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Traveling Wave Solutions of a Diffusive SEIR Epidemic Model with

Nonlinear Incidence Rate

Lin Zhao*, Liang Zhang and Haifeng Huo

Abstract. This paper is concerned with the existence and nonexistence of traveling

wave solutions of a diffusive SEIR epidemic model with nonlinear incidence rate, which

are determined by the basic reproduction number R0 and the minimal wave speed c∗.

Namely, the system admits a nontrivial traveling wave solution if R0 > 1 and c ≥ c∗

and then the non-existence of traveling wave solutions of the system is established if

R0 > 1 and 0 < c < c∗. Especially, using numerical simulation, we give the basic

framework of traveling wave solutions of the system.

1. Introduction

A tremendous number of models have been formulated, analyzed and applied to a variety

of infectious diseases qualitatively and quantitatively. Mathematical models have become

important tools in analyzing the spread and control of infectious diseases [1]. Ross first

proposed a system of ordinary differential equations which is the origin of the most epi-

demiological models especially for the modern susceptible-infected-recovered (SIR) com-

partmental model. In fact, some infectious diseases have a latency: the infected individuals

do not infect other susceptible individuals immediately and remain in the exposed class

before becoming infective, such as AIDS/HIV, human tuberculosis or bovine tuberculosis

etc, it may take months for the infection to develop to the infectious stage [4]. In order for

a model to be more realistic, it is essential for introduction of the exposed group (latent

group) in a epidemic model, for example an SEIR or SEIRS epidemic model etc. Up

to now, there have been many studies on the epidemic model with the exposed group,

see [2, 5, 12,22,23] and the references therein.

Functional form of the incidence rate can have a crucial role for modeling of epidemic

dynamics [15]. In classical epidemiological models, the bilinear incidence rate is used,
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namely, proportional to the product of the number of infective individuals which is denoted

by I and the number of susceptible individuals which is expressed by S, which indicates

that the number of infected individuals can grow indefinitely, while it is not the case. In

addition, a fraction S/S+I of these contacts is with susceptible individuals, and hence the

total number of new infections is IS/S+I. However, there is a variety of reasons why this

standard bilinear incidence rate may require modification, e.g., the underlying assumption

of homogeneous mixing may be invalid [19]. To solve it, Korobeinikov and Maini [19] used

an arbitrary function f(S, I, S+I) instead of other incidence rates and thought that due to

arbitrariness of the incidence rate, such system can describe various of infectious diseases

and it seems to be reasonable to consider some properties of the system, where f(S, I, S+I)

satisfies f(S, 0, N) = f(0, I,N) = 0 (N := S+I), ∂f(S, I,N)/∂S > 0, ∂f(S, I,N)/∂I > 0

and ∂2f(S, I,N)/∂I2 < 0 for all S, I ≥ 0. Then they analyzed the impact of the form of the

non-linearity of the infectious disease incidence rate on the dynamics of epidemiological

models, that is, a sufficient condition for stability of the endemic equilibrium state is

the concavity of the nonlinear incidence rate with respect to the number of infective

individuals. For further developments, we refer to Korobeinikov [16, 17] and the cited

references therein. Huang et al. [15] established global stability for delay SIR and SEIR

epidemic models which are incorporated into the constant recruitment and the nonlinear

incidence rate defining the general form F (S)G(I). In addition, F (s) and G(i) are always

positive, continuous, and monotonically increasing for all s > 0 and i > 0, F (0) = G(0) = 0

and ∂2G(I)/∂I2 < 0 for all S, I ≥ 0. Dubey [7] took into account dynamics of an SEIR

epidemic model combing with the constant recruitment and the incidence rate on Holling

type II, III and IV. In addition, there have been other papers studying epidemic models

with the nonlinear incidence rate, see [21,25,26,35,38] and the references therein.

A special class of analytical solutions named traveling wave solutions for the spatial

transmission of infectious diseases has a lot of importance, because various infectious

diseases can be well described by the mathematical model with spatial effects that can

give rise to a moving zone of transition from an infective state to a diseases-free state in

general. Up to now, many studies focus on establishing the existence of traveling wave

solutions and the asymptotic speed of propagation in epidemic models, see [3, 6, 8, 9, 13,

14, 20, 23, 24, 31, 32, 34, 39, 40] and the references therein. For a diffusive SEIR model,

Tian and Yuan [28] established the existence and nonexistence of traveling waves of the

system with nonlocal reaction, precisely, there exists a positive constant number c∗ such

that if the basic reproduction number R0 is larger than one, then the system can admit a

nontrivial and non-negative traveling wave solution satisfying the corresponding boundary

conditions for any wave speed c > c∗ by the the Schauder fixed point theorem and the

limit argument, and if R0 ≤ 1 or R0 > 1 and 0 < c < c∗, there exists no nontrivial
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and nonnegative traveling wave solution on the system by using Laplace transform. For

further developments, we refer to Tian and Yuan [27, 29]. Xu [36] proposed a diffusive

