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An Application of Liaison Theory to Zero-dimensional Schemes

Martin Kreuzer, Tran N. K. Linh*, Le Ngoc Long and Tu Chanh Nguyen

Abstract. Given a 0-dimensional scheme X in an n-dimensional projective space Pn
K

over an arbitrary field K, we use liaison theory to characterize the Cayley-Bacharach

property of X. Our result extends the result for sets of K-rational points given in [8].

In addition, we examine and bound the Hilbert function and regularity index of the

Dedekind different of X when X has the Cayley-Bacharach property.

1. Introduction

The theory of liaison has been used very extensively in the literature as a tool to study

projective varieties in the n-dimensional projective space PnK . The initial idea was to

start with a projective variety, and look at its residual variety in a complete intersection.

Since complete intersections are well understood in some sense, one can get information

about the variety from its residual variety or vice versa, and so it would be easier to

pass to a “simpler” variety instead of considering a complicated one. This idea has been

also generalized by allowing links by arithmetically Gorenstein schemes (see, e.g., [24]).

Currently, liaison theory is an area of active research [2,4–6,8,13,23,25,26], and has many

useful applications, for instance, constructing interesting projective varieties [2,23,26], or

computing invariants and establishing properties of projective varieties [4–6,10].

In this paper we are interested in applying the theory of liaison to investigate the

geometrical structure of 0-dimensional subschemes of the n-dimensional projective space

PnK over an arbitrary field K. This approach was introduced by Geramita et al. [8]

in their study of finite sets of K-rational points with the Cayley-Bacharach property.

Classically, a finite set of K-rational points X in PnK is called a Cayley-Bachrach scheme

if any hypersurface of degree less than the regularity index of the coordinate ring of X
which contains all points of X but one automatically contains the last point. One of main

results of [8] is stated as follows:
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Theorem 1.1. Let W be a set of points in PnK which is a complete intersection, let X ⊆W,

let Y = W \ X, and let IW, IX and IY denote the homogeneous vanishing ideals of W, X
and Y in P = K[X0, . . . , Xn], respectively. Set αY/W = min{i ∈ N | (IY/IW)i 6= 〈0〉}.
Then the following conditions are equivalent.

(a) X is a Cayley-Bachrach scheme.

(b) A generic element of (IY)αY/W does not vanish at any point of X.

(c) We have IW : (IY)αY/W = IX.

This result nicely leads to an efficient algorithm for checking whether a given set X is

a Cayley-Bacharach scheme. Later investigations of the Cayley-Bacharach property have

included the work of Fouli, Polini, and Ulrich [7], Robbiano [18], Gold, Little, and Schenck

[9], and Guardo [12]. Moreover, this property has also been extended for 0-dimensional

schemes in PnK (see [14, 15, 17, 22]). When X ⊆ PnK is a 0-dimensional scheme over an

algebraically closed field K, Robbiano and the first author [18] considered subschemes of

X of degree deg(X) − 1 to show that the conditions (a) and (c) of Theorem 1.1 are still

equivalent. However, we get no further information for a generalization of condition (b)

in this case. It is worth noting here that if K is not algebraically closed then the scheme

X may have no subschemes of degree deg(X)− 1. For example, the 0-dimensional scheme

X = Z(2X4
0 +X2

0X
2
1 −X4

1 ) ⊆ P1
Q is of degree 4, but it has no subscheme of degree 3.

Our focus in this paper is to look at an extension of the Cayley-Bacharach property

and to generalize the above theorem for 0-dimensional schemes X in PnK over an arbitrary

field K. In particular, we will look closely at the natural question whether conditions (a)

and (b) of the above theorem are equivalent for our more general setting. Our approach is

to use the notion of maximal pj-subschemes of X which are introduced and studied in the

papers [15, 16]. Also, we discuss a characterization of the Cayley-Bacharach property of

degree d with d ∈ N in terms of the canonical module of the coordinate ring of X and apply

this result to bound the Hilbert function of the Dedekind different of X and determine

its regularity index in some special cases. As explained above, liaison is inherently a

technique from projective algebraic geometry. Therefore we found it convenient to use the

usual notation for 0-dimensional subschemes of projective space throughout this paper.

Frequently, however, we need to choose a coordinate system, and in particular a hyperplane

Z(X0) at infinity. Thus, by paying the price of being a little bit less “canonical”, the paper

could have been written in the language of 0-dimensional subschemes of affine spaces, as

well. To reach a wide audience, we chose to stay as close as possible to the usual notation

of projective algebraic geometry, and we leave it to the interested reader to change the

notation to the affine setting, if desired.
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This paper is structured as follows. In Section 2, we introduce the relevant informa-

tion about Hilbert functions, maximal pj-subschemes, standard sets of separators, and

liaison techniques. Especially, we give an explicit description of the residual scheme in

a 0-dimensional arithmetically Gorenstein scheme of a maximal pj-subscheme of X. In

Section 3, we prove the generalization of the results mentioned above (see Theorems 3.5

and 3.8). We also give Example 3.7 to show that the condition (b) in Theorem 1.1 is,

in general, only a sufficient condition, not a necessary condition, for X being a Cayley-

Bacharach scheme. In the final section, we characterize the Cayley-Bacharach property

of degree d using the canonical module of the coordinate ring of X, and then look at

the Hilbert function of the Dedekind different of X and its regularity index when X has

the Cayley-Bacharach property of degree d. In particular, we obtain a new characteriza-

tion of 0-dimensional arithmetically Gorenstein schemes via the Hilbert function of their

Dedekind different.

All examples in this paper were calculated by using the computer algebraic system

ApCoCoA (see [1]).

2. Basic facts and notations

Throughout the paper, we work over an arbitrary field K. The n-dimensional projective

space over K is denoted by PnK and its homogeneous coordinate ring is the polynomial

ring P = K[X0, . . . , Xn] equipped with the standard grading. Our object of interest is

a 0-dimensional subscheme X of PnK . Its homogeneous vanishing ideal in P is denoted

by IX and its homogeneous coordinate ring is given by RX = P/IX. The set of closed

points of X is called the support of X and is denoted by Supp(X) = {p1, . . . , ps}. We

always assume that Supp(X)∩Z(X0) = ∅. Under this assumption, the image x0 of X0 in

RX is a non-zerodivisor, and RX is a 1-dimensional Cohen-Macaulay ring. To each point

pj ∈ Supp(X) we have the associated local ring OX,pj . Its maximal ideal is denoted by

mX,pj , and the residue field of X at pj is denoted by κ(pj). The degree of X is defined as

deg(X) =
∑s

j=1 dimK(OX,pj ).

Given any finitely generated graded RX-module M , the Hilbert function of M is a map

HFM : Z→ N given by HFM (i) = dimK(Mi). The unique polynomial HPM (z) ∈ Q[z] for

which HFM (i) = HPM (i) for all i� 0 is called the Hilbert polynomial of M . The number

ri(M) = min{i ∈ Z | HFM (j) = HPM (j) for all j ≥ i}

is called the regularity index of M (or of HFM ). Whenever HFM (i) = HPM (i) for all

i ∈ Z, we let ri(M) = −∞. Instead of HFRX we also write HFX and call it the Hilbert

function of X. Its regularity index is denoted by rX. Note that HFX(i) = 0 for i < 0 and

1 = HFX(0) < HFX(1) < · · · < HFX(rX − 1) < deg(X)
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and HFX(i) = deg(X) for i ≥ rX.

