Cofiniteness with Respect to the Class of Modules in Dimension less than a Fixed Integer

Alireza Vahidi* and Saeid Morsali

Abstract. Let R be a commutative Noetherian ring with non-zero identity, n a nonnegative integer, \mathfrak{a} an ideal of R with $\dim(R/\mathfrak{a}) \leq n+1$, and X an arbitrary R-module. In this paper, we prove the following results:

- (i) If X is an \mathfrak{a} -torsion R-module such that $\operatorname{Hom}_R(R/\mathfrak{a}, X)$ and $\operatorname{Ext}^1_R(R/\mathfrak{a}, X)$ are $\operatorname{FD}_{<n} R$ -modules, then X is an $(\operatorname{FD}_{<n}, \mathfrak{a})$ -cofinite R-module;
- (ii) The category of $(FD_{< n}, \mathfrak{a})$ -cofinite *R*-modules is an Abelian category;
- (iii) $\operatorname{H}^{i}_{\mathfrak{a}}(X)$ is an $(\operatorname{FD}_{\leq n}, \mathfrak{a})$ -cofinite *R*-module and $\{\mathfrak{p} \in \operatorname{Ass}_{R}(\operatorname{H}^{i}_{\mathfrak{a}}(X)) : \dim(R/\mathfrak{p}) \geq n\}$ is a finite set for all *i* when $\operatorname{Ext}^{i}_{R}(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{\leq n} R$ -module for all *i*.

We observe that, among other things, $\operatorname{Ass}_R(\operatorname{H}^i_{\mathfrak{a}}(X))$ is a finite set for all i whenever R is a semi-local ring with $\dim(R/\mathfrak{a}) \leq 2$ and $\operatorname{Ext}^i_R(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{<1} R$ -module for all i.

1. Introduction

Throughout this paper R is a commutative Noetherian ring with non-zero identity, \mathfrak{a} is an ideal of R, M is a finite (i.e., finitely generated) R-module, X is an arbitrary R-module which is not necessarily finite, and n is a non-negative integer. For basic results, notations, and terminology not given in this paper, readers are referred to [12, 13, 34].

In [20], Hartshorne defined an \mathfrak{a} -torsion R-module X to be \mathfrak{a} -cofinite if $\operatorname{Ext}^{i}_{R}(R/\mathfrak{a}, X)$ is a finite R-module for all i and asked the following questions.

Question 1.1. Is the category of a-cofinite *R*-modules an Abelian category?

Question 1.2. Is $H^i_{\mathfrak{a}}(M)$ an \mathfrak{a} -cofinite *R*-module for all *i*?

The followings are also important problems in local cohomology (see [19, Expose XIII, Conjecture 1.1] and [22, Problem 4]).

Question 1.3. Is $\operatorname{Hom}_R(R/\mathfrak{a}, \operatorname{H}^i_\mathfrak{a}(M))$ a finite *R*-module for all *i*?

Received July 27, 2019; Accepted September 4, 2019.

Communicated by Keiichi Watanabe.

Key words and phrases. Abelian categories, cofinite modules, local cohomology modules.

This research of Alireza Vahidi was in part supported by a grant from Payame Noor University.

*Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. 13D07, 13D45.

Question 1.4. Is $\operatorname{Ass}_R(\operatorname{H}^i_{\mathfrak{a}}(M))$ a finite set for all *i*?

In [20, Proposition 7.6 and Corollary 7.7], [23, Theorem 4.1], [15, Theorem 3], [16, Theorems 1 and 2], [36, Theorem 1.1], [14, Theorem 1.4], [7, Theorem 2.6], [24, Theorems 1 and 8], [30, Theorems 2.6 and 2.10], [9, Theorem 2.7], [5, Theorem 4.3], [2, Theorems 3.4 and 3.7], and [31, Theorem 3.3], the authors studied these questions and prepared affirmative answers to them for the case that $\dim(R/\mathfrak{a}) = 1$.

Recall that X is said to be an $\operatorname{FD}_{\leq n}$ (or in dimension $\leq n$) R-module if there exists a finite submodule X' of X such that $\dim_R(X/X') \leq n$ [2,4]. Also, we say that X is an $(\operatorname{FD}_{\leq n}, \mathfrak{a})$ -cofinite R-module if X is an \mathfrak{a} -torsion R-module and $\operatorname{Ext}_R^i(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{\leq n} R$ -module for all i [3, Definition 4.1]. Note that, by [37, Theorem 2.3], the class of $\operatorname{FD}_{\leq n} R$ -modules forms a Serre subcategory of the category of R-modules (i.e., the class of R-modules which is closed under taking submodules, quotients, and extensions). Also, X is a finite R-module if and only if X is an $\operatorname{FD}_{\leq 0} R$ -module, and so X is an \mathfrak{a} -cofinite R-module if and only if X is an $(\operatorname{FD}_{\leq 0}, \mathfrak{a})$ -cofinite R-module. Thus, it is natural to raise the following questions as generalizations of Questions 1.1–1.4 (see [1, Question]). Here, we denote the set $\{\mathfrak{p} \in \operatorname{Ass}_R(X) : \dim(R/\mathfrak{p}) \geq n\}$ by $\operatorname{Ass}_R(X)_{\geq n}$.

Question 1.5. Is the category of $(FD_{\leq n}, \mathfrak{a})$ -cofinite *R*-modules an Abelian category?

Question 1.6. Is $\operatorname{H}^{i}_{\mathfrak{a}}(M)$ an $(\operatorname{FD}_{< n}, \mathfrak{a})$ -cofinite *R*-module for all *i*?

Question 1.7. Is $\operatorname{Hom}_R(R/\mathfrak{a}, \operatorname{H}^i_\mathfrak{a}(M))$ an $\operatorname{FD}_{< n}$ *R*-module for all *i*?

Question 1.8. Is $\operatorname{Ass}_R(\operatorname{H}^i_{\mathfrak{a}}(M))_{\geq n}$ a finite set for all *i*?

By Abazari-Bahmanpour's results [1, Theorems 2.5 and 2.10], the answer to Questions 1.6–1.8 is yes if R is a complete local ring with $\dim(R/\mathfrak{a}) \leq n+1$. In this paper, we remove complete local assumption on R. It follows that, among other things, the answer to Question 1.4 is yes if R is a semi-local ring with $\dim(R/\mathfrak{a}) \leq 2$. We also study Question 1.5 and prepare an affirmative answer to it for the case that $\dim(R/\mathfrak{a}) \leq n+1$.

In the main result of Section 2, we prove that if X is an \mathfrak{a} -torsion $\mathrm{FD}_{< n+2} R$ -module (e.g., X is \mathfrak{a} -torsion and $\dim(R/\mathfrak{a}) \leq n+1$) such that $\mathrm{Hom}_R(R/\mathfrak{a}, X)$ and $\mathrm{Ext}_R^1(R/\mathfrak{a}, X)$ are $\mathrm{FD}_{< n} R$ -modules, then X is an $(\mathrm{FD}_{< n}, \mathfrak{a})$ -cofinite R-module. This result plays an important role in the study of the above questions.

In Section 3, with respect to Question 1.5, we show that the category of $(FD_{< n}, \mathfrak{a})$ cofinite $FD_{< n+2}$ *R*-modules is an Abelian category. In particular, the category of $(FD_{< n}, \mathfrak{a})$ cofinite *R*-modules is an Abelian category if $\dim(R/\mathfrak{a}) \leq n+1$.

Section 4 is devoted to the study of Questions 1.6–1.8. Let t be a non-negative integer. We prove that if X is an arbitrary R-module such that $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{< n} R$ -module for all $i \leq t$ (e.g., X is an $\operatorname{FD}_{< n} R$ -module) and $\operatorname{H}_{\mathfrak{a}}^{i}(X)$ is an $\operatorname{FD}_{< n+2} R$ -module for all i < t (e.g., $\dim(R/\mathfrak{a}) \leq n+1$), then $\operatorname{H}^{i}_{\mathfrak{a}}(X)$ is an $(\operatorname{FD}_{< n}, \mathfrak{a})$ -cofinite *R*-module for all i < t, $\operatorname{Hom}_{R}(R/\mathfrak{a}, \operatorname{H}^{t}_{\mathfrak{a}}(X))$ is an $\operatorname{FD}_{< n} R$ -module, and $\operatorname{Ass}_{R}(\operatorname{H}^{i}_{\mathfrak{a}}(X))_{\geq n}$ is a finite set for all $i \leq t$.

Section 5 consists of some applications on ordinary cofiniteness and weakly cofiniteness of local cohomology modules. Recall that X is said to be a weakly Laskerian *R*-module if the set of associated prime ideals of any quotient module of X is finite [17, Definition 2.1]. Also, we say that X is an \mathfrak{a} -weakly cofinite *R*-module if X is an \mathfrak{a} -torsion *R*-module and $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, X)$ is a weakly Laskerian *R*-module for all *i* [18, Definition 2.4]. Note that, if X is a weakly Laskerian *R*-module (resp. an FD_{<1} *R*-module and *R* is a semi-local ring), then X is an FD_{<2} *R*-module (resp. a weakly Laskerian *R*-module) by [5, Theorem 3.3].