SEIR epidemic model with saturating incidence rate which has the form of Sg(I) and g

is a continuous function with I and analyzed the existence and nonexistence of traveling

wave solutions of the system by using the Schauder fixed point theorem and the Laplace

transform. In addition, Xu [37] proposed a simple diffusive SEIR epidemic model where

the total population is variable and considered the existence and nonexistence of traveling

wave solutions connecting two equilibria which is determined by the basic reproduction

number. Wang and Xu [33] investigated and simulated the existence of traveling wave

solutions of a diffusion SEIR epidemic model with relapse, where they used the bilinear

incidence rate. Namely, by applying a pair of upper-lower solutions, the cross-iteration

method and the Schauder’s fixed point theorem, they obtained the existence of travelling

wave solutions of the system.

The purpose of this paper is to incorporate spatial heterogeneity, the nonlinear inci-

dence rate, the constant recruitment and the rate of the amelioration into the SEIR disease

model and to investigate the existence and non-existence of the traveling wave solutions

of the epidemic model. There have been some studies on the traveling wave solution of

a diffusive SEIR epidemic model. However, there are few results about their combined

effects on an SEIR epidemic model. Precisely, we consider the following SEIR epidemic

model:

∂u(t, x)

∂t
= d∆u(t, x) + µ− βg(u(t, x))w(t, x)− λu(t, x),

∂v(t, x)

∂t
= Dv∆v(t, x) + [βg(u(t, x)) + r]w(t, x)− σv(t, x),

∂w(t, x)

∂t
= D∆w(t, x) + γv(t, x)− δw(t, x),

t > 0, x ∈ R,(1.1)

in addition, the equation for the recovered group,

∂r(t, x)

∂t
= T ∆r(t, x)− κr(t, x) + m̃w(t, x),

is omitted, where u, v, w and r represent the susceptible compartment, the latent com-

partment, infectious compartment and the recovered compartment, respectively. The

susceptible class includes the individuals that can be infected by the infectious disease;

the individuals who have been infected and not have an influence on other susceptible

individuals constitute the latent group; the infective individuals consist of those who have

capable of infecting others and the individuals with full immunity, or isolated, or sadly

dead is included by the removed group. µ, λ, β, r, σ, γ, κ, m̃, d, Dv, D and T are

positive constants and d ≥ Dv ≥ D, and d, Dv, D and T are the diffusive rates of the

susceptible individuals, the latent individuals, the infectious individuals and the recovered
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individuals, respectively. In (1.1), σ (σ > γ) and κ represent the rate that the exposed

hosts leave v-compartment and r-compartment, respectively, δ is the sum of the mortality

rate, the rate of the amelioration r (r < δ), µ denotes the entering flux of susceptible

individuals, m̃ (m̃ < δ) is the recovered rate, λ denotes the rate which individuals leave

or die the population, and β is the infection contamination rate. Here transmission rate

of the infection is assumed by the nonlinear incidence rate βg(u)w and g(u) satisfies the

following assumptions:

(H1) (i) g(u) : R+ → R+ can be continuously differentiable for all u ≥ 0;

(ii) g(0) = 0, g′(0) ≥ 0 and g′(u) > 0 for all u ∈ (0,∞);

(iii) There exists η > 0 such that g(u) ≤ ηu for all u ≥ 0.

Note that the class of g(u) satisfying (H1) include many common incidence functions such

as g(u) = u, g(u) = u/(bu+ a), g(u) = u2/(c+ du2) etc., which a, b, c and d are positive

constants (see [7, 10]).

The main results of this paper contain the existence and nonexistence of traveling

wave solutions of (1.1) connecting two equilibria. The plan of this work is as follows. In

Section 2, when R0 > 1, we show that there exists a c∗ > 0 such that for any c ≥ c∗,

system (1.1) admits a nontrivial traveling wave solution connecting two equilibria with

wave speed c. In Section 3, making use of the two-sided Laplace transform, we show that

system (1.1) admits no nontrivial traveling waves for R0 > 1 and 0 < c < c∗. In addition,

we simulate the existence of traveling wave solutions of system (1.1), which give the basic

framework of the traveling wave solutions of system (1.1).

2. Main results

To discuss traveling wave solutions of (1.1), we need to look for constant equilibria and

the basic reproduction number of (1.1). It is equivalent to find those on the corresponding

ODE system

(2.1)
du

dt
= µ− βg(u)w − λu, dv

dt
= [βg(u) + r]w − σv, ∂w

∂t
= γv − δw.

Obviously, (u0, v0, w0) (u0 = µ/λ and v0 = w0 = 0) is a disease-free equilibrium of (2.1).

From [30], the basic reproduction number of system (2.1) at the disease free equilibrium

(u0, v0, w0) can be defined by

R0 :=
γ(βg(µ/λ) + r)

σδ
.

