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Invariant Subsets and Homological Properties of Orlicz Modules

over Group Algebras

Rüya Üster and Serap Öztop*

Abstract. Let G be a locally compact group with left Haar measure. We study the

closed convex left invariant subsets of LΦ(G) and characterize affine mappings from the

space of nonnegative functions in L1(G) of norm 1 into LΦ(G) spaces. We apply the

results to the study of the multipliers of LΦ(G). We also investigate the homological

properties of LΦ(G) as a Banach left L1(G)-module such as projectivity, injectivity

and flatness.

1. Introduction

An Orlicz space LΦ(G) is a type of function space generalizing the Lp spaces. Besides the

Lp spaces, a variety of function spaces that arise in analysis are contained naturally in

Orlicz spaces. For example, L logL, which is a Banach space related to Hardy-Littlewood

maximal functions, and certain Sobolev spaces are contained in Orlicz spaces as subspaces.

Linear properties of Orlicz spaces have been studied thoroughly (see [21], for example).

Recently, Orlicz spaces and weighted Orlicz spaces over a locally compact group G are

considered as Banach algebras and certain cohomological properties of them are also in-

vestigated (see [1,16–19]). However, little attention has been paid to their possible module

properties (see [17], for example).

Our goal in this paper is to study possible module structures on Orlicz spaces over

the group algebra of a locally compact group G. It is well-known that Lp(G) is a left or

right Banach L1(G)-module (see [10, Theorem 32.16]). In the context of Banach modules,

Lau [13] studied the closed convex invariant subsets of Lp(G) (1 ≤ p <∞); in particular,

he proved that the only compact convex left or right translation-invariant subset of Lp(G)

is the origin. We obtain similar results for the LΦ(G) spaces. Therefore we extend some

standard results for Lp(G) to LΦ(G) spaces. Specifically, we observe that the idea of Lau

can be applied to investigate the multipliers of LΦ(G) spaces. Consequently we also obtain

some insight into the multipliers problem for LΦ(G) spaces.
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On the other hand, Dales and Polyakov in [6] gave a detailed study of the homological

properties of modules over the group algebra of a locally compact group. By following their

work, we study some homological properties of Orlicz spaces considered as L1(G)-modules

such as projectivity, injectivity and flatness.

The structure of the paper is as follows. First we introduce essential definitions and

basic information that will be used in this paper. In Section 3, we study the closed convex

left-invariant subsets of LΦ(G). We prove that if G is locally compact but noncompact,

then each closed convex left-invariant subset C of LΦ(G) must contain the origin. We also

prove that if C is compact, then C contains only the origin. In Section 4, we study affine

continuous mappings on subsets of Orlicz spaces. In Section 5, we apply our results to

extend some classical theorems concerning multipliers for the Lp(G) spaces (1 ≤ p ≤ ∞) to

multipliers for the LΦ(G) spaces. In particular, we extend the characterization of Brainerd

and Edwards [4] from L1(G) to LΦ(G). Finally in Section 6, we study the projectivity of

Orlicz modules over the group algebra of a locally compact group G and give necessary and

sufficient conditions for projectivity. We also have results on the injectivity and flatness

of Orlicz modules over the group algebra of a locally compact group.

2. Preliminaries

In this section, we provide an overview of some basic definitions and state some technical

results that will be crucial in the rest of this paper. In this paper, G denotes a locally

compact group with a fixed left Haar measure µ.

First we recall some facts concerning Young functions and Orlicz spaces. Our main

reference is [21]. A nonzero function Φ: [0,∞)→ [0,∞] is called a Young function if Φ is

convex, Φ(0) = 0 and limx→∞Φ(x) = +∞. For a Young function Φ, its complementary

function Ψ is given by

Ψ(y) = sup{xy − Φ(x) : x ≥ 0}, y ≥ 0.

It is easy to check that Ψ is also a Young function. Also, if Ψ is the complemen-

tary function of Φ, then Φ is the complementary function of Ψ, and (Φ,Ψ) is called a

complementary pair. We have the Young inequality

xy ≤ Φ(x) + Ψ(y), x, y ≥ 0

for complementary functions Φ and Ψ. By definition, a Young function can have the value

∞ at a point, and hence be discontinuous at such a point. However, we always consider a

pair of complementary Young functions (Φ,Ψ) with both Φ and Ψ continuous and strictly

increasing. In particular, they attain positive values on (0,∞). Note that even though Φ

is continuous, it may happen that Ψ is not continuous.
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Let us recall some facts concerning Orlicz spaces. Suppose that G is a locally compact

group with a fixed Haar measure dµ and (Φ,Ψ) is a complementary Young pair. We define

LΦ(G) =

{
f : G→ C : f is measurable and

∫
G

Φ(|f(x)|) dµ(x) <∞
}
.

