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Existence of Positive Solution to Schrödinger-type Semipositone Problems

with Mixed Nonlinear Boundary Conditions

Eunkyung Ko, Eun Kyoung Lee* and Inbo Sim

Abstract. We studied the existence of a positive solution to Schrödinger-type semi-

positone problems with mixed nonlinear boundary conditions. By considering the

cases when the reaction term with a parameter satisfies a superlinear and a sublinear

growth condition at infinity, we established the existence of a positive solution for the

large and small values of the parameter, respectively. The proofs are mainly based

on the sub- and supersolution method for the sublinear case and the mountain pass

lemma with C1,α(Ω)-regularity for the superlinear case.

1. Introduction and main results

Owing to its suitability to describe a wide range of physical phenomena, the semilinear

equation

(1.1)

−∆u = λf(u), x ∈ Ω,

u = 0, x ∈ ∂Ω

related to reaction–diffusion models, has been widely and intensively studied for a long

time. In (1.1) ∆u = div(∇u), Ω is a bounded domain in RN , ∂Ω is a smooth boundary

of Ω, λ is a positive real parameter, and f : [0,∞) → R is a function. The existence of

solutions of (1.1) according to the nonlinear behavior of f has been of particular interest.

Several researchers have investigated problems with nonnegative f functions, while studies

on models with sign-changing f functions, specifically when f(0) < 0, have been relatively

rare. This case, known as the semipositone problem, has been extensively studied in

the literature. Lions [31] reported that the study of positive solutions to semipositone

problems is more challenging than the case of f(0) ≥ 0.

Since then, several researchers have employed different conditions for (1.1). In one of

these studies, a nonlinear boundary condition was applied instead of a Dirichlet boundary
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condition

(1.2)

−∆u = λf(u), x ∈ Ω,

∂u
∂η + g(u)u = 0, x ∈ ∂Ω,

where ∂
∂η is an outward normal derivative and g : [0,∞) → (0,∞) is a function. The

nonlinear boundary condition in (1.2), naturally arises in several applications, for example,

in thermal explosion models [23, 27], convection–diffusion systems, corrosion/oxidation

models, and metal-insulator or metal-oxide semiconductor systems [3, 6, 15,18,26,34,37].

Recently, Butler et al. [8] studied positive radial solutions to the boundary value prob-

lem on the exterior of a ball,

(1.3)


−∆u = λK(|x|)f(u), x ∈ Ω,

∂u
∂η + g(u)u = 0, |x| = r0,

u = 0, |x| → ∞,

where Ω = {x ∈ RN : N > 2, |x| > r0 with r0 > 0}, K : (r0,∞) → (0,∞) is a continuous

function such that limr→∞K(r) = 0 and g is continuous. They transformed (1.3) by the

change of variable r = |x|, t =
(
r
r0

)2−N
, into a one-dimensional problem with a mixed

nonlinear boundary condition
−u′′(t) = λh(t)f(u(t)), t ∈ (0, 1),

(N−2)
r0

u′(1) + g(u(1))u(1) = 0,

u(0) = 0,

where h(t) =
r20

(2−N)2
t
−2(N−2)
N−2 K(r0t

1
2−N ).

For simplicity, it is natural to consider an autonomous nonlinear partial differential

equation (PDE) problem instead of the ordinary differential equation (ODE) above. Thus,

in this paper, we are focusing on the existence of a positive solution of

(1.4)


−∆u+ V (x)u = λf(u), x ∈ Ω = Ω1 \ Ω2,

∂u
∂η + g(u)u = 0, x ∈ ∂Ω1,

u = 0, x ∈ ∂Ω2,

which allows V ≡ 0 (therefore, the Laplacian is its special case). In (1.4), Ω1 and Ω2 are

subsets of Ω ⊂ RN with Ω2 ( Ω1, which are nonempty bounded domains in RN , N > 2,

∂Ω1 is a smooth boundary of Ω1 with outward normal η, ∂Ω2 is a smooth boundary of Ω2

and λ is a positive real parameter. In addition, ∂Ω = ∂Ω1 ∪ ∂Ω2. Throughout this paper,

we assume that
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(H) V ∈ L∞(Ω), f ∈ C1([0,∞)), g ∈ Cα([0,∞), (0,∞)) for some 0 < α < 1.