Definition 2.1. Let 1 ≤ j ≤ s. A subscheme X′ ( X is called a pj-subscheme if we have

OX,pj 6= OX′,pj and OX′,pk = OX,pk for k 6= j. A pj-subscheme X′ ⊆ X is called maximal if

deg(X′) = deg(X)− dimK κ(pj).

In case X has K-rational support (i.e., all points p1, . . . , ps are K-rational), a maximal

pj-subscheme of X is nothing but a subscheme X′ ⊆ X of degree deg(X′) = deg(X)−1 with

OX′,pj 6= OX,pj . According to [16, Proposition 3.2], there is a one-to-one correspondence

between a maximal pj-subscheme X′ and an ideal 〈sj〉 in OX,pj , where sj is an element in

the socle AnnOX,pj
(mX,pj ) of OX,pj . The vanishing ideal of the scheme X′ in RX is denoted

by IX′/X and its initial degree is given by αX′/X = min{i ∈ N | (IX′/X)i 6= 〈0〉}. We find

a non-zero element f ′X ∈ (IX′/X)i, i ≥ αX′/X, such that ı̃(f ′X) = (0, . . . , 0, sjT
i
j , 0, . . . , 0),

where the map

ı̃ : RX → Qh(RX) ∼=
s∏
j=1

OX,pj [Tj , T
−1
j ]

is the injection given by ı̃(f) = (fp1T
i
1, . . . , fpsT

i
s), for f ∈ (RX)i with i ≥ 0, where fpj is the

germ of f at pj . Here the ring Qh(RX) is the homogeneous ring of quotients of RX defined

as the localization of RX with respect to the set of all homogeneous non-zerodivisors of

RX (cf. [16, Section 3]).

Let κj := dimK κ(pj), and let {ej1, . . . , ejκj} ⊆ OX,pj be elements whose residue classes

form a K-basis of κ(pj). For a ∈ OX,pj , we set

µ(a) := min{i ∈ N | (0, . . . , 0, aT ij , 0, . . . , 0) ∈ ı̃(RX)}.

Since the restriction map ı̃|(RX)rX
: (RX)rX →

(∏s
j=1OX,pj [Tj , T

−1
j ]
)
rX

is an isomorphism

of K-vector spaces, we have µ(a) ≤ rX for all a ∈ OX,pj . Using this notation, we recall

from [15, Section 1] the following notion of separators.

Definition 2.2. Let X′ be a maximal pj-subscheme as above, and let

f∗jkj := ı̃−1((0, . . . , 0, ejkjsjT
µ(ejkj sj)

j , 0, . . . , 0))

and fjkj = x
rX−µ(ejkj sj)

0 f∗jkj for kj = 1, . . . ,κj .

(a) The set {f∗j1, . . . , f∗jκj} is called the set of minimal separators of X′ in X with respect

to sj and {ej1, . . . , ejκj}.

(b) The set {fj1, . . . , fjκj} is called the standard set of separators of X′ in X with respect

to sj and {ej1, . . . , ejκj}.
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(c) The number

µX′/X := max{deg(f∗jkj ) | kj = 1, . . . ,κj}

is called the maximal degree of a minimal separator of X′ in X.

Remark 2.3. Let X′ be a maximal pj-subscheme of X.

(a) The maximal degree of a minimal separator of X′ in X depends neither on the

choice of the socle element sj nor on the specific choice of {ej1, . . . , ejκj} (see [16,

Lemma 4.4]). Moreover, we have µX′/X ≤ rX.

(b) For kj = 1, . . . ,κj , let Fjkj (respectively, F ∗jkj ) be a representative of fjkj (respec-

tively, f∗jkj ) in P . We also say that the set {Fj1, . . . , Fjκj} is a standard set of

separators of X′ in X and the set {F ∗j1, . . . , F ∗jκj} is a set of minimal separators of X′

in X.

(c) According to [15, Proposition 2.5(c)], one may choose a set of minimal separators

{f∗j1, . . . , f∗jκj} of X′ in X such that

(IX′/X)i =

〈
x
i−deg(f∗jkj

)

0 f∗jkj

∣∣∣ deg(f∗jkj ) ≤ i
〉
K

for all i ≥ 0.

Recall that a 0-dimensional scheme X is called a complete intersection if IX can be gen-

erated by n homogeneous polynomials in P , and it is called an arithmetically Gorenstein

scheme if RX is a Gorenstein ring. Note that every complete intersections are arithmeti-

cally Gorenstein, however, except for the case n = 2, an arithmetically Gorenstein scheme

is not a complete intersection in general (see [16, Example 2.12]).

The graded RX-module ωRX = HomK[x0](RX,K[x0])(−1) is called the canonical module

of RX. Its RX-module structure is defined by (f · ϕ)(g) = ϕ(fg) for all f, g ∈ RX and

ϕ ∈ ωRX . It is also a finitely generated graded RX-module and

HFωRX
(i) = deg(X)−HFX(−i)

for all i ∈ Z (see e.g., [3, Theorem 4.4.5]). Moreover, by [11, Proposition 2.1.3], the scheme

X is arithmetically Gorenstein if and only if ωRX
∼= RX(rX − 1).

In what follows, we let W ⊆ PnK be a 0-dimensional arithmetically Gorenstein scheme,

let X be a subscheme of W, and let IX/W be the ideal of X in RW. Then the homogeneous

ideal AnnRW(IX/W) ⊆ RW is saturated and defines a 0-dimensional subscheme Y of W.

Definition 2.4. (a) The subscheme Y ⊆W which is defined by the saturated homoge-

neous ideal IY/W = AnnRW(IX/W) is said to be the residual scheme of X in W. We

also say that X and Y are (algebraically) G-linked by W.
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(b) Two G-linked schemes X and Y by W are said to be geometrically G-linked by W if

they have no common irreducible component.

Remark 2.5. From the point of view of the saturated ideals, the schemes X and Y are

geometrically G-linked by W if and only if IW = IX∩IY and neither IX nor IY is contained in

any associated prime of the other (see [24, Section 5.2]). In this case, if we write Supp(X) =

{p1, . . . , ps} and Supp(Y) = {p′1, . . . , p′t}, then we have Supp(W) = {p1, . . . , ps, p
′
1, . . . , p

′
t}

and Supp(X) ∩ Supp(Y) = ∅. In particular, we have OW,pj = OX,pj for j = 1, . . . , s and

OW,p′j
= OY,p′j for j = 1, . . . , t.

First we collect some useful results about the G-linked schemes X and Y by the arith-

metically Gorenstein scheme W.

Proposition 2.6. (a) We have IX/W = AnnRW(IY/W).

(b) We have deg(W) = deg(X) + deg(Y) and rW = rX + αY/W = rY + αX/W.

(c) The Hilbert function of IY/W satisfies

HFIY/W(i) = deg(X)−HFX(rW − i− 1) for all i ∈ Z.