Since γ(βg(µ/λ)+r)
σδ > 1, γr/(σδ) < 1 (γ < σ, r < δ) and (ii) of (H1), there exists u∗ ∈

(0, µ/λ) such that g(u∗) := σ−rγ/δ
βγ/δ . Using a straightforward computation, system (2.1)
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admits a positive unique endemic equilibrium (u∗, v∗, w∗) which results in

(2.2) g(u∗) :=
σ − rγ/δ
βγ/δ

, v∗ :=
µ− λu∗

σ − rγ/δ
, w∗ :=

γv∗

δ
.

By the similar arguments as those in [18], it is shown that when R0 ≤ 1 the disease-free

equilibrium (u0, v0, w0) = (µ/λ, 0, 0) is globally asymptotically stable, and when R0 >

1, the unique endemic disease equilibrium (u∗, v∗, w∗) is globally asymptotically stable.

Consequently, system (1.1) also admits two equilibria, that is, the disease free equilibrium

(u0, v0, w0) and the endemic equilibrium (u∗, v∗, w∗).

A traveling wave solution of (1.1) takes the special form as bellows

(2.3) (u(ξ), v(ξ), w(ξ)), ξ = x+ ct ∈ R,

where the parameter c is called the wave speed and ξ = x+ ct is the moving coordinate.

For a convenience of calculation, let λ = µ in system (1.1). Plugging (2.3) into (1.1), we

can get the wave form equations:

du′′(ξ)− cu′(ξ) + µ− βg(u(ξ))w(ξ)− µu(ξ) = 0,

Dvv
′′(ξ)− cv′(ξ) + βg(u(ξ))w(ξ) + rv(ξ)− σv(ξ) = 0,

Dw′′(ξ)− cw′(ξ) + γv(ξ)− δw(ξ) = 0,

ξ ∈ R.(2.4)

The main aim of the paper is to look for a nonnegative and nontrivial solution (u(ξ), v(ξ),

w(ξ)) of (2.4), which is supplemented with the boundary conditions as bellows

(2.5)
u(−∞) = 1, u(+∞) = u∗, v(−∞) = 0,

v(+∞) = v∗, w(−∞) = 0, w(+∞) = w∗,

where u∗, v∗ and w∗ are defined in (2.2).

From (2.3), it is easy to see that there is a close relationship between existence of a

traveling wave solution of (1.1) and the wave speed c. Thus, we analyze the properties

of the wave speed c here. First, we need to a linearized system which can be achieved

through linearizing the v-th equation and w-th equation of (2.4) at (1, 0, 0)

Dvv
′′(ξ)− cv′(ξ) + βg(1)w(ξ) + rw(ξ)− σv(ξ) = 0,

Dw′′(ξ)− cw′(ξ) + γv(ξ)− δw(ξ) = 0,
ξ ∈ R.(2.6)

Plugging the trial function (v, w)(ξ) = (p, q)eλξ into (2.6), we get the characteristic equa-

tions

(2.7) Dvpλ
2 − cpλ− σp+ (βg(1) + r)q = 0, Dqλ2 − cqλ− δq + γp = 0.
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Set

D =

Dv 0

0 D

 , C = cI, F =

0 βg(1) + r

γ 0

 , V =

σ 0

0 δ

 ,
where I is the identity matrix. Let Λ(λ, c) = Dλ2 − Cλ + F − V and Q = (p, q)T , then

(2.7) can simplify

(2.8) Λ(λ, c)Q = 0.

Define Ď = V−1D, Č = V−1C and F̌ = V−1F , (2.8) can reduce to

H(λ, c)Q = Q,

where H(λ, c) := (−Aλ2 +Bλ+ I)−1F can be derived by

H(λ, c) =

 0 βg(1)+r
m0(λ,c)

γ
m1(λ,c) 0

 ,
where m0(λ, c) = −Dvλ

2 + cλ+ σ and m1(λ, c) = −Dλ2 + cλ+ δ.

Let ρ(λ, c) be the principle eigenvalue ofH(λ, c). Using a straightforward computation,

we get the following expression

ρ(λ, c) =

[
(βg(1) + r)γ

m0(λ, c)m1(λ, c)

]1/2

, ∀λ ∈ (0, λmax(c)), c ≥ 0,

where λmax(c) = min{(c+
√
c2 + 4Dvσ)/(2Dv), (c+

√
c2 + 4Dδ)/(2D)}.

Secondly, similar to [39, Section 2], we can obtain the following lemmas.

Lemma 2.1. Let

R0 =
γ

σδ
(βg(1) + r) > 1.