The first equation in (1.4) is derived based on the nonlinear Schrödinger equation,

which is detailed in the seminal paper [36]. Nonlinear Schrödinger equations have been

intensively studied to demonstrate the existence of solutions that act according to V on

the whole space RN (see [5, 24, 32] or references therein) or on bounded domains with

linear boundary conditions under the assumption f(0) ≥ 0 [19]. A numerical solution was

treated in [28] for linear Schrödinger equations with a nonlinear boundary condition.

This paper presents the first ever investigation of the existence of a positive solution

of (1.4) that includes the Laplacian as a special case under the simultaneous assumptions

of f(0) < 0 and a mixed nonlinear boundary condition when sufficient conditions on V ,

f , and g are imposed.

In this study, we are interested in two different growth conditions on f :

(f0) lims→∞
f(s)
s = 0 (sublinear),

(f∞) lims→∞
f(s)
s =∞ (superlinear).

For the case (f0), sub- and supersolution methods have widely been used to obtain

a positive solution for Laplacian semipositone problems, that is, the case of V ≡ 0 with

Dirichlet boundary conditions on bounded domains (see [2, 4, 10, 16]). Recently, such a

method was applied to a Laplacian (not semipositone) problem with a nonlinear boundary

condition [23]. We further assume that

(F1) f(s)→∞ as s→∞,

(G1) there exists M > 0 such that g(s) ≥M for s ≥ 0,

(V1) there exists cV > 0 such that V (x) ≥ −cV > − 1
‖e‖∞ for x ∈ Ω, when e is the positive

solution of −∆e = 1 in Ω,

∂e
∂η +Me = 0 on ∂Ω.

Then, we establish our main result for the case when f is sublinear near infinity.

Theorem 1.1. Let us assume (H), (f0), (F1), (G1), and (V1). Then, for a sufficiently

large λ, the problem (1.4) has a positive solution uλ ∈ C2(Ω)∩C1,α(Ω) for some α ∈ (0, 1).

For the case (f∞), the scaling method combined with the degree theory [13] and the

mountain pass lemma with C1,α(Ω)-regularity [9, 35] are frequently used to demonstrate

the existence of a positive solution for semipositone Laplacian (or p-Laplacian) problems

with Dirichlet boundary conditions. Here, more precise assumptions are given for this

case. First, to introduce a variational structure, we extend f from [0,∞) to R such that

f ∈ C1(R,R) and assume that
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(f1) there exist A > 0, B > 0 and q ∈ (1, N+2
N−2) such thatA(uq − 1) ≤ f(u) ≤ B(uq + 1) for u > 0,

f(u) = 0 for u ≤ −1.

We also extend g from [0,∞) to R such that g ∈ Cα(R, (0,∞)) for some α ∈ (0, 1) and

assume that

(g1) there exist 0 < mg < Mg <∞ such that mg ≤ g(s) ≤Mg for all s ∈ R,

and V satisfies

(v1) V (x) ≥ 0 a.e. in Ω.

We further assume Ambrosetti–Rabinowitz-type conditions such that

(f2) there exist θ >
2Mg

mg
and C ∈ R such that

(1.5) uf(u) ≥ θF (u) + C,

where F (u) =
∫ u

0 f(s) ds.

Remark 1.2. The condition (1.5) implies that f satisfies the Ambrosetti–Rabinowitz con-

dition as θ >
2Mg

mg
> 2.

Here, we establish our main result for the case when f is superlinear near infinity.

Theorem 1.3. Let us assume (H), (f1), (f2), (g1), and (v1). There exists λ∗ > 0 such

that if λ ∈ (0, λ∗), then the equation (1.4) has a positive solution uλ ∈ C2(Ω) ∩ C1,β(Ω)

for some β ∈ (0, 1).

Remark 1.4. (i) We emphasize that our two main results remain valid even for the case

V ≡ 0. In this case, the main problem in Theorem 1.3 is that the coercive term, such

as V (x)u, disappears. To overcome this, we observe that the coercivity induced by the

boundary condition from the assumption g(u)u is strictly positive. This motivates the

definition of an equivalent norm in H1(Ω) defined in (3.1), with respect to which the

energy functional corresponding to (1.4) can be analyzed.

(ii) The condition on g is restrictive. For the more general case for g, we refer to [28],

where it is treated by a linear Schrödinger equation.

This paper is organized as follows: In Section 2, we establish the method of obtaining

sub- and supersolutions for (1.4) and provide a proof of Theorem 1.1. In Section 3, we

present a proof of Theorem 1.3 by using the mountain pass argument.
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2. Sublinear semipositone

In this section, we establish the method of obtaining sub- and supersolutions for (1.4) and

provide a proof of Theorem 1.1.