It is perhaps worth noting that the results of this paper generalize all of the previous results concerning Questions 1.1–1.8 (see e.g., [1,2,5–9,11,14–16,20,23–25,27,30–33,36]). Note also that, some results of the finiteness of associated prime ideals in this paper follow from [10, Theorem 1.2] when X is finite.

2. Cofinite modules

The following lemma is needed in this paper.

Lemma 2.1. Suppose that X is an \mathfrak{a} -torsion $\mathrm{FD}_{< n+1}$ R-module such that $\mathrm{Hom}_R(R/\mathfrak{a}, X)$ is an $\mathrm{FD}_{< n}$ R-module. Then X is an $(\mathrm{FD}_{< n}, \mathfrak{a})$ -cofinite R-module.

Proof. We can, and do, assume that $\dim_R(X) = n$. Since $\operatorname{Hom}_R(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{< n}$ *R*-module, there exists a short exact sequence

$$0 \longrightarrow X' \longrightarrow \operatorname{Hom}_{R}(R/\mathfrak{a}, X) \longrightarrow X'' \longrightarrow 0$$

such that X' is a finite submodule of $\operatorname{Hom}_R(R/\mathfrak{a}, X)$ and $\dim_R(X'') < n$. Also, by [13, Exercise 1.2.28], $\operatorname{Ass}_R(\operatorname{Hom}_R(R/\mathfrak{a}, X)) = \operatorname{Ass}_R(X)$ because X is an \mathfrak{a} -torsion Rmodule. Let j be a positive integer such that $\dim_R(\operatorname{Ext}_R^j(R/\mathfrak{a}, X)) = n$ and set $A = \{\mathfrak{p} \in \operatorname{Supp}_R(\operatorname{Ext}_R^j(R/\mathfrak{a}, X)) : \dim(R/\mathfrak{p}) = n\}$. Then A is a non-empty and finite set because $A \subseteq \operatorname{Ass}_R(X')$. Let $A = \{\mathfrak{p}_1, \ldots, \mathfrak{p}_l\}$ and $S = R \setminus \bigcup_{k=1}^l \mathfrak{p}_k$. Then $\dim_{S^{-1}R}(S^{-1}X) \leq 0$, $S^{-1}X$ is an $S^{-1}\mathfrak{a}$ -torsion $S^{-1}R$ -module, and the $S^{-1}R$ -module $\operatorname{Hom}_{S^{-1}R}(S^{-1}R/S^{-1}\mathfrak{a},$ $S^{-1}X)$ is finite and so has finite length. Thus, by [29, Proposition 4.1], $S^{-1}X$ is an $S^{-1}\mathfrak{a}$ -cofinite $S^{-1}R$ -module. Hence $S^{-1}\operatorname{Ext}_R^j(R/\mathfrak{a}, X) \cong \operatorname{Ext}_{S^{-1}R}^j(S^{-1}R/S^{-1}\mathfrak{a}, S^{-1}X)$ is a finite $S^{-1}R$ -module. Therefore there is a finite submodule Y of $\operatorname{Ext}_R^j(R/\mathfrak{a}, X)$ such that $S^{-1}Y = S^{-1}\operatorname{Ext}_R^j(R/\mathfrak{a}, X)$. Now, since $S^{-1}(\operatorname{Ext}_R^j(R/\mathfrak{a}, X)/Y) = 0$, it is easy to see that $\dim_R(\operatorname{Ext}_R^j(R/\mathfrak{a}, X)/Y) < n$. Thus $\operatorname{Ext}_R^j(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{<n} R$ -module.

We are now ready to state and prove the main result of this section.

Theorem 2.2. Suppose that X is an \mathfrak{a} -torsion $\operatorname{FD}_{< n+2} R$ -module such that $\operatorname{Hom}_R(R/\mathfrak{a}, X)$ and $\operatorname{Ext}^1_R(R/\mathfrak{a}, X)$ are $\operatorname{FD}_{< n} R$ -modules. Then X is an $(\operatorname{FD}_{< n}, \mathfrak{a})$ -cofinite R-module.

Proof. By Lemma 2.1, we can, and do, assume that $\dim_R(X) = n + 1$. Suppose, on the contrary, that X is not an $(\mathrm{FD}_{< n}, \mathfrak{a})$ -cofinite R-module and seek a contradiction. Let A be the set of ideals $(0:_R Y)$, where Y is an \mathfrak{a} -torsion R-module, $\dim_R(Y) = n + 1$, $\operatorname{Hom}_R(R/\mathfrak{a}, Y)$ and $\operatorname{Ext}^1_R(R/\mathfrak{a}, Y)$ are $\operatorname{FD}_{< n} R$ -modules, and Y is not an $(\operatorname{FD}_{< n}, \mathfrak{a})$ -cofinite R-module. Then A is a non-empty set of ideals of Noetherian ring R. Let $(0:_R Y)$ be a maximal member of A. Since Y is an \mathfrak{a} -torsion R-module and $\operatorname{Hom}_R(R/\mathfrak{a}, Y)$ is an $\operatorname{FD}_{< n}$ R-module, the set $B = \{\mathfrak{p} \in \operatorname{Supp}_R(Y) : \dim(R/\mathfrak{p}) = n + 1\}$ is finite. Let $B = \{\mathfrak{p}_1, \ldots, \mathfrak{p}_l\}$ and $S = R \setminus \bigcup_{k=1}^l \mathfrak{p}_k$. Then $\dim_{S^{-1}R}(S^{-1}Y) \leq 0, S^{-1}Y$ is an $S^{-1}\mathfrak{a}$ -torsion $S^{-1}R$ -module, and the $S^{-1}R$ -module $\operatorname{Hom}_{S^{-1}R}(S^{-1}R/S^{-1}\mathfrak{a}, S^{-1}Y)$ is finite and so has finite length. Thus, by [29, Proposition 4.1], $S^{-1}Y$ is an Artinian $S^{-1}\mathfrak{a}$ -cofinite $S^{-1}R$ -module. Therefore $S^{-1}(Y/\mathfrak{a}Y) \cong S^{-1}Y/S^{-1}\mathfrak{a}S^{-1}Y$ is a finite $S^{-1}R$ -module from [29, Theorem 2.1]. Hence there is a finite submodule Y' of Y such that $S^{-1}((\mathfrak{a}Y + Y')/\mathfrak{a}Y) = S^{-1}(Y/\mathfrak{a}Y)$. Let Z = Y/Y'. Since $S^{-1}Z$ is an Artinian $S^{-1}R$ -module and $S^{-1}Z = S^{-1}\mathfrak{a}S^{-1}Z$, there is an element \mathfrak{a} of \mathfrak{a} such that $S^{-1}Z = \frac{\mathfrak{a}}{1}S^{-1}Z$ from [26, 2.8]. Therefore $S^{-1}(Z/\mathfrak{a}Z) = 0$ and so it is easy to see that $\dim_R(Z/\mathfrak{a}Z) \leq n$. By the short exact sequence

$$0 \longrightarrow Y' \longrightarrow Y \longrightarrow Z \longrightarrow 0,$$

we have $\operatorname{Hom}_R(R/\mathfrak{a}, Z)$ and $\operatorname{Ext}_R^1(R/\mathfrak{a}, Z)$ are $\operatorname{FD}_{<n} R$ -modules. If $\dim_R(Z) < n+1$, then Z is an $(\operatorname{FD}_{<n}, \mathfrak{a})$ -cofinite R-module from Lemma 2.1. Therefore Y is an $(\operatorname{FD}_{<n}, \mathfrak{a})$ -cofinite R-module by the above short exact sequence, a contradiction. Thus $\dim_R(Z) = n + 1$ and Z is not an $(\operatorname{FD}_{<n}, \mathfrak{a})$ -cofinite R-module, and hence $(0:_R Z) \in A$. Thus $(0:_R Y) = (0:_R Z)$ because $(0:_R Y) \subseteq (0:_R Z)$ and $(0:_R Y)$ is a maximal member of A. Let $Z' = (0:_Z a)$. Since $aZ \neq 0$, $(0:_R Z) \subsetneqq (0:_R Z')$ and so $(0:_R Z') \notin A$. Hom $_R(R/\mathfrak{a}, Z')$ and $\operatorname{Ext}_R^1(R/\mathfrak{a}, Z')$ are $\operatorname{FD}_{<n} R$ -modules from the short exact sequences

$$0 \longrightarrow Z' \longrightarrow Z \longrightarrow aZ \longrightarrow 0$$
 and $0 \longrightarrow aZ \longrightarrow Z \longrightarrow Z/aZ \longrightarrow 0$.