Then there exist c∗ > 0 and λ∗ ∈ (0, λmax(c)) satisfying

(i) ρ(λ, c) > 1, ∀ 0 ≤ c < c∗ and ∀λ ∈ (0, λmax(c));

(ii) ρ(λ∗, c∗) = 1, ρ(λ, c∗) > 1 for λ ∈ (0, λ∗) and ρ(λ, c∗) > 1 for λ ∈ (λ∗, λmax(c∗));

(iii) if c > c∗, then ρ(λ, c) = 1 has exactly two positive real roots λ1(c) and λ2(c) with

0 < λ1(c) < λ2(c) < λmax(c) such that ∂
∂λρ(λ1(c), c) < 0, ∂

∂λρ(λ2(c), c) > 0. In par-

ticular, there exists a unit vector Q(c) = (p(c), q(c))T ∈ R2 with positive components

such that

det Λ(λ1(c), c) = 0 and Λ(λ1(c), c)Q(c) = 0.
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Remark 2.2. For c > c∗, let ν > 0 be small enough with λ1(c)+ν ∈ (λ1(c), λ2(c)). In view

of Lemma 2.1, there exists the positive vector ζ(c) = (ζ1(c), ζ2(c))T satisfying

H(λ1(c) + ν, c)ζ(c) = ρ(λ1(c) + ν, c)ζ(c) < ζ(c),

which implies that

Λ(λ1(c) + ν, c)ζ(c) < 0.

Now, the main conclusion we shall obtain reads as follows.

Theorem 2.3. Let (H1) be satisfied. The following results hold true:

(i) If R0 > 1 and c ≥ c∗, then system (2.4) and (2.5) admits a solution (u(·), v(·), w(·)).

(ii) If R0 > 1 and 0 < c < c∗, then there exists no nontrivial solution (u(x + ct), v(x +

ct), w(x+ ct)) of system (2.4) satisfying (2.5).

In general, c∗ is called by the minimal wave speed.

3. Proof of assertion (i) in Theorem 2.3

In the section, we show assertion (i) of Theorem 2.3. For this purpose, we divide into the

following two subsections.

3.1. Case I: R0 > 1 and c > c∗

First, we need to prove that system (2.4) and (2.5) admits a solution (u(·), v(·), w(·)) if

R0 > 1 and c > c∗. In this subsection, assume R0 > 1 and c > c∗. In addition, for the

sake of simplicity,

λ1(c), Q(c) = (p(c), q(c))T and ζ(c) = (ζ1(c), ζ2(c))T ,

which is defined in Lemma 2.1 and Remark 2.2, are substituted by λc, Q = (p, q)T and

ζ = (ζ1, ζ2)T . It further follows that

Λ(λc, c)Q = 0, Λ(λc + ν, c)ζ < 0.

At first, by using Lemma 2.1 and Remark 2.2, we construct the super- and sub-solutions

of system (2.4).

Lemma 3.1. The vector valued map M(ξ) = (M̃1(ξ), M̃2(ξ)) with M̃1(ξ) = peλcξ and

M̃2(ξ) = qeλcξ satisfies the following equations

DvM̃
′′
1 (ξ)− cM̃ ′1(ξ) + (βg(1) + r)M̃2(ξ)− σM̃1(ξ) = 0,(3.1)

DM̃ ′′2 (ξ)− cM̃ ′2(ξ) + γM̃2(ξ)− δM̃1(ξ) = 0.(3.2)
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Lemma 3.2. For every θ > 0 small enough with θ < min{λc, c/d} and K > 1 sufficiently

large, the map F̃ (ξ) = max{1−Keθξ, 0} satisfies

(3.3) cF̃ ′(ξ) ≤ dF̃ ′′(ξ) + µ− µF̃ (ξ)− βg(F̃ (ξ))M̃2(ξ)

with ξ ∈ R and ξ 6= −1
θ lnK.

Proof. To get it, we analyze the following two cases.

Case 1. If ξ > −1
θ lnK, the inequality (3.3) holds.

Case 2. If ξ < −1
θ lnK, then one gets M̃1(ξ) = peλcξ, M̃2(ξ) = qeλcξ and F̃ (ξ) =

1−Keθξ. Furthermore, it follows from θ < c/d and e−
λc−θ
θ

lnK → 0 as K → +∞ that

− dKθ2eθξ + cKθeθξ − βg((1−Keθξ))qeλcξ − µ(1−Keθξ) + µ

= −dKθ2eθξ + cKθeθξ − βg((1−Keθξ))qeλcξ +Kµeθξ

=
[
(c− dθ)Kθ − βg((1−Keθξ))qe(λc−θ)ξ +Kµ

]
eθξ

≥
[
(c− dθ)Kθ − βg(1)qe−

λc−θ
θ

lnK +Kµ
]
eθξ

≥ 0.

Thus, the inequality (3.3) holds for K > 1 large enough. This completes the proof.

Lemma 3.3. Fix 0 < ω < θ. Then the function H̃(ξ) = (h1(ξ), h2(ξ)) with h1(ξ) =

max{peλcξ −Bζ1e
(λc+ω)ξ, 0} and h2(ξ) = max{qeλcξ −Bζ2e

(λc+ω)ξ, 0} satisfies

(3.4) ch′1(ξ) ≤ Dvh
′′
1(ξ) + βh2(ξ)g(F̃ (ξ)) + rh2(ξ)− σh1(ξ), ∀ ξ < 1

ω
ln

p

Bζ1

and

(3.5) ch′2(ξ) ≤ Dh′′2(ξ) + γh1(ξ)− δh2(ξ), ∀ ξ < 1

ω
ln

q

Bζ2
,

where B > 1 is sufficiently large such that max
{

1
ω ln p

Bζ1
, 1
ω ln q

Bζ2

}
< 1

θ ln 1
K .

