7.14.9 and Lemma 7.14.11].) Furthermore, we have that

P0 =TrK[0]/K(y0) ∈E(K),

where y0 is defined in Section 3.4.6 and where this notation P0 agrees with that
of (3.4.1). The point Pc (mod ln) in E(K[c])/lnE(K[c]) coincides with the point
denoted Pc in the book [1, Notation 7.14.10(iii) and Lemma 7.14.11].

3.4.10.
Let S be the ring Z/mZ where m is any nonzero integer. The morphism of
multiplication by m on the elliptic curve E then provides for any divisor c of
Div+(A) prime to I the following commutative diagram with exact rows and an
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exact right-hand column (see [1, Section 7.14.5]):
(3.4.2)

0

↓

H1
(
K[c]/K,E

(
K[c]
))

m

inf ↓

0→ mE(K) → H1(K,Em)
j→ H1(K,E)m → 0

↓ res ↓ quasi-isom. res ↓

0→
(
m
E
(
K[c]
))Gc ∂→ H1

(
K[c],Em

)Gc → H1
(
K[c],E

)Gc

m

f ↑

(H(0)
c,S)

Gc

Here (H(0)
c,S) is the c-component Heegner module with coefficients in the

ring S (see [1, (7.11.3) and Section 5.3]).
Let E be the finite exceptional set of prime numbers of Propositions 1.10.1

and 1.10.2. The middle restriction homomorphism here in (3.4.2) is a quasi-
isomorphism of quasigroups in [N(p)]Z where the finite exceptional set of prime
numbers is E and is independent of c (see Propositions 1.10.1 and 1.10.2, or
alternatively [1, Proposition 7.14.2]). In particular, this middle restriction homo-
morphism is an isomorphism for all integers m which are powers of prime numbers
of P (Definition 3.1.2) as P excludes the finitely many prime numbers of E .

The map f is obtained by sending a generator 〈a, c〉 of H(0)
c,S to its image

(a, I1, c, π) ∈E(K[c]) as in Sections 3.4.4 and 3.4.5.
This diagram (3.4.2) then provides the Heegner homomorphism, for all inte-

gers m ∈N prime to E ,

(H(0)
c,S)

Gc →H1(K,E)

whose image belongs to H1(K[c]/K,E(K[c]))m.

3.4.11.
Take m= ln where l ∈ P so that the middle quasi-isomorphism in diagram (3.4.2)
is an isomorphism. From the diagram (3.4.2), define γn(c) and δn(c) by the
formulae

Pc (mod ln) ∈
(
lnE
(
K[c]
))Gc

;

γn(c) is the image of Pc (mod ln) in H1(K,Eln);

δn(c) is the image of γn(c) in H1(K,E)ln .
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This is the same as the construction in [1, Section 7.14.10], where we write here
γn(c), δn(c) in place of γ(c), δ(c) to indicate their dependence on the integer n.

PROPOSITION 3.4.1

(a) The order of γn(c) is equal to the order of Pc (mod ln) in lnE(K[c]).
(b) The exponent t of the order lt of δn(c) is the least integer t such that

lt
(
Pc (mod ln)

)
∈ lnE(K[c]) +E(K)

lnE([c])
.

Proof
Here Pc (mod ln) denotes the image of Pc ∈E(K[c]) in lnE(K[c]). These results
on the orders of γn(c) and δn(c) follow immediately from their definition and the
commutative diagram (3.4.2). �

Part 4. Structure of the Tate–Shafarevich group and the Selmer group

4.1. Statement of the main theorems

This section contains no proofs. The main theorems of this paper, Theorems
4.1.4, 4.1.8, 4.1.9, and 4.1.10, are finally proved in Sections 5.3–5.5.

4.1.1.
Throughout this section, we assume that

E/F is an elliptic curve where F is a global field of characteristic p > 0;
I is the ideal of A which is the conductor of E/F without the component

at ∞;
K is an imaginary quadratic extension field of F with respect to ∞;
l ∈ P is a necessarily odd prime number in the set of prime numbers P

(see Section 3.1);
ε=±1 is the sign of the functional equation of the L-function L(E/F, s)

of E/F ;
τ is the element of order 2 of the Galois group Gal(K/F );
Pc ∈ E(K[c]) are the points defined in Section 3.4.8 over the ring class

fields K[c] for all divisors c ∈ Λ(1) and where P0 belongs to the group E(K) of
K-rational points;

α(c), for a divisor c ∈ Λ(1), is the largest integer n such that c ∈ Λ(n) if
c 
= 0 and such that α(0) = +∞ (see Remarks 3.2.4).

Assume that E,K,F satisfy the following hypotheses (as in [1, Section 7.6.1]):
(a) ∞ is a place of F with residue field equal to k;
(b) E/F has split Tate multiplicative reduction at ∞ (see Section 1.7 or [1,

Section 4.7]);
(c) K is an (separable) imaginary quadratic field extension of F , with respect

to ∞, such that all primes dividing the conductor I split completely in K and
K 
= F ⊗Fq Fq2 .
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These hypotheses (a), (b), and (c) are assumed for the rest of this paper.

4.1.2.
If M is a Gal(K/F )-module, then denote by M+ the submodule of M on which
τ acts by +1 and M− is similarly the submodule on which τ acts by −1.

4.1.3.
Let G be a finite abelian l-group. The invariants of G are the integers

r1 ≥ r2 ≥ r3 ≥ · · ·

such that G decomposes into elementary components

G∼= Z

lr1Z
⊕ Z

lr2Z
⊕ Z

lr3Z
⊕ · · · .

The integers r1, r2, r3, . . . are uniquely determined by G; the integers lr1 , lr2 , lr3 , . . .
are also sometimes called the invariants of G.

4.1.4.
As the elliptic curve E is defined over F , the l-power torsion subgroup X(E/K)l∞

of the Tate–Shafarevich group X(E/K) of the elliptic curve E ×F K over K

decomposes into eigenspaces

X(E/K)l∞ ∼=X(E/K)+l∞ ⊕X(E/K)−l∞

under the action of the element τ ∈Gal(K/F ).
The Cassels pairing on X(E/K) is antisymmetric and respects this decom-

position into eigenspaces. Furthermore, the Cassels pairing is nondegenerate if
this Tate–Shafarevich group X(E/K) is finite; therefore, if X(E/K) is finite,
then the invariants of the finite abelian l-group X(E/K)l∞ have even multiplic-
ity.

4.1.5.
Under the hypothesis that the Tate–Shafarevich group X(E/K)l∞ is finite, let

N1 ≥N3 ≥N5 ≥ · · ·

and

N2 ≥N4 ≥N6 ≥ · · ·

be integers such that

N1,N1,N3,N3,N5,N5, . . .

are the invariants of the finite abelian l-group X(E/K)εl∞ , which is the ε-
eigenspace, and

N2,N2,N4,N4,N6,N6, . . .

are the invariants of the finite abelian l-group X(E/K)−ε
l∞ , which is the −ε-

eigenspace. That is to say, putting ν(r) = (−1)rε we have isomorphisms for r = 1
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or r = 2,

X(E/K)
−ν(r)
l∞

∼=
⊕
s≥0

(Z/lN2s+rZ)2.

DEFINITION 4.1.1

Let m ≥ 1 be an integer, and let c ∈ Λ(m). Then the point Pc, defined in Sec-
tion 3.4.8, belongs to E(K[c]) and the point P0 belongs to E(K).

(a) Write

lm | Pc if Pc ∈ lmE
(
K[c]
)

and

lm ‖ Pc if Pc ∈ lmE
(
K[c]
)
\ lm+1E

(
K[c]
)
.

(b) For any integer r ≥ 0, let E(r) be the abelian group

E(r) =
⊕

c∈Λr(1)

A(c)E
(
K[c]
)
,

where the sum runs over all divisors c of Λr(1) and where A(c) = lα(c). If
r > 0, then the group E(r) is a direct sum of finite abelian l-groups of the form
E(K[c])/lα(c)E(K[c]). If r = 0, then E(0) is defined conventionally to be E(K[0]).
A point Pc ∈ E(K[c]), where c ∈ Λr(1), induces an element in A(c)E(K[c]) and
hence an element of E(r) where all its components in E(r) are zero except pos-
sibly for that in A(c)E(K[c]).

(c) Let P (r) be the subgroup of E(r) generated by the images in E(r) of the
points Pc for all c ∈ Λr(1).

Define Mr for any r ≥ 0 to be the largest integer n≥ 0 such that

P (r)⊆ lnE(r).

If P (r) = 0, then there is no such largest integer Mr and we then put

Mr =+∞.

CONJECTURE 4.1.2

For some r ≥ 0 we have Mr <+∞.

See [8, Conjecture A] and also [1, Conjecture 7.14.19] for an explanation of this
conjecture.

REMARKS 4.1.3

(a) The order of γn(c) is ln−m for all n ≥m if and only if lm ‖ Pc by Proposi-
tion 3.4.1. If Mr is finite, then there is a divisor c ∈ Λr(1) such that
γMr+1(c) 
= 0 and γMr(c) = 0; furthermore, γMr(c) = 0 for any c ∈ Λr(1) from
Proposition 3.4.1(a).

(b) We have that M0 <+∞ if and only if P0 has infinite order in E(K). This
equivalence requires that E(K) has no l-torsion, but this requirement holds by the
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restriction on the prime number l given by Definition 3.1.2(b). See Lemma 5.1.1
below for details.

(c) We have that α(c) is finite if and only if c 
= 0 (see Remarks 3.2.4(b) and
3.2.4(c)). If c 
= 0, then write

ordl(Pc)

=

{
max{N : lN | Pc} if this maximum is <α(c),

+∞ if max{N : lN | Pc} is ≥ α(c).

Write

ordl(P0) =max{N : lN | P0},

which is either an integer or +∞. If c 
= 0, then we have ordl(Pc)<+∞ if and
only if lordl(Pc) ‖ Pc and ordl(Pc)<α(c).

(d) By definition, for all integers r ≥ 0, Mr is given by

Mr =min
{
ordl(Pc)

∣∣ c ∈ Λr(1)
}
.

Note that Mr <+∞ if and only if there is c ∈ Λr(1) such that

ordl(Pc)<α(c)

with an evident interpretation in the case where r = 0, c = 0, and α(0) = +∞.
Furthermore, Mr <+∞ implies that for this selection of c ∈ Λr(1) we would have
lMr ‖ Pc, c ∈ Λr(α(c)), and Mr <α(c).

Alternatively, if r > 0, then we have that Mr <+∞ if and only if for some
c ∈ Λr(1) we have that

c ∈ Λr(m+ 1) \Λr(m+ 2)

and

ordl(Pc)≤m.

THEOREM 4.1.4

Suppose that P0 has infinite order in E(K), the group of K-rational points of E.
Let l be a prime number in P coprime to the order of Pic(A), the Picard group
of A. Then the Tate–Shafarevich group X(E/K) is finite and the invariants Ni,
with multiplicity 2, of the subgroup X(E/K)l∞ are given by

Ni =Mi−1 −Mi, for i≥ 1.

That is to say, we have the isomorphisms of eigenspaces

X(E/K)εl∞
∼=
∏

i even
i≥0

(Z/lMi−Mi+1Z)2,

X(E/K)−ε
l∞

∼=
∏
i odd
i≥0

(Z/lMi−Mi+1Z)2.
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REMARKS 4.1.5

(a) The image of the Drinfeld–Heegner point P0 in E(K)/E(K)tors is an eigen-
vector for τ and its eigenvalue is equal to −ε (by [1, Theorem 4.8.6, p. 98]; see
also [1, Lemma 7.14.11, p. 388]) where E(K)tors is the torsion subgroup of E(K).

(b) If the Drinfeld–Heegner point P0 has infinite order in E(K), then by [1,
Theorem 7.7.5 and Remarks 7.7.6(3)] the Tate–Shafarevich group X(E/K) is
finite and therefore the alternating Cassels pairing on X(E/K) is nondegenerate
and by Sections 4.1.4 and 4.1.5 the invariants of the τ -eigenspaces of X(E/K)l∞

have even multiplicity.

The next corollary is an immediate consequence of Theorem 4.1.4.

COROLLARY 4.1.6

Under the hypotheses of Theorem 4.1.4, the integers Mi satisfy

Mi −Mi+1 ≥Mi+2 −Mi+3 ≥ 0, for all i≥ 0,

and if j is such that

Mj =Mj+1 =Mj+2,

then the sequence Mj ,Mj+1,Mj+2,Mj+3, . . . is constant.

DEFINITION 4.1.7

Let

G=G1 × · · · ×Gr

be a direct product of finite cyclic groups Gi. The characters χ1, . . . , χr of G

form a triangular basis for the dual Ĝ, relative to the product G=
∏

iGi, if they
generate Ĝ and

χi(Gj) = 0, for all j > i.

THEOREM 4.1.8

Assume that P0 has infinite order in E(K), and assume that l ∈ P is a prime
number coprime to the order of the Picard group Pic(A). Suppose that the direct
product

D =
∏
i≥1

Di

is a maximal isotropic subgroup of X(E/K)l∞ for the Cassels pairing, and Di

is a finite cyclic group of order lNi for all i≥ 1, and we have direct products

Dε =
∏
i odd

Di,

D−ε =
∏

i even

Di.
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Then there are effective divisors c1 ≤ c2 ≤ · · · on F such that ci ∈ Λi(Mi−1) for
all i≥ 1 and the characters

d �→
〈
d, δMi−1(ci)

〉
Cassels

for all i

form a triangular basis of characters of D relative to the product D =
∏

iDi.

THEOREM 4.1.9

Assume that P0 has infinite order in E(K), and assume that l ∈ P is coprime to
the order of Pic(A). Let

M∞ =min
i∈N

Mi.

Then the group ZP0 has finite index in E(K) and the highest power of l dividing
the index [E(K) :ZP0] equals lM0 ; that is to say,∣∣(E(K)/ZP0

)
l∞

∣∣= lM0 .

Furthermore, we have that∣∣X(E/K)l∞
∣∣= l2(M0−M∞).

THEOREM 4.1.10

Assume that P0 has infinite order in E(K), and assume that l ∈ P is coprime to
the order of Pic(A). Then for all integers m≥ 0, the natural surjection from the
Selmer group to the Tate–Shafarevich group

(4.1.1) πm : Sellm(E/K)−→X(E/K)lm

splits and we have isomorphisms of eigenspaces

(4.1.2) Sellm(E/K)± ∼=
(
lmE(K)

)± ⊕X(E/K)±lm for all m≥ 0.

Furthermore, we have isomorphisms for all m≥ 0

(lmE(K))−ε ∼= Z/lmZ,
(4.1.3)

(lmE(K))ε ∼= 0.

The next corollary follows immediately from Theorems 4.1.4 and 4.1.10.

COROLLARY 4.1.11

Under the hypotheses of Theorem 4.1.10, put

N̂i =min(m,Mi−1 −Mi)

for all i and for all integers m. Then for all integers m≥ 0, the invariants of the
Selmer −ε-eigenspace Sellm(E/K)−ε are m,N̂2, N̂2, N̂4, N̂4, . . . and the invariants
of the Selmer ε-eigenspace Sellm(E/K)ε are N̂1, N̂1, N̂3, N̂3, . . . .

REMARK 4.1.12

The main result on the finiteness of Tate–Shafarevich groups proved in the mono-
graph [1, Theorem 7.6.5 and Theorem 7.7.5] is required for the proofs of the main
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results of this paper stated in this section; in particular, this paper does not pro-
vide a different proof of finiteness independent of the book [1]. This is also the
principal reason why hypotheses (a), (b), and (c) of Section 4.1.1 are required.

4.2. Cochains for the cohomology classes γn(c), δn(c)

The notation and hypotheses of Sections 4.1.1 and 4.1.2 hold in this section.

LEMMA 4.2.1

Let c ∈ Λ(n).

(a) The cohomology class γn(c) is represented by the cocycle

σ �→ − (σ− 1)Pc

ln
+ σ

Pc

ln
− Pc

ln
, Gal(Ksep/K)→E(Ksep)ln ,

where [(σ− 1)Pc]/l
n is the unique ln-division point of (σ− 1)Pc in E(K[c]) and

Pc/l
n is a fixed ln-division point of Pc.
(b) The cohomology class δn(c) is represented by the cocycle, where

[(σ− 1)Pc]/l
n is the unique ln-division point of (σ− 1)Pc in E(K[c]),

σ �→ − (σ− 1)Pc

ln
, Gal(Ksep/K)→E(Ksep).