2.1. Method of sub- and supersolutions

A subsolution of (1.4) is defined as a function ψ : Ω→ R satisfying
−∆ψ + V (x)ψ ≤ λf(ψ), x ∈ Ω,

∂ψ
∂η + g(ψ)ψ ≤ 0, x ∈ ∂Ω1,

ψ ≤ 0, x ∈ ∂Ω2,

while a supersolution of (1.4) is defined as a function φ : Ω→ R satisfying
−∆φ+ V (x)φ ≥ λf(φ), x ∈ Ω,

∂φ
∂η + g(φ)φ ≥ 0, x ∈ ∂Ω1,

φ ≥ 0, x ∈ ∂Ω2.

To prove our second result, the following lemma is used.

Lemma 2.1. If a subsolution ψ and a supersolution φ of (1.4) exist such that ψ ≤ φ on

Ω, then (1.4) has at least one solution u ∈ C2(Ω) ∩ C1,α(Ω) satisfying ψ ≤ u ≤ φ on Ω.

Proof. By applying the results in [1] and [25] to (1.4), it can be shown that, under the

ordering assumptions of this lemma, there exists u ∈W 2,p(Ω) for p > N . Thus, based on

the Sobolev embedding theorem u ∈ C1,α(Ω) (see [17, Theorem 6, p. 270]). This implies

that f(u) ∈ C1(Ω) and g(u)u ∈ Cα(Ω). Consequently, according to [22, Theorem 6.25]

and [30, Theorem 2], u ∈ C2(Ω) ∩ C1,α(Ω) is a classical solution of (1.4).

Lemma 2.2. Let us assume (V1). Then, the following problem

(2.1)

−∆w + V (x)w = 1 in Ω,

∂w
∂η +Mw = 0 on ∂Ω

has a solution w such that w(x) > 0 for x ∈ Ω and ∂w
∂η < 0 on ∂Ω.

Proof. For K > 0 such that 1
K ≤ 1− cV ‖e‖∞, let z = Ke, then

−∆z + V (x)z = K(−∆e+ V (x)e)

= K(1 + V (x)e) ≥ K(1− cV e) ≥ K(1− cV ‖e‖∞) ≥ 1
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and ∂z
∂η + Mz = 0 on ∂Ω. Thus, z is a supersolution of (2.1) and z(x) > 0 for x ∈ Ω.

As zero is the trivial subsolution of (2.1) but not a solution of (2.1), according to the

sub-supersolution theorem, there exists a solution w of (2.1) such that 0 ≤ w(x) ≤ z(x).

Here, we claim that w(x) > 0 for x ∈ Ω and ∂w
∂η < 0 on ∂Ω. Otherwise, there exists x0 ∈ Ω

such that w(x0) = 0. Then, we find that 1 = −∆w(x0) + V (x0)w(x0) ≤ 0 as ‖V ‖ < ∞,

which is a contradiction. Hence, w > 0 in Ω, and using the Hopf maximum principle, we

obtain ∂w
∂η < 0 on ∂Ω. Finally, we conclude that w > 0 for all x ∈ Ω because w satisfies

the boundary condition of (2.1).

Let λ1 and φ1 be the first eigenvalue and the corresponding eigenfunction of−∆φ+ V (x)φ = λφ in Ω,

φ = 0 on ∂Ω.

Then, φ1(x) > 0 for x ∈ Ω and ∂φ1
∂η < 0 on ∂Ω [14,20,33].

2.2. Proof of Theorem 1.1

First, we construct a subsolution. Since φ1 > 0 in Ω and ∂φ1
∂η < 0 on ∂Ω, there exist δ > 0

and m > 0 such that

2|∇φ1|2 − (2λ1 + cV )φ2
1 ≥ m in {x ∈ Ω | d(x, ∂Ω) < δ}.

Define Ωδ := {x ∈ Ω | d(x, ∂Ω) < δ}. Then, there exists µ > 0 such that

φ2
1 ≥ µ in Ω \ Ωδ.

Let f = mins∈[0,∞) f(s) < 0. From (F1), we find that there exists L > 0 such that

(2.2)
(−f)

m
(λ1 + cV ) < f(s) for s > L,

and such that

(2.3)
λ(−f)

m
µ > L for sufficiently large λ� 1.