Proof. When ξ < 1
ω ln p

Bζ1
, then one has h1(ξ) = peλcξ−Bζ1e

(λc+ω)ξ and F̃ (ξ) = 1−Keθξ.
Plugging h1(ξ) into inequality (3.4) for ξ < 1

ω ln p
Bζ1

, we get the following inequality

B[−Dvζ1(λc + ω)2 + cζ1(λc + ω)− rζ1 + σζ2]e(λc+ω)ξ + βg(F̃ (ξ))h2(ξ)

+Dvpλ
2
ce
λcξ − cpλceλcξ + rpeλcξ − σqeλcξ

= B[−Dvζ1(λc + ω)2 + cζ1(λc + ω)− rζ1 + σζ2]e(λc+ω)ξ + βg(F̃ (ξ))h2(ξ)− βg(1)qeλcξ

≥ 0.

In view of (H1) and Taylor’s theorem, we deduce that there exists a positive constant K1

satisfying

g(F̃ (ξ)) = g(1)− g′(1)Keθξ +R1(ξ)
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with

|R1(ξ)| ≤ K1e
2θξ.

It follows that

βg(F̃ (ξ))h2(ξ)− βg(1)qeλcξ

= β
(
g(1)− g′(1)Keθξ +R1(ξ)

)(
qeλcξ −Bζ2e

(λc+ω)ξ
)
− βg(1)qeλcξ

= −Bβg(1)ζ2e
(λc+ω)ξ − βg′(1)Keθξh2(ξ) + βh2(ξ)R1(ξ).

Therefore, we only need to prove

B[−Dvζ1(λc + ω)2 + cζ1(λc + ω)− βg(1)ζ2 − rζ1 + σζ2]e(λc+ω)ξ

− βg′(1)keθξh2(ξ) + βR1(ξ)h2(ξ)

≥
{
B[−Dvζ1(λc + ω)2 + cζ1(λc + ω)− βg(1)ζ2 − rζ1 + σζ2]

− βg′(1)Kqe(θ−ω)ξ − βK1qe
(2θ−ω)ξ

}
e(λc+ω)ξ

≥ 0.

Following from 0 < ω < θ, it has

(3.6) e(θ−ω)ξ <
p

Bζ1

(θ−ω)
ω → 0 and e(2θ−ω)ξ <

p

Bζ1

(2θ−ω)
ω → 0 as B → +∞,

which can imply that the inequality (3.6) holds for B > 1 large enough. The inequal-

ity (3.5) can be treated similarly. The proof is completed.

Secondly, let J := max
{

1
ω ln Bζ1

p , 1
ω ln Bζ2

q

}
and X > J . Let

ΓX =

(χ(·), ϕ1(·), ϕ2(·)) ∈ C([−X,X],R3) : χ(±X) = F̃ (±X), F̃ (ξ) ≤ χ(ξ) ≤ 1,

ϕi(±X) = hi(±X), hi(ξ) ≤ ϕi(ξ) ≤ M̃i(ξ), i = 1, 2

 .

Next, we consider the boundary valued problem as follows

cu′X = du′′X + µ− µuX − βg(uX)ϕ2,(3.7)

cv′X = Dvv
′′
X + βg(χ)ϕ2 + rϕ2 − σvX ,(3.8)

cw′X = Dw′′X + γϕ1 − δwX(3.9)

with

(3.10) uX(±X) = F̃ (±X), vX(±X) = h1(±X), wX(±X) = h2(±X)

for any (χ(·), ϕ1(·), ϕ2(·)) ∈ ΓX . It follows from Gilbarg and Trudinger [11, Corollary 9.18]

that the problem (3.7)–(3.10) can admit a unique solution (uX , vX , wX) (uX , vX , wX ∈
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W 2,p((−X,X),R) ∩ C([−X,X],R), ∀ p > 1). Furthermore, according to the embedding

theorem (see Gilbarg and Trudinger [11, Theorem 7.26]), it has uX(·), vX(·), wX(·) ∈
W 2,p(−X,X) ↪→ C1+α[−X,X] for some α ∈ (0, 1). Then we define an operator T =

(T1, T2, T3) : ΓX → C([−X,X],R3) by

uX = T1(χ, ϕ1, ϕ2), vX = T2(χ, ϕ1, ϕ2), wX = T3(χ, ϕ1, ϕ2),

for all (χ(·), ϕ1(·), ϕ2(·)) ∈ ΓX .

Theorem 3.4. The operator T maps ΓX into ΓX .