(c) Let n≥m be positive integers, and let c ∈ Λ(n). Then we have that

lmδn(c) = δn−m(c),

lmγn(c) = γn−m(c).

Proof
(a), (b) These two formulae for cocycles representing the cohomology classes
γn(c) and δn(c) can be extracted from Step 2 of the proof of [1, Lemma 7.14.14].
We re-prove these formulae here.

From the diagram (3.4.2), the restriction homomorphism, where Gc =

Gal(K[c]/K),

H1
(
K,Eln(K

sep)
)
→H1

(
K[c],Eln(K

sep)
)Gc

is an isomorphism as the prime number l belongs to P . The point Pc belongs to
E(K[c]).

Let Pc/l
n ∈E(Ksep) be a fixed lnth division point of Pc; that is to say, Pc/l

n

is any point which satisfies ln(Pc/l
n) = Pc. Then the cocycle

φ : g �→ g
(Pc

ln

)
− Pc

ln
, Gal

(
Ksep/K[c]

)
→Eln(K

sep),

represents a cohomology class in H1(K[c],Eln(K
sep))Gc which is the image of

Pc (mod ln) ∈ (lnE(K[c]))Gc under the coboundary map (see the diagram (3.4.2))

∂ln :
(
lnE
(
K[c]
))Gc →H1

(
K[c],Eln(K

sep)
)Gc

.
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The inflation of φ to Gal(Ksep/K) is given by the cocycle

φ� : Gal(Ksep/K)→E(Ksep), g �→ g
(Pc

ln

)
− Pc

ln
,

which need not necessarily be annihilated by ln.
For any element g ∈Gal(Ksep/K), denote by

(g− 1)Pc

ln

the unique lnth root of (g−1)Pc in E(K[c]). This root exists because Pc belongs
to (lnE(K[c])Gc ; furthermore, it is unique because E(K[c])l∞ = 0 (by Defini-
tion 3.1.2(f), Proposition 1.10.1, and [1, Lemma 7.14.11(i)]).

The cochain

ψ : Gal(Ksep/K)→E
(
K[c]
)
, g �→ − (g − 1)Pc

ln
,

is a cocycle whose restriction to the subgroup Gal(Ksep/K[c]) is the zero cochain.
But ψ need not be annihilated by ln. The cochain

φ� + ψ : Gal(Ksep/K)→E(Ksep), g �→ g
(Pc

ln

)
− Pc

ln
− (g− 1)Pc

ln
,

is a cocycle which is annihilated by ln and whose restriction to Gal(Ksep/K[c])

is the cocycle

φ : Gal
(
Ksep/K[c]

)
→Eln(K

sep).

Hence, the cochain φ� +ψ is a cocycle

φ� +ψ : Gal(Ksep/K)→Eln(K
sep)

and this cochain represents the cohomology class γn(c) in H1(K,Eln). Therefore,
the cohomology class δn(c) of H1(K[c]/K,E)ln is represented by the cocycle

ψ : Gal
(
K[c]/K

)
→E(Ksep), g �→ − (g − 1)Pc

ln
,

as required.
(c) This follows immediately from the explicit cocycle formulae of parts (a)

and (b). �

LEMMA 4.2.2

Denote by a superscript ±1 the eigenspaces under the action of the nontrivial
element of Gal(K/F ). If c ∈ Λr(n), then we have

Pc (mod ln) ∈
((

lnE
(
K[c]
))Gc
)−ν(c)

,

γn(c) ∈H1(K,Eln)
−ν(c),

δn(c) ∈H1
(
K[c]/K,E

)−ν(c)

ln
,

where Gc =Gal(K[c]/K),

ν(c) = (−1)rε,
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r is the number of distinct prime divisors in the support of c, and ε is the sign
in the functional equation of the L-function of E/F .

For the proof, see [1, Lemma 7.14.11]. Note that the set of prime numbers P is
contained in the set of prime numbers denoted P \F in [1, Lemma 7.14.11].

4.3. Points Pc defined over local fields

The notation and hypotheses of Section 4.1.1 hold in this section. The Drinfeld–
Heegner points (a, I1, c), (a, I1, c, π) are defined in Sections 3.4.4 and 3.4.5.

PROPOSITION 4.3.1

Suppose that c ∈ Λ(1) and z ∈ Λ1(1) is a prime divisor disjoint from the support
of the divisor c. Let y be the unique prime of K lying over z, and let Ky be the
completion of K at y. Then the point (a, I1, c) ∈ XDrin

0 (K[c]) is definable over
Ky; that is to say,

(a, I1, c) ∈XDrin
0 (Ky).

Furthermore, we have that

(a, I1, c, π) ∈E(Ky)

is a point of the elliptic curve E definable over Ky.

Proof
The prime z is inert and unramified in K/F by Definition 3.2.1 and
Remark 3.2.2(a). Furthermore, the elliptic curve E/F has good reduction at z

by Remark 3.2.2(a). As I is the conductor of E/F without the component at ∞,
by Section 4.1.1, we have that z is disjoint from the support of I and hence the
curve XDrin

0 (I)/F also has good reduction z where there may be several disjoint
components in the closed fiber over z.

By [1, Theorem 4.6.19(ii)], because z is inert and unramified in K/F , the
reduction (a, I1, c) mod z is defined over the quadratic extension field κ(y) of
κ(z). That is to say, (a, I1, c) mod z is a point of the reduction at z of XDrin

0 (I)

which is defined over κ(y).
Let Fz be the completion of F at z. As XDrin

0 (I) has good reduction at z, it
follows that the point (a, I1, c) is defined over the field Ky as this is the unique
quadratic extension field of the local field Fz which is unramified over z. It then
immediately follows that (a, I1, c, π), which is the image of (a, I1, c) under the
morphism π :XDrin

0 → E of F -schemes (see Sections 3.4.4, 3.4.5), is a point of
the elliptic curve E defined over Ky . �

PROPOSITION 4.3.2

If z ∈ Λ1(1) is a prime divisor disjoint from the support of the divisor c ∈ Λ(1)

and y is the prime of K lying over z, then the image of Pc in lnE(Ky) via
Proposition 4.3.1 is uniquely determined by Pc.
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Proof
We have the isomorphism

K[c]⊗Ky
∼=
∏
i

K[c]xi ,

where the xi’s are the places of K[c] over the place y of K and K[c]xi is the com-
pletion of K[c] at xi. The Galois group Gc =Gal(K[c]/K) permutes transitively
the places xi and the completions K[c]xi . We then have that

lnE
(
K[c]⊗K Ky

)∼=∏
i

lnE
(
K[c]xi

)
.

The point Pc belongs to E(K[c]) by construction. Hence, the point
Pc (mod ln) of lnE(K[c]) induces an element (q1, q2, . . .) of lnE(K[c] ⊗K Ky)

where

(q1, q2, . . .) ∈
∏
i

lnE
(
K[c]xi

)
and

qi ∈ lnE
(
K[c]xi

)
for all i.

By Proposition 4.3.1, Pc is definable over Ky ; that is to say, Pc ∈ E(Ky)

and so we have qi ∈ lnE(Ky) for all i. But Pc (mod ln) ∈ (lnE(K[c]))Gc by Sec-
tion 3.4.11 (see also Lemma 4.2.2). It follows that (q1, q2, . . .) is invariant under Gc.
But the elements qi ∈ lnE(Ky) are permuted transitively by Gc. Hence, the ele-
ments qi are all equal and Pc (mod ln) is the point (q1, q1, . . .) ∈

∏
i l

nE([c]xi)

which is in the image of the diagonal map lnE(Ky) →
∏

i lnE(K[c]xi). Hence,
the components of the point Pc (mod ln) in lnE(K[c]⊗K Ky) are independent
of the place xi and depend only on Pc as required. �

4.4. The map χz

The notation and hypotheses of Section 4.1.1 hold in this section.

PROPOSITION 4.4.1

Let z ∈ Λ1(n) be a prime divisor, and let E0/κ(z) be the closed fiber of the Néron
model of E/F at the place z. Let az ∈ Z be the trace of the Frobenius at z on the
inertia invariant part of the Tate module of E as in Section 3.2.4. Let y be the
unique place of K over z. Let c ∈ Λ(n) be a divisor whose support contains z,
and put c′ = c− z ∈ Λ(n) so that c′ has support coprime to z.

(a) The endomorphism |G(c/c′)|Frob(z) − az of the elliptic curve E0/κ(z)
annihilates the abelian group E0(κ(y)).

(b) The group homomorphism

h : lnE0
(
κ(y)
)
→E0

(
κ(y)
)
ln
, x �→

( |G(c/c′)|Frob(z)− az
ln

)
x

is an isomorphism which commutes with τ .
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Proof
(a) As in Section 1.4, G(c/c′) denotes the Galois group Gal(K[c]/K[c′]). The
Frobenius Frob(z) acts on the Tate module of the elliptic curve E0/κ(z) with
characteristic polynomial

X2 −Xaz +
∣∣κ(z)∣∣.

Writing F for Frob(z), we have that F 2 − Faz + |κ(z)| annihilates the abelian
group E0(κ(y)). But F 2 is the identity automorphism on E0(κ(y)) as κ(y)/κ(z)

is a quadratic extension of finite fields. Hence, F 2 − Faz + F 2|κ(z)| annihilates
E0(κ(y)). That is to say, F (F (1 + |κ(z)|)− az) annihilates E0(κ(y)). As F is an
automorphism of E0(κ(y)) we obtain that F (1+ |κ(z)|)−az annihilates E0(κ(y)).

As K 
= F ⊗Fq Fq2 (by the hypothesis (c) of Section 4.1.1) we have that the
unit group B∗/A∗ is the trivial group. The Galois group

G(c/c′) = Gal
(
K[c]/K[c′]

)
therefore has order (see [1, (2.3.8), (2.3.12)])∣∣G(c/c′)

∣∣= ∣∣κ(z)∣∣+ 1.

Hence the endomorphism |G(c/c′)|Frob(z) − az of E0 annihilates the abelian
group E0(κ(y)) as required.

(b) Let α,β ∈C be the complex roots of the characteristic polynomial of the
Frobenius Frob(z) acting on the Tate module of E0/κ(z)

X2 −Xaz +
∣∣κ(z)∣∣.

Then we have by the trace formula for the Frobenius automorphism, where
G(c/c′) is cyclic of order |κ(z)|+ 1 as in the proof of part (a),∣∣E0(κ(z))∣∣= ∣∣G(c/c′)

∣∣− α− β =
∣∣G(c/c′)

∣∣− az

and ∣∣E0(κ(y))∣∣= ∣∣κ(z)∣∣2 + 1− α2 − β2 =
(∣∣G(c/c′)

∣∣− az
)(∣∣G(c/c′)

∣∣+ az
)
.

We then obtain the decomposition into eigenspaces under the action of the invo-
lution τ , the nontrivial element of Gal(K/F ),

E0
(
κ(y)
)∼= E0

(
κ(z)
)
⊕ E0
(
κ(y)
)−

,

where ∣∣E0(κ(y))δ∣∣= ∣∣G(c/c′)
∣∣− δaz for δ =±1.

Hence, the order of the l∞-torsion is given by∣∣E0(κ(y))δl∞ ∣∣= ls(δ),

where ls(δ) is the highest power of l dividing δ|G(c/c′)| − az .
By Lemma 3.2.3(b), we have group isomorphisms for the ln-torsion

E0
(
κ(y)
)δ
ln

∼= Z

lnZ
for δ =±1;
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that is to say, these groups are cyclic of order ln. It follows from this that there
are isomorphisms for the l∞-torsion

E0
(
κ(y)
)δ
l∞

∼= Z

ls(δ)Z
for δ =±1.

We obtain that the l∞-torsion subgroups of E0(κ(y))−l∞ and E0(κ(y))+l∞ are both
cyclic. Denoting by | · |l the normalized l-adic absolute value on Q we have∣∣E0(κ(y))δl∞ ∣∣= ∣∣δ∣∣G(c/c′)

∣∣− az
∣∣−1

l
for δ =±1.

Let g be the homomorphism

g =
|G(c/c′)|Frob(z)− az

ln
: E0 →E0,

where the integers |G(c/c′)|, az are both divisible by ln by Lemma 3.2.3(a). The
homomorphism induced by g on the κ(y)-rational points of E0

g : E0
(
κ(y)
)
→E0

(
κ(y)
)

is annihilated by ln by part (a); furthermore, the subgroup lnE0(κ(y)) of E0(κ(y))
belongs to the kernel of g again by part (a). Hence, g induces a homomorphism

h : lnE0
(
κ(y)
)
→E0

(
κ(y)
)
ln
.

On each eigencomponent (lnE0(κ(y)))δ under the action of τ , the nontrivial
element of Gal(K/F ), and where δ = ±1, the map g is multiplication by the
integer

N(δ) =
δ|G(c/c′)| − az

ln
=

δ|E0(κ(y))δ|
ln

.

It follows from this formula for N(δ) that the restriction of h to each eigencom-
ponent (lnE0(κ(y)))δ is an injection. As τ commutes with h, the homomorphism
h preserves the τ -eigencomponents and therefore h is an injection. As lnE0(κ(y))
and E0(κ(y))ln have the same number l2n of elements it follows that h is an
isomorphism. �

PROPOSITION 4.4.2

Let z be a prime divisor of F which belongs to Λ1(n). Let y ∈ΣK be the unique
place of K lying over z. Assume that the prime number l ∈ P is coprime to the
order of Pic(A), the Picard group of the ring A. Then there is a homomorphism

χz : lnE(Ky)→H1(Ky,Eln)

with the following properties.

(a) Let x be a place of the ring class field K[z] above the place z of K. Then
the image of χz is contained in the subgroup H1(K[z]x/Ky,Eln(K[z]x)).

(b) The homomorphism χz is injective.
(c) The composition of χz with the homomorphism, obtained from the inclu-

sion of group schemes Eln ⊂E,

H1(Ky,Eln)→H1(Ky,E)ln
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is an isomorphism

lnE(Ky)∼=H1(Ky,E)ln .

(d) For all divisors c ∈ Λ(n) such that z belongs to Supp(c), the cohomology
class γn(c) satisfies

γn(c)y = χz

(
Pc−z (mod ln)

)
,

where Pc−z (mod ln) is an element of lnE(Ky) (see Proposition 4.3.2) and c− z

has support coprime to z.

Proof
For all divisors d ∈ Λ(n) with support coprime to z, by Propositions 4.3.1 and
4.3.2 the point Pd ∈ E(K[c]) induces an element of lnE(Ky) which is uniquely
determined by Pd where y is the place of K over z (see Remark 3.2.2(a)). Select
a divisor c ∈ Λ(n) with support containing z, and put

c′ = c− z ∈ Λ(n),

where Supp(c′) is coprime to z.
Let z′ be a prime divisor of K[c′] over the place y, which is the place of K

over z. The prime divisor z′ is totally ramified in the field extension K[c]/K[c′];
this follows via class field theory from the definition of the ring class field K[c]

(see Section 1.4; more details are given in [1, (2.3.13)]). Let z× be the unique
prime divisor of K[c] lying over z′.

The cohomology class δn(c) belongs to H1(K[c]/K,E(K[c]))ln , which is con-
tained via the inflation map in H1(K,E(Ksep))ln (see diagram (3.4.2)).

Let E0/κ(z) be the closed fiber above z of the Néron model of E/F . We then
define a composite isomorphism Φ as follows where the maps i, h, j are explained
below:

(4.4.1) Φ : lnE(Ky)
i−→ lnE0

(
κ(y)
) h−→E0

(
κ(y)
)
ln

j−→E(Ky)ln .

Here i : lnE(Ky) −→ lnE0(κ(y)) is the isomorphism obtained from the sur-
jective homomorphism E(Ky) −→ E0(κ(y)) of reduction at z whose kernel is a
pro-p-group. The map h : lnE0(κ(y))−→E0(κ(y))ln is the isomorphism of Propo-
sition 4.4.1(b). The map j : E0(κ(y))ln−→E(Ky)ln is the isomorphism obtained
from reduction modulo y; the map j is an isomorphism because E has good
reduction at y and the prime number l is distinct from the characteristic of F .
The map Φ is an isomorphism as i, h, j are isomorphisms.