Let us denote ρ :=
λ(−f)

m and define ψ = ρφ2
1. We estimate −∆ψ + V (x)ψ in Ωδ as

−∆ψ + V (x)ψ = −2ρ|∇φ1|2 + 2ρ(λ1 − V (x))φ2
1 + ρV (x)φ2

1

= −2ρ|∇φ1|2 + 2ρλ1φ
2
1 − ρV (x)φ2

1

≤ −ρ
(
2|∇φ1|2 − (2λ1 + cV )φ2

1

)
≤ −ρm = λf ≤ λf(ψ).
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We also have in Ω \ Ωδ, from (2.2) and (2.3),

−∆ψ + V (x)ψ ≤ −ρ
(
2|∇φ1|2 − (2λ1 + cV )φ2

1

)
≤
λ(−f)

m
(2λ1 + cV )φ2

1

≤
λ(−f)

m
(2λ1 + cV ) ≤ λf

(
λ(−f)

m
φ2

1

)
= λf(ψ)

as µ ≤ φ2
1 ≤ 1. Since ψ = 0 and ∂ψ

∂η + g(ψ)ψ = 0 on ∂Ω, ψ is a subsolution of (1.4) for

λ� 1.

Next, we construct a supersolution. Let us define f(s) := maxt≤s f(t). Then, f(s) ≤
f(s), f is monotone increasing and lims→∞

f(s)
s = 0. This implies that there exists Mλ � 1

such that Mλw ≥ ψ and satisfies

(2.4)
f(Mλ‖w‖∞)

Mλ‖w‖∞
≤ 1

λ‖w‖∞
.

Let ζ = Mλw. Then, using (2.4) and the definition of f , we can write

−∆ζ + V (x)ζ = Mλ(−∆w + V (x)w) = Mλ

≥ λf(Mλ‖w‖∞) ≥ λf(Mλw) ≥ λf(Mλw) = λf(ζ).

Moreover, on ∂Ω, ζ > 0 and

∂ζ

∂η
+ g(ζ)ζ = Mλ

(
∂w

∂η
+ g(Mλw)w

)
≥Mλ

(
∂w

∂η
+Mw

)
= 0.

By considering a sufficiently large Mλ such that Mλw ≥ ρφ2
1 in Ω, ζ becomes a superso-

lution satisfying ψ ≤ ζ. Thus, the proof is completed.

3. Superlinear semipositone

In this section, we present a proof of Theorem 1.3 by using the mountain pass argument.

3.1. Preliminary

Let H1(Ω) = {u : u ∈ L2(Ω),∇u ∈ (L2(Ω))N} be a standard Sobolev space with the norm

‖u‖2H1(Ω) =
∫

Ω(|∇u|2 + |u|2). We define

H := {u ∈ H1(Ω) : u = 0 on ∂Ω2}

and the inner product

(u, v) :=

∫
Ω
∇u · ∇v dx+mg

∫
∂Ω1

uv dσ, ∀u, v ∈ H,
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where dσ denotes the surface measure on ∂Ω1 and mg > 0 is defined in (g1). Then, H is

a Hilbert space with an associated norm

(3.1) ‖u‖2H :=

∫
Ω
|∇u|2 dx+mg

∫
∂Ω1

u2 dσ, ∀u ∈ H.

Owing to the imbedding provided by Cherrier [11,12,29], there exists cI , cII > 0 such that

(3.2) cI‖u‖H1(Ω) ≤ ‖u‖H ≤ cII‖u‖H1(Ω), ∀u ∈ H1(Ω).

Thus, the space H is complete with respect to the norm ‖ · ‖H . A weak solution of (1.4)

is defined as u ∈ H satisfying

(3.3)

∫
Ω

(∇u · ∇ψ + V (x)uψ) dx− λ
∫

Ω
f(u)ψ dx+

∫
∂Ω1

g(u)uψ dσ = 0 for all ψ ∈ H.

We define the energy functional Eλ associated with the problem (1.4) as

Eλ(u) =
1

2

∫
Ω

(|∇u|2 + V (x)u2) dx− λ
∫

Ω
F (u) dx+

∫
∂Ω1

G(u) dσ, u ∈ H,

where G(t) :=
∫ t

0 g(s)s ds. It is well-known that Eλ is a C1 functional and the critical

points of Eλ are the weak solutions of (1.4). We denote the norm in the Lp(Ω) space by

‖ · ‖p and the norm in the Sobolev space W 1,p(Ω) by ‖ · ‖1,p.

