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Cofiniteness with Respect to the Class of Modules in Dimension less than a

Fixed Integer

Alireza Vahidi* and Saeid Morsali

Abstract. Let R be a commutative Noetherian ring with non-zero identity, n a non-

negative integer, a an ideal of R with dim(R/a) ≤ n+1, and X an arbitrary R-module.

In this paper, we prove the following results:

(i) If X is an a-torsion R-module such that HomR(R/a, X) and Ext1R(R/a, X) are

FD<n R-modules, then X is an (FD<n, a)-cofinite R-module;

(ii) The category of (FD<n, a)-cofinite R-modules is an Abelian category;

(iii) Hi
a(X) is an (FD<n, a)-cofinite R-module and {p ∈ AssR(Hi

a(X)) : dim(R/p) ≥
n} is a finite set for all i when ExtiR(R/a, X) is an FD<n R-module for all i.

We observe that, among other things, AssR(Hi
a(X)) is a finite set for all i whenever R

is a semi-local ring with dim(R/a) ≤ 2 and ExtiR(R/a, X) is an FD<1 R-module for

all i.

1. Introduction

Throughout this paper R is a commutative Noetherian ring with non-zero identity, a is an

ideal of R, M is a finite (i.e., finitely generated) R-module, X is an arbitrary R-module

which is not necessarily finite, and n is a non-negative integer. For basic results, notations,

and terminology not given in this paper, readers are referred to [12,13,34].

In [20], Hartshorne defined an a-torsion R-module X to be a-cofinite if ExtiR(R/a, X)

is a finite R-module for all i and asked the following questions.

Question 1.1. Is the category of a-cofinite R-modules an Abelian category?

Question 1.2. Is Hi
a(M) an a-cofinite R-module for all i?

The followings are also important problems in local cohomology (see [19, Expose XIII,

Conjecture 1.1] and [22, Problem 4]).

Question 1.3. Is HomR(R/a,Hi
a(M)) a finite R-module for all i?
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Question 1.4. Is AssR(Hi
a(M)) a finite set for all i?

In [20, Proposition 7.6 and Corollary 7.7], [23, Theorem 4.1], [15, Theorem 3], [16, The-

orems 1 and 2], [36, Theorem 1.1], [14, Theorem 1.4], [7, Theorem 2.6], [24, Theorems 1 and

8], [30, Theorems 2.6 and 2.10], [9, Theorem 2.7], [5, Theorem 4.3], [2, Theorems 3.4 and

3.7], and [31, Theorem 3.3], the authors studied these questions and prepared affirmative

answers to them for the case that dim(R/a) = 1.

Recall that X is said to be an FD<n (or in dimension < n) R-module if there exists

a finite submodule X ′ of X such that dimR(X/X ′) < n [2, 4]. Also, we say that X is

an (FD<n, a)-cofinite R-module if X is an a-torsion R-module and ExtiR(R/a, X) is an

FD<n R-module for all i [3, Definition 4.1]. Note that, by [37, Theorem 2.3], the class of

FD<n R-modules forms a Serre subcategory of the category of R-modules (i.e., the class

of R-modules which is closed under taking submodules, quotients, and extensions). Also,

X is a finite R-module if and only if X is an FD<0 R-module, and so X is an a-cofinite

R-module if and only if X is an (FD<0, a)-cofinite R-module. Thus, it is natural to raise

the following questions as generalizations of Questions 1.1–1.4 (see [1, Question]). Here,

we denote the set {p ∈ AssR(X) : dim(R/p) ≥ n} by AssR(X)≥n.

Question 1.5. Is the category of (FD<n, a)-cofinite R-modules an Abelian category?

Question 1.6. Is Hi
a(M) an (FD<n, a)-cofinite R-module for all i?

Question 1.7. Is HomR(R/a,Hi
a(M)) an FD<n R-module for all i?

Question 1.8. Is AssR(Hi
a(M))≥n a finite set for all i?

By Abazari-Bahmanpour’s results [1, Theorems 2.5 and 2.10], the answer to Ques-

tions 1.6–1.8 is yes if R is a complete local ring with dim(R/a) ≤ n + 1. In this paper,

we remove complete local assumption on R. It follows that, among other things, the an-

swer to Question 1.4 is yes if R is a semi-local ring with dim(R/a) ≤ 2. We also study

Question 1.5 and prepare an affirmative answer to it for the case that dim(R/a) ≤ n + 1.

In the main result of Section 2, we prove that if X is an a-torsion FD<n+2 R-module

(e.g., X is a-torsion and dim(R/a) ≤ n + 1) such that HomR(R/a, X) and Ext1
R(R/a, X)

are FD<n R-modules, then X is an (FD<n, a)-cofinite R-module. This result plays an

important role in the study of the above questions.

In Section 3, with respect to Question 1.5, we show that the category of (FD<n, a)-

cofinite FD<n+2 R-modules is an Abelian category. In particular, the category of (FD<n, a)-

cofinite R-modules is an Abelian category if dim(R/a) ≤ n + 1.

Section 4 is devoted to the study of Questions 1.6–1.8. Let t be a non-negative integer.

