
TAIWANESE JOURNAL OF MATHEMATICS

Vol. 24, No. 5, pp. 1139–1152, October 2020

DOI: 10.11650/tjm/191202

A Parabolic Flow of Almost Balanced Metrics

Masaya Kawamura

Abstract. We define a parabolic flow of almost balanced metrics. We show that the

flow has a unique solution on compact almost Hermitian manifolds.

1. Introduction

In [1], Bedulli and Vezzoni introduced a parabolic flow of balanced metrics and they showed

that the flow has a unique short-time solution. In recent years some results concerning

geometric flows on complex manifolds have been extended to the almost complex setting

such as in [4–6, 9]. In this paper, we will extend their results in the Hermitian geometry

to the almost Hermitian geometry.

Let Mn be a complex manifold and let ω be a fundamental (1, 1)-form associated to

a Hermitian metric g on M . In the Kähler geometry, the Calabi flow is a well-known

gradient flow of the Calabi functional

ω 7→
∫
M

(sω)2 ω
n

n!

as it is restricted to the cohomology class of an initial Kähler metric ω0

Cω0 = {ω0 +
√
−1∂∂φ > 0 | φ ∈ C∞(M,R)},

where sω is the scalar curvature of the metric ω. The Calabi flow is as follows:

∂

∂t
ω(t) =

√
−1∂∂sω(t), ω(0) = ω0.

The flow above can be alternatively expressed in terms of positive (n− 1, n− 1)-forms as

∂

∂t
ϕ(t) =

√
−1∂∂ ∗t (Pt ∧ ∗tϕ(t)), ϕ(0) = ϕ0,

where Pt is the Ricci form of ϕ(t) and ϕ0 = ∗ω0ω0.

Let (M2n, J) be a real 2n-dimensional compact almost complex manifold and let g be

an almost Hermitian metric on M . Let {Zr} be an arbitrary local (1, 0)-frame around
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a fixed point p ∈ M and let {ζr} be the associated coframe. Then the associated real

(1, 1)-form ω with respect to g takes the local expression ω =
√
−1grkζ

r ∧ ζk. We will

sometimes also refer to ω as to an almost Hermitian metric.

Let ϕ0 be a positive closed real (n− 1, n− 1)-form on M . We investigate the following

parabolic flow of almost balanced structures ϕ on M :

(1.1)
∂

∂t
ϕ(t) =

√
−1∂∂ ∗t (Pt ∧ ∗tϕ(t)) + (n− 1)∆BCϕ(t), dϕ(t) = 0, ϕ(0) = ϕ0,

where

∆BC := ∂∂∂
∗
∂∗ + ∂

∗
∂∗∂∂ + ∂

∗
∂∂∗∂ + ∂∗∂∂

∗
∂ + ∂

∗
∂ + ∂∗∂

is the modified Bott-Chern Laplacian (cf. [7]) and ∗t and Pt are the Hodge star operator

and the Chern-Ricci form locally given by Pij = gklΩijkl, Ω is the curvature form of the

Chern connection with respect to g.

We see that the modified Bott-Chern Laplacian is elliptic. For x ∈ M , ξ ∈ T ∗xM ,

we consider the symbol of the operator in the base (ζI ∧ ζJ)|I|=p,|J |=q, where {ζI}I is the

associated coframe with respect to the local (1, 0)-frame {ZI}I around x. Note that all

notations below are same as in [7]. Then we have

(σ∂∂∂∗∂∗(x, ξ))I,J ;I,J =

(∑
i∈I
|ξi|2

)∑
j∈J
|ξj |2

 ,

(σ∂∂∂∗∂∗(x, ξ))I,J ;Ik\i,J = (−1)αi+γk−1εikξiξk

∑
j∈J
|ξj |2

 ,

(σ∂∂∂∗∂∗(x, ξ))I,J ;I,Jl\j = (−1)βj+δl−1εjlξjξl

(∑
i∈I
|ξi|2

)
,

(σ∂∂∂∗∂∗(x, ξ))I,J ;Ik\i,Jl\j = (−1)αi+βj+γk+δlεikεjlξiξkξjξl.