Since LΦ(G) is not always a linear space, we define the Orlicz space LΦ(G) to be

LΦ(G) =

{
f : G→ C :

∫
G

Φ(α|f(x)|) dµ(x) <∞ for some α > 0

}
,

where f indicates a µ-equivalence class of measurable functions with respect to the Haar

measure dµ. Then the Orlicz space is a Banach space under the Orlicz norm ‖ · ‖Φ defined

for f ∈ LΦ(G) by

‖f‖Φ = sup

{∫
G
|f(x)ν(x)| dµ(x) :

∫
G

Ψ(|ν(x)|) dµ(x) ≤ 1

}
,

where Ψ is the complementary function to Φ. One can also define the Luxemburg norm

‖ · ‖oΦ on LΦ(G) by

‖f‖oΦ = inf

{
k > 0 :

∫
G

Φ

(
|f(x)|
k

)
dµ(x) ≤ 1

}
.

It is known that these two norms are equivalent; that is,

‖ · ‖oΦ ≤ ‖ · ‖Φ ≤ 2‖ · ‖oΦ

and

‖f‖Φ ≤ 1 if and only if

∫
G

Φ(|f(x)|) dµ(x) ≤ 1.

Let us recall that a step function takes finitely many values on measurable sets of G.

We define MΦ(G) as the closure of the linear space of all step functions in LΦ(G). Then

MΦ(G) is a Banach space and contains Cc(G), the space of all continuous functions on G

with compact support, as a dense subspace [21, Proposition 3.4.3]. Moreover, MΦ(G)∗,

the dual of MΦ(G), can be identified with LΨ(G) in a natural way [21, Theorem 4.1.6].

Another useful characterization of MΦ(G) is that f ∈ MΦ(G) if and only if for every

α > 0, αf ∈ LΦ(G) [21, Definition 3.4.2 and Proposition 3.4.3].

A Young function Φ satisfies the ∆2-condition if there exists a constant K > 0 such

that

Φ(2x) ≤ KΦ(x), x ≥ 0.

In this case, we write Φ ∈ ∆2. If Φ ∈ ∆2, then it follows that LΦ(G) = MΦ(G) so that

LΦ(G)∗ = LΨ(G) [21, Corollary 3.4.5]. If in addition Ψ ∈ ∆2, then the Orlicz space LΦ(G)

is a reflexive Banach space.
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Definition 2.1. Let Φ1 and Φ2 be two Young functions. Then Φ1 is stronger than Φ2,

Φ1 � Φ2 (or Φ2 ≺ Φ1) in symbols, if

Φ2(x) ≤ Φ1(ax), x ≥ 0

for some a > 0. Further we say that Φ1 and Φ2 are strongly equivalent if Φ1 � Φ2 and

Φ2 � Φ1. Then we write Φ1 ≈ Φ2.

We have said that Orlicz spaces are generalization of Lebesgue spaces. If we take

Φ(x) = xp/p, 1 < p < ∞, then the complementary Young function is Ψ(y) = yq/q, with

1/p + 1/q = 1, and the space LΦ(G) becomes the Lebesgue space Lp(G) and the norm

‖ · ‖Φ is equivalent to the classical norm ‖ · ‖p.
Our results can be applied to various Young functions (see [3, Example 8.3], [15,

Proposition 2.11] and [21, p. 15]) and concrete groups G (see [8]); we point out a few

below.

(1) If Φ(x) = x ln(1 + x), then Ψ(x) ≈ coshx− 1.

(2) If Φ(x) = coshx− 1, then Ψ(x) ≈ x ln(1 + x).

(3) If Φ(x) = ex − x− 1, then Ψ(x) = (1 + x) ln(1 + x)− x.

(4) If Φ(x) = x log x (0 ≤ x < ∞), then the Orlicz space LΦ is the Zygmund space

L logL.

(5) If Φ(x) = ex
β − 1, x ≥ 0 with β > 0, then the Orlicz space LΦ is the Zygmund space

expLβ.