We prove that if X is an arbitrary R-module such that ExtiR(R/a, X) is an FD<n R-

module for all i ≤ t (e.g., X is an FD<n R-module) and Hi
a(X) is an FD<n+2 R-module
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for all i < t (e.g., dim(R/a) ≤ n + 1), then Hi
a(X) is an (FD<n, a)-cofinite R-module for

all i < t, HomR(R/a,Ht
a(X)) is an FD<n R-module, and AssR(Hi

a(X))≥n is a finite set for

all i ≤ t.

Section 5 consists of some applications on ordinary cofiniteness and weakly cofiniteness

of local cohomology modules. Recall that X is said to be a weakly Laskerian R-module if

the set of associated prime ideals of any quotient module of X is finite [17, Definition 2.1].

Also, we say that X is an a-weakly cofinite R-module if X is an a-torsion R-module and

ExtiR(R/a, X) is a weakly Laskerian R-module for all i [18, Definition 2.4]. Note that, if

X is a weakly Laskerian R-module (resp. an FD<1 R-module and R is a semi-local ring),

then X is an FD<2 R-module (resp. a weakly Laskerian R-module) by [5, Theorem 3.3].

It is perhaps worth noting that the results of this paper generalize all of the previous

results concerning Questions 1.1–1.8 (see e.g., [1,2,5–9,11,14–16,20,23–25,27,30–33,36]).

Note also that, some results of the finiteness of associated prime ideals in this paper follow

from [10, Theorem 1.2] when X is finite.

2. Cofinite modules

The following lemma is needed in this paper.

Lemma 2.1. Suppose that X is an a-torsion FD<n+1 R-module such that HomR(R/a, X)

is an FD<n R-module. Then X is an (FD<n, a)-cofinite R-module.

Proof. We can, and do, assume that dimR(X) = n. Since HomR(R/a, X) is an FD<n

R-module, there exists a short exact sequence

0 −→ X ′ −→ HomR(R/a, X) −→ X ′′ −→ 0

such that X ′ is a finite submodule of HomR(R/a, X) and dimR(X ′′) < n. Also, by

[13, Exercise 1.2.28], AssR(HomR(R/a, X)) = AssR(X) because X is an a-torsion R-

module. Let j be a positive integer such that dimR(ExtjR(R/a, X)) = n and set A = {p ∈
SuppR(ExtjR(R/a, X)) : dim(R/p) = n}. Then A is a non-empty and finite set because

A ⊆ AssR(X ′). Let A = {p1, . . . , pl} and S = R \
⋃l

k=1 pk. Then dimS−1R(S−1X) ≤ 0,

S−1X is an S−1a-torsion S−1R-module, and the S−1R-module HomS−1R(S−1R/S−1a,

S−1X) is finite and so has finite length. Thus, by [29, Proposition 4.1], S−1X is an

S−1a-cofinite S−1R-module. Hence S−1 ExtjR(R/a, X) ∼= Extj
S−1R

(S−1R/S−1a, S−1X) is

a finite S−1R-module. Therefore there is a finite submodule Y of ExtjR(R/a, X) such that

S−1Y = S−1 ExtjR(R/a, X). Now, since S−1(ExtjR(R/a, X)/Y ) = 0, it is easy to see that

dimR(ExtjR(R/a, X)/Y ) < n. Thus ExtjR(R/a, X) is an FD<n R-module.

We are now ready to state and prove the main result of this section.
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Theorem 2.2. Suppose that X is an a-torsion FD<n+2 R-module such that HomR(R/a, X)

and Ext1
R(R/a, X) are FD<n R-modules. Then X is an (FD<n, a)-cofinite R-module.

Proof. By Lemma 2.1, we can, and do, assume that dimR(X) = n + 1. Suppose, on

the contrary, that X is not an (FD<n, a)-cofinite R-module and seek a contradiction.

Let A be the set of ideals (0 :R Y ), where Y is an a-torsion R-module, dimR(Y ) = n + 1,

HomR(R/a, Y ) and Ext1
R(R/a, Y ) are FD<n R-modules, and Y is not an (FD<n, a)-cofinite

R-module. Then A is a non-empty set of ideals of Noetherian ring R. Let (0 :R Y ) be a

maximal member of A. Since Y is an a-torsion R-module and HomR(R/a, Y ) is an FD<n

R-module, the set B = {p ∈ SuppR(Y ) : dim(R/p) = n+ 1} is finite. Let B = {p1, . . . , pl}
and S = R \

⋃l
k=1 pk. Then dimS−1R(S−1Y ) ≤ 0, S−1Y is an S−1a-torsion S−1R-module,

and the S−1R-module HomS−1R(S−1R/S−1a, S−1Y ) is finite and so has finite length.