Let x′ be a prime of K[0] lying over y, and let x be the unique prime of
K[z] over x′, where y is the prime of K over z. The prime x over x′ is uniquely
determined by x′ because K[z]/K[0] is totally ramified at x′ (see Section 1.4).
The restriction of elements of the Galois group G(c/c′) to the fields K[z] and
K[z]x induces isomorphisms

(4.4.2) Gal
(
K[z]x/K[0]x′

)∼=G(z/0)∼=G(c/c− z),
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where these groups are cyclic of order |κ(z)|+ 1 (by [1, (2.3.12), p. 20], and as
B∗/A∗ is the trivial group by hypothesis (c) of Section 4.1.1). Put

G=Gal
(
K[z]x/K[0]x′

)
.

We have the exact sequence of Galois groups

0→G→Gal
(
K[z]x/Ky

)
→Gal

(
K[0]x′/Ky

)
→ 0.

As the field extension K[z]/K[0] is totally ramified at the place x′ of K[0] over z,
the restriction homomorphism of G(c/0) to K[0]x′ gives the isomorphism

G∼=G(z/0)

of (4.4.2).
As the field extension K[z]x/K[0]x′ is totally ramified, we have that the

group G acts trivially on Eln(K[z]x) and that

Eln
(
K[z]x

)
=Eln

(
K[0]x′

)
.

Hence we have an isomorphism

(4.4.3) H1
(
G,Eln

(
E
(
K[z]x

)))∼=Hom
(
G,Eln

(
K[0]x′

))
.

We have already fixed in Section 3.4.6 a generator σz of G(c/c′). Let σ ∈G

be the generator induced by σz under the isomorphism G(c/c′)∼=G of (4.4.2).
For any P ∈ lnE(Ky), define a homomorphism

(4.4.4) fP :G→Eln(Ky)

as follows. Put

fP (σ) = Φ(P ),

where σ is the chosen generator of the cyclic group G. As Φ(P ) is a point of
Eln(Ky) and as the order of the cyclic group G is equal to |κ(z)| + 1, which
is divisible by ln, the homomorphism fP is well defined. Hence, fP defines a
cohomology class in H1(G,Eln(Ky)) where G acts trivially on Eln(Ky).

As Φ : lnE(Ky)→E(Ky)ln is an isomorphism (see (4.4.1)) and G is cyclic of
order divisible by ln, this map P �→ fP defines a group isomorphism

(4.4.5) f : lnE(Ky)
∼=−→H1

(
G,Eln(Ky)

)
, P �→ fP .

We have the Hochschild–Serre spectral sequence

Ei,j
2 ⇒Hi+j

(
K[c]z×/Ky,Eln

(
K[c]z×

))
,

where we write

Gz×/z′ =Gal
(
K[c]z×/K[c′]z′

)
and

Ei,j
2 =Hi

(
K[c′]z′/Ky,H

j
(
Gz×/z′ ,Eln

(
K[c]z×

)))
.
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The short exact sequence of low-degree terms attached to this spectral sequence
in part takes the form

0→E1,0
2 →H1

(
K[c]z×/Ky,Eln

(
K[c]z×

))
→E0,1

2 →E2,0
2 .

As the order of Pic(A) is coprime to l we have that the order of the place y

above z in Pic(B) is coprime to l, as y is the unique place of K over z. It follows
that the degree of the field extension K[c′]z′/Ky , which is equal to the degree of
the residue field extensions, is coprime to l. Hence, we have

Hi
(
K[c′]z′/Ky,H

j
(
Gz×/z′ ,Eln

(
K[c]z×

)))∼= 0 for all i≥ 1

as the group Hj(Gz×/z′ ,Eln(K[c]z×)) is l-power torsion for all i. The above short
exact sequence of low-degree terms then becomes an isomorphism

H1
(
K[c]z×/Ky,Eln

(
K[c]z×

))
(4.4.6)

∼=H0
(
K[c′]z′/Ky,H

1
(
Gz×/z′ ,Eln

(
K[c]z×

)))
.

As the field extension K[c]z×/K[c′]z′ is totally ramified, we have
Eln(K[c]z×) = Eln(K[c′]z′) and the group Gz×/z′ acts trivially on Eln(K[c]z×).
This last isomorphism of (4.4.6) then becomes the isomorphism

H1
(
K[c]z×/Ky,Eln

(
K[c]z×

))∼=H0
(
K[c′]z′/Ky,Hom

(
Gz×/z′ ,Eln

(
K[c′]z′

)))
,

where Gz×/z′ acts trivially on Eln(K[c′]z′). This then provides the isomorphism

H0
(
K[c′]z′/Ky,H

1
(
Gz×/z′ ,Eln

(
K[c]z×

)))∼=Hom
(
Gz×/z′ ,Eln(Ky)

)
.

This isomorphism combined with the isomorphism of (4.4.6) gives the isomor-
phism

(4.4.7) H1
(
K[c]z×/Ky,Eln

(
K[c]z×

))∼=H1
(
Gz×/z′ ,Eln(Ky)

)
,

where Gz×/z′ acts trivially on Eln(Ky).
Now, take c= z in the isomorphism of (4.4.7) where x′ is a place of K[0] over

y and x is the unique place of K[z] over x′; we have that the composition of this
isomorphism (4.4.7) with the isomorphism f of (4.4.5) gives the isomorphism

(4.4.8) φ : lnE(Ky)
∼=−→H1

(
K[z]x/Ky,Eln

(
K[z]x

))
.

The inflation map from Gal(K[z]x/Ky) to Gal(Ksep
y /Ky) is an injective

homomorphism

(4.4.9) H1
(
K[z]x/Ky,Eln

(
K[z]x

)) inf−→H1
(
Ky,Eln(K

sep
y )
)
.

The composite of this injective inflation map of (4.4.9) with the isomorphism
φ of (4.4.8) is then defined to be the injective homomorphism χz

χz : lnE(Ky)→H1(Ky,Eln),
(4.4.10)

P �→ {σ �→Φ(P )}.

Here {σ �→ Φ(P )} denotes the cohomology class fP of (4.4.4) and (4.4.5)
defined by σ �→ Φ(P ) where σ ∈ G is the chosen generator of G; this fP then
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defines a cohomology class in H1(K[z]x/Ky,Eln(K[z]x)) by the isomorphism of
(4.4.7) for c= z. By inflation, this fP gives a cohomology class of Gal(Ksep

y /Ky)

and hence an element of the cohomology group H1(Ky,Eln) and this defines the
homomorphism χz . This map χz of (4.4.10) is injective by construction.

To prove property (a), by construction the homomorphism

χz : lnE(Ky)−→H1(Ky,Eln)

takes a point P ∈ lnE(Ky) to an element fP of H1(G,Eln(K[z]x)) which is
inflated to an element of H1(Ky,Eln(K

sep)), and this proves property (a) of
the map χz .

To prove property (b), the map

χz : lnE(Ky)→H1(Ky,Eln), P �→
{
σ �→Φ(P )

}
is injective by construction, as already noted.

For property (c), we have by definition that the map χz of (4.4.10) is the
composition of the isomorphism φ of (4.4.8) with the inflation map of (4.4.9).
That is to say, the map χz factors as

(4.4.11) lnE(Ky)
φ−→H1

(
K[z]x/Ky,Eln

(
K[z]x

)) inf−→H1
(
Ky,Eln(K

sep
y )
)
,

where φ is an isomorphism and inf is an injection.
We have an exact sequence obtained from the inclusion of group schemes

Eln ⊂E,

0−→ lnE(Ky)
∂ln−→H1(Ky,Eln)

ψ−→H1(Ky,E)ln .

The morphism of multiplication by ln on the Néron model of E over the ring
of valuation integers of F at the place z is étale; therefore, the image of ∂ln

consists of unramified cohomology classes, and more precisely, the image of ∂ln
belongs to the subgroup H1(Knr

y /Ky,Eln) of H1(Ky,Eln) where Knr
y is the max-

imal separable unramified extension of Ky . The intersection of H1(Knr
y /Ky,Eln)

with H1(K[z]x/Ky,Eln(K[z]x)), which are both subgroups of H1(Ky,Eln), is
therefore contained in H1(K[0]x′/Ky,Eln(K[0]x′)); this follows by considering
representative cocycles and because the field extension K[z]x/K[0]x′ is totally
ramified and K[0]x′/Ky is unramified. But the order of the Picard group Pic(A)

is coprime to l by hypothesis; therefore, the order of the place y over z in Pic(B)

is coprime to l as y is the unique place of K over z. It follows that the degree of
the field extension K[0]x′/Ky is coprime to l, and therefore we have that

H1
(
K[0]x′/Ky,Eln

(
K[0]x′

))
= 0.

It follows that the composition of the injective inflation map

H1
(
K[z]x/Ky,Eln

(
K[z]x

)) inf−→H1
(
Ky,Eln(K

sep
y )
)

with ψ :H1(Ky,Eln)→H1(Ky,E)ln is an injection

(4.4.12) H1
(
K[z]x/Ky,Eln

(
K[z]x

))
−→H1(Ky,E)ln .
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By arithmetic flat local duality, there is an isomorphism of discrete groups

(4.4.13) H1(Ky,E)∼=Hom
(
E(Ky),Q/Z

)
.

For the proof of this using flat cohomology and local class field theory, see [10,
Chapter III, Theorem 7.8]; we only require the prime-to-p version of this duality
(4.4.13), whose simpler proof is explained in [10, Chapter I, Remark 3.6]. From
(4.4.13) we obtain the isomorphism of discrete groups

(4.4.14) H1(Ky,E)ln ∼=Hom
(
lnE(Ky),Z/l

nZ
)
.

It follows from (4.4.14) that H1(Ky,E)ln and lnE(Ky) have the same number of
elements. As Eln(Ky) is isomorphic to lnE(Ky) by the isomorphism Φ of (4.4.1),
we have that H1(Ky,E)ln and Eln(Ky) have the same number of elements.

From (4.4.7) for c= z, we have the isomorphism, where G is cyclic of order
divisible by ln and which acts trivially on Eln(Ky)

H1
(
K[z]x/Ky,Eln

(
K[z]x

))∼=H1
(
G,Eln(Ky)

)∼=Eln(Ky).

It now follows that the finite groups H1(K[z]x/Ky,Eln(K[z]x)), Eln(Ky),
and H1(Ky,E)ln have the same number of elements and hence the injective
homomorphism of (4.4.12)

H1
(
K[z]x/Ky,Eln

(
K[z]x

))
−→H1(Ky,E)ln

is an isomorphism. It follows that the natural homomorphism, obtained from the
inclusion of group schemes Eln ⊂E,

H1(Ky,Eln)
ψ−→H1(Ky,E)ln

composed with χz , where χz factors through the groupH1(K[z]x/Ky,Eln(K[z]x))

as in (4.4.11),

lnE(Ky)
χz−→H1(Ky,Eln)

ψ−→H1(Ky,E)ln

is an isomorphism

lnE(Ky)∼=H1(Ky,E)ln .

This proves property (c).
It only remains to prove property (d). For all divisors d ∈ Λ(n), as in Sec-

tion 3.4.9 we shall write Pd (mod ln) for the image of Pd ∈E(K[d]) in lnE(K[d]).
From Lemma 4.2.1, we have that the cohomology class γn(c) in H1(K,Eln)

is represented by the cocycle

(4.4.15) Γn(c) : σ �→ − (σ− 1)Pc

ln
+ σ

Pc

ln
− Pc

ln
, Gal(Ksep/K)→E(Ksep)ln ,

where [(σ− 1)Pc]/l
n is the unique ln-division point of (σ − 1)Pc in E(K[c])

and Pc/l
n is a fixed ln-division point of Pc, and the cohomology class δn(c)

in H1(K,E)ln is represented by the cocycle

(4.4.16) Δn(c) : σ �→ − (σ− 1)Pc

ln
, Gal(Ksep/K)→E(Ksep).
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The cohomology class δn(c)y ∈H1(Ky,E(Ksep
y )) is the restriction at y of the

class δn(c) ∈H1(K,E(Ksep)). Let Q ∈E(K[c]) be the element given by

(4.4.17) Q=− (σz − 1)Pc

ln
,

where σz is the fixed generator of the cyclic group G(c/c′).
The definition of Pc (as in [1, Section 7.14.10, pp. 386–387] and Section 3.4.8

above) is the following. Let c =
∑r

i=1 zi be the decomposition of c as a sum of
distinct prime divisors, where we write z = z1. Then we have that

Pc =
∑
s∈S

sDcyc,

where

(4.4.18) yc = (0, I1, c, π) ∈E
(
K[c]
)

as in Section 3.4.6 and where S is a set of coset representatives for G(c/0) in
Gal(K[c]/K) and Dc is the Kolyvagin element of Section 3.4.8.

We have an exact sequence of abelian groups

0→G(c/c′)→G(c/0)→G(c′/0)→ 0.

We obtain a corresponding decomposition in the group algebra Z[G(c/0)] of the
Kolyvagin element Dc

Dc =Dc−zDz.

We have already selected in Section 3.4.6 a generator σz of the cyclic group
G(c/c− z). We may then define a map of sets

hz :G(c/c− z)→ Z

by

σ−s
z �→ −s, for s= 0,1, . . . ,

∣∣G(c/c− z)
∣∣− 1.

The Kolyvagin element of hz is then, as in Section 3.4.7,

Dz =−
|G(c/c−z)|−1∑

r=1

rσr
z .

We have that

(4.4.19) (σz − 1)Dz =−
∣∣G(c/c− z)

∣∣+ eG(c/c−z),

where eG(c/c−z) is the element of the group algebra Z[G(c/c− z)] given by

eG(c/c−z) =
∑

g∈G(c/c−z)

g.

The element Pc ∈E(K[c]) may then be written as

(4.4.20) Pc =
∑
s∈S

sDc−zDzyc,

where we write yc = (0, I1, c, π) as in Section 3.4.6 and (4.4.18).
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We have that (see [1, (4.8.3), Table 4.8.5])

|O∗
c′ |

|A∗| TrK[c]/K[c′] yc = azyc′

where az ∈ Z is as in Proposition 4.4.1 and Section 3.2.4 and where yc′ =

(0, I1, c
′, π). By definition Q = −((σz − 1)Pc)/l

n (see (4.4.17)); hence, we have
from (4.4.19) that

Q = −
∑
s∈S

sDc−z

( (σz − 1)Dz

ln

)
yc

=
∑
s∈S

sDc−z

( |G(c/c′)|
ln

yc −
|A∗|
|O∗

c′ |
az
ln

yc′
)
.

As K is not obtained from F by ground field extension (hypothesis (c) of Sec-
tion 4.1.1), we have A∗ =O∗

c′ ; hence we obtain that

(4.4.21) Q=
∑
s∈S

sDc−z

( |G(c/c′)|
ln

yc −
az
ln

yc′
)
.

As at the beginning of this proof, let y be the unique place of K over z, let
z′ be a prime of K[c′] over the place y of K, and let z× be the place of K[c]

over the prime z′ of K[c′] where the field extension K[c]/K[c′] is totally ramified
at z′. Also E0/κ(z) denotes the closed fiber above z of the Néron model of E/F .

We write Q0 for the image of Q modulo z× in E0(κ(z×)) by passage to
the residue field κ(z×). From the isomorphism (4.4.7), where δn(c)y belongs to
H1(K[c]z×/Ky,Eln(K[c]z×)), we have that the reduction of δn(c)y at y belongs
to Hom(G(c/c′),E0(κ(y)))ln and is given by the cocycle (see (4.4.16))

g �→ − (g − 1)Pc

ln
(mod z×), Gal

(
K[c]z×/K[c′]z′

)∼=G(c/c′)→E0
(
κ(y)
)
.

We have that −[(g− 1)Pc]/l
n modulo z× belongs to the ln-torsion subgroup

E0(κ(y))ln rational over κ(y). Hence, the point Q0, the reduction of Q modulo z×,
belongs to E0(κ(y))ln . Note that −(g− 1)Pc modulo z× reduces to zero, for all
g ∈G(c/c′), as K[c]/K[c′] is totally ramified at z′.

Denote by Frob(z) the Frobenius automorphism x �→ x|κ(z)| of the closed
fiber E0/κ(z) over z of the Néron model of E/F . Theorem 4.8.9 of [1] gives that
for the prime z′ of K[c′] above z we have

(4.4.22) Frob(z)yc ≡ yc′ (mod z′),

where yc = (0, I1, c, π) as in (4.4.18).
We obtain from Proposition 4.3.1 that yc mod z× is defined over the subfield

κ(y) of κ(z×) where κ(y) is the quadratic extension field of the finite field κ(z).
Hence we have from (4.4.22) that

(4.4.23)
|G(c/c′)|

ln
yc −

az
ln

yc′ ≡
|G(c/c′)|Frob(z)− az

ln
yc′ (mod z′).
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The point Pc′ ∈E(K[c′]) is given by (see Section 3.4.8)

Pc′ =
∑
s∈S

sDc−zyc′ .