Notice that we have for k /∈ I, then σ∂∂∂∗∂∗(x, ζk) = 0, which tells us that the operator

(∂∂)(∂∂)∗ + ∂
∗
∂ + ∂∗∂ cannot be elliptic. We calculate other terms which contribute the

symbol:

(σ∂∗∂∗∂∂(x, ξ))I,J ;I,J =

(∑
k/∈I

|ξk|2
)(∑

l /∈J

|ξl|2
)
,

(σ∂∗∂∂∗∂(x, ξ))I,J ;I,J =

(∑
i∈I
|ξi|2

)(∑
l /∈J

|ξl|2
)
,

(σ∂∗∂∂∗∂(x, ξ))I,J ;I,J =

(∑
k/∈I

|ξk|2
)∑

j∈J
|ξj |2

 .
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In this way, we obtain

σ∆BC
(x, ξ) = |ξ|4ω IdΛp,qT ∗

xM .

Therefore the operator ∆BC is a fourth order elliptic operator on M in the almost complex

setting.

We introduce the definition of an almost balanced metric.

Definition 1.1. Let (M2n, J) be an almost complex manifold. A metric g is called an

almost balanced metric on M if g is an almost Hermitian metric whose associated real

(1, 1)-form ω =
√
−1gijζ

i∧ζj satisfies d(ωn−1) = 0. And when an almost Hermitian metric

g is almost balanced, the triple (M2n, J, g) will be called an almost balanced manifold.

An almost balanced structure can be alternatively regarded as a closed positive real

(n− 1, n− 1)-form ϕ. We define the Bott-Chern cohomology in almost complex geometry

as follows:

HBC(M) =
Ker d

Im(∂∂)
.

Our main result is as follows.

Theorem 1.2. Let (M,J, g) be a compact almost Hermitian manifold and let ϕ0 be a

closed positive real (n− 1, n− 1)-form on M . The flow (1.1) admits a unique solution in

the Bott-Chern class of [ϕ0] defined in a maximal interval [0, ε) on M . Moreover, if the

initial structure is Kähler, then (1.1) reduces to the Calabi flow.

This paper is organized as follows: in Section 2, we recall some basic definitions and

computations in the almost Hermitian geometry. In the last section, we will prove the

main theorem by applying Theorem 2.9. Notice that we assume the Einstein convention

omitting the symbol of sum over repeated indexes in whole this paper.

2. Preliminaries

2.1. The Nijenhuis tensor of the almost complex structure

Let M be a 2n-dimensional smooth differentiable manifold. An almost complex structure

on M is an endomorphism J of TM , J ∈ Γ(End(TM)), satisfying J2 = − IdTM . The pair

(M,J) is called an almost complex manifold. Let (M,J) be an almost complex manifold.

We define a bilinear map on C∞(M) for X,Y ∈ Γ(TM) by

4N(X,Y ) := [JX, JY ]− J [JX, Y ]− J [X,JY ]− [X,Y ],

which is the Nijenhuis tensor of J . The Nijenhuis tensor N satisfies N(X,Y ) = −N(Y,X),

N(JX, Y ) = −JN(X,Y ), N(X, JY ) = −JN(X,Y ), N(JX, JY ) = −N(X,Y ). For
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any (1, 0)-vector fields V and W , N(V,W ) = −[V,W ](0,1), N(V,W ) = N(V ,W ) = 0

and N(V ,W ) = −[V ,W ](1,0) since we have 4N(V,W ) = −2([V,W ] +
√
−1J [V,W ]),

4N(V ,W ) = −2([V ,W ] −
√
−1J [V ,W ]). An almost complex structure J is called in-

tegrable if N = 0 on M . Giving a complex structure to a differentiable manifold M

is equivalent to giving an integrable almost complex structure to M . Let (M,J) be an

almost complex manifold. A Riemannian metric g on M is called J-invariant if J is com-

patible with g, i.e., for any X,Y ∈ Γ(TM), g(X,Y ) = g(JX, JY ). In this case, the pair

(J, g) is called an almost Hermitian structure. The fundamental 2-form ω associated to a

J-invariant Riemannian metric g, i.e., an almost Hermitian metric, is determined by, for

X,Y ∈ Γ(TM), ω(X,Y ) = g(JX, Y ). Indeed we have, for any X,Y ∈ Γ(TM),

ω(Y,X) = g(JY,X) = g(J2Y, JX) = −g(JX, Y ) = −ω(X,Y )

and ω ∈ Γ(Λ2T ∗M). We will also refer to the associated real fundamental (1, 1)-form ω as

an almost Hermitian metric. The form ω is related to the volume form dVg by n! dVg = ωn.