Thus, by [29, Proposition 4.1], S−1Y is an Artinian S−1a-cofinite S−1R-module. Therefore

S−1(Y/aY ) ∼= S−1Y/S−1aS−1Y is a finite S−1R-module from [29, Theorem 2.1]. Hence

there is a finite submodule Y ′ of Y such that S−1((aY + Y ′)/aY ) = S−1(Y/aY ). Let

Z = Y/Y ′. Since S−1Z is an Artinian S−1R-module and S−1Z = S−1aS−1Z, there is an

element a of a such that S−1Z = a
1S
−1Z from [26, 2.8]. Therefore S−1(Z/aZ) = 0 and so

it is easy to see that dimR(Z/aZ) ≤ n. By the short exact sequence

0 −→ Y ′ −→ Y −→ Z −→ 0,

we have HomR(R/a, Z) and Ext1
R(R/a, Z) are FD<n R-modules. If dimR(Z) < n+1, then

Z is an (FD<n, a)-cofinite R-module from Lemma 2.1. Therefore Y is an (FD<n, a)-cofinite

R-module by the above short exact sequence, a contradiction. Thus dimR(Z) = n + 1

and Z is not an (FD<n, a)-cofinite R-module, and hence (0 :R Z) ∈ A. Thus (0 :R Y ) =

(0 :R Z) because (0 :R Y ) ⊆ (0 :R Z) and (0 :R Y ) is a maximal member of A. Let

Z ′ = (0 :Z a). Since aZ 6= 0, (0 :R Z) $ (0 :R Z ′) and so (0 :R Z ′) /∈ A. HomR(R/a, Z ′)

and Ext1
R(R/a, Z ′) are FD<n R-modules from the short exact sequences

0 −→ Z ′ −→ Z −→ aZ −→ 0 and 0 −→ aZ −→ Z −→ Z/aZ −→ 0.

If dimR(Z ′) < n + 1, then Z ′ is an (FD<n, a)-cofinite R-module from Lemma 2.1. Oth-

erwise, dimR(Z ′) = n + 1 and so Z ′ is again an (FD<n, a)-cofinite R-module as (0 :R

Z ′) /∈ A. Thus HomR(R/a, Z/aZ) is an FD<n R-module by the above short exact se-

quences. Therefore Z/aZ is an (FD<n, a)-cofinite R-module by Lemma 2.1. Hence Z is

an (FD<n, a)-cofinite R-module from [29, Corollary 3.2]. This contradiction shows that X

is an (FD<n, a)-cofinite R-module as desired.

As immediate applications of the above theorem, we have the following corollaries.
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Corollary 2.3. Suppose that dim(R/a) ≤ n+1 and that X is an a-torsion R-module such

that HomR(R/a, X) and Ext1
R(R/a, X) are FD<n R-modules. Then X is an (FD<n, a)-

cofinite R-module.

Corollary 2.4. (see [9, Proposition 2.6], [5, Corollary 4.2], and [2, Theorem 3.1]) Suppose

that X is an a-torsion FD<2 R-module such that HomR(R/a, X) and Ext1
R(R/a, X) are

finite R-modules. Then X is an a-cofinite R-module.

Corollary 2.5. (see [30, Theorem 2.3]) Suppose that dim(R/a) ≤ 1 and that X is an a-

torsion R-module such that HomR(R/a, X) and Ext1
R(R/a, X) are finite R-modules. Then

X is an a-cofinite R-module.

3. Abelianness of the category of cofinite modules

With respect to Question 1.1, Hartshorne in [20, Proposition 7.6] showed that the cate-

gory of a-cofinite R-modules is an Abelian category if R is a complete regular local ring

and a is a prime ideal of R with dim(R/a) = 1. In [16, Theorem 2], Delfino and Marley

generalized Hartshorne’s result to arbitrary complete local rings. Kawasaki in [24, Theo-

rem 1] extended this result for an arbitrary ideal a with dim(R/a) = 1 in a local ring R.

In [30, Theorem 2.6], Melkersson removed local assumption on R. Recently, Aghapour-

nahr and Bahmanpour in [2, Theorem 3.7] (see also [9, Theorem 2.7] and [5, Theorem 4.3])

generalized Melkersson’s result and proved that the category of a-cofinite FD<2 R-modules

is an Abelian category.

In this section, we extend Aghapournahr-Bahmanpour’s result [2, Theorem 3.7] and

show that the category of (FD<n, a)-cofinite FD<n+2 R-modules is an Abelian category. In

particular, we prepare an affirmative answer to Question 1.5 for the case that dim(R/a) ≤
n + 1.

Theorem 3.1. The category of (FD<n, a)-cofinite FD<n+2 R-modules is an Abelian cat-

egory.

Proof. Let X and Y be (FD<n, a)-cofinite FD<n+2 R-modules and let f : X −→ Y be

an R-homomorphism. It is enough to show that ker f and coker f are (FD<n, a)-cofinite

FD<n+2 R-modules. From the short exact sequences

0 −→ ker f −→ X −→ im f −→ 0

and

0 −→ im f −→ Y −→ coker f −→ 0,

ker f and coker f are FD<n+2 R-modules and HomR(R/a, ker f) and Ext1
R(R/a, ker f) are

FD<n R-modules. Thus ker f is an (FD<n, a)-cofinite R-module by Theorem 2.2. Hence

coker f is an (FD<n, a)-cofinite R-module from the above short exact sequences.
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Corollary 3.2. Let N be a finite R-module and let X be an (FD<n, a)-cofinite FD<n+2

R-module. Then ExtjR(N,X) and TorRj (N,X) are (FD<n, a)-cofinite FD<n+2 R-modules

for all j.