Proof. Claims (a) and (b) follow from [5]. To prove (c), we use (a) and [11, Proposi-

tion 2.2.9] to get the following sequence of isomorphism of graded RW-modules

IY/W = AnnRW(IX/W) ∼= HomRW(RW/IX/W, RW)

∼= HomRW(RX, RW(rW − 1))(−rW + 1) ∼= HomRW(RX, ωRW)(−rW + 1)

∼= ωRX(−rW + 1).

Since HFωRX
(i) = deg(X) − HFX(−i) for all i ∈ Z, we get the desired formula for the

Hilbert function of IY/W and claim (c) follows.

In the following we shall use “ · ” to denote residue classes modulo X0.

Lemma 2.7. For every d ∈ {1, . . . , rX}, we have (IW)rW : (IY)αY/W+(rX−d) = (IX)d.

Proof. Clearly, we have IX · IY ⊆ IW. This implies (IX)d ⊆ (IW)rW : (IY)αY/W+(rX−d).

For the other inclusion, let f ∈ (IW)rW : (IY)αY/W+(rX−d). In RW = RW/〈x0〉, we have

f ∈ (AnnRW
((IY/W)αY/W+(rX−d)))d. Since W is arithmetically Gorenstein, the ring RW is

a 0-dimensional local Gorenstein ring with socle (RW)rW
∼= K. Thus we can argue in the

same way as Lemma 4.1 and Proposition 4.3.a of [8] to get

(AnnRW
((IY/W)αY/W+(rX−d)))d = (AnnRW

((IY/W)rW−d))d

= (AnnRW
(IY/W))d = (IX/W)d.

Consequently, we have f ∈ (IX/W)d, and hence f ∈ (IX)d, as desired.
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The next lemma follows for instance from [21, 3.15 and 16.38-40].

Lemma 2.8. Let A/K be a finite Gorenstein algebra.

(a) There is a non-degenerate K-bilinear form Φ: A × A → K with the property that

Φ(xy, z) = Φ(x, yz) for all x, y, z ∈ A.

(b) Let I be a non-zero ideal of A, and let I0 = {x ∈ A | Φ(I, x) = 0}. Then we have

AnnA(I) = I0 and dimK I + dimK AnnA(I) = dimK A.

A concrete description of the residual scheme in W of a maximal pj-subscheme of X is

given by the following proposition.

Proposition 2.9. Let W ⊆ PnK be a 0-dimensional arithmetically Gorenstein scheme, let

X and X′ be subschemes of W, let Y and Y′ be the residual schemes of X and X′ in W
respectively, and let pj ∈ Supp(X). Then X′ is a (maximal) pj-subscheme of X if and only

if Y′ contains Y as a (maximal) pj-subscheme.

Proof. As sets, we have Supp(W) = Supp(X) ∪ Supp(Y) by [24, Proposition 5.2.2]. Let

us write Supp(W) = {p1, . . . , pu} and consider the ring epimorphism θ : RW → ΓW :=∏u
j=1OW,pj given by f 7→ (fp1 , . . . , fpu). According to [14, Lemma 1.1], the restriction

θ|(RW)i is an injection for 0 ≤ i < rW and is an isomorphism for all i ≥ rW. By IaX/W
(respectively, IaX′/W, IaY/W, IaY′/W) we denote the image of IX/W (respectively, IX′/W, IY/W,

IY′/W) under θ. We verify that IaY/W = AnnΓW(IaX/W). Clearly, the equality IY/W =

AnnRW(IX/W) implies IaY/W ⊆ AnnΓW(IaX/W). Also, Proposition 2.6(b) and Lemma 2.8

yields

dimK I
a
Y/W = dimK(IY/W)rW = deg(W)− deg(Y) = deg(X)

= deg(W)− dimK(IX/W)rW = deg(W)− dimK I
a
X/W

= dimK AnnΓW(IaX/W).

So, the equality IaY/W = AnnΓW(IaX/W) holds true. In ΓW, we have IaX/W ⊆ IaX′/W and

the quotient IaX′/W/I
a
X/W is non-zero and its support has exactly one minimal prime ideal,

which is also a minimal prime ideal of ΓW corresponding to the point pj . Hence we get

IaY/W = AnnΓW(IaX/W) ⊇ AnnΓW(IaX′/W) = IaY′/W with a non-zero quotient whose support

has exactly the same minimal prime ideal. This proves the asserted correspondence,

without the adjective “maximal”. Now suppose that X′ is a maximal pj-subscheme of X
and let q, q′ be the kernels of OW,pj → OX,pj , OW,pj → OX′,pj respectively. Note that

OY,pj = OW,pj/AnnOW,pj
(q) and OY′,pj = OW,pj/AnnOW,pj

(q′). Then [16, Proposition 3.2]

yields

0 −→ κ(pj) −→ OX,pj −→ OX′,pj −→ 0
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which, dually, gives

0 −→ ωOX′,pj
−→ ωOX,pj

−→ κ(pj) −→ 0.

But ωOX′,pj
= AnnOW,pj

(q′) and ωOX,pj
= AnnOW,pj

(q), so we get

0 −→ κ(pj) −→ OY′,pj −→ OY,pj −→ 0.

Therefore Y is a maximal pj-subscheme of Y′.

3. The Cayley-Bacharach property and liaison

In this section we use liaison techniques to characterize the Cayley-Bacharach property of

a 0-dimensional scheme X in PnK . First we recall the notions of the degree of a point in X
and the Cayley-Bacharach property (see [15, Section 4]).

Definition 3.1. Let d ≥ 0, let X ⊆ PnK be a 0-dimensional scheme, and let Supp(X) =

{p1, . . . , ps}.

(a) For 1 ≤ j ≤ s, the degree of pj in X is defined as

degX(pj) := min
{
µX′/X | X′ is a maximal pj-subscheme of X

}
,

where µX′/X is the maximal degree of a minimal separator of X′ in X.

(b) We say that X has the Cayley-Bacharach property of degree d (in short, X has

CBP(d)) if degX(pj) ≥ d + 1 for every j ∈ {1, . . . , s}. In the case that X has

CBP(rX − 1) we also say that X is a Cayley-Bacharach scheme.

According to Remark 2.3(a), we have 0 ≤ degX(pj) ≤ rX. So, the number rX− 1 is the

largest degree d ≥ 0 such that X can have CBP(d). Hence it suffices to consider the Cayley-

Bacharach property in degree d ∈ {0, . . . , rX− 1}. Using standard sets of separators of X,

we can characterize the Cayley-Bacharach property as follows (see [15, Proposition 4.3]).

Proposition 3.2. Let 0 ≤ d < rX, let Supp(X) = {p1, . . . , ps}, and let κj = dimκ(pj).

Then the following statements are equivalent.

(a) The scheme X has CBP(d).

(b) If X′ ⊆ X is a maximal pj-subscheme and {fj1, . . . , fjκj} ⊆ RX is a standard set of

separators of X′ in X, then there exists kj ∈ {1, . . . ,κj} such that xrX−d0 - fjkj .

(c) If X′ ⊆ X is a maximal pj-subscheme and {Fj1, . . . , Fjκj} ⊆ P is a standard

set of separators of X′ in X, then there exists kj ∈ {1, . . . ,κj} such that Fjkj /∈
〈XrX−d

0 , (IX)rX〉P .