Let a local (1, 0)-frame {Zr} on (M,J) with an almost Hermitian metric g and let {ζr}
be a local associated coframe with respect to {Zr}, i.e.,

ζi(Zj) = δij , i, j = 1, . . . , n.

Since g is almost Hermitian, its components satisfy gij = gij = 0 and gij = gji = gij .

With using these local frame {Zr} and coframe {ζr}, we have

N(Zi, Zj) = −[Zi, Zj ]
(1,0) =: Nk

ij
Zk, N(Zi, Zj) = −[Zi, Zj ]

(0,1) = Nk
ij
Zk,

and

N =
1

2
Nk
ij
Zk ⊗ (ζi ∧ ζj) +

1

2
Nk
ij
Zk ⊗ (ζi ∧ ζj).

Let (M,J, g) be an almost Hermitian manifold with dimRM = 2n. An affine connec-

tion D on TM is called almost Hermitian connection if Dg = DJ = 0. For the almost

Hermitian connection, we have the following lemma (cf. [2, 3, 8, 9]).

Lemma 2.1. Let (M,J, g) be an almost Hermitian manifold with dimRM = 2n. Then for

any given TCM -valued (1, 1)-form Θ = (Θi)1≤i≤n, there exists a unique almost Hermitian

connection D on (M,J, g) such that the (1, 1)-part of the torsion is equal to the given Θ.

If the (1, 1)-part of the torsion of an almost Hermitian connection vanishes everywhere,

then the connection is called the second canonical connection or the Chern connection.

We will refer the connection as the Chern connection and denote it by ∇.

Now let ∇ be the Chern connection on M . We denote the structure coefficients of Lie

bracket by

[Zi, Zj ] =: Br
ijZr +Br

ijZr, [Zi, Zj ] =: Br
ij
Zr +Br

ij
Zr, [Zi, Zj ] =: Br

ij
Zr +Br

ij
Zr.
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Note that [Zi, Zj ]
(0,1) = −N r

ij
Zr, [Zi, Zj ]

(1,0) = −N r
ij
Zr and then Br

ij = −N r
ij

, Br
ij

= −N r
ij

.

Notice that J is integrable if and only if the Br
ij ’s vanish. For instance,

[Zi, Zj ] = [Zi, Zj ]
(1,0) + [Zi, Zj ]

(0,1),

where

[Zi, Zj ]
(1,0) =

1

2
([Zi, Zj ]−

√
−1J [Zi, Zj ]), [Zi, Zj ]

(0,1) =
1

2
([Zi, Zj ] +

√
−1J [Zi, Zj ]).

Note that for any p-form ψ, there holds that (cf. [9])

dψ(X1, . . . , Xp+1) =

p+1∑
i=1

(−1)i+1Xi(ψ(X1, . . . , X̂i, . . . , Xp+1))

+
∑
i<j

(−1)i+jψ([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xp+1).

We directly compute that

dζs = −1

2
Bs
klζ

k ∧ ζ l −Bs
kl
ζk ∧ ζ l +

1

2
N s
kl
ζk ∧ ζ l.

According to the direct computation above, we may split the exterior differential operator

d : ΛpM ⊗R C→ Λp+1M ⊗R C, into four components

d = A+ ∂ + ∂ +A

with
∂ : Λp,qM → Λp+1,qM, ∂ : Λp,qM → Λp,q+1M,

A : Λp,qM → Λp+2,q−1M, A : Λp,qM → Λp−1,q+2M.

In terms of these components, the condition d2 = 0 can be written as

A2 = 0, ∂A+A∂ = 0, ∂A+A∂ = 0, A
2

= 0,

A∂ + ∂2 + ∂A = 0, AA+ ∂∂ + ∂∂ +AA = 0, ∂A+ ∂
2

+A∂ = 0.