Proof. Assume that

F•N = · · · −→ Fj+1 −→ Fj −→ Fj−1 −→ · · · −→ F1 −→ F0 −→ 0

is a deleted free resolution of N such that Fj is finite for all j. By applying HomR(−, X)

and −⊗R X to F•N , the assertion follows from Theorem 3.1.

Corollary 3.3. If dim(R/a) ≤ n + 1, then the category of (FD<n, a)-cofinite R-modules

is an Abelian category.

Corollary 3.4. Let dim(R/a) ≤ n + 1, let N be a finite R-module, and let X be an

(FD<n, a)-cofinite R-module. Then ExtjR(N,X) and TorRj (N,X) are (FD<n, a)-cofinite

R-modules for all j.

Corollary 3.5. The category of a-cofinite FD<2 R-modules is an Abelian category.

Corollary 3.6. Let N be a finite R-module and let X be an a-cofinite FD<2 R-module.

Then ExtjR(N,X) and TorRj (N,X) are a-cofinite FD<2 R-modules for all j.

Corollary 3.7. If dim(R/a) ≤ 1, then the category of a-cofinite R-modules is an Abelian

category.

Corollary 3.8. Let dim(R/a) ≤ 1, let N be a finite R-module, and let X be an a-cofinite

R-module. Then ExtjR(N,X) and TorRj (N,X) are a-cofinite R-modules for all j.

4. Cofiniteness of local cohomology modules

Abazari and Bahmanpour in [1, Theorems 2.5 and 2.10] prepared affirmative answers to

Questions 1.6–1.8 for the case that R is a complete local ring with dim(R/a) ≤ n + 1.

In this section, we remove complete local assumption on R. They showed that if R is

a complete local ring, X is a finite R-module, and t is a non-negative integer such that

Hi
a(X) is an FD<n+2 R-module for all i < t, then Hi

a(X) is an (FD<n, a)-cofinite R-

module for all i < t, HomR(R/a,Ht
a(X)) and Ext1

R(R/a,Ht
a(X)) are FD<n R-modules,

and AssR(Hi
a(X))≥n is a finite set for all i ≤ t. In the main result of this section, we

prove it without assuming that R is a complete local ring and X is a finite R-module. As

applications of this result, in Section 5, we generalize all of the previous results concerning

Questions 1.2–1.4 (see e.g., [2, 6–8,11,14–16,20,23–25,27,30–33,36]).
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Lemma 4.1. Let X be an arbitrary R-module and let s, t be non-negative integers such

that ExtiR(R/a, X) is an FD<n R-module for all s ≤ i ≤ s+ t+ 1, Hi
a(X) is an (FD<n, a)-

cofinite R-module for all i < s, and Hi
a(X) is an FD<n+2 R-module for all s ≤ i ≤ s + t.

Then Hi
a(X) is an (FD<n, a)-cofinite R-module for all i ≤ s + t.

Proof. We prove by using induction on t. Let t = 0. From [3, Theorem 2.3], HomR(R/a,

Hs
a(X)) and Ext1

R(R/a,Hs
a(X)) are FD<n R-modules. Thus Hs

a(X) is an (FD<n, a)-cofinite

R-module by Theorem 2.2. Suppose that t > 0 and that t−1 is settled. It is enough to show

that Hs+t
a (X) is an (FD<n, a)-cofinite R-module because Hi

a(X) is an (FD<n, a)-cofinite

R-module for all i ≤ s+ t−1 from the induction hypothesis on t−1. By [3, Theorem 2.3],

HomR(R/a,Hs+t
a (X)) and Ext1

R(R/a,Hs+t
a (X)) are FD<n R-modules. Therefore Hs+t

a (X)

is an (FD<n, a)-cofinite R-module from Theorem 2.2.

Theorem 4.2. Let X be an arbitrary R-module and let t be a non-negative integer such

that ExtiR(R/a, X) is an FD<n R-module for all i ≤ t and Hi
a(X) is an FD<n+2 R-module

for all i < t. Then the following statements hold true:

(i) Y and Hi
a(X)/Y are (FD<n, a)-cofinite R-modules for all i < t and every FD<n+1

R-submodule Y of Hi
a(X). In particular, Hi

a(X) is an (FD<n, a)-cofinite R-module

for all i < t;

(ii) Let N be a finite R-module. Then ExtjR(N,Y ), TorRj (N,Y ), ExtjR(N,Hi
a(X)/Y ),

and TorRj (N,Hi
a(X)/Y ) are (FD<n, a)-cofinite R-modules for all i < t, all j, and ev-

ery FD<n+1 R-submodule Y of Hi
a(X). In particular, ExtjR(N,Hi

a(X)) and TorRj (N,

Hi
a(X)) are (FD<n, a)-cofinite R-modules for all i < t and all j;

(iii) HomR(R/a,Ht
a(X)/Y ) is an FD<n R-module for every FD<n+1 R-submodule Y of

Ht
a(X). In particular, HomR(R/a,Ht

a(X)) is an FD<n R-module;

(iv) AssR(Hi
a(X)/Y )≥n is a finite set for all i ≤ t and every FD<n+1 R-submodule Y of

Hi
a(X). In particular, AssR(Hi

a(X))≥n is a finite set for all i ≤ t;

(v) Assume that Extt+1
R (R/a, X) is an FD<n R-module. Then Ext1

R(R/a,Ht
a(X)/Y )

is an FD<n R-module for every FD<n+1 R-submodule Y of Ht
a(X). In particular,

Ext1
R(R/a,Ht

a(X)) is an FD<n R-module.