(6) The group SU(2) is compact. If f is an integrable function on SU(2), then its integral

with respect to the Haar measure is∫
SU(2)

f(x) dµ(x) =
1

2π2

∫ π

0

∫ π

0

∫ 2π

0
f ◦ Φ(θ, ϕ, ψ) sin2 θ sinϕdθdϕdψ,

where Φ denotes the map (θ, ϕ, ψ) 7→ x = (x1, x2, x3, x4) in which x1 = cos θ,

x2 = sin θ cosϕ, x3 = sin θ sinϕ cosψ, x4 = sin θ sinϕ sinψ.

(7) The group GL(n,R) is noncompact. The Haar measure on it is | detA|−n dA, where

dA is the Lebesgue measure on M(n,R).

As usual, Cb(G) is the space of bounded continuous complex-valued functions on G,

C0(G) is the subspace of Cb(G) consisting of all those functions that vanish at infinity,

and M(G) denotes the set of all complex regular Borel measures on G which is a Banach

space with respect to the norm defined by

‖µ‖ = |µ|(G) <∞, µ ∈M(G).
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The convolution of µ ∈M(G) and f ∈ LΦ(G) is defined by

(µ ∗ f)(x) =

∫
G
f(y−1x) dµ(y).

For each a ∈ G, let δa denote the measure in M(G) such that δa(A) = 1A(a), where 1A is

the characteristic function of a subset A of G,

(δa ∗ f)(x) = f(a−1x) = La−1f(x).

Given any function f on G, the function f̃ on G will be defined by f̃(x) = f(x−1) for each

x ∈ G.

Definition 2.2. Let X and Y be normed spaces and C, D convex subsets of X, Y

respectively. A map f : C → D is called affine if

f(αx+ (1− α)y) = αf(x) + (1− α)f(y)

for all x, y ∈ C and α ∈ [0, 1].

Throughout this paper we are mainly interested in Orlicz spaces LΦ(G) with the ∆2-

condition on its Young function Φ.

3. Invariant subsets

In this section we generalize the results of [13] concerning the characterization of closed

convex invariant subsets of the Lp(G) to the Orlicz spaces of a locally compact group G.

Our results are motivated by the corresponding results for Lp(G). The proof is somewhat

similar to that of the Lp(G) case, but new ideas are needed to fully adapt it to the Orlicz

spaces case. We note that LΦ(G) is an essential Banach L1(G)-module with respect to the

convolution [17, Lemma 3.2], it is also an M(G)-module. Throughout this paper we are

mainly interested in the left invariant subsets of LΦ(G), but similar results obtain for the

right invariant subsets of LΦ(G). Let us give the definition of the left invariant subsets of

LΦ(G).

Definition 3.1. A subset C of the space LΦ(G) is called left invariant if Lxf ∈ C for

each f ∈ C and x ∈ G.

Note that if f ∈ LΦ(G), x ∈ G, then Lxf ∈ LΦ(G) and ‖Lxf‖Φ = ‖f‖Φ (see [17, p. 10]).

Let K be a subset of LΦ(G), then coK will denote the convex hull of K. Besides

the norm topology on LΦ(G), we will consider the weak-topology ω = σ(LΦ(G), LΦ(G)∗),

where LΦ(G)∗ = LΨ(G) and (Φ,Ψ) is a complementary pair. The weak topology on

LΦ(G) will be considered only occasionally, so unless otherwise specified, we will refer
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to the topological properties of sets and functions in LΦ(G) with respect to the norm

topology.

Further, the following subsets of M(G) will be crucial in our investigation:

(1) P (G) = {µ ∈M(G) : ‖µ‖ = 1 and µ ≥ 0},

(2) P1(G) = {h ∈ L1(G) : ‖h‖1 = 1 and h ≥ 0},

(3) E(G) = {δa : a ∈ G}.

One can consider that P1(G) = P (G) ∩ L1(G).

The following definition and lemma appear in [13, Lemma 3.1].

Definition 3.2. Let ν denote the separated locally convex topology on M(G) determined

by the family of seminorms Q = {pf : f ∈ Cb(G)}, such that

|pf (µ)| = |〈µ, f〉| =
∣∣∣∣∫
G
f dµ

∣∣∣∣
for each µ ∈ M(G). Then in the ν-topology, µα → µ means that

∫
G f dµα →

∫
G f dµ.