For any real (1, 1)-form η =
√
−1ηijζ

i ∧ ζj , we have

∂η =

√
−1

2

(
Zj(ηki)− Zi(ηkj)−B

s
ki
ηsj +Bs

kj
ηsi +Bs

ij
ηks
)
ζk ∧ ζi ∧ ζj ,

∂η =

√
−1

2

(
Zi(ηjk)− Zj(ηik)−B

s
ijηsk −B

s
ik
ηjs +Bs

jk
ηis
)
ζi ∧ ζj ∧ ζk.

From these computations above, we have

∂ω =

√
−1

2

(
Zj(gki)− Zi(gkj)−B

s
ki
gsj +Bs

kj
gsi +Bs

ij
gks
)
ζk ∧ ζi ∧ ζj

=

√
−1

2
Tjikζ

k ∧ ζi ∧ ζj
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and

∂ω =

√
−1

2

(
Zi(gjk)− Zj(gik)−B

s
ijgsk −B

s
ik
gjs +Bs

jk
gis
)
ζi ∧ ζj ∧ ζk

=

√
−1

2
Tijkζ

i ∧ ζj ∧ ζk,

where Tjik = Tjik.

A direct computation yields for any ϕ ∈ C∞(M,R),

(dJdϕ)(Zi, Zj) = −2
√
−1[Zi, Zj ]

(0,1)ϕ, (dJdϕ)(Zi, Zj) = 2
√
−1[Zi, Zj ]

(1,0)ϕ,

(dJdϕ)(Zi, Zj) = 2
√
−1(ZiZj − [Zi, Zj ]

(0,1))ϕ.

Hence, especially we have

√
−1∂∂ϕ =

1

2
(dJdϕ)(1,1) =

√
−1(ZiZj − [Zi, Zj ]

(0,1))ϕζi ∧ ζj .

2.2. The torsion and the curvature on almost complex manifolds

Since the Chern connection ∇ preserves J , we have

∇iZj = ΓrijZr, ∇iZj = Γr
ij
Zr,

where

Γrij = grsZi(gjs)− grsgjlB
l
is, Γpip = Zi(log det g)−Bs

is.

We can obtain that Γr
ij

= Br
ij

since the (1, 1)-part of the torsion of the Chern connection

vanishes everywhere (cf. [5]).

Note that the mixed derivatives ∇iZj do not depend on g (cf. [8]). Let {γij} be the

connection form, which is defined by γij = Γisjζ
s + Γisjζ

s. The torsion T of the Chern

connection ∇ is defined by T i := dζi− ζp∧γip, T i := dζi− ζp∧γip, which has no (1, 1)-part

and the only non-vanishing components are as follows:

T sij = Γsij − Γsji −Bs
ij , T sij = −Bs

ij .

These equations tell us that T splits into T = T ′+T ′′, where T ′ ∈ Γ(Λ2,0M ⊗T 1,0M) and

T ′′ ∈ Γ(Λ2,0M⊗T 0,1M). We also lower the index of torsion and denote it by Tijk = T sijgsk.

Note that T ′′ depends only on J and it can be regarded as the Nijenhuis tensor of J , that

is, J is integrable if and only if T ′′ vanishes.

We denote by Ω the curvature of the Chern connection ∇. We can regard Ω as a

section of Λ2M ⊗ TM , Ω ∈ Γ(Λ2M ⊗ TM) and Ω splits in Ω = H + R + H, where
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R ∈ Γ(Λ1,1M ⊗ Λ1,1M), H ∈ Γ(Λ2,0M ⊗ Λ1,1M). The curvature form can be expressed