Proof. (i) Since HomR(R/a,Γa(X)) and Ext1
R(R/a,Γa(X)) are FD<n R-modules by [3,

Theorem 2.3], Γa(X) is an (FD<n, a)-cofinite R-module from Theorem 2.2, and so Hi
a(X)

is an (FD<n, a)-cofinite R-module for all i < t by Lemma 4.1. Let i < t and let Y be an

FD<n+1 R-submodule of Hi
a(X). Then HomR(R/a, Y ) is an FD<n R-module and so Y is
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an (FD<n, a)-cofinite R-module from Lemma 2.1. Thus Hi
a(X)/Y is an (FD<n, a)-cofinite

R-module by the short exact sequence

0 −→ Y −→ Hi
a(X) −→ Hi

a(X)/Y −→ 0.

(ii) This follows from the first part and Corollary 3.2.

(iii) Let Y be an FD<n+1 R-submodule of Ht
a(X). From the first part and [3, The-

orem 2.3], HomR(R/a,Ht
a(X)) is an FD<n R-module. Thus HomR(R/a, Y ) is an FD<n

R-module and so Y is an (FD<n, a)-cofinite R-module by Lemma 2.1. Hence, from the

exact sequence

HomR(R/a,Ht
a(X)) −→ HomR(R/a,Ht

a(X)/Y ) −→ Ext1
R(R/a, Y ),

HomR(R/a,Ht
a(X)/Y ) is an FD<n R-module.

(iv) It follows by the first part, the third part, and [13, Exercise 1.2.28].

(v) This is similar to the proof of the third part.

Remark 4.3. (see [1, Theorems 2.6 and 2.10]) Let N be an a-torsion finite R-module, let

X be an arbitrary R-module, and let t be a non-negative integer such that ExtiR(R/a, X)

is an FD<n R-module for all i ≤ t and Hi
a(X) is an FD<n+2 R-module for all i < t. Then,

by Theorem 4.2 and [21, Proposition 3.4(i)], the following statements hold true:

(i) ExtjR(N,Y ) and ExtjR(N,Hi
a(X)/Y ) are FD<n R-modules and AssR(ExtjR(N,Y ))≥n

and AssR(ExtjR(N,Hi
a(X)/Y ))≥n are finite sets for all i < t, all j, and every FD<n+1

R-submodule Y of Hi
a(X). In particular, ExtjR(N,Hi

a(X)) is an FD<n R-module and

AssR(ExtjR(N,Hi
a(X)))≥n is a finite set for all i < t and all j;

(ii) HomR(N,Ht
a(X)/Y ) is an FD<n R-module and AssR(HomR(N,Ht

a(X)/Y ))≥n is a fi-

nite set for every FD<n+1 R-submodule Y of Ht
a(X). In particular, HomR(N,Ht

a(X))

is an FD<n R-module and AssR(HomR(N,Ht
a(X)))≥n is a finite set;

(iii) Assume that Extt+1
R (R/a, X) is an FD<n R-module. Then Ext1

R(N,Ht
a(X)/Y ) is an

FD<n R-module and AssR(Ext1
R(N,Ht

a(X)/Y ))≥n is a finite set for every FD<n+1

R-submodule Y of Ht
a(X). In particular, Ext1

R(N,Ht
a(X)) is an FD<n R-module and

AssR(Ext1
R(N,Ht

a(X)))≥n is a finite set.

Let X be an arbitrary R-module which is not necessarily finite and let n be a non-

negative integer. We set fa(X) = inf{i ∈ N0 : Hi
a(X) is not a finite R-module} and

fn
a (X) = inf{faRp(Xp) : p ∈ Spec(R) and dim(R/p) ≥ n} which are called finiteness

dimension and nth finiteness dimension of X with respect to a, respectively [8,35]. In [35,

Corollary 2.3], it is shown that if X is an arbitrary R-module such that ExtiR(R/a, X)

is an FD<n R-module for all i (in fact, for all i ≤ fn
a (X)), then the equality fn

a (X) =
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inf{i ∈ N0 : Hi
a(X) is not an FD<n R-module} holds (see also [4, Theorem 2.5] and [28,

Theorem 2.10]).