We then have from (4.4.21) and (4.4.23) that

Q =
∑
s∈S

sDc−z

( |G(c/c′)|
ln

yc −
az
ln

yc′
)

(4.4.24)
≡ Q0 ≡

|G(c/c′)|Frob(z)− az
ln

Pc′ (mod z′).

From Lemma 4.2.2 or [1, Lemma 7.14.11(ii)], we have that Pc′ (mod ln)

belongs to the −ν(c′)-eigenspace for τ on lnE(K[c′]), where ν(c′) = (−1)rε, r

is the number of prime divisors in the support of c′, and ε is the sign in the
functional equation of the L-function of E/F (as in Lemma 4.2.2). As z is inert
in K/F , it follows that the image of the reduction P �

c′ of Pc′ modulo z′ belongs
to the −ν(c′)-eigenspace for τ on lnE0(κ(z′)). Let

h : lnE0
(
κ(y)
)
→E0

(
κ(y)
)
ln
, x �→

( |G(c/c′)|Frob(z)− az
ln

)
x

be the isomorphism which commutes with τ of Proposition 4.4.1. As Q0 belongs
to the subgroup E0(κ(y)) as already noted and also as P �

c′ (mod ln) is an element
of lnE0(κ(y)) by Proposition 4.3.2, we have by (4.4.24) that

Q0 = h
(
P �
c′ (mod ln)

)
.

With the notation of (4.4.1) we then have

Q0 = h ◦ i
(
Pc′ (mod ln)

)
,

where i is the reduction isomorphism lnE(Ky) → lnE0(κ(y)) and where
Pc′ (mod ln) belongs to lnE(Ky) by Proposition 4.3.2. Furthermore, by (4.4.1)
and as Φ= j ◦ h ◦ i we have that

(4.4.25) Φ
(
Pc′ (mod ln)

)
= j(Q0)

is the unique ln-torsion point of E(Ky) whose reduction at y is Q0.
Let z be any prime of Ksep above z×. Restrict the cocycle

Γn(c) : Gal(Ksep/K)→E(Ksep)ln

of (4.4.15), which represents γn(c), to the decomposition group of z. As K[c]/K[c′]

is totally ramified at z′ we have that the Kolyvagin element Dz restricted to the
residue field of z× satisfies

Dz =−
∣∣κ(z)∣∣(∣∣κ(z)∣∣+ 1

)
/2.

Furthermore, ln divides |κ(z)|+ 1 and l is different from 2; hence we have that
(from (4.4.20)) the reduction P �

c of Pc at z× satisfies P �
c ∈ lnE0(κ(z×)) and hence

as E has good reduction at z× we have that

Pc ∈ lnE
(
K[c]z×

)
.
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We then have that the cocycle Γn(c) of (4.4.15) satisfies

Γn(c)(ρ) = 0 for all ρ ∈Gal
(
K[c]sepz× /K[c]z×

)
,

and this cocycle, restricted to the decomposition group of z, factors through the
subgroup Gal(K[c]z×/Ky). Furthermore, since σz , which is the selected generator
of G(c/c′), is in the inertia group of y we have that

σz
Pc

ln
− Pc

ln

reduces to zero modulo z×. Hence,

Γn(c)(σz) =− (σz − 1)Pc

ln
+ σz

Pc

ln
− Pc

ln

is the unique ln-torsion point congruent to Q (mod z×) where Q is given by
(4.4.17); that is to say,

(4.4.26) Γn(c)(σz)≡− (σz − 1)Pc

ln
(mod z×).

But from (4.4.25), we then obtain

(4.4.27) Γn(c)(σz) = Φ
(
Pc′ (mod ln)

)
.

Then (4.4.27) shows, as Γn(c)(σz) is the unique ln-torsion point with reduction
at y coinciding with the reduction of Q=−[(σz − 1)Pc]/l

n at y, that we have an
equality of cohomology classes in H1(Ky,Eln)

γn(c)y = χz

(
Pc−z (mod ln)

)
,

where Pc−z (mod ln) is an element of lnE(Ky). This proves property (d) and
completes the proof of Proposition 4.4.2. �

REMARKS 4.4.3

(a) Proposition 4.4.2 and its consequence stated in Proposition 4.5.1(d) below
are extensions of [1, Lemma 7.14.14(ii)]. It would be of interest to eliminate the
hypothesis that the prime number l be coprime to the order of the Picard group
Pic(A) from Propositions 4.4.2 and 4.5.1(d).

(b) The homomorphism χz interchanges the τ -eigenspaces such that for
δ =±1 we have

χz

((
lnE(Ky)

)δ)⊆H1(Ky,Eln)
−δ.

This property, which is not required for this paper, follows from the group
Gal(K[c]/F ) being generalized dihedral.

4.5. Localizations of the classes γn(c) and δn(c)

The notation and hypotheses of Section 4.1.1 hold in this section. Let X(E/K)

be the Tate–Shafarevich group of the elliptic curve E ×F K over K.



Tate–Shafarevich groups 741

PROPOSITION 4.5.1

Let c ∈ Λ(n), let z be a prime divisor in Λ1(n), and let y be the place of K over
the place z of F .

(a) Let v be a place of K coprime to c. Then we have γn(c)v ∈ ∂n(E(Kv));
that is to say, we have δn(c)v = 0.

(b) If c is coprime to z, then we have γn(c)y = ∂n((Pc (mod ln))y).
(c) If ln | Pc, then we have δn(c) = 0. If ln | Pc−w for all prime divisors w in

the support of c, then we have δn(c) ∈X(E/K)l∞ .
(d) Assume that the prime number l ∈ P is coprime to the order of Pic(A),

the Picard group of the ring A. If z ∈ Supp(c), then we have

ord δn(c)y = ordγn(c)y = ordγn(c− z)y

= ord
((
Pc−z (mod ln)

)
y

)
,

where (Pc−z (mod ln))y is an element of lnE(Ky).

Proof
(a) The field K[c] is a subfield of K∞ as ∞ is split completely in K[c]/K (see [1,
Chapter 2, (2.3.13)]). We have that the localization δn(c)∞ at ∞ of δn(c) satisfies
δn(c)∞ ∈H1(K∞,E)ln and the localization (Pc (mod ln))∞ at ∞ of Pc (mod ln)

satisfies (Pc (mod ln))∞ ∈ lnE(K∞). It then follows from the diagram (3.4.2)
that δn(c)∞ = 0.

Suppose now that v is a place of K such that v 
=∞ and v /∈ Supp(c). We
have by construction that

δn(c) ∈H1
(
K[c]/K,E

(
K[c]
))

ln
.

The field extension K[c]/K is unramified at v (see [1, (2.3.13)]). Hence we have
that the localization δn(c)v at v satisfies

δn(c)v ∈H1
(
Knr

v /Kv,E(Knr
v )
)
ln

⊆H1
(
Kv,E(Ksep

v )
)
ln
,

where Knr
v is the maximal unramified separable extension of the local field Kv .

But H1(Knr
v /Kv,E(Knr

v ))ln = 0 by Definition 3.1.2(d) of the set of prime num-
bers P to which l belongs. Hence, we have that δn(c)v = 0; this last vanishing is
equivalent to γn(c)v ∈ ∂n(E(Kv)), as required.

(b) By Lemma 4.2.1, the cohomology class γn(c) is represented by the cocycle

σ �→ − (σ− 1)Pc

ln
+ σ

Pc

ln
− Pc

ln
, Gal(Ksep/K)→E(Ksep)ln ,

where [(σ− 1)Pc]/l
n is the unique ln-division point of (σ − 1)Pc in E(K[c]).

Furthermore, by the same Lemma 4.2.1, the cohomology class δn(c) ∈
H1(K,E(Ksep))ln is represented by the cocycle

σ �→ − (σ− 1)Pc

ln
, Gal(Ksep/K)→E(Ksep).

By part (a) as z /∈ Supp(c), we have that δn(c)y = 0; hence, a cocycle representing
δn(c) when localized at v is cohomologous to zero. Therefore, there is an element
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a ∈E(Ksep
y ) such that

− (σ− 1)Pc

ln
= σa− a, for all σ ∈Gal(Ksep

y /Ky).

Hence, we have

−(σ− 1)(Pc + lna) = 0, for all σ ∈Gal(Ksep
y /Ky).

This implies that

Pc + lna ∈E(Ky).

By Proposition 4.3.1, the localization at y of the point Pc lies in E(Ky)

where y is the place of K over z. Furthermore, by Proposition 4.3.2 the point
(Pc (mod ln))y belongs to lnE(Ky) and its image in this group is uniquely deter-
mined by Pc.

It follows from this and the above cocycle formulae for γn(c) and δn(c) that
the cohomology class γn(c)y is represented by the cocyle

σ �→ σ
Pc

ln
− Pc

ln
, Gal(Ksep

y /Ky)→E(Ksep
y )ln .

That is to say, we have γn(c)y = ∂n((Pc (mod ln))y).
(c) From Lemma 4.2.1(b), the cohomology class δn(c) is represented by the

cocycle

σ �→ − (σ− 1)Pc

ln
, Gal(Ksep/K)→E(Ksep).

We then evidently have that if ln | Pc, that is to say, Pc ∈ lnE(K[c]), then
δn(c) = 0.

Suppose that ln | Pc−z for all prime divisors z in the support of c. Then for
any prime divisor y of K lying over the prime divisor z dividing c we have δn(c)y =
0 by Proposition 4.4.2(d). It then follows from Proposition 4.5.1(a) that δn(c)v =
0 for all places v of K and hence that δn(c) belongs to the Tate–Shafarevich
group X(E/K)l∞ .

(d) From Proposition 4.4.2(d), we have

γn(c)y = χz

((
Pc−z (mod ln)

)
y

)
,

where (Pc−z (mod ln))y is an element of lnE(Ky) by Proposition 4.3.2. As the
homomorphism χz is injective (Proposition 4.4.2(b)), we obtain

ord
(
γn(c)y

)
= ord

((
Pc−z (mod ln)

)
y

)
,

where again (Pc−z (mod ln))y denotes an element of lnE(Ky).
From Proposition 4.5.1(b), we have

γn(c− z)y = ∂n
((
Pc−z (mod ln)

)
y

)
,

where z is coprime to the support of c− z. Hence, we obtain

ord
((
Pc−z (mod ln)

)
y

)
= ord

(
γn(c− z)y

)
.
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From Proposition 4.4.2(c), we have that the composition of χz with the
homomorphism, obtained from the inclusion of group schemes Eln ⊂E,

θ :H1(Ky,Eln)→H1(Ky,E)ln

is an isomorphism

lnE(Ky)∼=H1(Ky,E)ln .

Hence, the image in H1(Ky,E)ln under θ of χz(Pc−z (mod ln)) is the cohomology
class δn(c)y because this is the image under θ of γn(c)y ∈H1(Ky,Eln). Further-
more, because θ ◦ χz is an isomorphism, ord(δn(c)y) is the same as
ord((Pc−z (mod ln))y), which completes the proof of the proposition. �

4.6. The Cassels pairing with a class δn(c)

The notation and hypotheses of Section 4.1.1 hold in this section. The torsion
abelian group Z/nZ for n 
= 0 is considered to be a subgroup of Q/Z via the map
1 �→ 1/n. Let

X(E/K) be the Tate–Shafarevich group of the elliptic curve E ×F K

over K;
〈·, ·〉Cassels be the Cassels pairing on X(E/K) (see Section 2.3);
[·, ·]w :H1(Kw,E)n × nE(Kw)→ Z/nZ be the local Tate pairing for any

place w ∈ΣK of K and any integer n coprime to the characteristic of F .

PROPOSITION 4.6.1

Let m and n be integers greater than or equal to 1, and let c ∈ Λ(m+n). Suppose
that δm(c) belongs to the Tate–Shafarevich group X(E/K)l∞ . Suppose that the
element s ∈X(E/K)l∞ has order at most ln. Lift the element s ∈X(E/K)l∞

to an element S ∈H1(K,Eln), and select points x(w) ∈ E(Kw) such that Sw =

∂ln(x(w)) for all w ∈ΣK . Then we have

(4.6.1)
〈
δm(c), s

〉
Cassels

=
∑

y∈ΣK divides Supp(c)

[
δm+n(c)y, x(y)

]
y
,

where the sum runs over the places of K which divide an element of Supp(c).

Proof
The construction of the Cassels pairing is given in Section 2.3. As in the statement
of the proposition, we may lift the element s ∈ X(E/K)l∞ of order ln to an
element S ∈H1(K,Eln). The points x(w) ∈ E(Kw) are then selected such that
Sw = ∂ln(x(w)) for all w ∈ΣK .

By Lemma 4.2.1(c) we have

lnδm+n(c) = δm(c).

From the formula (2.3.1) for the Cassels pairing, we then obtain
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(4.6.2)
〈
δm(c), s

〉
Cassels

=
∑

w∈ΣK

[
δm+n(c)w, x(w)

]
w
,

where the sum runs over all places w of K.
By Proposition 4.5.1(a), we have that δm+n(c)w = 0 for all places w ∈ ΣK

which do not divide an element of Supp(c). Hence, there is no contribution to the
Cassels pairing in the sum (4.6.2) when w does not divide an element of Supp(c).
Hence, we obtain the formula (4.6.1). �

PROPOSITION 4.6.2

Let m and n be integers greater than or equal to 1, and let c ∈ Λ(m+n), d ∈ Λ(n).
Suppose that δm(c) and δn(d) belong to the Tate–Shafarevich group X(E/K)l∞ .
Assume that the prime number l ∈ P is coprime to the order of Pic(A). Then we
have 〈

δm(c), δn(d)
〉
Cassels(4.6.3)

=
∑

y∈ΣK dividesSupp(c)\Supp(d)

[
δm+n(c)y,

(
Pd (mod ln)

)
y

]
y
,

where the sum runs over the places of K which divide an element of Supp(c) \
Supp(d).

Proof
The element γn(d) ∈H1(K,Eln) is a lifting of δn(d) ∈X(E/K), which has order
at most ln. Suppose that z ∈ Supp(c), and suppose that y is the unique place of
K lying over the place z of F . If z also satisfies z ∈ Supp(d), then by Proposi-
tion 4.5.1(d), we have

γn(d)y = 0,

because δn(d)y = 0 as we have δn(d) ∈X(E/K). If on the other hand z satisfies
z /∈ Supp(d), then by Proposition 4.5.1(b), we have

γn(d)y = ∂ln
((
Pd (mod ln)

)
y

)
,

where (Pd (mod ln))y denotes the localization at y of Pd (mod ln). The formula
(4.6.3) to be proved now follows from the formula (4.6.1) of Proposition 4.6.1. �

Part 5. Construction of cohomology classes and proofs of the main theorems

5.1. Mr is finite for some r

5.1.1.
Throughout Part 5, the notation of Section 4.1.1 remains valid, and the elliptic
curve E/F and quadratic field extension K/F satisfy hypotheses (a), (b), and
(c) of Section 4.1.1.

In this section, we further let

N+,N− be the eigenspaces under the action of the involution τ whenever
N is a Z[Gal(K/F )]-module on which multiplication by 2 is an isomorphism;
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ε=±1 be the sign of the functional equation of the L-function L(E/F, s)

of E/F ;
ν(r) = (−1)rε for any natural number r ∈N;
ν(c) = (−1)rε for any divisor c of F with exactly r distinct prime divisors

in its support;
Pc ∈ E(K[c]) be the Drinfeld–Heegner points of Section 3.4.8 for all

c ∈ Λ(1), where P0 ∈E(K);
Mr, for all r ∈N, be the quantities in N∪{+∞} given in Definition 4.1.1;
X(E/K) be the Tate–Shafarevich group of the elliptic curve E×F K over

K (see Section 2.2);
Seln(E/K) be the n-Selmer group of E ×F K over K for any integer n

coprime to the characteristic of F (see Section 2.2);
Sela∞(E/K) = lim

−→
n

Selan(E/K) for any number a coprime to the charac-

teristic of F (see also Section 3.1.2).

In Section 5.1 some consequences are presented of the hypothesis that Mr

be finite for some r.

LEMMA 5.1.1

The Drinfeld–Heegner P0 has infinite order in E(K) if and only if M0 is finite.
If P0 has infinite order, then we have

lM0 =
∣∣(E(K)/ZP0

)
l∞

∣∣,
ordγM0+m(0) = lm, for all m≥ 0,

γM0+m(0) ∈ Sell∞(E/K)−ε for all m≥ 0.