by Ωi
j = dωij + ωis ∧ ωsj . In terms of Zr’s, we have

Rr
ijk

= Ωr
k(Zi, Zj) = Zi(Γ

r
jk

)− Zj(Γ
r
ik) + ΓrisΓ

s
jk
− Γr

js
Γsik −Bs

ij
Γrsk +Bs

ji
Γrsk,

Hr
ijk = Ωr

k(Zi, Zj) = Zi(Γ
r
jk)− Zj(Γrik) + ΓrisΓ

s
jk − ΓrjsΓ

s
ik −Bs

ijΓ
r
sk −Bs

ijΓ
r
sk,

Hr
ijk

= Ωr
k(Zi, Zj) = Zi(Γ

r
jk

)− Zj(Γ
r
ik

) + Γr
is

Γs
jk
− Γr

js
Γs
ik
−Bs

ij
Γrsk −Bs

ij
Γrsk,

and we deduce that by using Γpkp = Zk(log det g)−Bp
kp,

Pij = −∂i∂j log det g + Zj(B
r
ir) + Zi(B

r
jr

) +Bs
ij
Br
sr −Bs

ij
Br
sr,

Rij = [Zi, Zj ]
(0,1)(log det g)− Zi(Br

jr) + Zj(B
r
ir) +Bs

ijB
r
sr −Bs

ijB
r
sr

and

Rij = −[Zi, Zj ]
(1,0)(log det g) + Zi(B

r
jr

)− Zj(B
r
ir

) +Bs
ij
Br
sr −Bs

ij
Br
sr.

The Chern-Ricci form Ric(ω) is defined by

Ric(ω) =

√
−1

2
Rklζ

k ∧ ζ l +
√
−1Pklζ

k ∧ ζ l +

√
−1

2
Rklζ

k ∧ ζ l.

It is a closed real 2-form. If J is integrable, it is a closed real (1, 1)-form. If furthermore, J

is integrable and dω = 0, then the Chern-Ricci form coincides with the Ricci form defined

by the Levi-Civita connection of ω.

2.3. Hodge star operator and Hodge system

A Hodge star operator ∗ : Λp,qM → Λn−q,n−pM defined by

α ∧ ∗β = g(α, β)
ωn

n!
.

Note that ∗ω = 1
(n−1)!ω

n−1. Let Q : Λ1,1
+ M → Λn−1,n−1M be the smooth map ω 7→ ∗ωω,

where let Λn−1,n−1
+ M = Q(Λ1,1

+ M) be the set of positive (n − 1, n − 1)-forms. Let us fix

ω ∈ Λ1,1
+ M . Then Λ1,1M splits as

Λ1,1M = Cω ⊕ Λ1,1
0 M,

where Λ1,1
0 M = {σ ∈ Λ1,1M | σ ∧ ωn−1 = 0} is the set of primitive (1, 1)-forms. Similarly,

Λn−1,n−1M splits as

Λn−1,n−1M = Cϕ⊕ Λn−1,n−1
0 M,

where ϕ = ∗ω and Λn−1,n−1
0 M = {γ ∈ Λn−1,n−1M | γ ∧ ω = 0}.

We introduce the following algebraic lemma.
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Lemma 2.2. [1, Lemma 2.1] Let σ be in Λ1,1
0 M , then for 0 ≤ k ≤ n− 2,

∗(σ ∧ ωk) = − 1

(n− 2− k)!
σ ∧ ωn−2−k.

In particular, if h = h1ω + h0 ∈ Λ1,1M , then

∗h =
1

(n− 1)!
h1ω

n−1 − 1

(n− 2)!
h0 ∧ ωn−2.

Let M2n be an almost complex manifold. We denote Λp,qM the bundle of complex

forms of type (p, q) on M and C∞(M,Λp,qM) the vector space of its smooth sections.

The following fiber bundles Λ1,1
+ M , Λn−1,n−1

+ M are naturally defined. An almost balanced

structure on M is a global coclosed section ω of Λ1,1
+ M , or equivalently, is a closed section

ϕ of Λn−1,n−1
+ M .

By using Lemma 2.1, we can obtain the following result.

Lemma 2.3. [1, Lemma 2.5] Assume

d

dt
ϕ = h1ϕ+ ∗ϕh0

with h1 ∈ C∞(M,R) and h0 ∈ C∞(M,Λ1,1
0 M). Then

d

dt
(∗ϕϕ) =

h1

n− 1
∗ϕ ϕ− h0.

Let ∆A denote the modified Aeppli Laplacian (cf. [7]), which is defined by

∆A := ∂
∗
∂∗∂∂ + ∂∂∂

∗
∂∗ + ∂∂

∗
∂∂∗ + ∂∂∗∂∂

∗
+ ∂∂∗ + ∂∂

∗
.

Although we see that the operator (∂∂)∗(∂∂) + ∂∂: + ∂∂
∗

cannot be elliptic, we can show

that the modified Aeppli Laplacian ∆A is a fourth order elliptic operator in the same way

for proving that ∆BC is elliptic in Introduction of this paper. We will need a Hodge-like

decomposition induced by ∆A. We can prove the Aeppli decomposition based on the

result that ∆A is elliptic.