If $\dim_R(Z') < n + 1$, then Z' is an $(FD_{<n}, \mathfrak{a})$ -cofinite R-module from Lemma 2.1. Otherwise, $\dim_R(Z') = n + 1$ and so Z' is again an $(FD_{<n}, \mathfrak{a})$ -cofinite R-module as $(0 :_R Z') \notin A$. Thus $\operatorname{Hom}_R(R/\mathfrak{a}, Z/aZ)$ is an $FD_{<n}$ R-module by the above short exact sequences. Therefore Z/aZ is an $(FD_{<n}, \mathfrak{a})$ -cofinite R-module by Lemma 2.1. Hence Z is an $(FD_{<n}, \mathfrak{a})$ -cofinite R-module from [29, Corollary 3.2]. This contradiction shows that X is an $(FD_{<n}, \mathfrak{a})$ -cofinite R-module as desired.

As immediate applications of the above theorem, we have the following corollaries.

Corollary 2.3. Suppose that $\dim(R/\mathfrak{a}) \leq n+1$ and that X is an \mathfrak{a} -torsion R-module such that $\operatorname{Hom}_R(R/\mathfrak{a}, X)$ and $\operatorname{Ext}^1_R(R/\mathfrak{a}, X)$ are $\operatorname{FD}_{< n}$ R-modules. Then X is an $(\operatorname{FD}_{< n}, \mathfrak{a})$ -cofinite R-module.

Corollary 2.4. (see [9, Proposition 2.6], [5, Corollary 4.2], and [2, Theorem 3.1]) Suppose that X is an \mathfrak{a} -torsion $\mathrm{FD}_{<2}$ R-module such that $\mathrm{Hom}_R(R/\mathfrak{a}, X)$ and $\mathrm{Ext}_R^1(R/\mathfrak{a}, X)$ are finite R-modules. Then X is an \mathfrak{a} -cofinite R-module.

Corollary 2.5. (see [30, Theorem 2.3]) Suppose that $\dim(R/\mathfrak{a}) \leq 1$ and that X is an \mathfrak{a} -torsion R-module such that $\operatorname{Hom}_R(R/\mathfrak{a}, X)$ and $\operatorname{Ext}^1_R(R/\mathfrak{a}, X)$ are finite R-modules. Then X is an \mathfrak{a} -cofinite R-module.

3. Abelianness of the category of cofinite modules

With respect to Question 1.1, Hartshorne in [20, Proposition 7.6] showed that the category of \mathfrak{a} -cofinite R-modules is an Abelian category if R is a complete regular local ring and \mathfrak{a} is a prime ideal of R with dim $(R/\mathfrak{a}) = 1$. In [16, Theorem 2], Delfino and Marley generalized Hartshorne's result to arbitrary complete local rings. Kawasaki in [24, Theorem 1] extended this result for an arbitrary ideal \mathfrak{a} with dim $(R/\mathfrak{a}) = 1$ in a local ring R. In [30, Theorem 2.6], Melkersson removed local assumption on R. Recently, Aghapournahr and Bahmanpour in [2, Theorem 3.7] (see also [9, Theorem 2.7] and [5, Theorem 4.3]) generalized Melkersson's result and proved that the category of \mathfrak{a} -cofinite FD_{<2} R-modules is an Abelian category.

In this section, we extend Aghapournahr-Bahmanpour's result [2, Theorem 3.7] and show that the category of $(FD_{\leq n}, \mathfrak{a})$ -cofinite $FD_{\leq n+2}$ *R*-modules is an Abelian category. In particular, we prepare an affirmative answer to Question 1.5 for the case that $\dim(R/\mathfrak{a}) \leq n+1$.

Theorem 3.1. The category of $(FD_{\leq n}, \mathfrak{a})$ -cofinite $FD_{\leq n+2}$ *R*-modules is an Abelian category.

Proof. Let X and Y be $(FD_{< n}, \mathfrak{a})$ -cofinite $FD_{< n+2}$ R-modules and let $f: X \longrightarrow Y$ be an R-homomorphism. It is enough to show that ker f and coker f are $(FD_{< n}, \mathfrak{a})$ -cofinite $FD_{< n+2}$ R-modules. From the short exact sequences

$$0 \longrightarrow \ker f \longrightarrow X \longrightarrow \operatorname{im} f \longrightarrow 0$$

and

$$0 \longrightarrow \operatorname{im} f \longrightarrow Y \longrightarrow \operatorname{coker} f \longrightarrow 0$$

ker f and coker f are $\text{FD}_{< n+2}$ R-modules and $\text{Hom}_R(R/\mathfrak{a}, \text{ker } f)$ and $\text{Ext}_R^1(R/\mathfrak{a}, \text{ker } f)$ are $\text{FD}_{< n}$ R-modules. Thus ker f is an $(\text{FD}_{< n}, \mathfrak{a})$ -cofinite R-module by Theorem 2.2. Hence coker f is an $(\text{FD}_{< n}, \mathfrak{a})$ -cofinite R-module from the above short exact sequences.

Corollary 3.2. Let N be a finite R-module and let X be an $(FD_{< n}, \mathfrak{a})$ -cofinite $FD_{< n+2}$ R-module. Then $\operatorname{Ext}_{R}^{j}(N, X)$ and $\operatorname{Tor}_{j}^{R}(N, X)$ are $(FD_{< n}, \mathfrak{a})$ -cofinite $FD_{< n+2}$ R-modules for all j.

Proof. Assume that

$$F_{\bullet N} = \cdots \longrightarrow F_{j+1} \longrightarrow F_j \longrightarrow F_{j-1} \longrightarrow \cdots \longrightarrow F_1 \longrightarrow F_0 \longrightarrow 0$$

is a deleted free resolution of N such that F_j is finite for all j. By applying $\operatorname{Hom}_R(-, X)$ and $-\otimes_R X$ to $F_{\bullet N}$, the assertion follows from Theorem 3.1.

Corollary 3.3. If dim $(R/\mathfrak{a}) \leq n+1$, then the category of $(FD_{\leq n}, \mathfrak{a})$ -cofinite R-modules is an Abelian category.

Corollary 3.4. Let $\dim(R/\mathfrak{a}) \leq n+1$, let N be a finite R-module, and let X be an $(\mathrm{FD}_{< n}, \mathfrak{a})$ -cofinite R-module. Then $\mathrm{Ext}_{R}^{j}(N, X)$ and $\mathrm{Tor}_{j}^{R}(N, X)$ are $(\mathrm{FD}_{< n}, \mathfrak{a})$ -cofinite R-modules for all j.

Corollary 3.5. The category of \mathfrak{a} -cofinite $FD_{\leq 2}$ R-modules is an Abelian category.

Corollary 3.6. Let N be a finite R-module and let X be an \mathfrak{a} -cofinite $\mathrm{FD}_{<2}$ R-module. Then $\mathrm{Ext}_{R}^{j}(N, X)$ and $\mathrm{Tor}_{i}^{R}(N, X)$ are \mathfrak{a} -cofinite $\mathrm{FD}_{<2}$ R-modules for all j.

Corollary 3.7. If dim $(R/\mathfrak{a}) \leq 1$, then the category of \mathfrak{a} -cofinite R-modules is an Abelian category.

Corollary 3.8. Let $\dim(R/\mathfrak{a}) \leq 1$, let N be a finite R-module, and let X be an \mathfrak{a} -cofinite R-module. Then $\operatorname{Ext}_{R}^{j}(N, X)$ and $\operatorname{Tor}_{i}^{R}(N, X)$ are \mathfrak{a} -cofinite R-modules for all j.

4. Cofiniteness of local cohomology modules

Abazari and Bahmanpour in [1, Theorems 2.5 and 2.10] prepared affirmative answers to Questions 1.6–1.8 for the case that R is a complete local ring with $\dim(R/\mathfrak{a}) \leq n + 1$. In this section, we remove complete local assumption on R. They showed that if R is a complete local ring, X is a finite R-module, and t is a non-negative integer such that $\mathrm{H}^{i}_{\mathfrak{a}}(X)$ is an $\mathrm{FD}_{< n+2}$ R-module for all i < t, then $\mathrm{H}^{i}_{\mathfrak{a}}(X)$ is an $(\mathrm{FD}_{< n}, \mathfrak{a})$ -cofinite Rmodule for all i < t, $\mathrm{Hom}_{R}(R/\mathfrak{a}, \mathrm{H}^{t}_{\mathfrak{a}}(X))$ and $\mathrm{Ext}^{1}_{R}(R/\mathfrak{a}, \mathrm{H}^{t}_{\mathfrak{a}}(X))$ are $\mathrm{FD}_{< n}$ R-modules, and $\mathrm{Ass}_{R}(\mathrm{H}^{i}_{\mathfrak{a}}(X))_{\geq n}$ is a finite set for all $i \leq t$. In the main result of this section, we prove it without assuming that R is a complete local ring and X is a finite R-module. As applications of this result, in Section 5, we generalize all of the previous results concerning Questions 1.2–1.4 (see e.g., [2,6–8,11,14–16,20,23–25,27,30–33,36]). **Lemma 4.1.** Let X be an arbitrary R-module and let s, t be non-negative integers such that $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{\leq n}$ R-module for all $s \leq i \leq s+t+1$, $\operatorname{H}_{\mathfrak{a}}^{i}(X)$ is an $(\operatorname{FD}_{\leq n}, \mathfrak{a})$ cofinite R-module for all i < s, and $\operatorname{H}_{\mathfrak{a}}^{i}(X)$ is an $\operatorname{FD}_{\leq n+2}$ R-module for all $s \leq i \leq s+t$. Then $\operatorname{H}_{\mathfrak{a}}^{i}(X)$ is an $(\operatorname{FD}_{\leq n}, \mathfrak{a})$ -cofinite R-module for all $i \leq s+t$.