We denote the weak topology of M(G) by σ(M(G), L∞(G)), while the weak* topology by

σ(M(G), C0(G)). In this way, the ν-topology is σ(M(G), Cb(G)). Since C0(G) ⊆ Cb(G) ⊆
L∞(G), we have σ(M(G), C0(G)) ≤ σ(M(G), Cb(G)) ≤ σ(M(G), L∞(G)).

Lemma 3.3. For a locally compact group G, we have

P (G) = P1(G)
ν

= coE(G)
ν
.

As a consequence of the Hahn-Banach separation theorem, let us note that a convex

set in a Banach space which is closed in the norm topology is also closed in the weak

topology.

The following lemma and theorem can be proven by adapting arguments similar to the

one presented in [13, Lemma 3.2] and [13, Theorem 4.1(a)]. Therefore we omit the proofs.

Lemma 3.4. Let G be a locally compact group.

(1) For each f ∈ LΦ(G), the mapping µ 7→ µ ∗ f from M(G) into LΦ(G) is continuous

when M(G) has the weak* topology and LΦ(G) has the weak topology.

(2) For each f ∈ L1(G), the mapping h 7→ f ∗ h from LΦ(G) into LΦ(G) is continuous

when LΦ(G) has the weak topology.

Theorem 3.5. Let G be a locally compact group and C a closed convex subset of LΦ(G).

Then C is left invariant if and only if h ∗ C ⊆ C for each h ∈ P1(G).



Invariant Subsets and Homological Properties of Orlicz Modules 965

We observe the following consequence.

Corollary 3.6. Let I be a closed linear subspace of LΦ(G). Then L1(G) ∗ I ⊆ I if and

only if I is a left invariant subspace of LΦ(G).

Note that the set co{Lxf : x ∈ G} is a closed, convex and left invariant subset of

LΦ(G). Hence, we have the following consequence.

Corollary 3.7. Let f ∈ LΦ(G). Then

co{Lxf : x ∈ G} = {ϕ ∗ f : ϕ ∈ P1(G)}.

Theorem 3.8. Let G be a locally compact group. Then G is noncompact if and only if

each closed, convex, left invariant nonempty subset of LΦ(G) contains the origin.

Proof. Assume that G is noncompact, and take C a closed, convex, left invariant nonempty

subset of LΦ(G). Since G is noncompact for each compact subset H of G, there exists

an element xH ∈ G \ H. It follows that the net {δxH}H weak* converges to zero in

M(G). Using Lemma 3.4 we conclude that the net {δxH ∗ f}H converges to zero in

the weak topology of LΦ(G). The set C is closed and convex, so weakly closed. Since

{δxH ∗ f}H ⊆ C, then its weak limit is in C, that is, C contains the origin.

Conversely suppose G is compact. The set C = {1G} is a closed, convex, left invariant

subset of LΦ(G) but does not contain the origin.

Theorem 3.9. Let G be a locally compact group. Then G is noncompact if and only if

each compact, convex, left invariant nonempty subset of LΦ(G) is the origin.

Proof. Let G be noncompact, C a compact, convex, left invariant nonempty subset of

LΦ(G) and f arbitrary in C. Let h ∈ LΨ(G), where Ψ is the complementary Young pair

of Φ, and consider the function k(s) = 〈Lsf, h〉 for s ∈ G. Then k = f ∗ h̃ ∈ C0(G).

Furthermore, k is a bounded, continuous, almost periodic function on G. In order to

justify that k is almost periodic, i.e., f ∗ h̃ ∈ AP (G), we notice that, for each x ∈ G,

Lx(f ∗ h̃)(y) = (f ∗ h̃)(xy) =

∫
G
f(z)h̃(z−1xy) dµ(z) =

∫
G
f(xz)h̃(z−1y) dµ(z)

=

∫
G
Lxf(z)h̃(z−1y) dµ(z) = (Lxf ∗ h̃)(y), y ∈ G.