3.2. Existence of a solution of mountain pass type

In this subsection, we prove that Eλ satisfies the mountain pass geometry in the first two

lemmas and equation (1.4) has a solution uλ ∈ H1
D(Ω) using the mountain pass theorem

in the last lemma. Before stating the lemmas, we note that, from the condition (f1), there

exist A1 > 0, B1 > 0 such that

F (u) ≤ B1(|u|q+1 + 1) for all u ∈ R

and

(3.4) F (u) ≥ A1(|u|q+1 − 1) for all u ≥ 0.

For simplicity, we denote r = 1
q−1 and let ψ ∈ H be a positive function with ‖ψ‖H = 1.

Let us define a constant

(3.5) µ =

(
Mg +mg‖V ‖∞‖ψ‖22

A1mg‖ψ‖q+1
q+1

)r
,

which is used in the following lemma.
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Lemma 3.1. There exists λ1 > 0 such that if λ ∈ (0, λ1), then Eλ(µλ−rψ) ≤ 0.

Proof. Let s = µλ−r. Using (3.4), we obtain

Eλ(sψ) =
s2

2

∫
Ω

(|∇ψ|2 + V (x)ψ2) dx− λ
∫

Ω
F (sψ) dx+

∫
∂Ω1

G(sψ) dσ

≤ s2

2

∫
Ω

(|∇ψ|2 + V (x)ψ2) dx− λA1

∫
Ω

(sq+1|ψ|q+1 − 1) dx+
Mg

2

∫
∂Ω1

s2ψ2 dσ

≤ s2

2

Mg

mg
‖ψ‖2H +

s2

2
‖V ‖∞‖ψ‖22 − λA1s

q+1‖ψ‖q+1
q+1 + λA1|Ω|.

(3.6)

By substituting (3.5) into (3.6), we find

Eλ(sψ) ≤ µ2λ−2r

2

Mg

mg
+
µ2λ−2r

2
‖V ‖∞‖ψ‖22 − λA1µ

q+1λ−r(q+1)‖ψ‖q+1
q+1 + λA1|Ω|

= µ2λ−2r

[
1

2

(
Mg

mg
+ ‖V ‖∞‖ψ‖22

)
−A1µ

q−1‖ψ‖q+1
q+1

]
+ λA1|Ω|

= −µ
2λ−2r

2

(
Mg

mg
+ ‖V ‖∞‖ψ‖22

)
+ λA1|Ω|.

By taking λ1 < min
{

1,
(µ2(Mg+mg‖V ‖∞‖ψ‖22)

2A1mg |Ω|
) 1

1+2r
}

, the lemma is proven.

Lemma 3.2. There exist τ ∈ (0, µ) and λ2 ∈ (0, 1) such that, if ‖u‖H = τλ−r, then

Eλ(u) ≥ 1
8(τλ−r)2 for all λ ∈ (0, λ2).

Proof. First, we notice that there exists K1 > 0 such that ‖u‖q+1 ≤ K1‖u‖H for u ∈ H
according to the Sobolev embedding theorem and (3.2). Let

(3.7) τ < min
{

(4B1K
q+1
1 )−r, µ

}
.

If ‖u‖H = τλ−r, then, according to (3.4) and because V (x) ≥ 0 a.e. in Ω,

Eλ(u) =
1

2

∫
Ω

(|∇u|2 + V (x)u2) dx− λ
∫

Ω
F (u) dx+

∫
∂Ω1

G(u) dσ

≥ 1

2

∫
Ω
|∇u|2 dx− λ

∫
Ω
B1(|u|q+1 + 1) dx+

mg

2

∫
∂Ω1

u2 dσ

≥ 1

2
‖u‖2H − λB1‖u‖q+1

q+1 − λB1|Ω|

≥ 1

2
‖u‖2H − λB1K

q+1
1 ‖u‖q+1

H − λB1|Ω|

= λ−2r

[
1

2
τ2 −B1K

q+1
1 τ q+1 − λ1+2rB1|Ω|

]
≥ λ−2r

[
1

4
τ2 − λ1+2rB1|Ω|

]
,
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where (3.7) is used at the last inequality. Next, we consider λ > 0 such that λ <(
τ2

8B1|Ω|
) 1

1+2r := λ2. Then, Eλ(u) ≥ 1
8(τλ−r)2 if ‖u‖H = τλ−r.

Lemma 3.3. Let λ3 = min{λ1, λ2, 1}. There exists c1 > 0 such that for each λ ∈ (0, λ3),

the functional Eλ has a mountain pass type critical point uλ satisfying Eλ(uλ) ≤ c1λ
−2r.