Proof. We prove by using induction on t. Let t = 0. From [3, Theorem 2.3], $\operatorname{Hom}_R(R/\mathfrak{a}, \operatorname{H}^s_{\mathfrak{a}}(X))$ and $\operatorname{Ext}^1_R(R/\mathfrak{a}, \operatorname{H}^s_{\mathfrak{a}}(X))$ are $\operatorname{FD}_{<n} R$ -modules. Thus $\operatorname{H}^s_{\mathfrak{a}}(X)$ is an $(\operatorname{FD}_{<n}, \mathfrak{a})$ -cofinite R-module by Theorem 2.2. Suppose that t > 0 and that t-1 is settled. It is enough to show that $\operatorname{H}^{s+t}_{\mathfrak{a}}(X)$ is an $(\operatorname{FD}_{<n}, \mathfrak{a})$ -cofinite R-module because $\operatorname{H}^i_{\mathfrak{a}}(X)$ is an $(\operatorname{FD}_{<n}, \mathfrak{a})$ -cofinite R-module for all $i \leq s+t-1$ from the induction hypothesis on t-1. By [3, Theorem 2.3], $\operatorname{Hom}_R(R/\mathfrak{a}, \operatorname{H}^{s+t}_{\mathfrak{a}}(X))$ and $\operatorname{Ext}^1_R(R/\mathfrak{a}, \operatorname{H}^{s+t}_{\mathfrak{a}}(X))$ are $\operatorname{FD}_{<n} R$ -modules. Therefore $\operatorname{H}^{s+t}_{\mathfrak{a}}(X)$ is an $(\operatorname{FD}_{<n}, \mathfrak{a})$ -cofinite R-module for $\operatorname{Hom}_R(R/\mathfrak{a}, \operatorname{H}^{s+t}_{\mathfrak{a}}(X))$ and $\operatorname{Ext}^1_R(R/\mathfrak{a}, \operatorname{H}^{s+t}_{\mathfrak{a}}(X))$ are $\operatorname{FD}_{<n} R$ -modules. Therefore $\operatorname{H}^{s+t}_{\mathfrak{a}}(X)$ is an $(\operatorname{FD}_{<n}, \mathfrak{a})$ -cofinite R-module for $\operatorname{Hom}_R(R/\mathfrak{a}, \operatorname{H}^{s+t}_{\mathfrak{a}}(X))$ and $\operatorname{Ext}^1_R(R/\mathfrak{a}, \operatorname{H}^{s+t}_{\mathfrak{a}}(X))$ are $\operatorname{FD}_{<n} R$ -modules. Therefore $\operatorname{H}^{s+t}_{\mathfrak{a}}(X)$ is an $(\operatorname{FD}_{<n}, \mathfrak{a})$ -cofinite R-module form Theorem 2.2.

Theorem 4.2. Let X be an arbitrary R-module and let t be a non-negative integer such that $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{< n}$ R-module for all $i \leq t$ and $\operatorname{H}_{\mathfrak{a}}^{i}(X)$ is an $\operatorname{FD}_{< n+2}$ R-module for all i < t. Then the following statements hold true:

- (i) Y and Hⁱ_a(X)/Y are (FD_{<n}, a)-cofinite R-modules for all i < t and every FD_{<n+1} R-submodule Y of Hⁱ_a(X). In particular, Hⁱ_a(X) is an (FD_{<n}, a)-cofinite R-module for all i < t;
- (ii) Let N be a finite R-module. Then Ext^j_R(N,Y), Tor^R_j(N,Y), Ext^j_R(N, Hⁱ_a(X)/Y), and Tor^R_j(N, Hⁱ_a(X)/Y) are (FD_{<n}, a)-cofinite R-modules for all i < t, all j, and every FD_{<n+1} R-submodule Y of Hⁱ_a(X). In particular, Ext^j_R(N, Hⁱ_a(X)) and Tor^R_j(N, Hⁱ_a(X)) are (FD_{<n}, a)-cofinite R-modules for all i < t and all j;
- (iii) $\operatorname{Hom}_{R}(R/\mathfrak{a}, \operatorname{H}^{t}_{\mathfrak{a}}(X)/Y)$ is an $\operatorname{FD}_{< n}$ R-module for every $\operatorname{FD}_{< n+1}$ R-submodule Y of $\operatorname{H}^{t}_{\mathfrak{a}}(X)$. In particular, $\operatorname{Hom}_{R}(R/\mathfrak{a}, \operatorname{H}^{t}_{\mathfrak{a}}(X))$ is an $\operatorname{FD}_{< n}$ R-module;
- (iv) $\operatorname{Ass}_R(\operatorname{H}^i_{\mathfrak{a}}(X)/Y)_{\geq n}$ is a finite set for all $i \leq t$ and every $\operatorname{FD}_{< n+1}$ R-submodule Y of $\operatorname{H}^i_{\mathfrak{a}}(X)$. In particular, $\operatorname{Ass}_R(\operatorname{H}^i_{\mathfrak{a}}(X))_{\geq n}$ is a finite set for all $i \leq t$;
- (v) Assume that $\operatorname{Ext}_{R}^{t+1}(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{< n} R$ -module. Then $\operatorname{Ext}_{R}^{1}(R/\mathfrak{a}, \operatorname{H}_{\mathfrak{a}}^{t}(X)/Y)$ is an $\operatorname{FD}_{< n} R$ -module for every $\operatorname{FD}_{< n+1} R$ -submodule Y of $\operatorname{H}_{\mathfrak{a}}^{t}(X)$. In particular, $\operatorname{Ext}_{R}^{1}(R/\mathfrak{a}, \operatorname{H}_{\mathfrak{a}}^{t}(X))$ is an $\operatorname{FD}_{< n} R$ -module.

Proof. (i) Since $\operatorname{Hom}_R(R/\mathfrak{a}, \Gamma_\mathfrak{a}(X))$ and $\operatorname{Ext}^1_R(R/\mathfrak{a}, \Gamma_\mathfrak{a}(X))$ are $\operatorname{FD}_{<n} R$ -modules by [3, Theorem 2.3], $\Gamma_\mathfrak{a}(X)$ is an $(\operatorname{FD}_{<n}, \mathfrak{a})$ -cofinite *R*-module from Theorem 2.2, and so $\operatorname{H}^i_\mathfrak{a}(X)$ is an $(\operatorname{FD}_{<n}, \mathfrak{a})$ -cofinite *R*-module for all i < t by Lemma 4.1. Let i < t and let Y be an $\operatorname{FD}_{<n+1} R$ -submodule of $\operatorname{H}^i_\mathfrak{a}(X)$. Then $\operatorname{Hom}_R(R/\mathfrak{a}, Y)$ is an $\operatorname{FD}_{<n} R$ -module and so Y is

an $(FD_{\leq n}, \mathfrak{a})$ -cofinite *R*-module from Lemma 2.1. Thus $H^i_{\mathfrak{a}}(X)/Y$ is an $(FD_{\leq n}, \mathfrak{a})$ -cofinite *R*-module by the short exact sequence

$$0 \longrightarrow Y \longrightarrow \mathrm{H}^{i}_{\mathfrak{a}}(X) \longrightarrow \mathrm{H}^{i}_{\mathfrak{a}}(X)/Y \longrightarrow 0.$$

(ii) This follows from the first part and Corollary 3.2.

(iii) Let Y be an $\operatorname{FD}_{<n+1} R$ -submodule of $\operatorname{H}^{t}_{\mathfrak{a}}(X)$. From the first part and [3, Theorem 2.3], $\operatorname{Hom}_{R}(R/\mathfrak{a}, \operatorname{H}^{t}_{\mathfrak{a}}(X))$ is an $\operatorname{FD}_{<n} R$ -module. Thus $\operatorname{Hom}_{R}(R/\mathfrak{a}, Y)$ is an $\operatorname{FD}_{<n}$ *R*-module and so Y is an $(\operatorname{FD}_{<n}, \mathfrak{a})$ -cofinite *R*-module by Lemma 2.1. Hence, from the exact sequence

$$\operatorname{Hom}_R(R/\mathfrak{a}, \operatorname{H}^t_\mathfrak{a}(X)) \longrightarrow \operatorname{Hom}_R(R/\mathfrak{a}, \operatorname{H}^t_\mathfrak{a}(X)/Y) \longrightarrow \operatorname{Ext}^1_R(R/\mathfrak{a}, Y),$$

 $\operatorname{Hom}_R(R/\mathfrak{a}, \operatorname{H}^t_\mathfrak{a}(X)/Y)$ is an $\operatorname{FD}_{< n}$ *R*-module.

- (iv) It follows by the first part, the third part, and [13, Exercise 1.2.28].
- (v) This is similar to the proof of the third part.