Proof
From Definition 4.1.1, we have

M0 = ordl(P0) =max
{
m | P0 ∈ lmE

(
K[0]
)}

.

The group E(K[0]) has no l-torsion (as l ∈ P ; see Proposition 1.10.1 and Defi-
nition 3.1.2(f)) and is a finitely generated group by the Mordell–Weil theorem.
Hence, P0 has infinite order in E(K) if and only if M0 is finite.

We have γM0+m(0) ∈ Sell∞(E/K)−ε, for all m ≥ 1, by Lemma 4.2.2 and
because γM0+m(0) = ∂lM0+m(P0).

Assume now that P0 has infinite order. By [1, Theorem 7.6.5], the point P0

generates a subgroup of E(K) of finite index. (Note that, in the notation of [1,
Theorem 7.6.5], we have P0 = x0.)

By definition we have that∣∣(E(K)/ZP0

)
l∞

∣∣=max
{
lm
∣∣P0 ∈ lmE(K)

}
,

where the group E(K[0]) has no l∞-torsion (as l ∈ P ; see Proposition 1.10.1 and
Definition 3.1.2(f)).
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We have the Hochschild–Serre spectral sequence

Hi
(
Gal
(
K[0]/K

)
,Hj
(
K[0],Eln

))
⇒Hi+j(K,Eln).

The short exact sequence of low-degree terms of this spectral sequence is in part

0→H1
(
Gal
(
K[0]/K

)
,Eln
(
K[0]
))

→H1(K,Eln)→H1
(
K[0],Eln

)Gal(K[0]/K)

→H2
(
Gal
(
K[0]/K

)
,Eln
(
K[0]
))
.

The two extreme terms H1(Gal(K[0]/K),Eln(K[0])) and H2(Gal(K[0]/K),

Eln(K[0])) are both zero because Eln(K[0]) is zero as already noted. Hence,
this short exact sequence provides the isomorphism

(5.1.1) H1(K,Eln)∼=H1
(
K[0],Eln

)Gal(K[0]/K)
,

which is induced from the injection E(K)→E(K[0]). The short exact sequence
of sheaves for the étale topology on SpecK

0−→Eln −→E
ln−→E −→ 0

then provides the commutative diagram of cohomology groups

0 −→ Eln(K) −→ E(K)
ln−→ E(K) −→ H1(K,Eln) −→ . . .

↓ ↓ ↓ ↓
0 −→ Eln

(
K[0]
)
−→ E

(
K[0]
) ln−→ E

(
K[0]
)
−→ H1

(
K[0],Eln

)
−→ . . .

The isomorphism H1(K,Eln)∼=H1(K[0],Eln)
Gal(K[0]/K) of (5.1.1) together with

this commutative diagram then shows that the homomorphism

E(K)/lnE(K)→E
(
K[0]
)
/lnE

(
K[0]
)

is injective. Hence, these two numbers lM0 and |(E(K)/ZP0)l∞ | are equal. We
obtain that the order of γM0+m(0) is equal to lm from Proposition 3.4.1(a). �

LEMMA 5.1.2

Assume that the prime number l ∈ P is coprime to the order of Pic(A). Suppose
that Mr is finite for some integer r ≥ 0. Then Ms is finite for all s≥ r and

Mr,Mr+1,Mr+2, . . .

is a decreasing sequence of nonnegative integers.

Proof
Suppose that Ms is finite for some s≥ 0. Then there is a divisor

c ∈ Λs(Ms + 1)

which satisfies lMs ‖ Pc and Ms <α(c); hence, the cohomology class γMs+1(c) is
nonzero (by Proposition 3.4.1(a)). From Proposition 3.3.4, where we take n =

Ms + 1, we obtain a prime divisor

(5.1.2) z ∈ Λ1(Ms + 1)
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coprime to c such that the localization γMs+1(c)y is nonzero where y is the unique
prime of K lying over z (see Remark 3.2.2(a)). Then by Proposition 4.5.1(b), we
have that Pc /∈ lMs+1E(Ky); that is to say,

(5.1.3) ord
((
Pc (mod lMs+1)

)
y

)
> 1.

It follows from Proposition 4.5.1(d) that ordγn(c+ z)y > 1, where n=Ms + 1,
and in particular we have γn(c+ z) 
= 0. Therefore, by Proposition 3.4.1(a) or the
definition of γn(c+ z), we have that Pc+z /∈ lMs+1E(K[c+ z]). It follows that

c+ z ∈ Λs+1(Ms + 1)

and Ms+1 is finite, and we have that Ms+1 ≤Ms. As Mr is finite by hypothesis,
we then have that Ms is finite and Ms ≥Ms+1 for all s≥ r by induction. �

LEMMA 5.1.3

Suppose that Mr−1 is finite where r ≥ 1. Assume that the prime number l ∈ P is
coprime to the order of Pic(A). Let c ∈ Λr(Mr−1), and put ν(c) = (−1)rε. Then
we have that

(a) δMr−1(c) ∈X(E/K)
−ν(c)
l∞ ;

(b) γMr−1(c) ∈ Sell∞(E/K)−ν(c); and
(c) the order of δMr−1(c) is at most lMr−1−Mr .

Proof
By Lemma 5.1.2, we have that Mr is finite and Mr−1 ≥Mr. The set Λr(Mr−1)

is nonempty by Corollary 3.3.5; therefore, there is an element c ∈ Λr(Mr−1). It
follows from the definition of the Mi’s that lMr | Pc and lMr−1 | Pc−z for all prime
divisors z in the support of c. From Proposition 4.5.1(c) and Lemma 4.2.2 we
obtain

δMr−1(c) ∈X(E/K)−ν(c).

Hence, γMr−1(c) belongs to the Selmer group Sell∞(E/K)−ν(c) (see Lemma 4.2.2).
The order of the element δMr−1(c) is at most lMr−1−Mr by Proposition 3.4.1(b).

�

LEMMA 5.1.4

Let z ∈ Λ1(n) be a prime divisor. Let y be the unique prime of K lying above z.

(a) The Tate pairing on H1(Ky,Eln) of Theorem 2.1.1 induces a nondegen-
erate pairing (

lnE(Ky)
)δ ×H1(Ky,E)δln −→ Z/lnZ,

where δ =±1, of eigenspaces under the action of τ which are finite cyclic groups
of order ln.

(b) The image of the homomorphism χz : lnE(Ky) → H1(Ky,Eln) is an
isotropic subgroup for the alternating Tate pairing on H1(Ky,Eln) and Im(χz)

δ ∼=
Z/lnZ for δ =±1.
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Proof
(a) We have isomorphisms of Gal(K/F )-modules

lnE(Ky)∼=E(Ky)ln , H1(Ky,E)ln ∼=Hom
(
μln(Kln),E(Ky)

)
.

The first isomorphism here follows from Proposition 4.4.1. As |κ(z)| + 1 ≡
0 (mod ln) and κ(y)∗ has |κ(z)|2 − 1 elements we have that μln(Ky) has ln

elements and is contained in the −1 eigenspace under τ of κ(y)∗. Hence, we have
for δ =±1

lnE(Ky)
δ ∼=H1(Ky,E)−δ

ln

and these groups are cyclic of order ln by Lemma 3.2.3(b).
(b) The map χz is defined in Proposition 4.4.2. We have by Proposition 4.4.2(c)

that the composite of χz with the surjective homomorphism H1(Ky,Eln) →
H1(Ky,E)ln is an isomorphism. This implies that we have for δ = ±1, where
Im(χz) denotes the image of χz in H1(Ky,Eln),

Im(χz)
δ ∼=H1(Ky,E)δln .

Hence, part (a) on Tate duality implies that for δ =±1

Im(χz)
δ ∼= Z/lnZ.

This evidently shows that Im(χz)
δ is an isotropic subgroup of H1(Ky,Eln) for the

antisymmetric Tate pairing. Since the cup product on H1(Ky,Eln) is Gal(K/F )-
equivariant it follows that Im(χz) ∼= Im(χz)

+1 ⊕ Im(χz)
−1 is an isotropic sub-

group of H1(Ky,Eln). �

LEMMA 5.1.5

Let z ∈ Λ1(n) be a prime divisor where n ≥ 1. Let y be the unique prime of K

lying above z. Let S be a finite set of prime divisors of Λ1(n) not containing z.
Let δ =±1. Then there is a nonzero element h ∈H1(K,Eln)

δ in the δ-eigenspace
satisfying these two conditions:

(a) hx ∈ ∂ln(E(Kx)) for any place x of K not lying over a place of S ∪ {z};
(b) hx ∈ Im(χw) for all w ∈ S where x is the unique place of K over w and

where χw : lnE(Kx)→H1(Kx,Eln) is the homomorphism of Proposition 4.4.2.

Proof
The places of S remain inert in the field extension K/F ; for any u ∈ S denote
by u� the corresponding place of K over u. For any place v ∈ΣK of K we have
the exact sequence

(5.1.4) 0−→ lnE(Kv)
∂ln−→H1(Kv,Eln)−→H1(Kv,E)ln −→ 0,

where the extremities of this sequence are in duality by Theorem 2.1.2.
Let δ =±1. The elliptic curve E/F has good reduction at all places of S∪{z}

(see Remarks 3.2.2). Let U be the finite subset of ΣF of places of F given by

U = S ∪ {z} ∪ {bad reduction places of E/F in ΣF }.
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Let UK be the finite set of all places of K over the places of U . For all v ∈ UK

dividing an element u of U \ {z} put

Hv = Im(χu)
δ if u ∈ S,

Hv = ∂ln
(
E(Kv)

)δ if u ∈ U \
(
S ∪ {z}

)
.

Then we have

|Hv|2 =
∣∣H1(Kv,Eln)

δ
∣∣ for all v dividing a place u ∈ U \ {z}.

For the case where u ∈ S this follows from Lemma 5.1.4(b). For the case where
u ∈ U \ (S ∪ {z}), that is to say, a place of bad reduction, this follows from the
exact sequence (5.1.4) and that the extremities of this sequence are in duality.

From Tate local and global duality, there is a self-dual exact sequence (see
[10, Chapter I, Theorem 4.10, p. 70])

H1(KU/K,Eln)→
⊕
v∈UK

H1(Kv,Eln)→H1(KU/K,Eln)
∗,

where N∗, for a Z/lnZ-module N , denotes Hom(N,Z/lnZ) and where KU is
the maximal extension of K unramified outside UK . Hence, the image I of
H1(KU/K,Eln) in

⊕
v∈UK

H1(Kv,Eln) is a maximal isotropic subgroup, for the
Tate pairing, of the group ⊕

v∈UK

H1(Kv,Eln).

Since at the place y lying over z we have H1(Ky,Eln)
δ 
= 0 by Lemma 5.1.4(a),

the subgroup Iδ is of order strictly larger than that of⊕
u∈S

H1(Ku� ,Eln)
δ

Hu�

.

Hence, the natural homomorphism

H1(KU/K,Eln)
δ →
⊕
u∈S

H1(Ku� ,Eln)
δ

Hu�

hasnonzerokernel.Therefore,wemayselectanonzeroelementh ∈H1(KU/K,Eln)
δ

in this kernel. Then h satisfies condition (b); that is to say, we have hu� ∈Hu� for
all u ∈ S. Furthermore, h satisfies condition (a) by the selection of Hv if v ∈ΣK is
a bad reduction place of E and because we have H1(Kun

v /Kv,Eln) = ∂ln(E(Kv))

if v ∈ΣK is a good reduction place of E, where Kun
v is the maximal unramified

separable extension of Kv . �

REMARK 5.1.6

Lemma 5.1.5 is a technical result required for the proof of Proposition 5.2.1 in
the next section.

5.2. A class γn(c) in the Selmer group

The notation and hypotheses of Section 5.1.1 also hold for this section.
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PROPOSITION 5.2.1

Let r ≥ 1 be an integer, and put ν(r) = (−1)rε. Let G be a subgroup of the Selmer
eigenspace Sell∞(E/K)−ν(r) such that

rank(G)≤ r.

Assume that Mr−1 is finite and that l ∈ P is coprime to the order of Pic(A).
Then there is a cohomology class γMr−1(c) for some divisor c ∈ Λr(Mr−1) such
that

(a) γMr−1(c) belongs to the Selmer eigenspace Sell∞(E/K)−ν(r);
(b) γMr−1(c) has order lMr−1−Mr ;
(c) ZγMr−1(c)∩G= {0}.

Proof
The group Sell∞(E/K) is an l∞-torsion group; that is to say, every element is
annihilated by a power of l. Hence, the subgroup G of finite rank is finite.

Let exp(G) be the exponent of G, that is to say, the largest order of an
element of the abelian l-group G. Select an integer

m≥ 1

such that

lm ≥max
{
exp(G), lMr−1

}
,

and put

L=K(Elm).

Put

t= rank(G),

where

rank(G) = dimZ/lZG/lG

and where t≤ r by hypothesis. Note that G is a subgroup of Hom(Gal(Lsep/L),

Elm(L)), as lm ≥ exp(G) (see Lemma 3.3.1), and the elements of Λ1(m) are
unramified in L/F . As in Section 1.2, for any divisor c on F , Supp(c) denotes
the set of distinct prime divisors in the support of c.

For any divisor c in Λr(1), put

Ξ(c) = Supp(c)∩Λ1(m);

that is to say, Ξ(c) is the set of prime divisors in the support of c which belong to
Λ1(m). In particular, Ξ(c) depends on m. For any prime divisor z of F in Λ1(1),
select a place z× of L = K(Elm) lying over z. Let Γ(c) ⊆ Ĝ be the subgroup
of characters of the abelian group G generated by the set of characters (as in
Proposition 3.3.2 and (3.3.1), applied to the finite group G, and Proposition 3.3.3){

φFrob(z×)

∣∣ z ∈ Ξ(c)
}
.
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Put

s(c) = dimZ/lZ
Γ(c) + lĜ

lĜ
.

That is to say, s(c) is the dimension of the image of Γ(c) in the vector space
Ĝ/lĜ of dimension t; the nonnegative integer s(c) is then at most equal to t. Put

n(c) =
∣∣Ξ(c)∣∣;

that is to say, n(c) is the cardinality of Ξ(c) and is a nonnegative integer at most
equal to r, the number of prime divisors in the support of c.

Define the defect Δ(c) of a divisor c ∈ Λr(1) on F to be

Δ(c) =max
(
t− s(c), r− n(c)

)
.

Then we have

0≤Δ(c)≤ r

and we have

Δ(c) = 0 if and only if Γ(c) = Ĝ and c ∈ Λr(m).

This equivalence holds because s(c) = t if and only if Γ(c) = Ĝ by Nakayama’s
lemma.

We have that Mr−1 ≥Mr by Lemma 5.1.2, and in particular, Mr is finite as
Mr−1 is assumed to be finite. We may then select a divisor

(5.2.1) d ∈ Λr(Mr + 1)

such that

lMr ‖ Pd.

Then the cohomology class γMr+1(d) is defined, belongs to H1(K,ElMr+1)−ν(r),
and has exact order l by Lemma 4.2.2 and Proposition 3.4.1(a).

Suppose that Mr = Mr−1. Then γMr−1(d) is equal to zero and evidently
belongs to the Selmer eigenspace Sell∞(E/K)−ν(r), which proves the lemma in
this trivial case where Mr =Mr−1. We may suppose for the rest of the proof of
this proposition that Mr−1 >Mr.

Assume that the defect of the divisor d already selected in (5.2.1) satisfies

Δ(d)> 0.

That is to say, either (where s(d)< t) the image of Γ(d) is a proper subspace of
Ĝ/lĜ or (where n(d) < r) d /∈ Λr(m). These two possibilities that s(d) < t and
that n(d)< r for the divisor d are not mutually exclusive.

We select a character ψ ∈ Ĝ and a prime divisor z0 ∈ Supp(d) with the
following recipe.

Selection of the character ψ.
If s(d)< t, then select a character ψ ∈ Ĝ such that

(5.2.2) ψ
(
γMr+1(d)

)

= 0 if γMr+1(d) ∈G
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and

(5.2.3) ψ ∈ Ĝ \
(
Γ(d) + lĜ

)
,

where the condition (5.2.2) is vacuous if γMr+1(d) /∈G. A character ψ ∈ Ĝ exists
which satisfies the two conditions (5.2.2) and (5.2.3) because a finite group cannot
be the union of two proper subgroups.