Corollary 4.4. Let X be an arbitrary R-module such that ExtiR(R/a, X) is an FD<n

R-module for all i ≤ fn+2
a (X). Then the following statements hold true:

(i) Y and Hi
a(X)/Y are (FD<n, a)-cofinite R-modules for all i < fn+2

a (X) and every

FD<n+1 R-submodule Y of Hi
a(X). In particular, Hi

a(X) is an (FD<n, a)-cofinite

R-module for all i < fn+2
a (X);

(ii) Let N be a finite R-module. Then ExtjR(N,Y ), TorRj (N,Y ), ExtjR(N,Hi
a(X)/Y ),

and TorRj (N,Hi
a(X)/Y ) are (FD<n, a)-cofinite R-modules for all i < fn+2

a (X), all

j, and every FD<n+1 R-submodule Y of Hi
a(X). In particular, ExtjR(N,Hi

a(X)) and

TorRj (N,Hi
a(X)) are (FD<n, a)-cofinite R-modules for all i < fn+2

a (X) and all j;

(iii) HomR(R/a,H
fn+2
a (X)

a (X)/Y ) is an FD<n R-module for every FD<n+1 R-submodule

Y of H
fn+2
a (X)

a (X). In particular, HomR(R/a,H
fn+2
a (X)

a (X)) is an FD<n R-module;

(iv) AssR(Hi
a(X)/Y )≥n is a finite set for all i ≤ fn+2

a (X) and every FD<n+1 R-submodule

Y of Hi
a(X). In particular, AssR(Hi

a(X))≥n is a finite set for all i ≤ fn+2
a (X);

(v) Assume that Ext
fn+2
a (X)+1

R (R/a, X) is an FD<n R-module. Then Ext1
R(R/a,

H
fn+2
a (X)

a (X)/Y ) is an FD<n R-module for every FD<n+1 R-submodule Y of

H
fn+2
a (X)

a (X). In particular, Ext1
R(R/a,H

fn+2
a (X)

a (X)) is an FD<n R-module.

Corollary 4.5. Suppose that one of the following conditions holds:

(a) dim(R/a) ≤ n + 1 and X is an arbitrary R-module such that ExtiR(R/a, X) is an

FD<n R-module for all i;

(b) X is a finite R-module with dimR(X/aX) ≤ n + 1.

Then the following statements are true:

(i) Y and Hi
a(X)/Y are (FD<n, a)-cofinite R-modules for all i and every FD<n+1 R-

submodule Y of Hi
a(X). In particular, Hi

a(X) is an (FD<n, a)-cofinite R-module for

all i;

(ii) Let N be a finite R-module. Then ExtjR(N,Y ), TorRj (N,Y ), ExtjR(N,Hi
a(X)/Y ),

and TorRj (N,Hi
a(X)/Y ) are (FD<n, a)-cofinite R-modules for all i, all j, and every

FD<n+1 R-submodule Y of Hi
a(X). In particular, ExtjR(N,Hi

a(X)) and TorRj (N,

Hi
a(X)) are (FD<n, a)-cofinite R-modules for all i and all j;

(iii) AssR(Hi
a(X)/Y )≥n is a finite set for all i and every FD<n+1 R-submodule Y of

Hi
a(X). In particular, AssR(Hi

a(X))≥n is a finite set for all i.
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5. More applications

5.1. Ordinary cofiniteness of local cohomology modules

By putting n = 0 in Theorem 4.2 and Corollaries 4.4–4.5, we have the following re-

sults which generalize [20, Corollary 7.7], [23, Theorem 4.1], [15, Theorem 3], [16, The-

orem 1], [36, Theorem 1.1], [25, Theorem B], [11, Theorem 2.2], [14, Theorem 1.4], [32,

Theorem 5.6], [6, Theorems 2.3 and 2.5], [7, Theorem 2.6], [33, Theorem 3.2], [24, Theo-

rem 8], [30, Theorem 2.10], [8, Theorems 2.3 and 3.2], [2, Theorem 3.4], and [31, Theo-

rem 3.3].

Corollary 5.1. Let X be an arbitrary R-module and let t be a non-negative integer such

that ExtiR(R/a, X) is a finite R-module for all i ≤ t and Hi
a(X) is an FD<2 R-module for

all i < t. Then the following statements hold true:

(i) Y and Hi
a(X)/Y are a-cofinite R-modules for all i < t and every FD<1 R-submodule

Y of Hi
a(X). In particular, Hi

a(X) is an a-cofinite R-module for all i < t;

(ii) Let N be a finite R-module. Then ExtjR(N,Y ), TorRj (N,Y ), ExtjR(N,Hi
a(X)/Y ),

and TorRj (N,Hi
a(X)/Y ) are a-cofinite R-modules for all i < t, all j, and every FD<1

R-submodule Y of Hi
a(X). In particular, ExtjR(N,Hi

a(X)) and TorRj (N,Hi
a(X)) are

a-cofinite R-modules for all i < t and all j;

(iii) HomR(R/a,Ht
a(X)/Y ) is a finite R-module for every FD<1 R-submodule Y of Ht

a(X).