Remark 4.3. (see [1, Theorems 2.6 and 2.10]) Let N be an \mathfrak{a} -torsion finite R-module, let X be an arbitrary R-module, and let t be a non-negative integer such that $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, X)$ is an FD_{<n} R-module for all $i \leq t$ and $\operatorname{H}_{\mathfrak{a}}^{i}(X)$ is an FD_{<n+2} R-module for all i < t. Then, by Theorem 4.2 and [21, Proposition 3.4(i)], the following statements hold true:

- (i) $\operatorname{Ext}_{R}^{j}(N, Y)$ and $\operatorname{Ext}_{R}^{j}(N, \operatorname{H}_{\mathfrak{a}}^{i}(X)/Y)$ are $\operatorname{FD}_{< n} R$ -modules and $\operatorname{Ass}_{R}(\operatorname{Ext}_{R}^{j}(N, \operatorname{H}_{\mathfrak{a}}^{i}(X)/Y))_{\geq n}$ are finite sets for all i < t, all j, and every $\operatorname{FD}_{< n+1} R$ -submodule Y of $\operatorname{H}_{\mathfrak{a}}^{i}(X)$. In particular, $\operatorname{Ext}_{R}^{j}(N, \operatorname{H}_{\mathfrak{a}}^{i}(X))$ is an $\operatorname{FD}_{< n} R$ -module and $\operatorname{Ass}_{R}(\operatorname{Ext}_{R}^{j}(N, \operatorname{H}_{\mathfrak{a}}^{i}(X)))_{\geq n}$ is a finite set for all i < t and all j;
- (ii) $\operatorname{Hom}_R(N, \operatorname{H}^t_{\mathfrak{a}}(X)/Y)$ is an $\operatorname{FD}_{< n} R$ -module and $\operatorname{Ass}_R(\operatorname{Hom}_R(N, \operatorname{H}^t_{\mathfrak{a}}(X)/Y))_{\geq n}$ is a finite set for every $\operatorname{FD}_{< n+1} R$ -submodule Y of $\operatorname{H}^t_{\mathfrak{a}}(X)$. In particular, $\operatorname{Hom}_R(N, \operatorname{H}^t_{\mathfrak{a}}(X))$ is an $\operatorname{FD}_{< n} R$ -module and $\operatorname{Ass}_R(\operatorname{Hom}_R(N, \operatorname{H}^t_{\mathfrak{a}}(X)))_{\geq n}$ is a finite set;
- (iii) Assume that $\operatorname{Ext}_{R}^{t+1}(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{< n} R$ -module. Then $\operatorname{Ext}_{R}^{1}(N, \operatorname{H}_{\mathfrak{a}}^{t}(X)/Y)$ is an $\operatorname{FD}_{< n} R$ -module and $\operatorname{Ass}_{R}(\operatorname{Ext}_{R}^{1}(N, \operatorname{H}_{\mathfrak{a}}^{t}(X)/Y))_{\geq n}$ is a finite set for every $\operatorname{FD}_{< n+1} R$ -submodule Y of $\operatorname{H}_{\mathfrak{a}}^{t}(X)$. In particular, $\operatorname{Ext}_{R}^{1}(N, \operatorname{H}_{\mathfrak{a}}^{t}(X))$ is an $\operatorname{FD}_{< n} R$ -module and $\operatorname{Ass}_{R}(\operatorname{Ext}_{R}^{1}(N, \operatorname{H}_{\mathfrak{a}}^{t}(X)))_{\geq n}$ is a finite set.

Let X be an arbitrary R-module which is not necessarily finite and let n be a nonnegative integer. We set $f_{\mathfrak{a}}(X) = \inf\{i \in \mathbb{N}_0 : \operatorname{H}^i_{\mathfrak{a}}(X) \text{ is not a finite } R\text{-module}\}$ and $f^n_{\mathfrak{a}}(X) = \inf\{f_{\mathfrak{a}R_{\mathfrak{p}}}(X_{\mathfrak{p}}) : \mathfrak{p} \in \operatorname{Spec}(R) \text{ and } \dim(R/\mathfrak{p}) \geq n\}$ which are called finiteness dimension and nth finiteness dimension of X with respect to \mathfrak{a} , respectively [8,35]. In [35, Corollary 2.3], it is shown that if X is an arbitrary R-module such that $\operatorname{Ext}^i_R(R/\mathfrak{a}, X)$ is an FD_{<n} R-module for all i (in fact, for all $i \leq f^n_{\mathfrak{a}}(X)$), then the equality $f^n_{\mathfrak{a}}(X) =$ inf $\{i \in \mathbb{N}_0 : \mathrm{H}^i_{\mathfrak{a}}(X) \text{ is not an } \mathrm{FD}_{< n} R$ -module} holds (see also [4, Theorem 2.5] and [28, Theorem 2.10]).

Corollary 4.4. Let X be an arbitrary R-module such that $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{< n}$ R-module for all $i \leq f_{\mathfrak{a}}^{n+2}(X)$. Then the following statements hold true:

- (i) Y and Hⁱ_a(X)/Y are (FD_{<n}, a)-cofinite R-modules for all i < fⁿ⁺²_a(X) and every FD_{<n+1} R-submodule Y of Hⁱ_a(X). In particular, Hⁱ_a(X) is an (FD_{<n}, a)-cofinite R-module for all i < fⁿ⁺²_a(X);
- (ii) Let N be a finite R-module. Then Ext^j_R(N,Y), Tor^R_j(N,Y), Ext^j_R(N, Hⁱ_a(X)/Y), and Tor^R_j(N, Hⁱ_a(X)/Y) are (FD_{<n}, a)-cofinite R-modules for all i < fⁿ⁺²_a(X), all j, and every FD_{<n+1} R-submodule Y of Hⁱ_a(X). In particular, Ext^j_R(N, Hⁱ_a(X)) and Tor^R_j(N, Hⁱ_a(X)) are (FD_{<n}, a)-cofinite R-modules for all i < fⁿ⁺²_a(X) and all j;
- (iii) $\operatorname{Hom}_{R}(R/\mathfrak{a}, \operatorname{H}_{\mathfrak{a}}^{f_{\mathfrak{a}}^{n+2}(X)}(X)/Y)$ is an $\operatorname{FD}_{< n} R$ -module for every $\operatorname{FD}_{< n+1} R$ -submodule Y of $\operatorname{H}_{\mathfrak{a}}^{f_{\mathfrak{a}}^{n+2}(X)}(X)$. In particular, $\operatorname{Hom}_{R}(R/\mathfrak{a}, \operatorname{H}_{\mathfrak{a}}^{f_{\mathfrak{a}}^{n+2}(X)}(X))$ is an $\operatorname{FD}_{< n} R$ -module;
- (iv) $\operatorname{Ass}_R(\operatorname{H}^i_{\mathfrak{a}}(X)/Y)_{\geq n}$ is a finite set for all $i \leq f_{\mathfrak{a}}^{n+2}(X)$ and every $\operatorname{FD}_{< n+1} R$ -submodule Y of $\operatorname{H}^i_{\mathfrak{a}}(X)$. In particular, $\operatorname{Ass}_R(\operatorname{H}^i_{\mathfrak{a}}(X))_{\geq n}$ is a finite set for all $i \leq f_{\mathfrak{a}}^{n+2}(X)$;
- $\begin{array}{ll} \text{(v)} & Assume \ that \ \mathrm{Ext}_R^{f_{\mathfrak{a}}^{n+2}(X)+1}(R/\mathfrak{a},X) \ is \ an \ \mathrm{FD}_{< n} \ R\text{-module}. \ Then \ \mathrm{Ext}_R^1(R/\mathfrak{a},H_{\mathfrak{a}}^{f_{\mathfrak{a}}^{n+2}(X)}(X)/Y) \ is \ an \ \mathrm{FD}_{< n} \ R\text{-module} \ for \ every \ \mathrm{FD}_{< n+1} \ R\text{-submodule} \ Y \ of \ \mathrm{H}_{\mathfrak{a}}^{f_{\mathfrak{a}}^{n+2}(X)}(X). \ In \ particular, \ \mathrm{Ext}_R^1(R/\mathfrak{a},\mathrm{H}_{\mathfrak{a}}^{f_{\mathfrak{a}}^{n+2}(X)}(X)) \ is \ an \ \mathrm{FD}_{< n} \ R\text{-module}. \end{array}$

Corollary 4.5. Suppose that one of the following conditions holds:

- (a) $\dim(R/\mathfrak{a}) \leq n+1$ and X is an arbitrary R-module such that $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{< n} R$ -module for all i;
- (b) X is a finite R-module with $\dim_R(X/\mathfrak{a}X) \leq n+1$.