An Application of Liaison Theory to Zero-dimensional Schemes 561

(d) For all pj ∈ Supp(X), every maximal pj-subscheme X′ ⊆ X satisfies

dimK(IX′/X)d < κj .

Now we give two useful lemmas that will be used in the proof of Theorem 3.5.

Lemma 3.3. Let W ⊆ PnK be a 0-dimensional arithmetically Gorenstein scheme, let X be

a subscheme of W with its residual scheme Y, and let 0 ≤ d < rX. Furthermore, let X′ ⊆ X
be a maximal pj-subscheme, and let {Fj1, . . . , Fjκj} ⊆ PrX be a standard set of separators

of X′ in X. Suppose that 〈Fj1, . . . , Fjκj 〉K * 〈XrX−d
0 , (IX)rX〉P and 〈Fj1, . . . , Fjκj 〉K ⊆

〈XrX−d−1
0 , (IX)rX〉P , and write Fjkj = F ′jkj + XrX−d−1

0 Gjkj with F ′jkj ∈ (IX)rX and Gjkj ∈
Pd+1.

Then there is kj ∈ {1, . . . ,κj} such that Gjkj /∈ (IW)rW : (IY)rW−d−1.

Proof. Suppose that Gjkj ∈ (IW)rW : (IY)rW−d−1 for all kj = 1, . . . ,κj . By modulo X0 we

have Gjkj (IY)rW−d−1 ⊆ (IW)rW . Note that rW = αY/W + rX by Proposition 2.6(b). Thus

Lemma 2.7 yields that Gjkj ∈ (IX)d+1. This allows us to write Gjkj = G′jkj + X0Hjkj

with G′jkj ∈ (IX)d+1 and Hjkj ∈ Pd. It is clear that Hjkj ∈ (IX′)d. From this we

get Fjkj = (F ′jkj + XrX−d−1
0 G′jkj ) + XrX−d

0 Hjkj for all kj = 1, . . . ,κj . It follows that

Fjkj ∈ 〈X
rX−d
0 , (IX)rX〉P for all kj = 1, . . . ,κj . This is a contradiction to our hypothesis,

and hence the claim is completely proved.

Lemma 3.4. Let A be a 0-dimensional local affine K-algebra with maximal ideal m, let q

be a m-primary ideal, let R = A/q, and let π : A→ R be the canonical epimorphism. Let

g ∈ A be an element such that π(g) ∈ AnnR(π(m)) is a non-zero socle element of R, and

suppose h ∈ AnnA(q) and gh 6= 0.

(a) We have gh ∈ AnnA(m) and 〈0〉 :〈g〉 〈h〉 ⊆ q.

(b) Every element f ∈ A with π(f) ∈ 〈π(g)〉R \ {0} satisfies fh 6= 0.

(c) Let g1, . . . , gr ∈ A \ {0}. If the set {π(g1), . . . , π(gr)} ⊆ 〈π(g)〉R is K-linearly inde-

pendent, then the set {g1h, . . . , grh} is K-linearly independent.

Proof. For (a), let a ∈ m be a non-zero element. In R we have π(a) ∈ π(m), and so we

get π(ag) = π(a)π(g) = 0 or ag ∈ q. It follows that agh = 0. Hence gh ∈ AnnA(m).

Moreover, for f ∈ 〈0〉 :〈g〉 〈h〉 we have f = gf ′ for some f ′ ∈ A and gf ′h = fh = 0. Since

gh is a socle element of A and bgh 6= 0 for b ∈ A\m, we have AnnA(gh) = m. This implies

f ′ ∈ m. Thus f = gf ′ ∈ q.

To prove (b), we consider an element f ∈ A with π(f) ∈ 〈π(g)〉R \ {0}. Writing

π(f) = π(g)π(f ′) for some f ′ ∈ A \ {0}, we see that f ′ /∈ m is a unit and f = gf ′ + f ′′

with f ′′ ∈ q. So, we obtain fh = f ′gh+ f ′′h = f ′gh 6= 0.
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Next, we prove (c). Suppose that there are a1, . . . , ar ∈ K such that a1g1h + · · · +
argrh = (a1g1 + · · · + argr)h = 0. Since π(a1g1 + · · · + argr) ∈ 〈π(g)〉R, it follows from

(b) that π(a1g1 + · · · + argr) = a1π(g1) + · · · + arπ(gr) = 0. By assumption, we get

a1 = · · · = ar = 0.

The first main result of this section is the following characterization of the Cayley-

Bacharach property, which is a generalization of results for finite sets of K-rational points

or for the case that K is an algebraically closed field found in [8, Theorem 4.6] and [18,

Theorem 4.1]. For i ≥ 0 we write Fp for the image in OW,p of F ∈ Pi under the composition

map Pi → (RW)i →
∏
p∈Supp(W)OW,p → OW,p. Notice that F ∈ IW if and only if Fp = 0

for all p ∈ Supp(W) (cf. [14, Lemma 1.1]).

Theorem 3.5. Let W ⊆ PnK be a 0-dimensional arithmetically Gorenstein scheme, let X
be a subscheme of W, let Y be the residual scheme of X in W, and let 0 ≤ d ≤ rX − 1.

Then the following statements are equivalent.

(a) The scheme X has CBP(d).

(b) Every subscheme Y′ ⊆ W containing Y as a maximal pj-subscheme, where pj ∈
Supp(X), satisfies HFIY/Y′ (rW − d− 1) > 0.

(c) We have IW : (IY)rW−d−1 = IX.

(d) We have (IW)rW−1 : (IY)rW−d−1 = (IX)d.

(e) For all pj ∈ Supp(X) and for every maximal pj-subscheme X′ ⊆ X with standard set

of separators {Fj1, . . . , Fjκj} there exists a homogeneous element Hj ∈ (IY)rW−d−1

such that Hj · 〈Fj1, . . . , Fjκj 〉K * IW.

Proof. First we prove the implication (a) ⇒ (b). Let pj ∈ Supp(X), let κj = dimK κ(pj),

let Y′ ⊆ W be a subscheme containing Y as a maximal pj-subscheme, and let X′ be

the residual scheme of Y′ in W. Proposition 2.9 shows that X′ is exactly a maximal

pj-subscheme of X of degree deg(X′) = deg(X) − κj . By Proposition 2.6, we observe

that rX′ + αY′/W = rW = rX + αY/W, and HFIY/W(i) = deg(X) − HFX(rW − i − 1) and

HFIY′/W(i) = deg(X′)−HFX′(rW−i−1) for all i ∈ Z. So, for all i ∈ Z, we have HFIY/Y′ (i) =

κj−HFIX′/X(rW−i−1). According to Proposition 3.2, the Hilbert function of IX′/X satisfies

HFIX′/X(d) < κj . Consequently, we get HFIY/Y′ (rW − d − 1) = κj − HFIX′/X(d) > 0, as

wanted.