If s(d) = t and n(d)< r, then select any character ψ ∈ Ĝ such that

(5.2.4) ψ
(
γMr+1(d)

)

= 0 if γMr+1(d) ∈G,

where the condition (5.2.4) is vacuous if γMr+1(d) /∈G.
Selection of the divisor z0 ∈ Supp(d).

If s(d)< t, then select a prime divisor z0 ∈ Supp(d) such that{
φFrob(z×)

∣∣z ∈ Ξ(d− z0)
}

is a generating set for Γ(d) modulo lĜ. This choice is possible because t≤ r and
Supp(d) has r distinct elements.

If s(d) = t and n(d)< r, then select a prime divisor z0 ∈ Supp(d) such that
z0 /∈ Λ1(m).

We have now defined the pair ψ, z0 for the divisor d where the defect Δ(d)> 0.
By Lemma 5.1.5 we may select a cohomology class h in the ν(r)-eigenspace

h ∈H1(K,El)
ν(r)

of the group scheme El such that

h 
= 0;(5.2.5)

hv ∈ ∂l
(
E(Kv)

)
(5.2.6)

for all places v of K coprime to Supp(d); and

(5.2.7) hy ∈ Im(χz)

for all z ∈ Supp(d − z0) where y is the prime of K lying over z and χz is the
homomorphism of Section 4.4.
Note that H1(K,El)

ν(r) is a subgroup of H1(K,Elm) by Lemma 3.1.4.
Since h is in a different eigenspace from G and γMr+1(d), which both belong

to the −ν(r)-eigenspace, we have that(
G+ZγMr+1(d)

)
∩Zh= 0,

where G+ ZγMr+1(d) is the subgroup of H1(K,Elm)−ν(r) generated by G and
γMr+1(d) and where Zh is the subgroup of H1(K,Elm)ν(r) generated by h.

Let D be the subgroup of H1(K,Elm) generated by G, γMr+1(d), and h,

D =G+ZγMr+1(d) +Zh.

Then D is a finite subgroup of H1(K,Elm) by Lemma 3.1.4. As D is isomorphic
to the direct product of G+ZγMr+1(d) and Zh, we can select a homomorphism

χ :D→Q/Z
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such that (by (5.2.2), (5.2.4), and (5.2.5))

χ|G = ψ;(5.2.8)

χ
(
γMr+1(d)

)

= 0;(5.2.9)

χ(h) 
= 0.(5.2.10)

By Proposition 3.3.3 applied to the finite group D, there is a prime divisor

(5.2.11) z1 ∈ Λ1(m)

distinct from the elements of Supp(d) such that, in the notation of (3.3.1),

(5.2.12) χ= φFrob(z×
1 ),

where z×1 is a prime divisor of L=K(Elm) above z1. We then obtain the coho-
mology class γMr+1(d+ z1) associated to the divisor d+ z1.

For all places v of K, denote the alternating cup product induced by the
Weil pairing of h with γMr+1(d+ z1) localized at v by (see Theorem 2.1.1)〈

γMr+1(d+ z1)v, hv

〉
v
,

which is an element of Q/Z. The sum of local pairings over all places of K

(5.2.13)
∑

all places v of K

〈
γMr+1(d+ z1)v, hv

〉
v
= 0

is zero by Proposition 2.1.3.
If v does not divide any element of Supp(d+ z1), then

γMr+1(d+ z1)v ∈ ∂lMr+1

(
E(Kv)

)
by Proposition 4.5.1(a) and

hv ∈ ∂l
(
E(Kv)

)
by (5.2.6); that is to say, both localized elements γMr+1(d+ z1)v and hv are in
the image of the map

∂lm :E(Kv)→H1(Kv,Elm).

But the image of this map ∂lm in H1(Kv,Elm) is an isotropic subgroup for the
alternating pairing 〈·, ·〉v (see [1, Theorem 7.15.6, p. 403] or Theorem 2.1.2(a)).
Therefore, we have that〈

γMr+1(d+ z1)v, hv

〉
v
= 0 for all v coprime to Supp(d+ z1).

If y is a place of K which divides an element z of Supp(d− z0), then we have
hy ∈ Im(χz) by (5.2.7) and

γMr+1(d+ z1)y ∈ Im(χz)

by Proposition 4.4.2(d), which is the main property of the map χz . As Im(χz) is
isotropic for the cup product 〈·, ·〉v by Lemma 5.1.4(b), we have that〈

γMr+1(d+ z1)y, hy

〉
y
= 0 for all y dividing an element of Supp(d− z0).
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Therefore, theonlypossiblenonzero terms inthe sum
∑

v〈γMr+1(d + z1)v, hv〉v
of (5.2.13) are for the places of K lying over the places z0 and z1. For these
places zi ∈ Λ1 of F , for i= 0,1, denote by yi the corresponding place of K lying
over the place zi which remains inert in K/F .

From (5.2.9) and Section 3.3.2 and that χ= φFrob(z×
1 ) by (5.2.12), we have

that this localization γMr+1(d)y1 at y1 is nonzero; hence by Proposition 4.5.1(d)
the localization

δMr+1(d+ z1)y1 ∈H1(Ky1 ,E)
ν(r)

lMr+1

is nonzero. Furthermore, we have that

hy1 ∈ ∂l
(
E(Ky1)

)ν(r)
by (5.2.6) and hy1 is nonzero by (5.2.10) and (5.2.12). Hence, we have by
Lemma 5.1.4(a) that 〈

γMr+1(d+ z1)y1 , hy1

〉
y1


= 0.

Since the sum
∑

v〈γMr+1(d+ z1)v, hv〉v of (5.2.13) is zero, this implies that the
local term at y0 〈

γMr+1(d+ z1)y0 , hy0

〉
y0

is nonzero. Hence, we have γMr+1(d+ z1)y0 
= 0 and so by Proposition 4.5.1(d)

Pd+z1−z0 /∈ lMr+1E(Ky0).

Hence we obtain, where z1 ∈ Λ1(m),

(5.2.14) lMr ‖ Pd+z1−z0

because we have lMr | Pd+z1−z0 and d + z1 − z0 ∈ Λr(Mr + 1) as well as d ∈
Λr(Mr + 1) and z1 ∈ Λ1(m).

Put

c1 = d+ z1 − z0 ∈ Λr(Mr + 1).

On the one hand, we have that if s(d)< t, then the group Γ(c1) is generated by
Γ(d) and ψ,

(5.2.15) Γ(c1) = Γ(d) +Zψ,

because χ = φFrob(z×
1 ) by (5.2.12) and χ|G = ψ by (5.2.8) in this case where

s(d)< t. The condition that z1 ∈ Λ(m) is satisfied by the choice of z1 in (5.2.11).
We then have from (5.2.15) if s(d)< t, as ψ /∈ Γ(d) + lĜ by (5.2.3),

s(c1) = dimZ/lZ
Γ(c1) + lĜ

lĜ
= s(d) + 1.

On the other hand, if s(d) = t and n(d) < r, then n(c1) = n(d) + 1 as z1 ∈
Λ1(m) by (5.2.11) and z0 /∈ Λ1(m) by the selection of z0 ∈ Supp(d). Hence, we
have in both cases that the defect of c1 is given by

Δ(c1) =Δ(d)− 1.
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We may by this method construct by induction a sequence of divisors
c1, c2, c3, . . . in Λr(Mr + 1) such that their defects are strictly decreasing

Δ(d)>Δ(c1)>Δ(c2)> · · ·

and where, as in (5.2.14),

(5.2.16) lMr ‖ Pci for all i.

This sequence must terminate in a divisor c with zero defect Δ(c) = 0, that is to
say, Γ(c) = Ĝ, by Nakayama’s lemma, and c ∈ Λr(m) where

(5.2.17) lMr ‖ Pc.

The cohomology class γm(c) is therefore defined, and as Γ(c) = Ĝ we have,
where z× is a place of K(Elm) over z,

(5.2.18)
{
g ∈G | φFrob(z×)(g) = 0 for all z ∈ Supp(c)

}
= 0.

We have from Lemma 5.1.3(b) that

(5.2.19) γMr−1(c) ∈ Sell∞(E/K)−ν(r).

We have by the definition of Mr−1 that γMr−1(c− z) = 0 for any prime divisor
z in the support of c as c− z has r− 1 elements in its support. But by Proposi-
tion 4.5.1(d), we have for any z ∈ Supp(c), where y is the place of K over z,

ordγMr−1(c)y = ordγMr−1(c− z)y.

Hence we obtain for any z ∈ Supp(c) that γMr−1(c)y = 0 where y is the prime of
K over z. We then obtain from (5.2.18), as gy = φFrob(z×)(g) where y is the place
of K above z, that

G∩ZγMr−1(c) = 0.

Since lMr ‖ Pc, by (5.2.17), we have that γm(c) has order lm−Mr for all m≥Mr

by Proposition 3.4.1(a). Hence, γMr−1(c) has order lMr−1−Mr and belongs to the
Selmer group Sell∞(E/K)−ν(r), by (5.2.19), which proves the proposition. �

5.3. Proof of Theorem 4.1.10

5.3.1.
The notation from Section 5.1.1 also holds for this section.

LEMMA 5.3.1

Let A be a finite abelian p-group where p is a prime number and with invariants
I1 ≥ I2 ≥ · · · ≥ Ir. Let B be a subgroup of A with invariants I1 ≥ I2 ≥ · · · ≥ Is
where s≤ r. Then there is a subgroup C of A such that

A=B ⊕C;

that is to say, A is the direct sum of the subgroups B,C. The invariants of C are
Is+1 ≥ Is+1 ≥ · · · ≥ Ir.
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The proof of this result follows from the structure theorem of finite abelian groups
and is omitted.

Fof the proof of Theorem 4.1.10, as P0 has infinite order in E(K), the Tate–
Shafarevich group X(E/K) is finite and P0 generates a subgroup of finite index
in E(K) by [1, Theorem 7.6.5], which is one of the principal results of [1].

The image of P0 in lmE(K) belongs to the −ε-eigenspace of lmE(K) for all m
(by [1, Lemma 7.14.11] or Lemma 4.2.2 above). It follows from the decomposition
into eigenspaces

lmE(K)∼=
(
lmE(K)

)ε ⊕ (lmE(K)
)−ε

that the ε-eigenspace (lmE(K))ε is a finite abelian group of order bounded inde-
pendently of m, and hence, E(K)ε is a finite abelian group. As E(K) has no
l-torsion (as l ∈ P ; see Proposition 1.10.1 and Definition 3.1.2(f)), it follows that

(5.3.1)
(
lmE(K)

)ε
= 0 for all m

and that

(5.3.2)
(
lmE(K)

)−ε ∼= Z/lmZ for all m,

which proves the isomorphisms (4.1.3).
The lm-Selmer group Sellm(E/K)± belongs to an exact sequence of

eigenspaces

(5.3.3) 0−→
(
lmE(K)

)± −→ Sellm(E/K)± −→X(E/K)±lm −→ 0.

Hence, this exact sequence induces an isomorphism of ε-eigenspaces

(5.3.4) Sell∞(E/K)ε ∼=X(E/K)εl∞ .

The largest invariant of the −ε-eigenspace Sellm(E/K)−ε is at most equal
to m. But this group Sellm(E/K)−ε contains the subgroup (lmE(K))−ε ∼= Z/lmZ

with invariant m. By Lemma 5.3.1 applied to the eigenspace Sellm(E/K)−ε and
the subgroup (lmE(K))−ε, we have that the −ε-eigencomponent of the exact
sequence (5.3.3) splits. Hence, we obtain an isomorphism of −ε-eigenspaces

(5.3.5) Sellm(E/K)−ε ∼= lmE(K)⊕X(E/K)−ε
lm for all m.

The isomorphisms (5.3.4) and (5.3.5) prove the theorem. �

5.4. Proofs of Theorems 4.1.4 and 4.1.8

5.4.1.
The principle of the proof is to construct inductively divisors ck ∈ Λk, k =

1,2, . . . , such that the cohomology classes δMk−1
(ck) in the Tate–Shafarevich

group X(E/K)l∞ form a basis of a maximal isotropic subgroup with respect to
the Cassels pairing and where δMk−1

(ck) has order lNk for all k. The inductive
step is provided by Lemma 5.4.1.
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5.4.2.
The notation and hypotheses from Section 5.1.1 also hold for this section. We
further denote by, where l ∈ P ,

ΣK the set of all places of the global field K;
[·, ·]v : lmE(Kv)×H1(Kv,E)lm → Z/lmZ the nondegenerate local pairing

at the place v of K induced by the cup product, as in Theorem 2.1.2.

If zi ∈ Λ1(1) is a prime divisor of F indexed by an integer i, then denote by
yi the prime divisor of K lying above the place zi of F where this place zi is
inert in the field extension K/F .

LEMMA 5.4.1

Assume that l ∈ P is coprime to the order of Pic(A). Let s≥ 1 be a positive inte-
ger, and let r, t≥ 0 be nonnegative integers. Let S be a subgroup of Sells(E/K).
Let e ∈ Sells(E/K)−ν(r+1) and γs(c) ∈ Sells(E/K)−ν(r), where c ∈ Λr(s+ t), be
elements of the Selmer group where

S ∩
(
e, γs(c)

)
= 0

and where (e, γs(c)) is the subgroup of the Selmer group generated by e and γs(c).
Suppose also that e and γs(c) both have order ln where n ≤ s. Then there are
infinitely many prime divisors z ∈ Λ1(s+ t) coprime to Supp(c) such that if y is
the place of K over z, then we have that

(a) Sy = 0;
(b) the value in Z/lnZ of the local pairing at y with the class δs(c+ z)[

δs(c+ z)y,wy

]
y

has order ln where wy ∈ lnE(Ky) is a point such that ey = ∂ln(wy).

Proof
Note that the isomorphism from (3.1.3), we have that Selln(E/K) is the subgroup
of Sells(E/K) annihilated by ln, and in particular, Selln(E/K) contains e and
γs(c).

Let T be the subgroup of the Selmer group Sells(E/K) generated by S, e,
and γs(c). Then we have an isomorphism

T ∼= S ⊕
(
e, γs(c)

)
.

For a fixed nonzero element x ∈ T , the set of characters

χ : T → Z/lsZ

such that

ord
(
χ(x)
)
< ord(x)

is a proper subgroup of T̂ . This follows as the subgroups of Z/lsZ are linearly
ordered Z/lsZ⊇ lZ/lsZ⊇ l2Z/lsZ⊇ · · · . As a group cannot be the union of two
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proper subgroups, there is then a character χ : T → Z/lsZ such that

ord
(
χ(e)
)
= ord(e),

ord
(
χ
(
γs(c)

))
= ord

(
γs(c)

)
,

χ(S) = 0.

By Proposition 3.3.4 applied to the subgroup T and the character χ, we may
select a prime divisor z ∈ Λ1(s+ t) satisfying, where y is the place of K lying
over z,

ord(ey) = ord(e),

ord
(
γs(c)y

)
= ord

(
γs(c)

)
,

Sy = 0,

where the subscript y denotes the restriction at y of elements of the Selmer group
Sells(E/K). In particular, condition (a) of the lemma is satisfied for this z. The
class δs(c + z), associated to the divisor c + z ∈ Λr+1(s + t), then belongs to
H1(K,E)

−ν(r+1)
ls and e belongs to H1(K,Els)

−ν(r+1).
We may select a point wy ∈ (lnE(Ky))

−ν(r+1) such that ey = ∂ln(wy) where
e ∈ Selln(E/K) as already noted. Then wy has order ln in lnE(Ky) as ey has
order ln.

Furthermore, because

ord
(
γs(c)y

)
= ord

(
γs(c)

)
and by Proposition 4.5.1(d) we must have that

ord
(
δs(c+ z)y

)
= ord

(
γs(c)

)
= ln.