Proof. First, we show that Eλ satisfies the Palais–Smale condition. We assume that {un}
is a sequence in H such that {Eλ(un)} is bounded and limn→∞ ‖E′λ(un)‖H∗ = 0. By

setting ρ > 0 as a constant such that |Eλ(un)| ≤ ρ for all n = 1, 2, . . ., we have

(3.8)
1

2

∫
Ω

(|∇un|2 + V (x)u2
n) dx− λ

∫
Ω
F (un) dx+

∫
∂Ω1

G(un) dσ ≤ ρ

and ∣∣∣∣∫
Ω

(∇un · ∇ψ + V (x)unψ) dx− λ
∫

Ω
f(un)ψ dx−

∫
∂Ω1

g(un)unψ dσ

∣∣∣∣
= o(1)‖ψ‖H , ∀ψ ∈ H.

(3.9)

Notably, from (3.8), we find that due to the condition (f2),

1

2
‖un‖2H +

1

2

∫
Ω
V (x)u2

n dx ≤ ρ+ λ

∫
Ω
F (un) dx

≤ ρ+
λ

θ

∫
Ω

(f(un)un − C) dx.

(3.10)

Then, substituting un for ψ into (3.9), we obtain

λ

∫
Ω
f(un)un dx ≤

∫
Ω

(|∇un|2 + V (x)u2
n) dx+Mg

∫
∂Ω1

u2
n dσ + o(1)‖un‖H

≤ Mg

mg
‖un‖2H +

∫
Ω
V (x)u2

n dx+ o(1)‖un‖H .
(3.11)

By combining (3.10) and (3.11), as 1
θ <

Mg

mgθ
< 1

2 , it follows that supn ‖un‖H ≤ c <∞ for

some c > 0, which implies that {un} is bounded in H. Therefore, there exists uλ ∈ H
such that

(3.12) un ⇀ uλ in H.

It should be noted that, due to the compact embedding H1(Ω) ↪→ Lp(Ω) for all 1 ≤ p <
2N
N−2 =: 2∗, there exists a subsequence {unk}, denoted by {un}, such that un → uλ in

Lp(Ω) for all 1 ≤ p < 2∗. Thus, we can write

(3.13)

∫
Ω
V (x)unψ dx→

∫
Ω
V (x)uλψ dx,

∫
Ω
f(un)ψ dx→

∫
Ω
f(uλ)ψ dx, ∀ψ ∈ H,
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and

(3.14)

∫
Ω
V (x)u2

n dx→
∫

Ω
V (x)u2

λ dx,

∫
Ω
f(un)un dx→

∫
Ω
f(uλ)uλ dx

as n→∞. Due to the compactness of trace embedding H1(Ω) ↪→ L2(∂Ω),∫
∂Ω1

g(un)unψ dσ →
∫
∂Ω1

g(uλ)uλψ dσ, ∀ψ ∈ H,(3.15) ∫
∂Ω1

g(un)u2
n dσ →

∫
∂Ω1

g(uλ)u2
λ dσ(3.16)

as n → ∞. Using (3.8), (3.12), (3.13) and (3.15), we find that uλ is a weak solution of

(1.4) and from (3.8), (3.14) and (3.16), it follows that
∫

Ω |∇un|
2 →

∫
Ω |∇uλ|

2 as n → ∞.

This proves that Eλ satisfies the Palais–Smale condition.

Next, using (3.6) we can write

Eλ(sψ) ≤ s2

2

Mg

mg
‖ψ‖2H +

s2

2
‖V ‖∞‖ψ‖22 − λA1s

q+1‖ψ‖q+1
q+1 + λA1|Ω|.

Let us denote H(s) := s2D − sq+1E + λA1|Ω|, where D = 1
2

(Mg

mg
‖ψ‖2H + ‖V ‖∞‖ψ‖22

)
and E = A1‖ψ‖q+1

q+1. Then, H(s) reaches its maximum at the value of s =
(

2D
(q+1)E

)r
.

Consequently, we obtain that

max
s≥0

Eλ(sψ) ≤ 22rD1+2r(q − 1)

E2r(q + 1)2r+1
λ−2r + λ|A1||Ω|

=: c̃1λ
−2r + λ|A1||Ω| ≤ c̃1λ

−2r + λ−2r|A1||Ω| =: c1λ
−2r.

Therefore, according to the mountain pass theorem, there exists uλ ∈ H such that

E′λ(uλ) = 0 and
1

8
(τλ−r)2 ≤ Eλ(uλ) ≤ c1λ

−2r.