As {Lxf : x ∈ G} is contained in the compact set C, there is a net {xα}α ⊆ G such that

{Lxαf}α converges in the normed space LΦ(G). Since h ∈ LΨ(G),

‖Lxαf ∗ h̃− Lxβf ∗ h̃‖∞ ≤ ‖Lxαf − Lxβf‖Φ‖h‖Ψ → 0,

so {Lxαf ∗ h̃}α converges in (Cb(G), ‖ · ‖∞). Since G is a locally compact noncompact

group, the set AP (G) ∩ C0(G) reduces to zero, so k ≡ 0. Hence f ∗ h̃ = 0 for each
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h ∈ LΨ(G). Now we want to show that f = 0. Let Uα be a decreasing set of compact

neighborhoods of e and let hα = 1Uα/|Uα|; then ‖f ∗ h̃α− f‖Φ → 0. Since hα ∈ LΨ(G) for

each α, it follows that f = 0. Hence the set C contains only the origin.

Conversely suppose that G is compact. The set C = {1G} is a compact, convex and

left invariant subset of LΦ(G) but does not contain the origin.

Let us remind that more information about almost periodic functions on locally com-

pact groups can be found in [14] for example.

4. Affine mappings commuting with translations

Our main aim is to determine the affine mappings and characterize the compact multipliers

of Orlicz spaces. Lau [13] studied the affine mappings T from a left invariant closed convex

subset A of Lq(G) into a closed convex left (right) invariant subset of Lp(G) commuting

with left (right) translations. We shall study affine continuous mappings T on subsets of

Orlicz spaces.

The proof of the next theorem is similar to that of [13, Theorem 5.1]; we therefore

omit it.

Theorem 4.1. Let Φ and Ψ be Young functions and let B and C be closed left invariant

convex subsets of LΨ(G) and LΦ(G), respectively. If T : B → C is continuous and affine,

then the following are equivalent.

(1) T commutes with left translations (i.e., T (Lxf) = LxTf whenever x ∈ G and f ∈
B).

(2) T (h ∗ f) = h ∗ T (f) for each h ∈ P1(G) and f ∈ B.

We have the following consequence.

Corollary 4.2. If T : LΨ(G) → LΦ(G) is a linear bounded operator, then the following

are equivalent.

(1) T (Lxf) = (LxT )f whenever x ∈ G and f ∈ LΨ(G).

(2) T (h ∗ f) = h ∗ T (f) for each h ∈ L1(G) and f ∈ LΨ(G).

Theorem 4.3. Let G be a locally compact noncompact group. Let C be a nonempty closed

convex left invariant subset of L1(G), and B a nonempty weakly compact closed convex left

invariant subset of LΦ(G). If T : B → C is a continuous affine map and T (Lxf) = LxTf

for each f ∈ B, then T = 0.
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Proof. Since B and C are closed and convex, they are weakly closed. Since T is affine

and continuous, T is also weakly continuous when B and C have their respective weak

topologies. As B is weakly compact, convex and T is weakly continuous, T (B) is a weakly

compact convex left invariant subset of L1(G). Hence by [13, Theorem 4.8], T (B) =

{0}.

Theorem 4.4. Let G be a locally compact group, C be a weakly compact, closed, bounded,

left invariant subset of LΦ(G), and let T : P1(G) → C be a continuous affine map. Then

the following are equivalent.

(1) T commutes with all left translations.

(2) There exists an f ∈ C such that T (h) = h ∗ f for h ∈ P1(G).

Proof. Let x ∈ G and suppose that T (Lxh) = LxT (h) whenever h ∈ P1(G). By Theo-

rem 4.1, we have T (k ∗ h) = k ∗ T (h) for k, h ∈ P1(G). Suppose that {Uα} ⊆ P1(G) is a

bounded approximate identity for L1(G). Since T (Uα) ∈ C is bounded and C is weakly

compact, there is an f ∈ C such that {T (Uα)}α converges to f in the weak topology.

Then

T (h) = lim
α
T (h ∗ Uα) = lim

α
h ∗ T (Uα) = h ∗ f.

Conversely let x ∈ G and suppose that there is f ∈ C such that T (h) = h ∗ f for all

h ∈ P1(G). Then

LxT (h) = Lx(h ∗ f) = δx−1 ∗ (h ∗ f) = (δx−1 ∗ h) ∗ f = Lxh ∗ f = T (Lxh).

This completes the proof.

5. Compact multipliers

A multiplier is an important concept for Banach spaces. We want to study the problem

of multipliers on LΦ spaces. We apply our results in Section 3 to extend some classical

theorems concerning multipliers for the Lp spaces, 1 ≤ p <∞, to multipliers for LΦ spaces

of a locally compact group. For p = 1 and G is a locally compact group, the space of

multipliers is precisely M(G). This is a famous result of Wendel [24]. For a locally compact

noncompact group, Sakai [23] proved that a compact multiplier on L1(G) commuting with

left (right) translations is identically zero. On the other hand Akemann [2] proved that if

G is a compact group, then M(L1(G), L1(G)) consists only of compact operators, where

M(L1(G), L1(G)) denotes the set of all bounded linear operators on L1(G) that commute

with the left (right) translations.