In particular, HomR(R/a,Ht
a(X)) is a finite R-module;

(iv) AssR(Hi
a(X)/Y ) is a finite set for all i ≤ t and every FD<1 R-submodule Y of

Hi
a(X). In particular, AssR(Hi

a(X)) is a finite set for all i ≤ t;

(v) Assume that Extt+1
R (R/a, X) is a finite R-module. Then Ext1

R(R/a,Ht
a(X)/Y ) is a

finite R-module for every FD<1 R-submodule Y of Ht
a(X). In particular, Ext1

R(R/a,

Ht
a(X)) is a finite R-module.

Corollary 5.2. Let X be an arbitrary R-module such that ExtiR(R/a, X) is a finite R-

module for all i ≤ f2
a (X). Then the following statements hold true:

(i) Y and Hi
a(X)/Y are a-cofinite R-modules for all i < f2

a (X) and every FD<1 R-

submodule Y of Hi
a(X). In particular, Hi

a(X) is an a-cofinite R-module for all i <

f2
a (X);

(ii) Let N be a finite R-module. Then ExtjR(N,Y ), TorRj (N,Y ), ExtjR(N,Hi
a(X)/Y ),

and TorRj (N,Hi
a(X)/Y ) are a-cofinite R-modules for all i < f2

a (X), all j, and every

FD<1 R-submodule Y of Hi
a(X). In particular, ExtjR(N,Hi

a(X)) and TorRj (N,Hi
a(X))

are a-cofinite R-modules for all i < f2
a (X) and all j;
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(iii) HomR(R/a,H
f2
a (X)

a (X)/Y ) is a finite R-module for every FD<1 R-submodule Y of

H
f2
a (X)

a (X). In particular, HomR(R/a,H
f2
a (X)

a (X)) is a finite R-module;

(iv) AssR(Hi
a(X)/Y ) is a finite set for all i ≤ f2

a (X) and every FD<1 R-submodule Y of

Hi
a(X). In particular, AssR(Hi

a(X)) is a finite set for all i ≤ f2
a (X);

(v) Assume Ext
f2
a (X)+1

R (R/a, X) is a finite R-module. Then Ext1
R(R/a,H

f2
a (X)

a (X)/Y )

is a finite R-module for every FD<1 R-submodule Y of H
f2
a (X)

a (X). In particular,

Ext1
R(R/a,H

f2
a (X)

a (X)) is a finite R-module.

Corollary 5.3. Suppose that one of the following conditions holds:

(a) dim(R/a) ≤ 1 and X is an arbitrary R-module such that ExtiR(R/a, X) is a finite

R-module for all i;

(b) X is a finite R-module with dimR(X/aX) ≤ 1.

Then the following statements are true:

(i) Y and Hi
a(X)/Y are a-cofinite R-modules for all i and every FD<1 R-submodule Y

of Hi
a(X). In particular, Hi

a(X) is an a-cofinite R-module for all i;

(ii) Let N be a finite R-module. Then ExtjR(N,Y ), TorRj (N,Y ), ExtjR(N,Hi
a(X)/Y ),

and TorRj (N,Hi
a(X)/Y ) are a-cofinite R-modules for all i, all j, and every FD<1

R-submodule Y of Hi
a(X). In particular, ExtjR(N,Hi

a(X)) and TorRj (N,Hi
a(X)) are

a-cofinite R-modules for all i and all j;

(iii) AssR(Hi
a(X)/Y ) is a finite set for all i and every FD<1 R-submodule Y of Hi

a(X).

In particular, AssR(Hi
a(X)) is a finite set for all i.

5.2. Weakly cofiniteness of local cohomology modules

Bahmanpour and Naghipour in [7, Theorem 3.1] prepared an affirmative answer to Ques-

tion 1.4 for the case that R is a local ring with dim(R/a) ≤ 2 (see also [27, Theorem 3.3(c)]).

We generalize this result to arbitrary semi-local rings. They showed that if R is a local

ring, X is a finite R-module, and t is a non-negative integer such that dimR(Hi
a(X)) ≤ 2 for

all i < t, then Hi
a(X) is an a-weakly cofinite R-module for all i < t, HomR(R/a,Ht

a(X)) is

a weakly Laskerian R-module, and AssR(Hi
a(X)) is a finite set for all i ≤ t. Here, by taking

n = 1 in Theorem 4.2 and considering [5, Theorem 3.3], we prove it with weaker assump-

tions that R is a semi-local ring and X is an arbitrary R-module such that ExtiR(R/a, X)

is an FD<1 R-module for all i ≤ t and Hi
a(X) is an FD<3 R-module for all i < t.
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Corollary 5.4. Let R be a semi-local ring, let X be an arbitrary R-module, and let t be

a non-negative integer such that ExtiR(R/a, X) is an FD<1 R-module for all i ≤ t and

Hi
a(X) is an FD<3 R-module for all i < t. Then the following statements hold true:

(i) Y and Hi
a(X)/Y are a-weakly cofinite R-modules for all i < t and every FD<2 R-

submodule Y of Hi
a(X). In particular, Hi

a(X) is an a-weakly cofinite R-module for

all i < t;