The class δs(c+ z)y , of order ln, belongs to the subgroup H1(Ky,E)
−ν(r+1)
ln

of H1(Ky,E)
−ν(r+1)
ls , and wy , which is of order ln, belongs to (lnE(Ky))

−ν(r+1).
In particular, δs(c+ z) and wy both belong to the −ν(r+1)-eigenspaces of their
respective spaces. Hence, the local term[

δs(c+ z)y,wy

]
y

has order ln. This follows from the nondegeneracy of the local pairing: by
Lemma 5.1.4(a), if z ∈ Λ1(n) and y ∈ ΣK is the place of K over z, then the
two elements

f ∈ lnE(Ky), d ∈H1(Ky,E)ln

give via the Tate pairing an element

[f, d]y

which is nonzero if they are in the same τ -eigenspace and the product of their
orders is greater than or equal to ln. Therefore, condition (b) is satisfied by z,
which proves the lemma. �
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We now simultaneously prove Theorems 4.1.4 and 4.1.8.
As P0 has infinite order in E(K), the Tate–Shafarevich group X(E/K) is

finite and P0 generates a subgroup of finite index in E(K) by [1, Theorem 7.6.5].
By the definition of the invariants Ni of the finite abelian group X(E/K)l∞

in Section 4.1.5, there is a maximal isotropic subgroup D of X(E/K)l∞ , with
respect to the nondegenerate antisymmetric Cassels pairing, where

D =
∏
i

Di,

each Di is a cyclic group of order lNi ,

Dε =
∏
i odd

Di,

and

D−ε =
∏

i even

Di.

From Theorem 4.1.10, we have the decomposition of eigenspaces

(5.4.1) Sellm(E/K)± ∼=
(
lmE(K)

)± ⊕X(E/K)±lm for all m≥ 0,

where the projection onto the second factor is given by the natural surjection

πm : Sellm(E/K)−→X(E/K)lm .

Let m be an integer such that lm is greater than or equal to the exponent of
the finite group X(E/K)l∞ ; that is to say, m≥maxiNi. For each integer i, let
di ∈X(E/K)

−ν(i)
l∞ be a generator of Di, and let

(5.4.2) ei ∈ Sellm(E/K)−ν(i), where πm(ei) = di,ord(ei) = lNi ,

be the lifting of di to the Selmer eigenspace Sellm(E/K)−ν(i) via the decom-
position (5.4.1) such that ei has zero component in the subgroup lmE(K); in
particular, we take ei to have order equal to lNi for all i and to belong to the
−ν(i)-eigenspace as di has order lNi . For each valuation v of K and each i, select
wi,v ∈ lNiE(Kv) such that the localization ei,v of ei at v satisfies

(5.4.3) ei,v = ∂lNi (wi,v).

Here

(5.4.4) ∂lNi : lNiE(Kv)→H1(Kv,ElNi )

denotes the connecting homomorphism associated to the morphism lNi :E →E

of multiplication by lNi .
The cohomology class γM0+N1(0) belongs to the Selmer group Sellm(E/K)−ε

and has order lN1 as lM0 ‖ P0, by Lemma 5.1.1 or Proposition 3.4.1(a),

ord
(
γM0+N1(0)

)
= lN1 .

The element e1 ∈ Sellm(E/K)ε has the same order

ord(e1) = lN1 .
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Let S be the subgroup of the Selmer group Sellm(E/K) generated by ei for all
i≥ 2. The element γM0+N1(0) belongs to the component lmE(K) in the decom-
position (5.4.1) of Sellm(E/K). Hence, we have that the subgroup of Sellm(E/K)

generated by S, e1, γM0+N1(0) is the direct sum

S ⊕Ze1 ⊕ZγM0+N1(0).

We may now apply Lemma 5.4.1 to S and the elements e1, γM0+N1(0) where
we take the parameters of the lemma to be

(5.4.5) c= 0, r = 0, s=M0 +N1, t= 0, n=N1.

There is according to the lemma a prime divisor z1 ∈ Λ1(M0+N1) which satisfies
the following two conditions, where y1 ∈ΣK is the prime divisor of K lying over
z1, where the subscript y1 denotes localization at y1, and where the point w1,y1

in (E(Ky1)/l
N1E(Ky1))

ε is such that ∂lN1 (w1,y1) = e1,y1 :

(5.4.6) ord
[
δM0+N1(z1)y1 ,w1,y1

]
y1

= lN1

and

(5.4.7) Sy1 = 0.

Here in (5.4.6), δM0+N1(z1) is the cohomology class in H1(K,E)ε
lM0+N1

associated
to z1.

Let

δM0(z1) ∈X(E/K)εl∞

be the cohomology class associated to this prime divisor z1 ∈ Λ1(M0 + N1);
that δM0(z1) belongs to the Tate–Shafarevich group X(E/K)εl∞ follows from
Lemma 5.1.3(a).

On the one hand, lN1 is the maximum order of an element of X(E/K)εl∞ .
From Proposition 5.2.1 and the isomorphism of (5.4.1), there is an element
in the Selmer group Sell∞(E/K)ε, and hence in the Tate–Shafarevich group
X(E/K)εl∞ , of order lM0−M1 . It follows that we have the inequality

(5.4.8) M0 −M1 ≤N1.

On the other hand, the Cassels pairing gives, as lnδM0(z1) = δM0−n(z1) if
n≤M0, that 〈

δM0(z1), l
nd
〉
Cassels

=
〈
lnδM0(z1), d

〉
Cassels(5.4.9)

=
〈
δM0−n(z1), d

〉
Cassels

,

where

lNiδM0+Ni−n(z1) = δM0−n(z1).

By the construction of the Cassels pairing as a sum of local pairings, more
precisely from Proposition 4.6.1 and equation (4.6.1), we obtain from (5.4.9) that
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for all 0≤ n≤Ni − 1 where lNi is the order of di〈
δM0(z1), l

ndi
〉
Cassels

=
∑

v∈ΣK

[
δM0+Ni−n(z1)v,wi,v

]
v

(5.4.10)
=
[
δM0+Ni−n(z1)y1 ,wi,y1

]
y1
,

where ei,v = ∂lNi (wi,v) as in (5.4.3) for all v ∈ ΣK , as we have that
δM0+Ni−n(z1)v = 0 for all places v of K not dividing z1 (by Proposition 4.5.1(a)).

The term [
δM0+Ni−n(z1)y1 ,wi,y1

]
y1

is zero if i≥ 2 by (5.4.7). Hence we have from (5.4.10) that

(5.4.11)
〈
δM0(z1), di

〉
Cassels

= 0 for i≥ 2.

Let i= 1. From the sum formula (5.4.10) we have that

(5.4.12)
〈
δM0(z1), l

nd1
〉
Cassels

=
[
δM0+N1−n(z1)y1 ,w1,y1

]
y1
.

By (5.4.6), the term [δM0+Ni(z1)y1 ,w1,y1 ]y1 has order lN1 . Hence by (5.4.12),
the element 〈δM0(z1), d1〉Cassels of Q/Z has order lN1 . Hence, the character

d �→
〈
δM0(z1), l

nd
〉
Cassels

, X(E/K)εl∞ →Q/Z,

is nonzero for all n such that 0≤ n≤N1 − 1 and more precisely〈
δM0(z1), l

nd1
〉
Cassels

is nonzero for all n such that 0≤ n≤N1 − 1.
Therefore, the character

d �→
〈
δM0(z1), d

〉
Cassels

, X(E/K)εl∞ →Q/Z,

vanishes on
∏

i≥2Di (by (5.4.11)) and its restriction to D1 generates the dual D̂1.
Hence, the element δM0(z1) of X(E/K)εl∞ has order at least lN1 , as this is the
order of the cyclic group D1. Since δM0(z1) has order at most lM0−M1 , by the
definition of the cohomology class δM0(z1) (see Lemma 5.1.3(c)), we obtain that

N1 ≤M0 −M1.

Hence we must have from the inequality (5.4.8) that

(5.4.13) N1 =M0 −M1.

It follows from this equality that δM0(z1) has order lM0−M1 . Therefore, lM1+1

does not divide Pz1 , and hence, we have that

lM1 ‖ Pz1 .

In summary, we have shown that δM0(z1) has order lN1 = lM0−M1 , lM1 ‖
Pz1 , Sy1 = 0, the character d �→ 〈δM0(z1), d〉Cassels vanishes on

∏
i≥2Di, and its

restriction to D1 generates the dual D̂1.
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We now proceed by induction. Suppose that there are prime divisors
z1, . . . , zk ∈ Λ1(M0 +N1) such that

(5.4.14) ei,yj = 0 for all i 
= j and for all j such that 1≤ j ≤ k

and if

cj = z1 + · · ·+ zj ,

then

(5.4.15) lMj ‖ Pcj , δMj−1(cj) ∈X(E/K)
−ν(j)
l∞ , for all 1≤ j ≤ k,

and the characters

χj : d �→
〈
δMj−1(cj), d

〉
Cassels

, 1≤ j ≤ k,

vanish on
∏

i≥k+1Di and form a triangular basis of the dual of
∏

i≤kDi such
that the restriction of χj to the cyclic subgroup Dj is a basis for the dual D̂j for
all j = 1, . . . , k. Suppose further, as we have shown, that

(5.4.16) Mj−1 −Mj =Nj , for 1≤ j ≤ k,

and

(5.4.17) ord δMj−1(cj) = lNj , for 1≤ j ≤ k.

We have already proved the existence of the divisor c1 = z1 and these proper-
ties of the previous paragraph of ei,y1 , Pc1 , δM0(c1), χ1, N1 =M0−M1, including
(5.4.14), (5.4.15), (5.4.16), and (5.4.17) for k = 1. Let yi ∈ΣK be the place of K
above zi for all i= 1, . . . , k.

Let m be the integer already selected such that lm ≥ exp(X(E/K)l∞). The
order of δMk−1

(ck) in X(E/K)l∞ is the same as its order as a character on
D via the nondegenerate Cassels pairing. Since D is an isotropic subgroup of
X(E/K)l∞ , it follows that

(5.4.18) ZδMk−1
(ck)∩D = 0.

We have that

γMk+Nk+1
(ck) = lNk−Nk+1γMk−1

(ck)

as Nk =Mk−1 −Mk from (5.4.16) and where Nk −Nk+1 ≥ 0 by the definition
of the integers Ni as the invariants of X(E/K)l∞ in decreasing order. It follows
from the induction hypothesis that the cohomology class δMk+Nk+1

(ck) has order
lNk+1 , by (5.4.17), and belongs to X(E/K)

−ν(k)
l∞ .

We have that lMk ‖ Pck by the induction hypothesis (5.4.15). Hence by
Proposition 3.4.1(a), the cohomology class γMk+Nk+1

(ck) then has the same order
as its homomorphic image δMk+Nk+1

(ck), namely, lNk+1 .
Let S be the subgroup of the Selmer group Sellm(E/K) generated by the ele-

ments ei for all i 
= k+1. Let T be the subgroup of the Selmer group Sellm(E/K)

generated by γMk+Nk+1
(ck), ek+1, S. From the isomorphism (5.4.1) and that

ZδMk+Nk+1
(ck) has trivial intersection with D by (5.4.18), there is an equality of
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subgroups of the Selmer group Sellm(E/K), where the sums on the right-hand
side are direct,

T = ZγMk+Nk+1
(ck)⊕Zek+1 ⊕ S.

We may now apply Lemma 5.4.1 to S and the elements ek+1, γMk+Nk+1
(ck)

where we take
(5.4.19)

c= ck, r = k, s=Mk +Nk+1, t=M0 +N1 − s, n=Nk+1.

There is then according to the lemma a prime divisor zk+1 ∈ Λ1(M0+N1) which
satisfies the following two conditions:

(5.4.20) ord
[
δMk+Nk+1

(ck + zk+1),wk+1,yk+1

]
yk+1

= lNk+1

and

(5.4.21) Syk+1
= 0,

where yk+1 ∈ ΣK is the prime divisor of K lying over zk+1, the subscript
yk+1 denotes localization at yk+1, and the point wk+1,yk+1

in (E(Kyk+1
)/

lNk+1E(Kyk+1
))ε is such that ∂lNk+1 (wk+1,yk+1

) = ek+1,yk+1
.

For this selection of zk+1 ∈ Λ1(M0 +N1), note that Mk +Nk+1 ≤M0 +N1

and so t ≥ 0, where t is the parameter of (5.4.19), because Mr,Nr are both
decreasing sequences of integers, and note that H1(K,ElMk+Nk+1 ) is a subgroup
of H1(K,ElM0+N1 ) by Lemma 3.1.4.

Let ck+1 be the divisor which is the sum of the zi, for i= 1, . . . , k+ 1,

(5.4.22) ck+1 =

k+1∑
j=1

zj .

Let

δMk
(ck+1) ∈X(E/K)

−ν(k+1)
l∞

be the cohomology class associated to this divisor ck+1 ∈ Λk+1(M0 +N1); that
δMk

(ck+1) belongs to the Tate–Shafarevich group X(E/K)
−ν(k+1)
l∞ follows from

Lemma 5.1.3(a).
Then for 0 ≤ n ≤ Nk+1 − 1 by the construction of the Cassels pairing as a

sum of local terms, more precisely from Proposition 4.6.1 and (4.6.1), we have
the following sum formulae as di has order lNi :〈

δMk
(ck+1), l

ndi
〉
Cassels

=
〈
δMk−n(ck+1), di

〉
Cassels

=
∑

v∈ΣK

[
δMk−n+Ni(ck+1)v,wi,v

]
v

(5.4.23)

=

k+1∑
j=1

[
δMk−n+Ni(ck+1)yj ,wi,yj

]
yj
,

because δMk−n+Ni(ck+1)v = 0 for all v ∈ΣK not dividing an element of Supp(ck+1)

by Proposition 4.5.1(a). Here wi,yj ∈ lNiE(Kyj ) is an element already chosen (see



764 M. L. Brown

(5.4.3)) such that

∂lNi (wi,yj ) = ei,yj .

We have the following sum for the Cassels pairing, obtained from those of
(5.4.23):

(5.4.24)
〈
δMk

(ck+1), l
ndi
〉
Cassels

=

k+1∑
j=1

[
δMk−n+Ni(ck+1)yj ,wi,yj

]
yj
.

We have wi,yj = 0 for all i 
= j and all j such that 1 ≤ j ≤ k + 1 by (5.4.14)
for j ≤ k and by (5.4.21) for j = k + 1. It follows that for i ≥ k + 1 all terms
[δMk−n+Ni(ck+1)yj ,wi,yj ]yj of this sum (5.4.24) are zero except the last
[δMk−n+Ni(ck+1)yk+1

,wi,yk+1
]yk+1

and the entire sum is zero for i > k+ 1.
By (5.4.20) the local term[

δMk+Nk+1−n(ck+1)yk+1
,wk+1,yk+1

]
yk+1

is nonzero for all integers n such that 0≤ n≤Nk+1 − 1.
Therefore the character, by (5.4.24),

χk+1 : d �→
〈
δMk

(ck+1), d
〉
Cassels

vanishes on
∏

i>k+1Di and its restriction to Dk+1 generates D̂k+1, as Dk+1 has
order lNk+1 by definition. Hence, χk+1 extends the triangular basis χ1, . . . , χk to
generate

∏
i≤k+1 D̂i and δMk

(ck+1) has order at least lNk+1 . Since it has order
at most lMk−Mk+1 , by the definition of the cohomology class δMk

(ck+1) (see
Lemma 5.1.3(c)), we conclude that

(5.4.25) Nk+1 ≤Mk −Mk+1

and also

(5.4.26) lNk+1 ≤ ord δMk
(ck+1)≤ lMk−Mk+1 .

Let Ck be the subgroup of the Selmer eigencomponent Sellm(E/K)−ν(k+1)

given by

Ck =
(
γM0+N1(0), e1, . . . , ek, γM0(c1), . . . , γMk−1

(ck)
)−ν(k+1)

.

If k is even, then Ck is generated by e1, γM0(c1), e3, γM2(c3), . . . , ek−1, γMk−2
(ck−1)

of which there are k in number. If k is odd, then Ck is generated by
γM0+N1(0), e2, γM1(c2), e4, γM3(c4), . . . , ek−1, γMk−2

(ck−1) of which there are k in
number. We then have for all integers k that

(5.4.27) rank(Ck)≤ k.

The elements e1, . . . , ek generate a subgroup of Sellm(E/K) isomorphic to∏
i≤kDi by the decomposition (5.4.1) of the Selmer group. Furthermore, the

elements γM0(c1), . . . , γMk−1
(ck) generate a subgroup of Sellm(E/K) isomorphic

to the dual of
∏

i≤kDi because γMi−1(ci) has the same order as δMi−1(ci) for
all i= 1, . . . , k (see (5.4.15), (5.4.16), (5.4.17), and Proposition 3.4.1(a)). In the
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decomposition (5.4.1) of Sellm(E/K), take S to be the subgroup lmE(K)⊕1≤i≤k∏
Di ⊕

⊕
1≤i≤k ZγMi−1(ci). Then we have Ck = S−ν(k+1).