3.3. Positivity of solutions

Lemma 3.4. Let uλ ∈ H be the solution in Lemma 3.3. Then uλ ∈ C1,α(Ω) for some

α ∈ (0, 1).

Proof. Based on the same argument as that in Theorem 1.2 in [21], it can be shown that

any solution of (1.4) is bounded. Furthermore, we conclude that uλ ∈ C1,α(Ω) using

Theorem 2 in [30].

Lemma 3.5. Let uλ ∈ H be a solution in Lemma 3.3. Then, there exists M1 > 0 such

that

M1λ
−r ≤ ‖u‖∞.
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Proof. According to Lemma 3.2, Eλ(uλ) ≥ 1
8(τλ−r)2 =: c1λ

−2r. Considering that F (s) ≥
minF > −∞ and f(s)s ≤ B1(|s|q+1 + |s|) for all s ∈ R, we obtain

λ

∫
Ω
f(uλ)uλ dx =

∫
Ω

(|∇uλ|2 + V (x)u2
λ) dx+

∫
∂Ω1

g(uλ)u2
λ dσ

= 2Eλ(uλ) + 2λ

∫
Ω
F (uλ) dx− 2

∫
∂Ω1

G(uλ) dσ +

∫
∂Ω1

g(uλ)u2
λ dσ

≥ 1

4
(τλ−r)2 + 2λ|Ω|minF − (Mg −mg)‖uλ‖2L2(∂Ω1),

which implies that there exists c̃ > 0 such that (Mg−mg)‖uλ‖2L2(∂Ω1) +λ
∫

Ω f(uλ)uλ dx ≥
c̃λ−2r. Thus, limλ→0 ‖uλ‖∞ = +∞. Nevertheless, according to (f1),

λ

∫
Ω
f(uλ)uλ dx ≤ B1λ

∫
Ω

(|uλ|q+1 + |uλ|) dx

≤ 2B1λ|Ω|‖uλ‖q+1
∞

holds, based on the fact that 0 < λ < 1. Thus, we obtain

c̃λ−2r ≤ 2B1|Ω|λ‖uλ‖q+1
∞ + (Mg −mg)‖uλ‖2L2(∂Ω1)

≤ (2B1|Ω|λ+ (Mg −mg)|∂Ω1|)‖uλ‖q+1
∞ .

Consequently, we find that

‖uλ‖q+1
∞ ≥ d1λ

−2r−1 or ‖uλ‖q+1
∞ ≥ d2λ

−2r,

where d1 = c̃
2(2B1|Ω|)−1 and d2 = c̃

2((Mg −mg)|∂Ω1|)−1, which implies that

‖uλ‖q+1
∞ ≥ d1λ

−2r−1 for sufficiently small λ.

By setting M1 = (d1)
1
q+1 , the proof is completed.

Lemma 3.6. Let uλ ∈ H be the same as that in Lemma 3.3. Then, there exists c2 > 0

such that

‖u‖2H1(Ω) ≤ c2λ
−2r, ∀λ ∈ (0, λ3).

Proof. As V (x) ≥ 0, according to (3.3), we obtain

(3.17)

∫
Ω
|∇uλ|2 dx+

∫
∂Ω1

g(uλ)u2
λ dσ ≤ λ

∫
Ω
f(uλ)uλ dx.
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Multiplying (3.17) by
(
1− 2

θ

)
and using (1.5), we find(

1− 2

θ

)[∫
Ω
|∇uλ|2 dx+

∫
∂Ω1

g(uλ)u2
λ dσ

]
≤ λ

∫
Ω
f(uλ)uλ dx− 2λ

∫
Ω

1

θ
f(uλ)uλ dx

≤ λ
∫

Ω
f(uλ)uλ dx− 2λ

∫
Ω

[
F (uλ) +

C

θ

]
dx

≤ 2E(uλ)− 2

∫
∂Ω1

G(uλ) dσ +

∫
∂Ω1

g(uλ)u2
λ dσ +

2λ|C|
θ

.

Based on condition (g), we obtain(
1− 2

θ

)∫
Ω
|∇uλ|2 dx+

(
mg −

2Mg

θ

)∫
∂Ω1

u2
λ dσ ≤ 2c1λ

−2r +
2λ|C|
θ
≤ cλ−2r

for some c > 0, which implies that ‖u‖2H1(Ω) ≤ c2λ
−2r with c2 := c−1

II

(
1− 2

θ
Mg

mg

)−1
c.