Proposition 2.4. (cf. [7]) If (M,J, g) is a compact almost Hermitian manifold, then we

have the following orthogonal decomposition for every (p, q),

C∞(M,Λp,q) = Hp,q∆A
(M)⊕ (Im ∂ + Im ∂)⊕ Im(∂∂)∗,

where Hp,q∆A
(M) = Ker ∆A.

We prepare the following lemma for proving the following proposition.
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Lemma 2.5. [4, Lemma 3.4] One has

∂∂∂ = 0, ∂∂
2

= 0.

The following property is a crucial step in the proof of Theorem 1.2. The proof

is similar to the one in [1, Proposition 2.4]. The difference appears only in the part

of using Lemma 2.5 and the following lemma. By applying some results in the proof

of [4, Lemma 3.4], we further obtain the following equalities.

Lemma 2.6. One has

∂2∂ = 0, ∂∂∂ = 0.

Proof. By using AA+∂∂+∂∂+AA = 0, ∂A+∂
2

+A∂ = 0, ∂A+A∂ = 0 and the results

in the proof of [4, Lemma 3.4]; ∂AA = 0, A∂
2

= −AA∂ and ∂∂∂ = 0, we obtain

∂2∂ = ∂∂∂ = −∂(AA+ ∂∂ +AA) = −∂AA− ∂∂∂ − ∂AA

= A∂A = −A∂2 −AA∂ = 0.

Proposition 2.7. (cf. [1, Proposition 2.4]) Let GA be the Green operator associated to

the modified Aeppli Laplacian ∆A. Then for every ψ ∈ ∂∂C∞(M,Λp,q), we have

ψ = ∂∂GA(∂∂)∗(ψ).

Proof. Choose arbitrary ψ ∈ ∂∂Λp,q. By applying the Aeppli decomposition and u ∈
Hp,q∆A

(M) ⇔ ∂
∗
u = ∂∗u = ∂∂u = 0 (cf. [7]), and ∂∂∂ = 0, ∂∂

2
= 0 in Lemma 2.5, we

have ψ = ∂∂β with β ∈ Im(∂∂)∗. Especially, since we have ∂∗∂
∗
∂∗ = 0, ∂

∗
∂
∗
∂∗ = 0 from

Lemmas 2.5 and 2.6, we have ∆Aβ = (∂∂)∗∂∂β, which tells us that

β = GA((∂∂)∗∂∂β) = GA((∂∂)∗ψ),

and hence we obtain

ψ = ∂∂GA(∂∂)∗(ψ).

Next we introduce a Hodge system.

Definition 2.8. A Hodge system on a manifold M consists of the following sequence

C∞(M,E−) C∞(M,E)

C∞(M,E−) C∞(M,E)

w

D

u

∆D

u

D∗

where E− and E are fiber bundles over M with an assigned metric along their fibers, D is

a differential operator, D∗ is the formal adjoint of D and ∆D is an elliptic operator such

that ψ = DGD∗ψ for every ψ ∈ ImD, where G is the Green operator of ∆D.
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Consider a Hodge system on a compact manifold M as in Definition 2.8. Let O be an

open subset of E such that π(O) = M , where π : E → M is the projection. Consider a

non-linear partial differential operator of order 2m

L : C∞(M,O)→ C∞(M,E)

and a fixed initial datum ϕ0 ∈ C∞(M,O) such that

L(ϕ0 +Dγ) ∈ ImD

for every γ ∈ C∞(M,E−). We consider the following evolution problem

(2.1)
∂

∂t
ϕ(t) = L(ϕ(t)), ϕ(0) = ϕ0,

where ϕ(t) is in the following space

U = {ϕ0 +Dγ | γ ∈ C∞(M,E−)} ∩ C∞(M,O)

and ϕ(t) is required to depend smoothly on time.