Now we prove the implication (b) ⇒ (c). Clearly, IX ⊆ IW : (IY)rW−d−1. Suppose for

a contradiction that F ∈ IW : (IY)rW−d−1 and F /∈ IX. There is a point pj ∈ Supp(X)

such that Fpj 6= 0. By [20, Lemma 4.5.9(a)] there is aj ∈ OX,pj such that aj · Fpj is a
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socle element of OX,pj . This socle element defines a maximal pj-subscheme X′ of X by [16,

Proposition 4.2]. Then the residual scheme Y′ of X′ in W satisfies HFIY/Y′ (rW−d− 1) > 0

by Proposition 2.9 and (b). On the other hand, letting G ∈ (IY)rW−d−1, then FG ∈ IW
and G · IX ⊆ IW. Since IW is saturated, we have G · 〈F, IX〉sat ⊆ IW. So, G · IX′ ⊆ IW or

G ∈ (IY′)rW−d−1, as IX′ ⊆ 〈F, IX〉sat. Hence we get HFIY/Y′ (rW−d−1) = 0, a contradiction.

Moreover, the implication (c)⇒ (d) is clear. Next, we prove the implication (d)⇒ (e).

Let X′ ⊆ X be a maximal pj-subscheme with set of minimal separators {F ∗j1, . . . , F ∗jκj}.
If there exists some index kj ∈ {1, . . . ,κj} such that deg(F ∗jkj ) ≤ d, then Gjkj =

X
d−deg(F ∗jkj

)

0 F ∗jkj /∈ (IX)d, and so claim (d) implies Gjkj /∈ (IW)rW−1 : (IY)rW−d−1. Let

Hj ∈ (IY)rW−d−1 \ {0} be such that GjkjHj /∈ (IW)rW−1. Since X0 is a non-zerodivisor for

RW, we have FjkjHj = XrX−d
0 GjkjHj /∈ IW. In case deg(F ∗jkj ) > d for all kj = 1, . . . ,κj ,

we see that Fjkj /∈ 〈X
rX−d
0 , (IX)rX〉P . Let 1 ≤ δ ≤ rX − d be the smallest number such

that 〈Fj1, . . . , Fjkj 〉K * 〈Xδ
0 , (IX)rX〉P . Write Fjkj = F ′jkj + Xδ−1

0 Gjkj with F ′jkj ∈ (IX)rX
and Gjkj ∈ PrX−δ+1. Then Lemma 3.3 yields that Gjkj /∈ (IW)rW : (IY)αY/W+δ−1 for some

kj ∈ {1, . . . ,κj}. So, there is an element H̃j ∈ (IY)αY/W+δ−1 such that GjkjH̃j /∈ (IW)rW .

Set Hj = XrX−d−δ
0 H̃j ∈ (IY)rW−d−1. Since F ′jkjH̃j ∈ IW, we get FjkjHj /∈ IW.

Finally, we prove the implication (e) ⇒ (a). For a contradiction, assume that X does

not have CBP(d), and let X′ ⊆ X be a maximal pj-subscheme such that its minimal

separators satisfies deg(F ∗jkj ) ≤ d for all kj = 1, . . . ,κj . Set Gjkj = X
d−deg(F ∗jkj

)

0 F ∗jkj
for kj = 1, . . . ,κj . By (e) there exists Hj ∈ (IY)rW−d−1 and some kj ∈ {1, . . . ,κj}
such that GjkjHj /∈ (IW)rW−1. Without loss of generality, we assume that Gj1Hj /∈
(IW)rW−1. Notice that, as sets, Supp(W) = Supp(X) ∪ Supp(Y). In OW,pj , we have

(Gj1Hj)pj 6= 0 and (Gj1Hj)p = 0 for any p ∈ Supp(W) \ {pj}. Also, by writing OX,pj =

OW,pj/qj for some ideal qj of OW,pj , we have qj · (Hj)pj = 〈0〉 in OW,p and (Gj1)pj ∈
OX,pj is a socle element with (Gjkj )pj ∈ 〈(Gj1)pj 〉OX,pj

\ {0} for all kj = 1, . . . ,κj . In

particular, by the definition of minimal separators, the set {(Gj1)pj , . . . , (Gjκj )pj} is K-

linearly independent. Thus Lemma 3.4 yields that (Gj1Hj)pj is a socle element of OW,pj

and {(Gj1Hj)pj , . . . , (GjκjHj)pj} ⊆ OW,pj is K-linearly independent. Set J := 〈GjkHj +

IW | 1 ≤ k ≤ κj〉RW . Obviously, we have

dimK JrW−1+i ≥ dimK〈(Gj1Hj)pj , . . . , (GjκjHj)pj 〉K = κj

for all i ≥ 0. Furthermore, using [15, Lemma 2.8] we write

XiGjl + IX =

κj∑
kj=1

cjkj lX0Gjkj + IX

for some cj1l, . . . , cjκj l ∈ K, where 0 ≤ i ≤ n and 1 ≤ l ≤ κj . Then we get
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XiGjlHj + IW =

κj∑
kj=1

cjkj lX0GjkjHj + IW,

and subsequently dimK JrW−1+i = κj for all i ≥ 0. Consequently, the homogeneous ideal

J defines a maximal pj-subscheme W′ ⊆W such that dimK(IW′/W)rW−1 = κj . Therefore

Proposition 3.2 implies that W is not a Cayley-Bacharach scheme. But W is arithmetically

Gorenstein, and so it is a Cayley-Bacharach scheme by [16, Proposition 4.8], and this is a

contradiction.

Let us apply Theorem 3.5 to a concrete case.

Example 3.6. Let K be a field with char(K) 6= 2, 3, and let W ⊆ P2
K be the 0-dimensional

complete intersection defined by IW = 〈F,G〉, where F = X1(X1 − 2X0)(X1 + 2X0)

and G = (X2 − X0)(X2
1 + X2

2 − 4X2
0 ). Then W has degree 9 and the support of W is

Supp(W) = {p1, . . . , p7} with p1 = (1 : 0 : 1), p2 = (1 : 0 : 2), p3 = (1 : 0 : −2),

p4 = (1 : 2 : 1), p5 = (1 : 2 : 0), p6 = (1 : −2 : 1), and p7 = (1 : −2 : 0). A homogeneous

primary decomposition of IW is IW = I1 ∩ · · · ∩ I7, where Ii is the homogeneous prime

ideal corresponding to pi for i 6= 5, 7, I5 = 〈X1 − 2X0, X
2
2 〉, and I7 = 〈X1 + 2X0, X

2
2 〉. So,

the scheme W is arithmetically Gorenstein, but not reduced at p5 and p7.

Now we consider the 0-dimensional subscheme X of W defined by the ideal IX =

I1 ∩ I3 ∩ I4 ∩ I5 ⊆ P . Then deg(X) = 5 and X is not reduced. The residual scheme of

X in W is denoted by Y. It is easy to see that X and Y are geometrically G-linked. We

have rW = 4 and rX = αX/W = rY = αY/W = 2. In this case there is a homogeneous

polynomial H ∈ (IY)2 such that its image in RX is a non-zerodivisor, for instance, H =

X2
0 + X0X1 + 1

4X
2
1 − 1

2X0X2 − 1
4X1X2. This polynomial satisfies the condition (e) in

Theorem 3.5. Therefore X is a Cayley-Bacharach scheme.