Proof. It is obvious that 1 is a super-solution of (3.7) for ξ ∈ [−X,X]. In addition, using

Lemma 3.2, we can see that F̃ (ξ) = 1−Keθξ satisfies

0 > cF̃ ′(ξ)− dF̃ ′′(ξ)− µ+ µF̃ (ξ) + βM̃2(ξ)g(F̃ (ξ))

≥ cF̃ ′(ξ)− dF̃ ′′(ξ)− µ+ µF̃ (ξ) + βϕ2g(F̃ (ξ))

for [−X,X ′] with X ′ = −1
θ lnK. It follows from the maximum principle associated with

uX(−X) = F̃ (−X) and uX(X ′) ≥ F̃ (X ′) = 0 that F̃ (ξ) ≤ uX(ξ), ∀ ξ ∈ [−X,X ′]. As a

consequence, we get F̃ (ξ) ≤ uX(ξ) ≤ 1 for ξ ∈ [−X,X].

Due to (3.1) and (3.2), it has

0 = −DvM̃
′′
1 + cM̃ ′1 − βg(1)M̃2 − rM̃2 + σM̃1

≤ −DvM̃
′′
1 + cM̃ ′1 − βϕ2g(χ)− rϕ2 + σM̃1

and

0 = −DM̃ ′′2 + cM̃ ′2 − γM̃1 + δM̃2 ≤ −DM̃ ′′2 + cM̃ ′2 − γϕ1 + δM̃2

for any ξ ∈ [−X,X]. Thus, it has vX(ξ) ≤ M̃1(ξ) and wX(ξ) ≤ M̃2(ξ) for ξ ∈ [−X,X] by

the maximum principle. On the other hand, (3.4) and (3.5) imply that

0 ≥ −Dvh
′′
1(ξ) + ch′1(ξ)− βh2(ξ)g(F̃ (ξ))− rh2(ξ) + σh1(ξ)

≥ −Dvh
′′
1(ξ) + ch′1(ξ)− βϕ2(ξ)g(χ(ξ))− rϕ2(ξ) + σh1(ξ)

for ξ ∈ [−X,X ′1] with X ′1 = 1
ω ln p

Bζ1
and

0 ≥ −Dh′′2(ξ) + ch′2(ξ)− γh1(ξ) + δh2(ξ)

≥ −Dh′′2(ξ) + ch′2(ξ)− γϕ1(ξ) + δh2(ξ)

for ξ ∈ [−X,X ′2] with X ′2 = 1
ω ln q

Bζ2
, respectively. According to vX(−X) = h1(−X) and

vX(X ′1) ≥ h1(X ′1) = 0, we get vX(ξ) ≥ h1(ξ) for ξ ∈ [−X,X ′1] by using the maximum

principle. Similarly, on the basis of wX(−X) = h2(−X) and wX(X ′2) ≥ h2(X ′2) = 0, it

has wX(ξ) ≥ h2(ξ) for ξ ∈ [−X,X ′2]. Therefore, one has h1(ξ) ≤ vX(ξ) ≤ M̃1(ξ) and

h2(ξ) ≤ wX(ξ) ≤ M̃2(ξ) for ξ ∈ [−X,X]. This completes the proof.
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It follows from the classic embedding theorem that T is a compact operator from ΓX to

ΓX . In fact, T : ΓX → ΓX is also a completely continuous operator [39]. As a consequence,

using the Schauder’s fixed point theorem, we can obtain that there exists a vector function

(uX , vX , wX) ∈ ΓX such that

(uX , vX , wX) = T (uX , vX , wX)

for ξ ∈ [−X,X], namely,

cu′X = du′′X + µ− µuX − βwXg(uX),(3.11)

cv′X = Dvv
′′
X + βwXg(uX) + rwX − σvX ,(3.12)

cw′X = Dw′′X + γvX − δwX(3.13)

with uX(±X) = F̃ (±X), vX(±X) = h1(±X) and wX(±X) = h2(±X).

Is the above conclusion true for X → ∞? Next, we prove that the conclusion for

X →∞ also holds true.

Theorem 3.5. For a given Y > 0, there exist some positive constants Mu(Y ), Mv(Y )

and Mw(Y ), which are independent upon X > max{Y,J , 1
θ lnK}, such that

(3.14) ‖uX‖C3[−Y,Y ] ≤Mu(Y ), ‖vX‖C3[−Y,Y ] ≤Mv(Y ), ‖wX‖C3[−Y,Y ] ≤Mw(Y ).