Our main purpose is to obtain some results on the compact multipliers problem for

Orlicz spaces. We characterize the compact multipliers of LΦ(G) by taking LΦ(G) as an
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L1(G)-module. We are able to extend these results to compact multipliers from L1(G) to

LΦ(G).

Let us start with the definition of the left multipliers of LΦ(G).

Definition 5.1. A bounded linear operator T from LΨ(G) to LΦ(G) is called a left

multiplier for the pair (LΨ(G), LΦ(G)) if T (Lxf) = Lx(Tf) for all f ∈ LΨ(G) and x ∈ G.

We denote the set of left multipliers for the pair (LΨ(G), LΦ(G)) by M(LΨ(G), LΦ(G)).

For the following theorem we assume that both Φ and Ψ are Young functions satisfying

the ∆2-condition.

Theorem 5.2. Let G be a locally compact group. For a bounded linear operator T from

L1(G) to LΦ(G), the following are equivalent.

(1) T ∈M(L1(G), LΦ(G)).

(2) There exists an f ∈ LΦ(G) such that T (h) = h ∗ f for h ∈ L1(G).

Proof. Suppose first that T ∈ M(L1(G), LΦ(G)). Let {uα}α be an approximate identity

for L1(G) such that ‖uα‖1 = 1 for all α. Then for all h ∈ L1(G) we have ‖h∗uα−h‖1 → 0.

It follows that {T (h ∗ uα)}α converges to T (h) in the norm topology for all h ∈ L1(G).

On the other hand, the net {T (uα)}α is bounded in the reflexive space LΦ(G), so passing

to a subnet if necessary, we may assume that {T (uα)}α converges in the weak topology to

some f ∈ LΦ(G). Then using Corollary 4.2 and Lemma 3.4, we have

T (h) = lim
α
T (h ∗ uα) = lim

α
h ∗ T (uα) = h ∗ f.

The proof of the converse part is similar to the proof of the corresponding part of Theo-

rem 4.4.

Theorem 5.3. Let G be a compact group. Every multiplier T from L1(G) into LΦ(G) is

compact.

Proof. Let T ∈ M(L1(G), LΦ(G)). By Theorem 5.2 there exists f ∈ LΦ(G) such that

T (h) = h ∗ f , for all h ∈ L1(G). We will prove that T is a compact operator, i.e., T

takes the unit ball of L1(G) into a relatively compact set of LΦ(G). As G is compact

and the mapping Lxf is continuous, the set co{Lxf : x ∈ G}‖·‖Φ ⊆ LΦ(G) is compact, so

using Corollary 3.7 it follows that {ϕ ∗ f : ϕ ∈ P1(G)} is relatively compact in LΦ(G). If

h ∈ L1(G) and ‖h‖1 ≤ 1, then h = (h1 − h2) + i(h3 − h4), where hj > 0 and ‖hj‖1 < 1,

j = 1, 2, 3, 4. It follows that T (hj) is in C = {λϕ ∗ f : λ ∈ [0, 1]}. Since C is relatively

compact, it follows that T (h) lies in the relatively compact set (C−C) + i(C−C). Hence

T is a compact operator.
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Theorem 5.4. For a locally compact noncompact group G, the only compact multiplier

T from LΨ(G) into LΦ(G) is zero.

Proof. Let T be a compact operator and TLx = LxT . Then, the closure of the set

{T (f) : ‖f‖Ψ ≤ 1} is a compact, convex, left invariant, nonempty subset of LΦ(G), so by

Theorem 3.9, it reduces to zero. Hence T = 0.

The following consequence is apparent from Theorem 4.3.

Theorem 5.5. Let G be a locally compact noncompact group. Let A be a weakly compact

closed left invariant subspace of LΦ(G). If T is a bounded linear operator from A into

L1(G) commuting with left translations, then T is zero.

6. Projectivity, injectivity and flatness

Homological properties of Lp(G) as an L1(G)-module have been studied by Dales and

Polyakov [6]. In this section we characterize some homological properties of LΦ(G) con-

sidered as L1(G)-modules, such as projectivity, injectivity and flatness.