Let D2m(E,E) denote the space of partial differential operators on E of order ≤ 2m,

which can be seen as the space of smooth sections of a vector bundle. A linear partial

operator Q of order 2m is said to be strongly elliptic if its principal symbol σQ(x, ξ)

satisfies the following inequality:

−〈σQ(x, ξ)v, v〉E ≥ λ|ξ|2m|v|2m

for some positive constant λ and for all (x, ξ) ∈ TM , ξ 6= 0 and v ∈ Ex, whose definition

dose not depend on the metric 〈 · , · 〉E along the fibers on E. The principal symbol of Q

is defined by

σQ(x, ξ)v =
(
√
−1)2m

(2m)!
Q(f2mu)(x)

for f ∈ C∞(M) with f(x) = 0, dxf = ξ and u ∈ C∞(E) with u(x) = v. We denote by

L∗|ϕ the derivative of the operator L at ϕ.

Theorem 2.9. [1, Theorem 3.2] Let (E−, E,D,∆D) be a Hodge system on a compact

Riemannian manifold M . Let L, ϕ0 and U be as above. Assume that there exists a

nonlinear partial differential operator

L̃ : C∞(M,O)→ D2m(E,E), ϕ 7→ L̃ϕ

such that

(1) L̃ϕ is strong elliptic for every ϕ ∈ U ;
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(2) L∗|ϕ(ψ) = L̃ϕ(ψ) for every ϕ ∈ U and ψ ∈ DC∞(M,E−).

Assume further that

L∗|ϕ(Dθ) = Dlϕ(θ)

for every θ ∈ C∞(M,E−), where lϕ is a strongly elliptic linear differential operator on E−.

Then there exists ε > 0 such that the system (2.1) has a unique solution ϕ ∈ C∞([0, ε), U).

3. Proof of Theorem 1.2

We consider

E− = Λn−2,n−2
R M

D=
√
−1∂∂−−−−−−−→ E = Λn−1,n−1

R M,

where Λp,pR M is the bundle of real (p, p)-forms; the subset U is the set of smooth sections

of Λn−1,n−1
+ M lying in the same cohomology class as ϕ0. Let

L : C∞(M,Λn−1,n−1
+ M)→ C∞(M,Λn−1,n−1

R M)

be the operator L(ϕ) =
√
−1∂∂ ∗ (P ∧ ∗ϕ) + (n− 1)∆BCϕ.

The Chern Ricci-type curvature Pij is locally given as follows:

Pij = −∂i∂j logG+ Zj(B
r
ir) + Zi(B

r
jr

) +Bs
ij
Br
sr −Bs

ij
Br
sr,

where G is the determinant of the matrix g = (gij). In the following, α̇ will denote the

derivative with respect to time of the tensor α.

Lemma 3.1. The derivative of P is

Ṗ = −
√
−1∂∂(ω, ω̇),

where ( · , · ) denotes the pointwise scalar product of (1, 1)-forms.

Proof. We derive in t = t0 and we fix a unitary (1, 0)-frame with respect to g(t0). Then

we have

Ṗij = −∂i∂j
∂

∂t
logG+ Zj

(
∂

∂t
Br
ir

)
+ Zi

(
∂

∂t
Br
jr

)
+
∂

∂t
(Bs

ij
Br
sr −Bs

ij
Br
sr)

= −∂i∂j
∂

∂t
logG,

where we used that Bs
ij

= −Bs
ji

, Bs
ij

’s do not depend on t, which depend only on J

(cf. [8, Lemma 5.2]) because that the mixed derivatives ∇iZj do not depend on g. Since

we have ∂
∂t logG = tr(g−1ġ) and tr(g−1ġ) = (ω, ω̇), we obtain the desired equation.
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Now, we shall prove that for every closed ϕ ∈ C∞(M,Λn−1,n−1
+ M) and every closed

ψ ∈ C∞(M,Λn−1,n−1
R M), we have

(3.1) L∗|ϕ(ψ) = (1− n)∆BCψ +
√
−1∂∂Ψϕ(ψ),

where Ψϕ is a linear algebraic operator on ψ with coefficients depending on the torsion of

ϕ in a universal way. We denote the operator L by L = S + T , where

S(ϕ) =
√
−1∂∂ ∗ (P ∧ ∗ϕ), T (ϕ) = (n− 1)∆BCϕ.