Proof. Note that

(3.15) uX(ξ) ≤ 1, v(ξ) ≤ peλcY := M̃1(Y ), w(ξ) ≤ qeλcY := M̃2(Y )

for ξ ∈ [−Y, Y ]. Using (3.15) and the Lp (p ≥ 2) estimates of linear elliptic differential

equations to (3.11), it has

‖uX‖W 2,p(−Y,Y ) ≤ O
(
µ+ βg(1)M̃2(Y ) + ‖χ‖W 2,p(−Y,Y )

)
where O is a constant and depends on Y , χ can be treated as a linear function con-

necting the points (−Y, uX(−Y )) and (Y, uX(Y )). Thus, there exists a constant Q̂ de-

pending upon Y such that ‖uX‖W 2,p(−Y,Y ) ≤ Q̂(Y ) for any X > Y . On the basis of

W 2,p(−Y, Y ) ↪→ C1,α[−Y, Y ] for α = 1− 1/p, it has that a constant M0
u1 depending on Y

satisfies ‖uX‖C1,α[−Y,Y ] ≤ M0
u1‖uX‖W 2,p(−Y,Y ), which leads to ‖uX‖C1,α[−Y,Y ] ≤ M̃u(Y )

for M̃u(Y ) = M0
u1Q̂(Y ) > 0. Due to (3.11), we further get that ‖uX‖C2[−Y,Y ] ≤ M̃u(Y )

for some M̃u(Y ) > 0. Using the same way, ‖vX‖C2[−Y,Y ] ≤ M̃v(Y ) and ‖wX‖C2[−Y,Y ] ≤
M̃w(Y ) for some constants M̃v(Y ) > 0 and M̃w(Y ) > 0 can be obtained. By differenti-

ating two sides of the equations (3.11)–(3.13), it further gets the estimates (3.14). This

completes the proof.
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Next, consider a sequence of positive numbers {Xm}m>0 such that Xm → +∞ as

m → +∞. In view of the above arguments, it is easy to see that there exists a solution

(u, v, w) ∈ C2(R,R3) of (2.4) such that

F̃ (x) ≤ u(x) ≤ 1, h1(x) ≤ v(x) ≤ M̃1(x), h2(x) ≤ w(x) ≤ M̃2(x).

In particular, the definitions of F̃ (x), hi(x) and M̃i(x) imply that

u(x)→ 1,
1

p
e−λcxv(x)→ 1,

1

q
e−λcxw(x)→ 1

as x→ −∞, which means that

lim
x→∞

u(x) = 1, lim
x→∞

v(x) = 0, lim
x→∞

w(x) = 0.

Finally, we show

u(x)→ u∗, v(x)→ v∗, w(x)→ w∗ as x→ +∞.

For convenience, let σ = γ + µ1, δ = r + µ2 and µ̂ = min{µ, µ1, µ2}.

Lemma 3.6. Let (A) be satisfied. Then these following inequalities

(3.16) 0 < v(x) + w(x) ≤ µ

µ̂

√
d

Dmin

and

(3.17)
µ

µ+ βg
(
µ
µ̂

√
d

Dmin

) ≤ u(x) ≤ 1, x ∈ R

hold true, where Dmin = min{Dv, D}.

Proof. Note that Dmin is defined as above. Let m(x) = βw(x)g(u(x)) and n(x) = γv(x)−
rw(x) for any x ∈ R, then it has

−du′′(x) + cu′(x) + µ̂u(x) ≤ µ−m(x),

−Dvv
′′(x) + cv′(x) + µ̂v(x) ≤ m(x)− n(x),

−Dw′′(x) + cw′(x) + µ̂w(x) ≤ n(x).

As a consequence, we can obtain

u(x) ≤ µ

µ̂
− fd(x), x ∈ R,

v(x) ≤ fDv(x)− gDv(x), x ∈ R,

w(x) ≤ gD(x), x ∈ R,
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where

fd(x) =

∫ +∞

0

e−µ̂t√
4πdt

∫ +∞

−∞
m(y − x− ct)e−y2/(4dt) dydt

and

gD(x) =

∫ +∞

0

e−µ̂t√
4πDt

∫ +∞

−∞
n(y − x− ct)e−y2/(4Dt) dydt.

It follows from d ≥ Dv ≥ D that
√
DvgDv(x) ≥

√
DgD(x) and

√
dfd(x) ≥

√
DvfDv(x) for

any x ∈ R, which further indicates that

√
Dw(x) ≤

√
DgD(x), ∀x ∈ R

and

v(x) +

√
D

Dv
w(x) ≤ fDv(x) ≤

√
d

Dv
fd(x) ≤

√
d

Dv

(
µ

µ̂
− S(x)

)
≤ µ

µ̂

√
d

Dv
, ∀x ∈ R.

Thus, we get √
Dvv(x) +

√
Dw(x) ≤ µ

√
d

µ̂
, ∀x ∈ R,

which implies that

v(x) + w(x) ≤
√

Dv

Dmin
v(x) +

√
D

Dmin
w(x) ≤ µ

µ̂

√
d

Dmin
, ∀x ∈ R.

Besides, u(x) satisfies the following inequality

du′′(x)− cu′(x) + µ−

(
µ+ βg

(
µ

µ̂

√
d

Dmin

))
u(x) ≤ 0, ∀x ∈ R.