First we recall some homological properties of a Banach algebra. Let A be a Banach

algebra and E be a Banach left A-module. We denote by A- mod and mod -A the categories

of Banach left A-modules and of Banach right A-modules, respectively. These classes of

modules are defined in [5, 0.3.2] and [9, Definition 2.6.1]. Suppose that E ∈ A- mod. Set

AE = span{ax : a ∈ A, x ∈ E}.

Then E is called essential if AE = E, where the overbar denotes closure. In the case A

has a bounded approximate identity {eα}α, E is essential if and only if limα eαx = x for

all x ∈ E (see [7, Corollary 15.3]).

We denote by B(E,F ) the Banach space of all bounded linear operators from E to

F . We call a T ∈ B(E,F ) admissible if there exists S ∈ B(F,E) with T ◦ S = idF . If

E,F ∈ A- mod, then AB(E,F ) denotes the closed linear subspace of B(E,F ) consisting

of all left A-module morphisms. An operator T ∈ AB(E,F ) is called a retraction if there

exists S ∈ AB(F,E) with T ◦ S = idF . Similar definitions apply when E,F ∈ mod -A.

Definition 6.1. Let A be a Banach algebra, and let P ∈ A- mod. Then P is called a

projective A-module if for each E,F ∈ A- mod, for each admissible epimorphism T ∈
AB(E,F ) and for each S ∈ AB(P, F ), there exists R ∈ AB(P,E) such that T ◦R = S.

Definition 6.2. Let A be a Banach algebra and J ∈ A- mod. Then J is called injective

if for each E,F ∈ A- mod, each admissible monomorphism T ∈ AB(E,F ) and each S ∈
AB(E, J), there exists R ∈ AB(F, J) such that R ◦ T = S.
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Definition 6.3. Let A be a Banach algebra, and let E ∈ A- mod. Then E is flat if the

dual E∗ of E is injective in mod -A.

It is known that L1(G) has the approximation property by [22, Example 4.5] and ⊗̂
denotes the projective tensor product of any Banach spaces.

We investigate the homological properties of LΦ(G) induced by the structure of the

underlying group. We will use [6, Proposition 1.2(i)] for the following theorem.

Theorem 6.4. Let G be a locally compact group and Φ be a Young function. Then LΦ(G)

is a projective L1(G)-module if and only if G is compact.

Proof. First suppose that G is compact. It is known that if G is compact, then every

essential Banach left L1(G)-module is projective [20, 1.2]. Therefore LΦ(G) is a projective

L1(G)-module.

For the converse, suppose on the contrary that G is not compact. Let V and W be

compact symmetric neighborhoods of the identity element eG such that V 2 ⊆ W . Let

f(x) = χV ∗χV (x)
µ(V ) = 1

µ(V )

∫
G χV (y)χV (y−1x) dµ(y) for x ∈ G. Then f ∈ Cc(G), f(G) ∈

[0, 1], with f(eG) = 1, supp(f) ⊆ V , ‖f‖∞ = 1 and ‖f‖1 ≤ 1. It is clear that f ∗ f 6= 0

and supp(f ∗ f) ⊆W . Since L1(G) has the approximation property by [22, Example 4.5]

and also LΦ(G) is essential by [17, Lemma 3.2], then by [6, Proposition 1.2] there exists a

T ∈ L1(G)B(LΦ(G), L1(G)) such that T (f ∗ f) 6= 0.

Set η = ‖f ∗ T (f)‖1/2 and fix k ∈ N. Choose a function g ∈ Cc(G) with support K1

such that ‖T (f)− g‖1 < 1/k and ‖f ∗ (T (f)− g)‖1 < η. It follows that ‖f ∗ g‖1 > η.

Since G is compact, there exist s1, s2, . . . , sk ∈ G such that the sets sj(V ∪ K)2 are

pairwise disjoint for j = 1, 2, . . . , k. Indeed, set s1 = e and consider the set s1(V ∪
K)2(V ∪ K)−2 which is a compact subset of G. Since G is not compact, there exists

s2 ∈ G \ s1(V ∪ K)2(V ∪ K)−2. This way one can choose inductively each sj ∈ G \⋃j−1
i=1 si(V ∪K)2(V ∪K)−2.