Then the following statements are true:

- (i) Y and Hⁱ_a(X)/Y are (FD_{<n}, a)-cofinite R-modules for all i and every FD_{<n+1} R-submodule Y of Hⁱ_a(X). In particular, Hⁱ_a(X) is an (FD_{<n}, a)-cofinite R-module for all i;
- (ii) Let N be a finite R-module. Then Ext^j_R(N,Y), Tor^R_j(N,Y), Ext^j_R(N, Hⁱ_a(X)/Y), and Tor^R_j(N, Hⁱ_a(X)/Y) are (FD_{<n}, a)-cofinite R-modules for all i, all j, and every FD_{<n+1} R-submodule Y of Hⁱ_a(X). In particular, Ext^j_R(N, Hⁱ_a(X)) and Tor^R_j(N, Hⁱ_a(X)) are (FD_{<n}, a)-cofinite R-modules for all i and all j;
- (iii) $\operatorname{Ass}_R(\operatorname{H}^i_{\mathfrak{a}}(X)/Y)_{\geq n}$ is a finite set for all *i* and every $\operatorname{FD}_{< n+1}$ *R*-submodule *Y* of $\operatorname{H}^i_{\mathfrak{a}}(X)$. In particular, $\operatorname{Ass}_R(\operatorname{H}^i_{\mathfrak{a}}(X))_{\geq n}$ is a finite set for all *i*.

5. More applications

5.1. Ordinary cofiniteness of local cohomology modules

By putting n = 0 in Theorem 4.2 and Corollaries 4.4–4.5, we have the following results which generalize [20, Corollary 7.7], [23, Theorem 4.1], [15, Theorem 3], [16, Theorem 1], [36, Theorem 1.1], [25, Theorem B], [11, Theorem 2.2], [14, Theorem 1.4], [32, Theorem 5.6], [6, Theorems 2.3 and 2.5], [7, Theorem 2.6], [33, Theorem 3.2], [24, Theorem 8], [30, Theorem 2.10], [8, Theorems 2.3 and 3.2], [2, Theorem 3.4], and [31, Theorem 3.3].

Corollary 5.1. Let X be an arbitrary R-module and let t be a non-negative integer such that $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, X)$ is a finite R-module for all $i \leq t$ and $\operatorname{H}_{\mathfrak{a}}^{i}(X)$ is an $\operatorname{FD}_{\leq 2}$ R-module for all i < t. Then the following statements hold true:

- (i) Y and Hⁱ_a(X)/Y are a-cofinite R-modules for all i < t and every FD_{<1} R-submodule Y of Hⁱ_a(X). In particular, Hⁱ_a(X) is an a-cofinite R-module for all i < t;
- (ii) Let N be a finite R-module. Then Ext^j_R(N,Y), Tor^R_j(N,Y), Ext^j_R(N, Hⁱ_a(X)/Y), and Tor^R_j(N, Hⁱ_a(X)/Y) are a-cofinite R-modules for all i < t, all j, and every FD_{<1} R-submodule Y of Hⁱ_a(X). In particular, Ext^j_R(N, Hⁱ_a(X)) and Tor^R_j(N, Hⁱ_a(X)) are a-cofinite R-modules for all i < t and all j;
- (iii) $\operatorname{Hom}_{R}(R/\mathfrak{a}, \operatorname{H}^{t}_{\mathfrak{a}}(X)/Y)$ is a finite R-module for every $\operatorname{FD}_{<1}$ R-submodule Y of $\operatorname{H}^{t}_{\mathfrak{a}}(X)$. In particular, $\operatorname{Hom}_{R}(R/\mathfrak{a}, \operatorname{H}^{t}_{\mathfrak{a}}(X))$ is a finite R-module;
- (iv) $\operatorname{Ass}_R(\operatorname{H}^i_{\mathfrak{a}}(X)/Y)$ is a finite set for all $i \leq t$ and every $\operatorname{FD}_{<1}$ R-submodule Y of $\operatorname{H}^i_{\mathfrak{a}}(X)$. In particular, $\operatorname{Ass}_R(\operatorname{H}^i_{\mathfrak{a}}(X))$ is a finite set for all $i \leq t$;
- (v) Assume that $\operatorname{Ext}_{R}^{t+1}(R/\mathfrak{a}, X)$ is a finite R-module. Then $\operatorname{Ext}_{R}^{1}(R/\mathfrak{a}, \operatorname{H}_{\mathfrak{a}}^{t}(X)/Y)$ is a finite R-module for every $\operatorname{FD}_{<1}$ R-submodule Y of $\operatorname{H}_{\mathfrak{a}}^{t}(X)$. In particular, $\operatorname{Ext}_{R}^{1}(R/\mathfrak{a}, \operatorname{H}_{\mathfrak{a}}^{t}(X))$ is a finite R-module.

Corollary 5.2. Let X be an arbitrary R-module such that $\operatorname{Ext}^{i}_{R}(R/\mathfrak{a}, X)$ is a finite R-module for all $i \leq f^{2}_{\mathfrak{a}}(X)$. Then the following statements hold true:

- (i) Y and Hⁱ_a(X)/Y are a-cofinite R-modules for all i < f²_a(X) and every FD_{<1} R-submodule Y of Hⁱ_a(X). In particular, Hⁱ_a(X) is an a-cofinite R-module for all i < f²_a(X);
- (ii) Let N be a finite R-module. Then $\operatorname{Ext}_{R}^{j}(N,Y)$, $\operatorname{Tor}_{j}^{R}(N,Y)$, $\operatorname{Ext}_{R}^{j}(N,\operatorname{H}_{\mathfrak{a}}^{i}(X)/Y)$, and $\operatorname{Tor}_{j}^{R}(N,\operatorname{H}_{\mathfrak{a}}^{i}(X)/Y)$ are \mathfrak{a} -cofinite R-modules for all $i < f_{\mathfrak{a}}^{2}(X)$, all j, and every $\operatorname{FD}_{<1} R$ -submodule Y of $\operatorname{H}_{\mathfrak{a}}^{i}(X)$. In particular, $\operatorname{Ext}_{R}^{j}(N,\operatorname{H}_{\mathfrak{a}}^{i}(X))$ and $\operatorname{Tor}_{j}^{R}(N,\operatorname{H}_{\mathfrak{a}}^{i}(X))$ are \mathfrak{a} -cofinite R-modules for all $i < f_{\mathfrak{a}}^{2}(X)$ and all j;

- (iii) $\operatorname{Hom}_{R}(R/\mathfrak{a}, \operatorname{H}_{\mathfrak{a}}^{f_{\mathfrak{a}}^{2}(X)}(X)/Y)$ is a finite *R*-module for every $\operatorname{FD}_{<1}$ *R*-submodule *Y* of $\operatorname{H}_{\mathfrak{a}}^{f_{\mathfrak{a}}^{2}(X)}(X)$. In particular, $\operatorname{Hom}_{R}(R/\mathfrak{a}, \operatorname{H}_{\mathfrak{a}}^{f_{\mathfrak{a}}^{2}(X)}(X))$ is a finite *R*-module;
- (iv) $\operatorname{Ass}_R(\operatorname{H}^i_{\mathfrak{a}}(X)/Y)$ is a finite set for all $i \leq f_{\mathfrak{a}}^2(X)$ and every $\operatorname{FD}_{\leq 1} R$ -submodule Y of $\operatorname{H}^i_{\mathfrak{a}}(X)$. In particular, $\operatorname{Ass}_R(\operatorname{H}^i_{\mathfrak{a}}(X))$ is a finite set for all $i \leq f_{\mathfrak{a}}^2(X)$;
- (v) Assume $\operatorname{Ext}_{R}^{f_{\mathfrak{a}}^{2}(X)+1}(R/\mathfrak{a}, X)$ is a finite R-module. Then $\operatorname{Ext}_{R}^{1}(R/\mathfrak{a}, \operatorname{H}_{\mathfrak{a}}^{f_{\mathfrak{a}}^{2}(X)}(X)/Y)$ is a finite R-module for every $\operatorname{FD}_{<1}$ R-submodule Y of $\operatorname{H}_{\mathfrak{a}}^{f_{\mathfrak{a}}^{2}(X)}(X)$. In particular, $\operatorname{Ext}_{R}^{1}(R/\mathfrak{a}, \operatorname{H}_{\mathfrak{a}}^{f_{\mathfrak{a}}^{2}(X)}(X))$ is a finite R-module.

Corollary 5.3. Suppose that one of the following conditions holds:

- (a) dim $(R/\mathfrak{a}) \leq 1$ and X is an arbitrary R-module such that $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, X)$ is a finite R-module for all i;
- (b) X is a finite R-module with $\dim_R(X/\mathfrak{a}X) \leq 1$.

Then the following statements are true:

- (i) Y and $\operatorname{H}^{i}_{\mathfrak{a}}(X)/Y$ are \mathfrak{a} -cofinite R-modules for all i and every $\operatorname{FD}_{<1}$ R-submodule Y of $\operatorname{H}^{i}_{\mathfrak{a}}(X)$. In particular, $\operatorname{H}^{i}_{\mathfrak{a}}(X)$ is an \mathfrak{a} -cofinite R-module for all i;
- (ii) Let N be a finite R-module. Then Ext^j_R(N,Y), Tor^R_j(N,Y), Ext^j_R(N, Hⁱ_a(X)/Y), and Tor^R_j(N, Hⁱ_a(X)/Y) are a-cofinite R-modules for all i, all j, and every FD_{<1} R-submodule Y of Hⁱ_a(X). In particular, Ext^j_R(N, Hⁱ_a(X)) and Tor^R_j(N, Hⁱ_a(X)) are a-cofinite R-modules for all i and all j;
- (iii) $\operatorname{Ass}_R(\operatorname{H}^i_{\mathfrak{a}}(X)/Y)$ is a finite set for all *i* and every $\operatorname{FD}_{<1}$ R-submodule *Y* of $\operatorname{H}^i_{\mathfrak{a}}(X)$. In particular, $\operatorname{Ass}_R(\operatorname{H}^i_{\mathfrak{a}}(X))$ is a finite set for all *i*.