If a finite abelian group G is a direct product G1 × G2 of two subgroups
and g ∈ G is such that Zg ∩ G1 = 0, then the order of the element g is at
most the exponent of G2. Then by the previous remark where we take G =

Sellm(E/K)−ν(k+1) and G1 = Ck, we have that lNk+1 is the maximum order of
an element c ∈ Sellm(E/K)−ν(k+1) if

Zc∩Ck = 0

by the decomposition (5.4.1) of the Selmer group Sellm(E/K).
On the other hand, by Proposition 5.2.1 and (5.4.27) applied to subgroup Ck

of the Selmer group there is an element in Sellm(E/K)−ν(k+1) of order lMk−Mk+1

satisfying Zc∩Ck = 0. Hence, we have that

Mk −Mk+1 ≤Nk+1

and so by (5.4.25) we have that

(5.4.28) Nk+1 =Mk −Mk+1.

It follows from this equality and (5.4.26) that

(5.4.29) ord δMk
(ck+1) = lMk−Mk+1 .

Therefore, lMk+1+1 does not divide Pck+1
and lMk+1 | Pck+1

, and hence we have

(5.4.30) lMk+1 ‖ Pck+1
.

The properties (5.4.28), (5.4.29), and (5.4.30) complete the proof of the induction
step and this proves Theorems 4.1.4 and 4.1.8. �

5.5. Proofs of Theorems 1.1.1 and 4.1.9

Proof of Theorem 1.1.1
From Proposition 2.2.1, we have, because l ∈ P is an odd prime number, that
X(E/F )l∞ ∼= X(E/K)+1

l∞ . The theorem now follows immediately from Theo-
rem 4.1.4. �

Proof of Theorem 4.1.9
As P0 has infinite order, by Lemma 5.1.1 and [1, Theorem 7.6.5] we have that
M0 is finite, the group ZP0 has finite index in E(K), and the highest power of l
dividing the index [E(K) : ZP0] is equal to

lM0 =
∣∣(E(K)/ZP0

)
l∞

∣∣.
By Theorem 4.1.4, we have that∣∣X(E/K)l∞

∣∣=∏
i≥0

l2(Mi−Mi+1) = l2(M0−M∞),

where

M∞ =min
i∈N

Mi
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and where this minimum exists because the Mi’s form a decreasing sequence of
nonnegative integers by Lemma 5.1.2. �

5.6. Generators of Tate–Shafarevich groups

5.6.1.
The notation from Section 5.1.1 also holds for this section. We further denote
by

ΣK the set of all places of the global field K;
[·, ·]v : lmE(Kv)×H1(Kv,E)lm → Z/lmZ the nondegenerate local pairing

at the place v of K induced by the cup product, as in Theorem 2.1.2.

THEOREM 5.6.1

Let l be a prime number belonging to P ; assume that l is coprime to the order of
Pic(A). Suppose that P0 has infinite order in E(K), and let a be an integer such
that a≥ 2M0. Then we have that

(a) the classes δM0(c), for all c ∈ Λ1(a), generate X(E/K)εl∞ ; and
(b) the classes δM1(c), for all c ∈ Λ2(a), generate X(E/K)−ε

l∞ .

THEOREM 5.6.2

Under the hypotheses of Theorem 5.6.1, the classes δMr (c), for all c ∈ Λr(a),
generate X(E/F )l∞ where r = (3− ε)/2.

Proof
This obviously follows from Theorem 5.6.1 and Proposition 2.2.1. �

Proof of Theorem 5.6.1
By Theorem 4.1.4 above or [1, Theorem 7.6.5], the group X(E/K)l∞ is finite.
By Lemmas 5.1.1 and 5.1.2, the quantities M0,M1,M2, . . . are all finite and form
a decreasing sequence of nonnegative integers. We fix an integer a ≥ 2M0. The
classes δM0(z), for z ∈ Λ1(a), and the classes δM1(z1 + z2), for z1 + z2 ∈ Λ2(a),
belong to X(E/K)l∞ by Lemma 5.1.3(a). We now prove separately the two parts
of the theorem.

(a) Suppose that d ∈X(E/K)εl∞ has order exactly lM for some M > 0 and
is in the ε-eigenspace of X(E/K)l∞ . By Theorem 4.1.10 there is an isomorphism
of ε-components

(5.6.1) Sell∞(E/K)ε ∼=X(E/K)εl∞

induced from the natural surjection of the Selmer group onto the Tate–Shafarevich
group.

By Theorem 4.1.4, we have M ≤M0. By the isomorphism (5.6.1), we may
lift d to an element of the Selmer group e ∈ Sell∞(E/K)ε of order lM . The
cohomology class γM0+M (0) belongs to the −ε-eigenspace Sell∞(E/K)−ε of the
Selmer group and has order lM by Lemma 5.1.1.
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We may apply Lemma 5.4.1 to the elements e, γM0+M (0) and the subgroup
S = 0 where we take the parameters of the lemma to be

(5.6.2) c= 0, r = 0, s=M0 +M, t= a− (M0 +M), n=M.

Note that t≥ 0 as a≥ 2M0 ≥M0 +M . There is according to the lemma a prime
divisor z ∈ Λ1(a) which satisfies the following condition:

(5.6.3) ord
[
δM0+M (z)y,wy

]
y
= lM ,

where y ∈ ΣK is the prime divisor of K lying over z, where the subscript y

denotes localization at y, and where the point wy in (E(Ky)/l
ME(Ky))

ε is
such that ∂lM (wy) = ey . Here in (5.6.3), δM0+M (z) is the cohomology class in
H1(K,E)lM0+M associated to z.

Let δM0(z) be the cohomology class of X(E/K)εl∞ associated to z, where
this class belongs to the Tate–Shafarevich group by Lemma 5.1.3.

The Cassels pairing gives, as luδM0(z) = δM0−u(z) if u≤M0,

(5.6.4)
〈
δM0(z), l

ud
〉
Cassels

=
〈
δM0−u(z), d

〉
Cassels

.

Because d has order lM and that we have

lMδM0+M−u(z) = δM0−u(z),

by the construction of the Cassels pairing in terms of local Tate pairings (see
Proposition 4.6.1 and (4.6.1)) we obtain from (5.6.4)〈

δM0(z), l
ud
〉
Cassels

=
[
δM0+M−u(z)y,wy

]
y
,

where as above

ey = ∂lM (wy),

and where wy ∈ lME(Ky) as we have that δM0+M−u(z)v = 0 for all places v of K
not dividing z by Proposition 4.5.1(a).

By (5.6.3) the element given by the Tate pairing[
δM0+M−u(z)y,wy

]
y

of Q/Z is nonzero for all integers u such that 1≤ u≤M − 1 and hence〈
δM0(z), l

ud
〉
Cassels

is nonzero for all integers u such that 1≤ u≤M−1. We obtain that the character,
where z ∈ Λ1(a),

f �→
〈
δM0(z), f

〉
Cassels

, X(E/K)l∞ →Q/Z

of X(E/K)l∞ when restricted to Zd generates the dual Ẑd of this subgroup Zd.
As d is any element of the abelian group X(E/K)εl∞ , the nondegeneracy

of Cassels pairing implies that the classes {δM0(z), z ∈ Λ1(a)} generate the ε-
eigenspace X(E/K)εl∞ , which proves the part of the theorem for X(E/K)εl∞ .

(b) Suppose that f ∈ X(E/K)−ε
l∞ has order exactly lM

′
and is in the −ε-

eigenspace of X(E/K)l∞ . We have M ′ ≤M0 by Theorem 4.1.4.
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We have from Theorem 4.1.10 an isomorphism compatible with the τ -
eigenspaces

Sellm(E/K)∼= lmE(K)⊕X(E/K)l∞ for all m≥N1

from which as stated in this theorem we obtain the isomorphism, taking m= a≥
2M0 ≥N1,

Δa : Sella(E/K)−ε ∼= Z/laZ⊕X(E/K)−ε
l∞ .

The projection of Sella(E/K) onto the second factor X(E/K)l∞ of this direct
sum is the natural surjection of the Selmer group onto the Tate–Shafarevich
group.

Lift f to g ∈ Sella(E/K)−ε via this isomorphism Δa for the integer a where
g has order lM

′
and has zero component in the first term Z/laZ of this decompo-

sition of the Selmer group. By Theorem 4.1.4 or alternatively Proposition 5.2.1,
there is an element d ∈X(E/K)εl∞ of order exactly lM0−M1 . Via the isomorphism
(5.6.1), lift d to an element of the Selmer group e ∈ Sella(E/K)ε which is also of
order lM0−M1 . The cohomology class γ2M0−M1(0) belongs to the −ε-eigenspace
Sella(E/K)−ε of the Selmer group and has order lM0−M1 by Lemma 5.1.1.

Let T be the subgroup of Sella(E/K) generated by the three elements
γ2M0−M1(0), e, and g. As the two elements γ2M0−M1(0) and g belong to the dif-
ferent components of Sella(E/K)−ε under the isomorphism Δa and as e belongs
to a different eigenspace Sella(E/K)ε, the group T is the direct sum of the sub-
groups generated by these three elements; that is to say, we have that

T ∼= Zγ2M0−M1(0)⊕Ze⊕Zg.

We may apply Lemma 5.4.1 to the subgroup S = Zg and the elements
γ2M0−M1(0) and e of the Selmer group; we take the parameters of the lemma
to be

c = 0, r = 0, s= 2M0 −M1,
(5.6.5)

t = a− (2M0 −M1), n=M0 −M1.

Note that t ≥ 0 as a ≥ 2M0. There is according to the lemma a prime divisor
z1 ∈ Λ1(a) which satisfies the following two conditions:

ord
[
δ2M0−M1(z1)y1 ,wy1

]
y1

= lM0−M1 ,(5.6.6)

(Zg)y1 = 0,(5.6.7)

where y1 ∈ ΣK is the prime divisor of K lying over z1 and where the point wy1

in (E(Ky1)/l
M0−M1E(Ky1))

ε is such that ∂lM0−M1 (wy1) = ey1 . Here in (5.6.6),
δ2M0−M1(z1) is the cohomology class in H1(K,E)l2M0−M1 associated to z1.

Let

δM0(z1) ∈X(E/K)εl∞

be the cohomology class associated to this prime divisor z1 ∈ Λ1(a); that δM0(z1)

belongs to X(E/K)εl∞ follows from Lemma 5.1.3(a).
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The Cassels pairing gives, as luδM0(z1) = δM0−u(z1) if u≤M0,〈
δM0(z1), l

ud
〉
Cassels

=
〈
luδM0(z1), d

〉
Cassels(5.6.8)

=
〈
δM0−u(z1), d

〉
Cassels

,

where

lM0−M1δ2M0−M1−u(z1) = δM0−u(z1).

By the construction of the Cassels pairing as a sum of local terms, more
precisely from Proposition 4.6.1 and (4.6.1), we obtain from (5.6.8) that for all
0≤ u≤M0 −M1 − 1 where M0 −M1 is the order of d〈

δM0(z1), l
ud
〉
Cassels

=
∑

v∈ΣK

[
δ2M0−M1−u(z1)v,wv

]
v

(5.6.9)
=
[
δ2M0−M1−u(z1)y1 ,wy1

]
y1
,

where ev = ∂lM0−M1 (wv) for all v ∈ΣK , and where we have that δ2M0−M1−u(z1)v =

0 for all places v of K not dividing z1 (by Proposition 4.5.1(a)).
From the sum formula (5.6.9) we have that〈

δM0(z1), l
ud
〉
Cassels

=
[
δ2M0−M1−u(z1)y1 ,wy1

]
y1
.

By (5.6.6), [δ2M0−M1(z1)y1 ,wy1 ]y1 has order lM0−M1 .
Hence, the map

s �→
〈
δM0(z1), l

us
〉
Cassels

, X(E/K)εl∞ →Q/Z

is nonzero for all u such that 0≤ u≤M0 −M1 − 1 and more precisely〈
δM0(z1), l

ud
〉
Cassels

is nonzero for all u such that 0≤ u≤M0 −M1 − 1.
Therefore, the character

s �→
〈
δM0(z1), s

〉
Cassels

, X(E/K)εl∞ →Q/Z

is such that its restriction to Zd generates the dual Ẑd. Hence, δM0(z1) has order
at least lM0−M1 as this is the order of the cyclic group Zd. Since δM0(z1) has
order at most lM0−M1 , by the definition of the cohomology class δM0(z1) (see
Lemma 5.1.3(c)), we obtain that δM0(z1) has order given by

ord δM0(z1) = lM0−M1 .

We have lM1 | Pz1 by the definition of M1. It follows that γM0(z1) has order
less than or equal to lM0−M1 by Proposition 3.4.1(a). As δM0(z1) has order
lM0−M1 by the previous paragraph and δM0(z1) is a homomorphic image of
γM0(z1) we must have that γM0(z1) has order exactly given by

ordγM0(z1) = lM0−M1 .

Therefore, we have by Proposition 3.4.1(a) that

lM1 ‖ Pz1 .
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We may apply Lemma 5.4.1 to the subgroup S = 0 and the two elements
γM1+M ′(z1) and g of the Selmer group which both have order lM

′
; we take the

parameters of the lemma to be

c = z1, r = 1, s=M1 +M ′,
(5.6.10)

t = a− (M1 +M ′), n=M ′.

Note that t≥ 0 as a≥ 2M0 and M ′,M1 ≤M0. There is according to the lemma
a prime divisor z2 ∈ Λ1(a) which satisfies the following condition:

(5.6.11) ord
[
δM1+M ′(z1 + z2)y2 , xy2

]
y2

= lM
′
,

where y2 ∈ΣK is the prime divisor of K lying over z2 and where the point xy2 in
(E(Ky2)/l

M ′
E(Ky2))

ε is such that ∂lM′ (xy2) = ey2 . Here in (5.6.11),
δM1+M ′(z1+z2) is the cohomology class in H1(K,E)lM1+M′ associated to z1+z2.

Let

δM1(z1 + z2)

be the cohomology class of X(E/K)−ε
l∞ associated to the divisor z1+ z2 ∈ Λ2(a),

where this class belongs to the Tate–Shafarevich group by Lemma 5.1.3(a).
Then the Cassels pairing gives, as luδM1(z1+z2) = δM1−u(z1+z2) if u≤M1,

(5.6.12)
〈
δM1(z1 + z2), l

uf
〉
Cassels

=
〈
δM1−u(z1 + z2), f

〉
Cassels

.

Because f has order lM
′
and that we have

lM
′
δM1+M ′−u(z1 + z2) = δM1−u(z1 + z2),

by the construction of the Cassels pairing (see Proposition 4.6.1 and (4.6.1)) we
obtain from (5.6.12) that

(5.6.13)
〈
δM1(z1 + z2), l

uf
〉
Cassels

=
∑

z∈Supp(z1+z2)

[
δM1+M ′−u(z1 + z2)y, xy

]
y
,

where

(5.6.14) gy = ∂lM′ (xy)

and

xy ∈
(
lM′E(Ky)

)−ε
,

because we have that δM1+M−u(z1 + z2)v = 0 for all places v of K not divid-
ing z1 + z2 by Proposition 4.5.1(a). Here in (5.6.13) and (5.6.14), z runs over
the places z1, z2 and y ∈ ΣK runs over the place of K above z, that is to say,
above z1, z2.

The first term [δM1+M ′−u(z1 + z2)y1 , xy1 ]y1 in the sum (5.6.13) is zero by
(5.6.7) and (5.6.14).

By (5.6.11), the second term, an element of Q/Z,[
δM1+M ′−u(z1 + z2)y2 , xy2

]
y2
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is nonzero for 0≤ u≤M ′ − 1 and hence δM1(z1 + z2) has order at least lM
′
. We

obtain from this and (5.6.13) that the Cassels pairing〈
δM1(z1 + z2), l

uf
〉
Cassels

=
[
δM1+M ′−u(z1 + z2)y1 , xy1

]
y1

is nonzero for all u such that 0≤ u≤M ′ − 1. Hence, this character

s �→
〈
δM1(z1 + z2), s

〉
Cassels

, X(E/K)−ε
l∞ →Q/Z

has restriction to Zf , which generates the dual of this subgroup Zf of order lM
′
.

As f is any element of the abelian group X(E/K)−ε
l∞ , the nondegeneracy

of the Cassels pairing on X(E/K)−ε
l∞ implies that the classes δM1(z1 + z2), for

divisors z1 + z2 ∈ Λ2(a), generate the −ε-eigenspace X(E/K)−ε
l∞ , which proves

the part of the theorem for X(E/K)−ε
l∞ . �
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