Example 3.6 shows that, setting IY,X := (IY+IX)/IX, the condition AnnRX((IY,X)rW−d−1)

= 〈0〉 is a sufficient condition for X having CBP(d) in this case. In general case, this is

also true. Indeed, if AnnRX((IY,X)rW−d−1) = 〈0〉 then for each maximal pj-subscheme

X′ ⊆ X with standard set of separators {Fj1, . . . , Fjκj} there is a non-zero homogeneous

element Hj ∈ (IY,X)rW−d−1 such that (Hj)pj ∈ OX,pj \ mX,pj , and so (Hj)pj /∈ mW,pj and

(HjFjkj )pj 6= 0 in OW,pj . This means that HjFjkj /∈ IW. Subsequently, the condition (e)

of Theorem 3.5 is satisfied, and hence X has CBP(d).

However, the above condition is not a necessary condition for X having CBP(d), as

our next example shows.

Example 3.7. Let K be a field with char(K) 6= 2, 3, let W ⊆ P2
K be the 0-dimensional

complete intersection given in Example 3.6, and let X′ be the set of points in W with

its homogeneous vanishing ideal IX′ = I1 ∩ I3 ∩ I4 ∩ I ′5, where I ′5 = 〈X1 − 2X0, X2〉
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is the homogeneous prime ideal corresponding to p5. Then the residual scheme Y′ of

X′ in W has the homogeneous vanishing ideal IY′ = I2 ∩ I ′5 ∩ I6 ∩ I7. It is clear that

rX′ = αX′/W = rY′ = αY′/W = 2 and

IY′ = 〈X2
0 − 1

4X
2
1 − 1

2X0X2 − 1
4X1X2, X0X1X2 + 1

2X
2
1X2, X0X

2
2 + 1

4X1X
2
2 − 1

2X
3
2 〉.

In this case it is not difficult to verify that the scheme X′ is a complete intersection,

and hence it is a Cayley-Bacharach scheme. However, there is no element H in (IY′)2

such that Hp5 6= 0 in OX′,p5 . Hence the condition AnnRX′ ((IY′,X′)rW−rX′ ) = 〈0〉 is not

satisfied, even when X′ is a Cayley-Bacharach scheme. Moreover, we see that the element

F5 = X2
1 −2X1X2 is a minimal separator of X′ \{p5} in X′ and (F5H5)p5 is a socle element

of OW,p5 , where H5 = X2
0 − 1

4X
2
1 − 1

2X0X2 − 1
4X1X2 ∈ (IY′)2.

It is interesting to examine the natural question whether the condition that X has

CBP(d) is equivalent to AnnRX((IY,X)rW−d−1) = 〈0〉. When the schemes W, X and Y are

finite sets of K-rational points in PnK and W is a complete intersection, this question has

an affirmative answer as was shown in [8, Theorem 4.6]. In our more general setting, this

result can be generalized as follows.

Theorem 3.8. Let X and Y be geometrically G-linked by a 0-dimensional arithmetically

Gorenstein scheme W, and let IY,X = (IY + IX)/IX. Then the scheme X has CBP(d) if

and only if we have AnnRX((IY,X)rW−d−1) = 〈0〉.

Proof. From the argument before Example 3.7, it suffices to show that AnnRX((IY,X)rW−d−1)

= 〈0〉 if X has CBP(d). To this end, let X′ ⊆ X be a maximal pj-subscheme with stan-

dard set of separators {Fj1, . . . , Fjκj} ⊆ PrX . Since X has CBP(d), Theorem 3.5 yields

that there is an element Hj ∈ (IY)rW−d−1 such that Hj · 〈Fj1, . . . , Fjκj 〉K * IW. With-

out loss of generality, we assume that HjFj1 /∈ IW. Since X and Y are geometrically

G-linked, (Fj1)pj is a socle element in OW,pj = OX,pj . Since (HjFj1)p = 0 in OW,p for

every p ∈ Supp(W) \ {pj} and (HjFj1)pj 6= 0, we get (Hj)pj /∈ mX,pj . Consequently, for

each point pj of Supp(X), we can find an element Hj ∈ (IY)rW−d−1 such that (Hj)pj is a

unit of OX,pj . By [14, Lemma 1.1], this condition is exactly the right condition to have

AnnRX((IY,X)rW−d−1) = 〈0〉.

Remark 3.9. Let X ⊆ PnK be a 0-dimensional scheme.

(a) If X is reduced and has K-rational support, then there is a complete intersection

consisting of distinct K-rational points W containing X such that X and its residue

scheme by W are geometrically G-linked (see, e.g., [8, Remark 4.11]).

(b) If OX,pj is not a Gorenstein local ring for some point pj ∈ Supp(X), then there is no

0-dimensional arithmetically Gorenstein scheme W ⊆ PnK containing X such that X
and its residual scheme in W are geometrically G-linked.
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We end this section with the following immediate consequence of Theorem 3.5. This

result allows us to check whether X has CBP(d) by using a truncated Gröbner basis

calculation (cf. [19, Section 4.5]). For the case of sets of distinct K-rational points and

d = rX − 1 see also [8, Corollary 4.10].

Corollary 3.10. In the setting of Theorem 3.5, the scheme X has CBP(d) if and only if

HFP/(IW:(IW:IX)rW−d−1)(d) = HFX(d).

4. A bound for the Hilbert function of the Dedekind different

In this section, we let X ⊆ PnK be a 0-dimensional scheme and we let 0 ≤ d < rX. The aim of

this section is to characterize the Cayley-Bacharach property using the canonical module

of the homogeneous coordinate ring RX, and apply these results to bound the Hilbert

function and determine the regularity index of the Dedekind different of X under some

additional hypotheses. As an application, we get a new characterization of 0-dimensional

arithmetically Gorenstein schemes in terms of their Dedekind differents.

The following two lemmas give us some more information about the canonical module

ωRX .

Lemma 4.1. For every homogeneous element ϕ ∈ (ωRX)−d its restriction ϕ = ϕ|(RX)d+1
:

(RX)d+1 → K is a K-linear map such that ϕ(x0(RX)d) = 〈0〉. Conversely, if ϕ : (RX)d+1 →
K is a K-linear map such that ϕ(x0(RX)d) = 〈0〉, then there exists a homogeneous element

ϕ ∈ (ωRX)−d such that ϕ|(RX)d+1
= ϕ.

Proof. Clearly, for every homogeneous element ϕ ∈ (ωRX)−d its restriction ϕ = ϕ|(RX)d+1

is a K-linear map. Also, we have

ϕ(x0(RX)d) = ϕ(x0(RX)d) = x0ϕ((RX)d) ⊆ x0(K[x0])−1 = 〈0〉.

Now let ϕ : (RX)d+1 → K is a K-linear map such that ϕ(x0(RX)d) = 〈0〉. Let hi =

HFX(i)− HFX(i− 1) for i ∈ N. Note that (RX)i = xi−rX0 (RX)rX and hi = 0 for all i > rX.