5.2. Weakly cofiniteness of local cohomology modules

Bahmanpour and Naghipour in [7, Theorem 3.1] prepared an affirmative answer to Question 1.4 for the case that R is a local ring with $\dim(R/\mathfrak{a}) \leq 2$ (see also [27, Theorem 3.3(c)]). We generalize this result to arbitrary semi-local rings. They showed that if R is a local ring, X is a finite R-module, and t is a non-negative integer such that $\dim_R(\mathrm{H}^i_\mathfrak{a}(X)) \leq 2$ for all i < t, then $\mathrm{H}^i_\mathfrak{a}(X)$ is an \mathfrak{a} -weakly cofinite R-module for all i < t, $\mathrm{Hom}_R(R/\mathfrak{a}, \mathrm{H}^t_\mathfrak{a}(X))$ is a weakly Laskerian R-module, and $\mathrm{Ass}_R(\mathrm{H}^i_\mathfrak{a}(X))$ is a finite set for all $i \leq t$. Here, by taking n = 1 in Theorem 4.2 and considering [5, Theorem 3.3], we prove it with weaker assumptions that R is a semi-local ring and X is an arbitrary R-module such that $\mathrm{Ext}^i_R(R/\mathfrak{a}, X)$ is an FD_{<1} R-module for all $i \leq t$ and $\mathrm{H}^i_\mathfrak{a}(X)$ is an FD_{<3} R-module for all i < t. **Corollary 5.4.** Let R be a semi-local ring, let X be an arbitrary R-module, and let t be a non-negative integer such that $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{<1}$ R-module for all $i \leq t$ and $\operatorname{H}_{\mathfrak{a}}^{i}(X)$ is an $\operatorname{FD}_{<3}$ R-module for all i < t. Then the following statements hold true:

- (i) Y and Hⁱ_a(X)/Y are a-weakly cofinite R-modules for all i < t and every FD_{<2} R-submodule Y of Hⁱ_a(X). In particular, Hⁱ_a(X) is an a-weakly cofinite R-module for all i < t;
- (ii) Let N be a finite R-module. Then $\operatorname{Ext}_{R}^{j}(N,Y)$, $\operatorname{Tor}_{j}^{R}(N,Y)$, $\operatorname{Ext}_{R}^{j}(N,\operatorname{H}_{\mathfrak{a}}^{i}(X)/Y)$, and $\operatorname{Tor}_{j}^{R}(N,\operatorname{H}_{\mathfrak{a}}^{i}(X)/Y)$ are \mathfrak{a} -weakly cofinite R-modules for all i < t, all j, and every $\operatorname{FD}_{\leq 2}$ R-submodule Y of $\operatorname{H}_{\mathfrak{a}}^{i}(X)$. In particular, $\operatorname{Ext}_{R}^{j}(N,\operatorname{H}_{\mathfrak{a}}^{i}(X))$ and $\operatorname{Tor}_{j}^{R}(N,\operatorname{H}_{\mathfrak{a}}^{i}(X))$ are \mathfrak{a} -weakly cofinite R-modules for all i < t and all j;
- (iii) $\operatorname{Hom}_R(R/\mathfrak{a}, \operatorname{H}^t_{\mathfrak{a}}(X)/Y)$ is a weakly Laskerian *R*-module for every $\operatorname{FD}_{\leq 2}$ *R*-submodule *Y* of $\operatorname{H}^t_{\mathfrak{a}}(X)$. In particular, $\operatorname{Hom}_R(R/\mathfrak{a}, \operatorname{H}^t_{\mathfrak{a}}(X))$ is a weakly Laskerian *R*-module;
- (iv) $\operatorname{Ass}_R(\operatorname{H}^i_{\mathfrak{a}}(X)/Y)$ is a finite set for all $i \leq t$ and every $\operatorname{FD}_{\leq 2}$ *R*-submodule *Y* of $\operatorname{H}^i_{\mathfrak{a}}(X)$. In particular, $\operatorname{Ass}_R(\operatorname{H}^i_{\mathfrak{a}}(X))$ is a finite set for all $i \leq t$;
- (v) Assume that $\operatorname{Ext}_{R}^{t+1}(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{<1} R$ -module. Then $\operatorname{Ext}_{R}^{1}(R/\mathfrak{a}, \operatorname{H}_{\mathfrak{a}}^{t}(X)/Y)$ is a weakly Laskerian R-module for every $\operatorname{FD}_{<2} R$ -submodule Y of $\operatorname{H}_{\mathfrak{a}}^{t}(X)$. In particular, $\operatorname{Ext}_{R}^{1}(R/\mathfrak{a}, \operatorname{H}_{\mathfrak{a}}^{t}(X))$ is a weakly Laskerian R-module.

In [8, Theorem 3.9], the authors showed that if R is a complete local ring, X is a finite R-module, and Y is a weakly Laskerian R-submodule of $\mathrm{H}^{f^{3}_{\mathfrak{a}}(X)}_{\mathfrak{a}}(X)$, then $\mathrm{H}^{i}_{\mathfrak{a}}(X)$ is an \mathfrak{a} -weakly cofinite R-module for all $i < f^{3}_{\mathfrak{a}}(X)$ and the R-modules $\mathrm{Hom}_{R}(R/\mathfrak{a}, \mathrm{H}^{f^{3}_{\mathfrak{a}}(X)}_{\mathfrak{a}}(X)/Y)$ and $\mathrm{Ext}^{1}_{R}(R/\mathfrak{a}, \mathrm{H}^{f^{3}_{\mathfrak{a}}(X)}_{\mathfrak{a}}(X)/Y)$ are weakly Laskerian. Here, we prove this result with weaker assumptions that R is an arbitrary semi-local ring, X is an arbitrary R-module such that $\mathrm{Ext}^{i}_{R}(R/\mathfrak{a}, X)$ is an $\mathrm{FD}_{<1}$ R-module for all $i \leq f^{3}_{\mathfrak{a}}(X) + 1$, and Y is an $\mathrm{FD}_{<2}$ R-submodule of $\mathrm{H}^{f^{3}_{\mathfrak{a}}(X)}_{\mathfrak{a}}(X)$.

Corollary 5.5. Let R be a semi-local ring and let X be an arbitrary R-module such that $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{<1}$ R-module for all $i \leq f_{\mathfrak{a}}^{3}(X)$. Then the following statements hold true:

- (i) Y and Hⁱ_a(X)/Y are a-weakly cofinite R-modules for all i < f³_a(X) and every FD_{<2} R-submodule Y of Hⁱ_a(X). In particular, Hⁱ_a(X) is an a-weakly cofinite R-module for all i < f³_a(X);
- (ii) Let N be a finite R-module. Then Ext^j_R(N,Y), Tor^R_j(N,Y), Ext^j_R(N, Hⁱ_a(X)/Y), and Tor^R_j(N, Hⁱ_a(X)/Y) are a-weakly cofinite R-modules for all i < f³_a(X), all j, and every FD_{<2} R-submodule Y of Hⁱ_a(X). In particular, Ext^j_R(N, Hⁱ_a(X)) and Tor^R_j(N, Hⁱ_a(X)) are a-weakly cofinite R-modules for all i < f³_a(X) and all j;

- (iii) $\operatorname{Hom}_{R}(R/\mathfrak{a}, \operatorname{H}_{\mathfrak{a}}^{f_{\mathfrak{a}}^{3}(X)}(X)/Y)$ is a weakly Laskerian *R*-module for every $\operatorname{FD}_{<2}$ *R*-submodule *Y* of $\operatorname{H}_{\mathfrak{a}}^{f_{\mathfrak{a}}^{3}(X)}(X)$. In particular, $\operatorname{Hom}_{R}(R/\mathfrak{a}, \operatorname{H}_{\mathfrak{a}}^{f_{\mathfrak{a}}^{3}(X)}(X))$ is a weakly Laskerian *R*-module;
- (iv) $\operatorname{Ass}_{R}(\operatorname{H}^{i}_{\mathfrak{a}}(X)/Y)$ is a finite set for all $i \leq f^{3}_{\mathfrak{a}}(X)$ and every $\operatorname{FD}_{\leq 2}$ R-submodule Y of $\operatorname{H}^{i}_{\mathfrak{a}}(X)$. In particular, $\operatorname{Ass}_{R}(\operatorname{H}^{i}_{\mathfrak{a}}(X))$ is a finite set for all $i \leq f^{3}_{\mathfrak{a}}(X)$;
- (v) Assume $\operatorname{Ext}_{R}^{f_{\mathfrak{a}}^{3}(X)+1}(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{<1}$ R-module. Then $\operatorname{Ext}_{R}^{1}(R/\mathfrak{a}, \operatorname{H}_{\mathfrak{a}}^{f_{\mathfrak{a}}^{3}(X)}(X)/Y)$ is a weakly Laskerian R-module for every $\operatorname{FD}_{<2}$ R-submodule Y of $\operatorname{H}_{\mathfrak{a}}^{f_{\mathfrak{a}}^{3}(X)}(X)$. In particular, $\operatorname{Ext}_{R}^{1}(R/\mathfrak{a}, \operatorname{H}_{\mathfrak{a}}^{f_{\mathfrak{a}}^{3}(X)}(X))$ is a weakly Laskerian R-module.