Proof of Theorem 1.3. Let us suppose on the contrary that there exists a sequence {λj},
0 < λj < 1 converging to 0 such that the measure m({x ∈ Ω : uλj (x) ≤ 0}) > 0, where

uλj is a weak solution corresponding to λj . Let wj =
uλj
‖uλj ‖∞

. Then, we can write


−∆wj + V (x)wj = λf(uλj )‖uλj‖−1

∞ , x ∈ Ω,

∂wj
∂η + g(uλj )wj = 0, x ∈ ∂Ω1,

u = 0, x ∈ ∂Ω2.

According to Lemmas 3.5 and 3.6, there exists a constant c3 > 0 such that

‖wj‖H1(Ω) ≤ c3.

According to [7, 21, 30], the sequence {wj} is uniformly bounded in C1,α(Ω) for some

α ∈ (0, 1), and thus, for any β ∈ (0, α), the sequence {wj} has a subsequence {wjk},
denoted by {wj} that converges in C1,β(Ω). Let us denote its limit as w.

We establish that w > 0 on Ω. It should be noted that p := 2Nr
N−2 > 1 as 1 < q < N+2

N−2 .

Then, according to (f1) and the Sobolev embedding theorem, we obtain∫
Ω
|f(uλj )|

p‖uλj‖
−p
∞ dx ≤ 2p−1Bp

∫
Ω

(u
p(q−1)
λj

+ 1) dx

≤ C
(
‖uλj‖

2N
N−2

H1(Ω)
+ 1
)
,

where C > 0 is a constant independent of j and, without the loss of generality, we assume

that ‖uλj‖∞ > 1. Thus, {λjf(uλj )‖uλj‖∞} is bounded in Lp(Ω), which implies that it
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converges weakly in Lp(Ω). Let z ∈ Lp(Ω) be its weak limit. Since λj‖uλj‖−1
∞ → 0 as

j →∞ and f(uλj ) is bounded from below, z ≥ 0. Now, as∫
∂Ω
|g(uλj )|

2 dσ ≤M2
g |∂Ω|,

there exists a subsequence {g(uλjk )} of {g(uλj )}, denoted by {g(uλj )}, and g̃ ∈ L2(∂Ω)

such that {g(uλjk )} converges weakly to g̃ in L2(∂Ω). Evidently, mg ≤ g̃ ≤ Mg a.e. on

∂Ω. Indeed, as 0 < mg ≤ g(uλj ) ≤Mg <∞, ∀ j, it holds that∫
∂Ω
mgψ dσ ≤

∫
∂Ω
g̃ψ dσ ≤

∫
∂Ω
Mgψ dσ, ∀ψ ≥ 0 and ψ ∈ L2(∂Ω),

which implies that mg ≤ g̃ ≤Mg a.e. on ∂Ω.

For ψ ∈ C∞(Ω), it holds that∫
Ω
zψ dx = lim

j→∞

∫
Ω
λjf(uλj )‖uλj‖

−1
∞ ψ dx

= lim
j→∞

(∫
Ω

(∇wj · ∇ψ + V (x)wjψ) dx+

∫
∂Ω
g(uλj )wjψ dσ

)
=

∫
Ω

(∇w · ∇ψ + V (x)wψ) dx+

∫
∂Ω
g̃wψ dσ.

Thus, −∆w + V (x)w = z ≥ 0 in Ω, which implies that minΩw = min∂Ωw according to

the weak maximum principle. If min∂Ωw ≥ 0, then the claim is proven. Suppose that

there exists x0 ∈ ∂Ω such that min∂Ωw = w(x0) < 0. As w satisfies ∂w
∂η + g̃w = 0 on

∂Ω and g̃ > 0, it can be seen that ∂w
∂η (x0) > 0. This implies that there exists a local

interior negative minimum. Let x1 be its minimum point in Ω. Then, w(x1) < 0 and

Di,jw(x1) ≥ 0, for all i, j = 1, . . . N , which contradicts with −∆w + V (x)w ≥ 0 in Ω.

Thus, w ≥ 0 on Ω. By applying the Hopf maximum principle, ∂w
∂η (x) < 0 for all x ∈ ∂Ω,

which gives w > 0 on Ω.

Here, due to the convergence of {wj} to w in C1,β, for a sufficiently large j, wj(x) > 0

for all x ∈ Ω. Therefore, uλj (x) > 0 for all x ∈ Ω, which contradicts the assumption on

the measure m{x ∈ Ω : uλj (x) ≤ 0} > 0. This proves Theorem 1.3.
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