Set fj = sj ∗ f and λ =
∑k

j=1 fj ∗ f . Since s1V, . . . , skV are pairwise disjoint, we have∥∥∑k
j=1 fj

∥∥
∞ = 1 and

∥∥∑k
j=1 fj ∗ g

∥∥
1

= k‖f ∗ g‖1. Then

‖T (λ)‖1 =

∥∥∥∥∥∥
k∑
j=1

fj ∗ T (f)

∥∥∥∥∥∥
1

≥

∥∥∥∥∥∥
k∑
j=1

fj ∗ g

∥∥∥∥∥∥
1

− 1 = k‖f ∗ g‖1 − 1 > kη − 1.

On the other hand,∥∥∥∥∥∥
k∑
j=1

fj ∗ f

∥∥∥∥∥∥
Φ

= sup


∫
G

∣∣∣∣∣∣
k∑
j=1

fj ∗ f(x)h(x)

∣∣∣∣∣∣ dµ(x) :

∫
G

Ψ(|h(x)|) dµ(x) ≤ 1


≤ sup


∫
G

k∑
j=1

|fj ∗ f(x)h(x)| dµ(x) :

∫
G

Ψ(|h(x)|) dµ(x) ≤ 1


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= sup


k∑
j=1

∫
G
|f ∗ f(x)h(sjx)| dµ(x) :

∫
G

Ψ(|h(x)|) dµ(x) ≤ 1


= k‖f ∗ f‖Φ.

We obtain
∥∥∑k

j=1 fj ∗ f
∥∥

Φ
≤ k‖f ∗ f‖Φ. Since f ∈ Cc(G), it follows that f ∗ f ∈ LΦ(G)

and ‖λ‖Φ ≤ k‖f ∗ f‖Φ.

Thus

kη − 1 ≤ ‖T (λ)‖1 ≤ ‖T‖‖λ‖Φ ≤ k‖T‖‖f ∗ f‖Φ.

Consequently,

kη ≤ k‖T‖‖f ∗ f‖Φ + 1.

This holds for each k ∈ N, which is the required contradiction. Therefore G must be

compact, as claimed.

Remark 6.5. For the “if” part we can also use the result of Racher [20, Proposition 1.4]

related to the projectivity of Banach modules. It is known that Orlicz space is separable

if and only if G is separable (see [21, Theorem 3.5.1]).

Observation 6.6. Let G be a locally compact group, (Φ,Ψ) complementary pair and

Ψ ∈ ∆2. If LΦ(G) is a projective L1(G)-module with G being separable (second countable)

then G is compact.

Now we seek to determine when the module LΦ(G) is injective and flat. Let us recall

that if E ∈ A- mod, then E∗ ∈ mod -A is the dual module of E with the module operation

specified by the formula

〈x, λa〉 = 〈ax, λ〉, a ∈ A, x ∈ E, λ ∈ E∗.

Similarly E∗ ∈ A- mod when E ∈ mod -A and in this case the module operation in E∗ is

specified by

〈x, aλ〉 = 〈xa, λ〉, a ∈ A, x ∈ E, λ ∈ E∗.

We know that every module (left or right) over an amenable algebra is flat and every

dual module is injective [9, VII.2.29]. Moreover, Johnson proved that the Banach algebra

L1(G) is amenable if and only if the group G is amenable [11, Theorem 2.5]. If we combine

these results we have the following observations.

Remark 6.7. Let Φ be a Young function. If G is an amenable group, then

(1) LΦ(G) is a flat Banach left L1(G)-module,

(2) LΨ(G), the dual module of LΦ(G), is an injective Banach right L1(G)-module,

(3) if Φ,Ψ ∈ ∆2, then since LΦ(G) is a dual module, LΦ(G) is both an injective and flat

Banach left L1(G)-module.
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[19] S. Öztop, E. Samei and V. Shepelska, Weak amenability of weighted Orlicz algebras,

Arch. Math. (Basel) 110 (2018), no. 4, 363–376.

[20] G. Racher, On the projectivity and flatness of some group modules, in: Banach Al-

gebras 2009, 315–325, Banach Center Publications 91, Polish Acad. Sci. Inst. Math.,

Warsaw, 2010.

[21] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1991.

[22] R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer Monographs

in Mathematics, Springer-Verlag London, London, 2002.

[23] S. Sakai, Weakly compact operators on operator algebras, Pacific J. Math. 14 (1964),

659–664.

[24] J. G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math.

2 (1952), 251–261.
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