Let ψ = ∂
∂tϕ be a tangent vector to U at ϕ. Then we may write ψ = h1ϕ + ∗h0, where

h1 is a smooth function on M and h0 is a section of Λ1,1
0 M . Note that h1 = 1

n(ω, ω̇). The

derivative of S is obtained by using Lemma 3.1 as follows:

S∗|ϕ(ψ) =
√
−1∂∂ ∗ (Ṗ ∧ ∗ϕ) +

√
−1∂∂Φ1(ψ) = n∂∂ ∗ (∂∂h1 ∧ ∗ϕ) +

√
−1∂∂Φ1(ψ),

where Φ1 is an algebraic operator depending on ϕ in a universal way. The derivative of T

is, from Lemma 2.3,

T∗|ϕ(ψ) = T∗|ϕ(h1ϕ+ ∗h0)

= −∂∂ ∗ (∂∂h1 ∧ ∗ϕ+ (1− n)(∂∂ +AA+AA)h0) +
√
−1∂∂Φ2(ψ)

for a suitable linear zeroth order operator Φ2, where we used that ∂∂ = −∂∂ −AA−AA
and Ah1 = Ah1 = 0. By combining these, we have

L∗|ϕ(ψ) = (n− 1)∂∂ ∗ (∂∂h1 ∧ ∗ϕ+ (∂∂ +AA+AA)h0) +
√
−1∂∂Φ1(ψ) +

√
−1∂∂Φ2(ψ).

Since ψ is a d-closed (n− 1, n− 1)-form, we have 0 = dψ = (A+ ∂ + ∂ +A)ψ = (∂ + ∂)ψ,

which tells us that we obtain ∂ψ = ∂ψ = 0, and hence we get

(∆BC)ϕψ = ∂∂∂
∗
∂∗ψ = ∂∂∂

∗
∂∗(h1ϕ+ ∗h0)

= −∂∂ ∗ (∂∂h1 ∧ ∗ ϕ+ (∂∂ +AA+AA)h0) +
√
−1∂∂Φ3(ψ).

Therefore, we have

L∗|ϕ(ψ) = −(n− 1)(∆BC)ϕψ +
√
−1∂∂Φϕ(ψ),

where Φϕ = Φ1 + Φ2− (n− 1)Φ3. Thus we obtained the equation (3.1). Recall that it can

be shown that −∆BC is strongly elliptic as we see in Section 1. We finally consider

lϕ = −(n− 1)(∆A)ϕ +
√
−1Φϕ ◦ ∂∂.

As we have confirmed that −∆A is strongly elliptic. In addition, we have the following
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Proposition 3.2. One has

∆BC∂∂ = ∂∂∆A.

Proof. By using Lemma 2.6, we obtain

∆BC∂∂ = (∂∂∂
∗
∂∗ + ∂

∗
∂∗∂∂ + ∂

∗
∂∂∗∂ + ∂∗∂∂

∗
∂ + ∂

∗
∂ + ∂∗∂)∂∂

= ∂∂∂
∗
∂∗∂∂ + ∂

∗
∂∗∂∂∂∂ + ∂

∗
∂∂∗∂∂∂ + ∂∗∂∂

∗
∂2∂ + ∂

∗
∂∂∂ + ∂∗∂2∂

= ∂∂∂
∗
∂∗∂∂.

On the other hand, using Lemma 2.5 we have

∂∂∆A = ∂∂(∂
∗
∂∗∂∂ + ∂∂∂

∗
∂∗ + ∂∂

∗
∂∂∗ + ∂∂∗∂∂

∗
+ ∂∂∗ + ∂∂

∗
)

= ∂∂∂
∗
∂∗∂∂ + ∂∂∂∂∂

∗
∂∗ + ∂∂∂∂

∗
∂∂∗ + ∂∂

2
∂∗∂∂

∗
+ ∂∂∂∂∗ + ∂∂

2
∂
∗

= ∂∂∂
∗
∂∗∂∂.

Hence we get ∆BC∂∂ = ∂∂∆A.

Then we have that L∗|ϕ(Dψ) = Dlϕ(ψ) for every closed ψ ∈ C∞(M,Λn−2,n−2
R M).

Now we may apply Theorem 2.9 and therefore we conclude that the flow (1.1) admits a

unique solution defined a maximal interval [0, ε) for some ε > 0. If ϕ0 is the (n−1, n−1)-

positive form of a Kähler structure, then the solution ϕ0 + β(t) to (1.1) corresponds to a

family of Kähler forms ω(t) solving the Calabi flow (cf. [1]). This completes the proof of

Theorem 1.2.
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