Corollary 5.6. Suppose that R is a semi-local ring and one of the following conditions holds:

- (a) dim(R/a) ≤ 2 and X is an arbitrary R-module such that Extⁱ_R(R/a, X) is an FD_{<1} R-module for all i;
- (b) X is a finite R-module with $\dim_R(X/\mathfrak{a}X) \leq 2$.

Then the following statements are true:

- (i) Y and $\mathrm{H}^{i}_{\mathfrak{a}}(X)/Y$ are \mathfrak{a} -weakly cofinite R-modules for all i and every $\mathrm{FD}_{<2}$ R-submodule Y of $\mathrm{H}^{i}_{\mathfrak{a}}(X)$. In particular, $\mathrm{H}^{i}_{\mathfrak{a}}(X)$ is an \mathfrak{a} -weakly cofinite R-module for all i;
- (ii) Let N be a finite R-module. Then Ext^j_R(N,Y), Tor^R_j(N,Y), Ext^j_R(N, Hⁱ_a(X)/Y), and Tor^R_j(N, Hⁱ_a(X)/Y) are a-weakly cofinite R-modules for all i, all j, and every FD_{<2} R-submodule Y of Hⁱ_a(X). In particular, Ext^j_R(N, Hⁱ_a(X)) and Tor^R_j(N, Hⁱ_a(X)) are a-weakly cofinite R-modules for all i and all j;
- (iii) $\operatorname{Ass}_{R}(\operatorname{H}^{i}_{\mathfrak{a}}(X)/Y)$ is a finite set for all *i* and every $\operatorname{FD}_{<2} R$ -submodule *Y* of $\operatorname{H}^{i}_{\mathfrak{a}}(X)$. In particular, $\operatorname{Ass}_{R}(\operatorname{H}^{i}_{\mathfrak{a}}(X))$ is a finite set for all *i*.

Acknowledgments

The authors would like to thank the referee for the invaluable comments on the manuscript.

References

 N. Abazari and K. Bahmanpour, Extension functors of local cohomology modules and Serre categories of modules, Taiwanese J. Math. 19 (2015), no. 1, 211–220.

- [2] M. Aghapournahr and K. Bahmanpour, Cofiniteness of weakly Laskerian local cohomology modules, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 57(105) (2014), no. 4, 347–356.
- [3] M. Aghapournahr, A. J. Taherizadeh and A. Vahidi, Extension functors of local cohomology modules, Bull. Iranian Math. Soc. 37 (2011), no. 3, 117–134.
- [4] D. Asadollahi and R. Naghipour, Faltings' local-global principle for the finiteness of local cohomology modules, Comm. Algebra 43 (2015), no. 3, 953–958.
- [5] K. Bahmanpour, On the category of weakly Laskerian cofinite modules, Math. Scand. 115 (2014), no. 1, 62–68.
- [6] K. Bahmanpour and R. Naghipour, On the cofiniteness of local cohomology modules, Proc. Amer. Math. Soc. 136 (2008), no. 7, 2359–2363.
- [7] _____, Cofiniteness of local cohomology modules for ideals of small dimension, J. Algebra **321** (2009), no. 7, 1997–2011.
- [8] K. Bahmanpour, R. Naghipour and M. Sedghi, *Minimaxness and cofiniteness prop*erties of local cohomology modules, Comm. Algebra 41 (2013), no. 8, 2799–2814.
- [9] _____, On the category of cofinite modules which is Abelian, Proc. Amer. Math. Soc. 142 (2014), no. 4, 1101–1107.
- [10] K. Bahmanpour and P. H. Quy, Localization at countably infinitely many prime ideals and applications, J. Algebra Appl. 15 (2016), no. 3, 1650045, 6 pp.
- [11] M. P. Brodmann and A. L. Faghani, A finiteness result for associated primes of local cohomology modules, Proc. Amer. Math. Soc. 128 (2000), no. 10, 2851–2853.
- [12] M. P. Brodmann and R. Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge, 1998.
- [13] W. Bruns and J. Herzog, *Cohen-Macaulay Rings*, Cambridge Studies in Advanced Mathematics **39**, Cambridge University Press, Cambridge, 1993.
- [14] G. Chiriacescu, Cofiniteness of local cohomology modules over regular local rings, Bull. London Math. Soc. 32 (2000), no. 1, 1–7.
- [15] D. Delfino, On the cofiniteness of local cohomology modules, Math. Proc. Cambridge Philos. Soc. 115 (1994), no. 1, 79–84.

- [16] D. Delfino and T. Marley, *Cofinite modules and local cohomology*, J. Pure Appl. Algebra **121** (1997), no. 1, 45–52.
- [17] K. Divaani-Aazar and A. Mafi, Associated primes of local cohomology modules, Proc. Amer. Math. Soc. 133 (2005), no. 3, 655–660.
- [18] _____, Associated primes of local cohomology modules of weakly Laskerian modules, Comm. Algebra 34 (2006), no. 2, 681–690.
- [19] A. Grothendieck, Cohomologie Locale des Faisceaux Cohérents et Théorèmes de Lefschetz Locaux et Globaux (SGA2), Advanced Studies in Pure Mathematics 2, North-Holland, Amsterdam, 1968.
- [20] R. Hartshorne, Affine duality and cofiniteness, Invent. Math. 9 (1970), no. 2, 145–164.
- [21] S. H. Hassanzadeh and A. Vahidi, On vanishing and cofiniteness of generalized local cohomology modules, Comm. Algebra 37 (2009), no. 7, 2290–2299.
- [22] C. Huneke, Problems on local cohomology, in: Free Resolutions in Commutative Algebra and Algebraic Geometry, (Sundance, UT, 1990), 93–108, Res. Notes Math. 2, Jones and Bartlett, Boston, MA, 1992.
- [23] C. Huneke and J. Koh, Cofiniteness and vanishing of local cohomology modules, Math. Proc. Cambridge Philos. Soc. 110 (1991), no. 3, 421–429.
- [24] K.-i. Kawasaki, On a category of cofinite modules which is Abelian, Math. Z. 269 (2011), no. 1-2, 587–608.
- [25] K. Khashyarmanesh and Sh. Salarian, On the associated primes of local cohomology modules, Comm. Algebra 27 (1999), no. 12, 6191–6198.
- [26] I. G. Macdonald, Secondary representation of modules over a commutative ring, Symp. Math. 11 (1973), 23–43.
- [27] T. Marley and J. C. Vassilev, Cofiniteness and associated primes of local cohomology modules, J. Algebra 256 (2002), no. 1, 180–193.
- [28] A. A. Mehrvarz, R. Naghipour and M. Sedghi, Faltings' local-global principle for the finiteness of local cohomology modules over Noetherian rings, Comm. Algebra 43 (2015), no. 11, 4860–4872.
- [29] L. Melkersson, Modules cofinite with respect to an ideal, J. Algebra 285 (2005), no. 2, 649–668.

- [30] _____, Cofiniteness with respect to ideals of dimension one, J. Algebra **372** (2012), 459–462.
- [31] M. Nazari and R. Sazeedeh, Cofiniteness with respect to two ideals and local cohomology, Algebr. Represent. Theory 22 (2019), no. 2, 375–385.
- [32] L. T. Nhan, On generalized regular sequences and the finiteness for associated primes of local cohomology modules, Comm. Algebra 33 (2005), no. 3, 793–806.
- [33] P. H. Quy, On the finiteness of associated primes of local cohomology modules, Proc. Amer. Math. Soc. 138 (2010), no. 6, 1965–1968.
- [34] J. J. Rotman, An Introduction to Homological Algebra, Pure and Applied Mathematics 85, Academic Press, San Diego, 1979.
- [35] A. Vahidi, M. Aghapournahr and E. Mahmoudi Renani, Finiteness dimensions and cofiniteness of local cohomology modules, Submitted (2019).
- [36] K.-I. Yoshida, Cofiniteness of local cohomology modules for ideals of dimension one, Nagoya Math. J. 147 (1997), 179–191.
- [37] T. Yoshizawa, Subcategories of extension modules by Serre subcategories, Proc. Amer. Math. Soc. 140 (2012), no. 7, 2293–2305.

Alireza Vahidi and Saeid Morsali

Department of Mathematics, Payame Noor University (PNU), P.O.BOX, 19395-4697, Tehran, Iran

E-mail address: vahidi.ar@pnu.ac.ir, saeid.morsali54@yahoo.com