To define an element ϕ ∈ (ωRX)−d with the desired properties, we start taking a K-basis

g1, . . . , g∑
0≤k≤d+1 hk

of (RX)d+1. For i = d+2, . . . , rX, we choose g∑
0≤k<i hk+1, . . . , g

∑
0≤k≤i hk

such that the set{
xi−d−1

0 g1, . . . , x
i−d−1
0 g∑

0≤k≤d+1 hk
, . . . , g∑

0≤k<i hk+1, . . . , g
∑

0≤k≤i hk

}
forms a K-basis of (RX)i. Then we get

(RX)i

=
〈
xi−d−1

0 g1, . . . , x
i−d−1
0 g∑

0≤k≤d+1 hk
, . . . , xi−rX0 g∑

0≤k<rX
hk+1, . . . , x

i−rX
0 g∑

0≤k≤rX
hk

〉
K
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for all i ≥ rX. Let ϕ : RX → K[x0] be the homogeneous K-linear map of degree −d defined

as: for f ∈ Ri with i ≤ d we let ϕ(f) = 0, and for f ∈ Ri with i ≥ d+ 1 we write

f =
∑

1≤j≤
∑

0≤k≤d+1 hk

ajx
i−d−1
0 gj + · · ·+

∑
∑

0≤k<rX
hk+1≤j≤

∑
0≤k≤rX

hk

ajx
i−rX
0 gj

and let ϕ(f) =
∑

1≤j≤
∑

0≤k≤d+1 hk
ajx

i−d−1
0 ϕ(gj). The condition ϕ(x0(RX)d) = 〈0〉 implies

that the map ϕ is K[x0]-linear. Hence ϕ ∈ (ωRX)−d is the desired element that we wanted

to construct.

Lemma 4.2. The canonical module ωRX satisfies AnnRX((ωRX)−d) = 〈0〉 if and only

if for every pj ∈ Supp(X) and for every maximal pj-subscheme X′ ⊆ X there exists a

homogeneous element ϕ ∈ (ωRX)−d such that IX′/X · ϕ 6= 〈0〉.

Proof. We need only to prove that if for every pj ∈ Supp(X) and for every maximal pj-

subscheme X′ ⊆ X there exists a homogeneous element ϕ ∈ (ωRX)−d such that IX′/X · ϕ 6=
〈0〉 then AnnRX((ωRX)−d) = 〈0〉. Suppose for a contradiction that f · (ωRX)−d = 〈0〉
for some f ∈ (RX)i \ {0} with i ≥ 0. Since f 6= 0, we may assume the germ fpj 6= 0

for some j ∈ {1, . . . , s}. In the local ring OX,pj we find an element a ∈ OX,pj such

that sj = afpj is a socle element of OX,pj (cf. [20, Lemma 4.5.9(a)]). Now let g =

ı̃−1((0, . . . , 0, sjT
rX
j , 0, . . . , 0)) and h = ı̃−1((0, . . . , 0, aT rXj , 0, . . . , 0)). Then g, h ∈ (RX)rX

satisfies xi0g = fh. Also, the ideal 〈g〉 defines a maximal pj-subscheme X′ of X, that is, we

have IX′/X = 〈g〉sat. Thus there is ϕ ∈ (ωRX)−d such that 〈g〉sat · ϕ 6= 〈0〉, in particularly,

g · ϕ 6= 0. It follows that g · ϕ(g̃) 6= 0 for some non-zero homogeneous element g̃ ∈ RX.

Hence we get 0 = (f ·ϕ)(hg̃) = (fh ·ϕ)(g̃) = (xi0g ·ϕ)(g̃) = (g ·ϕ)(xi0g̃) = xi0(g ·ϕ)(g̃) 6= 0,

a contradiction.

Using the above properties we prove the following characterization of the Cayley-

Bacharach property in terms of the canonical module.

Proposition 4.3. Let X ⊆ PnK be a 0-dimensional scheme, and let 0 ≤ d < rX. Then the

following conditions are equivalent.

(a) The scheme X has CBP(d).

(b) We have AnnRX((ωRX)−d) = 〈0〉.

Proof. Suppose that X has CBP(d). Let X′ ⊆ X be a maximal pj-subscheme with set

of minimal separators {f∗j1, . . . , f∗jκj}. By Proposition 3.2, there exists an index k ∈
{1, . . . ,κj} such that ρ = deg(f∗jk) ≥ d + 1 and f∗jk /∈ x0(RX)ρ−1. Without loss of

generality, we assume that k = 1. So, we can define a K-linear map ϕj : (RX)ρ → K such

that ϕj(x0(RX)ρ−1) = 〈0〉 and ϕj(f
∗
j1) 6= 0. Using Lemma 4.1 we lift this map to obtain a
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homogeneous element ϕj ∈ (ωRX)−ρ+1 such that ϕj(f
∗
j1) 6= 0. Since x0 is a non-zerodivisor

of RX, it follows that xρ−d−1
0 ϕj(f

∗
j1) 6= 0. Especially, we have xρ−d−1

0 · ϕj ∈ (ωRX)−d and

IX′/X · (x
ρ−d−1
0 · ϕj) 6= 〈0〉. Hence Lemma 4.2 yields the condition AnnRX((ωRX)−d) = 〈0〉.

Conversely, assume for a contradiction that X does not have CBP(d). There is a

maximal pj-subscheme X′ ⊆ X such that its set of minimal separators {f∗j1, . . . , f∗jκj}
satisfies deg(f∗jk) ≤ d for all k = 1, . . . ,κj . By Remark 2.3(a)–(c), we may assume that,

for i ≥ 0, the set
{
x
i−deg(f∗jkj

)

0 f∗jkj | deg(f∗jkj ) ≤ i
}

is a K-basis of (IX′/X)i. In this case

for every ϕ ∈ (ωRX)−d we have ϕ(f∗jk) = 0 for all k = 1, . . . ,κj . We shall show that

f∗jk ·ϕ = 0 for all k = 1, . . . ,κj . Let i ≥ 0 and let h ∈ Ri \ {0} be a homogeneous element.

If hf∗jk = 0 then (f∗jk · ϕ)(h) = ϕ(hf∗jk) = 0. Suppose that hf∗jk 6= 0. Since hf∗jk ∈ IX′/X,

this allows us to write hf∗jk =
∑κj

l=1 cjlx
i+deg(f∗jk)−deg(f∗jl)

0 f∗jl for some cj1, . . . , cjκj ∈ K.

This implies (f∗jk ·ϕ)(h) = ϕ(hf∗jk) =
∑κj

l=1 cjlx
i+deg(f∗jk)−deg(f∗jl)

0 ϕ(f∗jl) = 0. Hence we have

shown f∗jk · ϕ = 0 for all k = 1, . . . ,κj . In addition, we have IX′/X = 〈f∗j1, . . . , f∗jκj 〉. It

follows that IX′/X · ϕ = 〈0〉 for any homogeneous element ϕ ∈ (ωRX)−d. Therefore we get

AnnRX((ωRX)−d) 6= 〈0〉, a contradiction.

As a consequence of the proposition, we get the following property. Here we recall that

a 0-dimensional scheme X is called locally Gorenstein if the local ring OX,pj is a Gorenstein

ring for every point pj ∈ Supp(X).

Corollary 4.4. Let K be an infinite field, let X ⊆ PnK be a 0-dimensional locally Goren-

stein scheme, and let 0 ≤ d < rX. Then X has CBP(d) if and only if there exists an

element ϕ ∈ (ωRX)−d such that AnnRX(ϕ) = 〈0〉.