(ii) Let N be a finite R-module. Then ExtjR(N,Y ), TorRj (N,Y ), ExtjR(N,Hi
a(X)/Y ),

and TorRj (N,Hi
a(X)/Y ) are a-weakly cofinite R-modules for all i < t, all j, and every

FD<2 R-submodule Y of Hi
a(X). In particular, ExtjR(N,Hi

a(X)) and TorRj (N,Hi
a(X))

are a-weakly cofinite R-modules for all i < t and all j;

(iii) HomR(R/a,Ht
a(X)/Y ) is a weakly Laskerian R-module for every FD<2 R-submodule

Y of Ht
a(X). In particular, HomR(R/a,Ht

a(X)) is a weakly Laskerian R-module;

(iv) AssR(Hi
a(X)/Y ) is a finite set for all i ≤ t and every FD<2 R-submodule Y of

Hi
a(X). In particular, AssR(Hi

a(X)) is a finite set for all i ≤ t;

(v) Assume that Extt+1
R (R/a, X) is an FD<1 R-module. Then Ext1

R(R/a,Ht
a(X)/Y ) is a

weakly Laskerian R-module for every FD<2 R-submodule Y of Ht
a(X). In particular,

Ext1
R(R/a,Ht

a(X)) is a weakly Laskerian R-module.

In [8, Theorem 3.9], the authors showed that if R is a complete local ring, X is a finite

R-module, and Y is a weakly Laskerian R-submodule of H
f3
a (X)

a (X), then Hi
a(X) is an a-

weakly cofinite R-module for all i < f3
a (X) and the R-modules HomR(R/a,H

f3
a (X)

a (X)/Y )

and Ext1
R(R/a,H

f3
a (X)

a (X)/Y ) are weakly Laskerian. Here, we prove this result with

weaker assumptions that R is an arbitrary semi-local ring, X is an arbitrary R-module

such that ExtiR(R/a, X) is an FD<1 R-module for all i ≤ f3
a (X) + 1, and Y is an FD<2

R-submodule of H
f3
a (X)

a (X).

Corollary 5.5. Let R be a semi-local ring and let X be an arbitrary R-module such that

ExtiR(R/a, X) is an FD<1 R-module for all i ≤ f3
a (X). Then the following statements

hold true:

(i) Y and Hi
a(X)/Y are a-weakly cofinite R-modules for all i < f3

a (X) and every FD<2

R-submodule Y of Hi
a(X). In particular, Hi

a(X) is an a-weakly cofinite R-module

for all i < f3
a (X);

(ii) Let N be a finite R-module. Then ExtjR(N,Y ), TorRj (N,Y ), ExtjR(N,Hi
a(X)/Y ),

and TorRj (N,Hi
a(X)/Y ) are a-weakly cofinite R-modules for all i < f3

a (X), all j,

and every FD<2 R-submodule Y of Hi
a(X). In particular, ExtjR(N,Hi

a(X)) and

TorRj (N,Hi
a(X)) are a-weakly cofinite R-modules for all i < f3

a (X) and all j;
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(iii) HomR(R/a,H
f3
a (X)

a (X)/Y ) is a weakly Laskerian R-module for every FD<2 R-

submodule Y of H
f3
a (X)

a (X). In particular, HomR(R/a,H
f3
a (X)

a (X)) is a weakly Laske-

rian R-module;

(iv) AssR(Hi
a(X)/Y ) is a finite set for all i ≤ f3

a (X) and every FD<2 R-submodule Y of

Hi
a(X). In particular, AssR(Hi

a(X)) is a finite set for all i ≤ f3
a (X);

(v) Assume Ext
f3
a (X)+1

R (R/a, X) is an FD<1 R-module. Then Ext1
R(R/a,H

f3
a (X)

a (X)/Y )

is a weakly Laskerian R-module for every FD<2 R-submodule Y of H
f3
a (X)

a (X). In

particular, Ext1
R(R/a,H

f3
a (X)

a (X)) is a weakly Laskerian R-module.

Corollary 5.6. Suppose that R is a semi-local ring and one of the following conditions

holds:

(a) dim(R/a) ≤ 2 and X is an arbitrary R-module such that ExtiR(R/a, X) is an FD<1

R-module for all i;

(b) X is a finite R-module with dimR(X/aX) ≤ 2.

Then the following statements are true:

(i) Y and Hi
a(X)/Y are a-weakly cofinite R-modules for all i and every FD<2 R-

submodule Y of Hi
a(X). In particular, Hi

a(X) is an a-weakly cofinite R-module for

all i;

(ii) Let N be a finite R-module. Then ExtjR(N,Y ), TorRj (N,Y ), ExtjR(N,Hi
a(X)/Y ),

and TorRj (N,Hi
a(X)/Y ) are a-weakly cofinite R-modules for all i, all j, and every

FD<2 R-submodule Y of Hi
a(X). In particular, ExtjR(N,Hi

a(X)) and TorRj (N,Hi
a(X))

are a-weakly cofinite R-modules for all i and all j;

(iii) AssR(Hi
a(X)/Y ) is a finite set for all i and every FD<2 R-submodule Y of Hi

a(X).

In particular, AssR(Hi
a(X)) is a finite set for all i.
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