Proof. Since X is locally Gorenstein, there is for each point pj ∈ Supp(X) a uniquely

maximal pj-subscheme X′j of X. So, the condition (b) of Proposition 4.3 is equivalent to the

condition that for each j ∈ {1, . . . , s} there exists ϕj ∈ (ωRX)−d such that IX′j/X ·ϕj 6= 〈0〉.
This is in turn equivalent to that there exists ϕ ∈ (ωRX)−d such that IX′j/X · ϕ 6= 〈0〉
for j = 1, . . . , s, since the base field K is infinite, and this condition is exactly the right

condition to make AnnRX(ϕ) = 〈0〉.

Remark 4.5. This corollary is a generalization of a result for the case d = rX − 1 found

in [16, Proposition 4.12]. Moreover, the hypothesis in the corollary that K is infinite is

necessary (cf. [16, Example 4.14]).

Now let us apply the above results to look at the Hilbert function of the Dedekind

different of X. For this purpose, we assume, in what follows, that X is locally Gorenstein,

and we let L0 = K[x0, x
−1
0 ]. The homogeneous ring of quotients of RX is Qh(RX) ∼=∏s

j=1OX,pj [Tj , T
−1
j ]. According to [16, Proposition 3.3], the graded algebra Qh(RX)/L0

has a homogeneous trace map σ of degree zero, i.e., σ ∈ (HomL0(Qh(RX), L0))0 satisfies
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HomL0(Qh(RX), L0) = Qh(RX) · σ. Thus there is an injective homomorphism of graded

RX-modules

Φ: ωRX(1) ↪→ HomL0(Qh(RX), L0) = Qh(RX) · σ ∼−→ Qh(RX)

ϕ 7→ ϕ⊗ idL0

The image of Φ is a homogeneous fractional RX-ideal CσX of Qh(RX). It is also a finitely

generated graded RX-module and

HFCσX
(i) = deg(X)−HFX(−i− 1) for all i ∈ Z.

Definition 4.6. The R-module CσX is called the Dedekind complementary module of X (or

of RX/K[x0]) with respect to σ. Its inverse,

δσX = (CσX)−1 = {f ∈ Qh(RX) | f · CσX ⊆ RX},

is called the Dedekind different of X (or of RX/K[x0]) with respect to σ.

The following basic properties of the Dedekind different of X are shown in [16, Propo-

sition 3.7].

Proposition 4.7. Let σ be a trace map of Qh(RX)/L0.

(a) The Dedekind different δσX is a homogeneous ideal of RX and x2rX
0 ∈ δσX.

(b) The Hilbert function of δσX satisfies HFδσX (i) = 0 for i < 0, HFδσX (i) = deg(X) for

i ≥ 2rX, and 0 ≤ HFδσX (0) ≤ · · · ≤ HFδσX (2rX) = deg(X). In particular, the regularity

index of δσX satisfies rX ≤ ri(δσX) ≤ 2rX.

When X has CBP(d), the Hilbert function of the Dedekind different and its regularity

index can be described as follows. We use the notation αδ = min{i ∈ N | (δσX)i 6= 〈0〉}.

Proposition 4.8. Let K be an infinite field, let σ be a trace map of Qh(RX)/L0, and

suppose that X has CBP(d) with 0 ≤ d ≤ rX − 1.

(a) We have d+ 1 ≤ αδ ≤ 2rX and HFδσX (i) ≤ HFX(i− d− 1) for all i ∈ Z.

(b) Let i0 be the smallest number such that HFδσX (i0) = HFX(i0 − d − 1) > 0. Then we

have HFδσX (i) = HFX(i− d− 1) for all i ≥ i0 and

ri(δσX) = max{i0, rX + d+ 1}.

Proof. Since CσX
∼= ωRX(1), Corollary 4.4 implies that there is g ∈ (CσX)−d−1 such that

AnnRX(g) = 〈0〉. Notice that x0 is a non-zerodivisor of RX. Then we find a non-zerodivisor
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g̃ ∈ (RX)rX such that g = x−rX−d−1
0 g̃ by [16, Proposition 3.7]. Observe that g̃ · (δσX)i ⊆

xrX+d+1
0 (RX)i−d−1. This implies (δσX)i = 〈0〉 for i ≤ d, and so d + 1 ≤ αδ. Moreover, for

all i ∈ Z, we have

HFδσX (i) = dimK(δσX)i = dimK(g̃ · δσX)i)

≤ dimK(xrX+d+1
0 (RX)i−d−1) = HFX(i− d− 1).

Thus claim (a) is completely proved.

Now we prove claim (b). Clearly, we have d + 1 ≤ i0 ≤ 2rX. By induction, we only

need to show that HFδσX (i0 + 1) = HFX(i0 − d) > 0. Let f ∈ (RX)i0−d \ {0}. There

are g0, . . . , gn ∈ (RX)i0−d−1 such that f = x0g0 + x1g1 + · · · + xngn. By assumption, we

have g̃ · (δσX)i0 = xrX+d+1
0 (RX)i0−d−1. This enables us to write xrX+d+1

0 gj = g̃hj for some

hj ∈ (δσX)i0 , where j ∈ {0, . . . , n}. Thus we have

xrX+d+1
0 f = xrX+d+1

0 (x0g0 + x1g1 + · · ·+ xngn) = x0g̃h0 + x1g̃h1 + · · ·+ xng̃hn

= g̃(x0h0 + x1h1 + · · ·+ xnhn)

and so xrX+d+1
0 f ∈ g̃ · (δσX)i0+1. Hence xrX+d+1

0 (RX)i0−d = g̃ · (δσX)i0+1. In other words, we

get HFδσX (i0 + 1) = HFX(i0 − d).

Let k = max{i0, rX +d+ 1}. In order to prove the equality ri(δσX) = k, we consider the

following two cases.

Case 1. Let i0 ≥ rX + d+ 1. Then we have k = i0. Observe that

deg(X) ≥ HFδσX (k) = HFX(k − d− 1) ≥ HFX(rX) = deg(X).

It follows that HFδσX (k) = deg(X), and hence k ≥ ri(δσX). Moreover, for i < k = i0, we

have HFδσX (i) < HFX(i− d− 1) ≤ HFX(k − d− 1) = deg(X). Thus we get ri(δσX) = k.

Case 2. Let i0 < rX+d+1. Then we have k = rX+d+1 and HFδσX (k) = HFX(k−d−1) =

HFX(rX) = deg(X). This implies k ≥ ri(δσX). For i < k, we have HFδσX (i) ≤ HFX(i−d−1) ≤
HFX(rX − 1) < deg(X). Hence we obtain ri(δσX) = k again.

In the special case that X is a locally Gorenstein Cayley-Bacharach scheme, the regu-

larity index of the Dedekind different attains the maximal value. This also follows from [15,

Proposition 4.8] with a different proof.

Corollary 4.9. In the setting of Proposition 4.8, assume that X is a Cayley-Bacharach

scheme.

(a) The regularity index of the Dedekind different δσX is 2rX.

(b) The scheme X is arithmetically Gorenstein if and only if the Hilbert function of δσX
satisfies HFδσX (i) = HFX(i− rX) for all i ∈ Z.

Proof. Claim (a) follows directly from the proposition, and claim (b) follows by [16, Propo-

sition 5.8].
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