Using the maximum principle, it has that

µ

µ+ βg
(
µ
µ̂

√
d

Dmin

) ≤ u(x), ∀x ∈ R.

The proof is completed.

Then, similar to [39, Section 2], we get that there exists an M1 > 0 satisfying for any

x ∈ R,

max

{
max

[x−1,x+1]
v, max

[x−1,x+1]
w

}
≤M1 min

{
min

[x−1,x+1]
v, min

[x−1,x+1]
w

}
and there exists a positive constant M satisfying

(3.18)

∣∣∣∣v′(x)

v(x)

∣∣∣∣+

∣∣∣∣w′(x)

w(x)

∣∣∣∣ ≤M, ∀x ∈ R.
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Now, we use some suitable Lyapunov functional to prove the convergence of traveling

waves as x→ +∞. Let L(x) = x− 1− lnx. Define

C =

(u(·), v(·), w(·)) ∈ C1(R, (0,+∞))× C1(R, (0,+∞))× C1(R, (0,+∞)) :

u > 0, v > 0, w > 0, ∃M > 0,
∣∣∣v′(x)
v(x)

∣∣∣+
∣∣∣w′(x)
w(x)

∣∣∣ ≤M
 .

For each (u, v, w) ∈ C, define

V (u, v, w)(x) :=

[
du′(x)

(
g(u∗)

g(u(x))
− 1

)
+ c

∫ u(x)

u∗

g(ξ)− g(u∗)

g(ξ)
dξ

]

+

[
Dvv

′(x)

(
1

v(x)
− 1

v∗

)
+ cL

(
v(x)

v∗

)]
v∗

+ C

[
Dw′(x)

(
1

w(x)
− 1

w∗

)
+ cL

(
w(x)

w∗

)]
w∗,

where

C =
βg(u∗)w∗ + rw∗

δw∗
.

Then the following result is proved.

Theorem 3.7. Let (H1) be satisfied. System (2.4) admits a positive solution (u(·), v(·),
w(·)) satisfying there exists a P > 1 such that

(3.19)
1

P
≤ u(x) ≤ 1, 0 < w(x) ≤ Pw∗, 0 < v(x) ≤ Pv∗

and

(3.20)

∣∣∣∣v′(x)

v(x)

∣∣∣∣+

∣∣∣∣w′(x)

w(x)

∣∣∣∣ ≤ P
for any x ∈ R. Thus there exists a positive constant m satisfying

(3.21) −m ≤ V (x) <∞, ∀x ∈ R

and the map x → V (x) is non-increasing. Especially, if x → V (x) is a constant, then

u ≡ u∗, v ≡ v∗, w ≡ w∗.

Proof. According to the inequalities (3.19)–(3.20), for any x ∈ R, we have∣∣∣∣du′(x)

(
g(u∗)

g(u(x))
− 1

)
+Dvv

′(x)

(
1

v(x)
− 1

v∗

)
+ CDw′(x)

(
1

w(x)
− 1

w∗

)∣∣∣∣
≤ dM‖u′‖∞

(
1 +

g(u∗)

g(Mu∗)

)
+ D̃CM+ D̃C

(∣∣∣∣v′(x)

v∗

∣∣∣∣+

∣∣∣∣w′(x)

w∗

∣∣∣∣)
≤ dM‖u′‖∞

(
1 +

g(u∗)

g(Mu∗)

)
+ D̃CM+ D̃CM

(∣∣∣∣v′(x)

v(x)

∣∣∣∣+

∣∣∣∣w′(x)

w(x)

∣∣∣∣)
≤ dM‖u′‖∞

(
1 +

g(u∗)

g(Mu∗)

)
+ D̃CM+ D̃CM2,

(3.22)
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where D̃ = max{Dv, CD} and C = max{1, C}. Set

ω(x) = c

∫ u(x)

u∗

g(ξ)− g(u∗)

g(ξ)
dξ + cL

(
v(x)

v∗

)
+ cCL

(
w(x)

w∗

)
, x ∈ R.

Based on the definition of the function L and the inequalities (3.19), it gets

0 ≤ ω(x) < +∞, x ∈ R.

From (3.22) and the last inequality, it follows that inequality (3.21) holds.

By a direct calculation, we get

dV (x)

dx
= µ− βg(u)w − µu− µg(u∗)

g(u)
+ βg(u∗)w + µu∗

g(u∗)

g(u(x))
− dg′(u(x))(u′(x))2

g2(u(x))

+ βg(u)w + rw − σv − βg(u)w
v∗

v
+ σv∗ − rwv

∗

v
− v′2(x)v∗

v2(x)

+ C

(
γv − δw − γvw

∗

w
+ δw∗ − w′2(x)w∗

w2(x)

)
.

On the basis of the following equalities

µ = βg(u∗)w∗ + µu∗, σv∗ = βg(u∗)w∗ + rw∗ and γv∗ = δw∗,

it gets

dV

dx
= µ(u∗ − u)

g(u(x))− g(u∗)

g(u(x))
+ βg(u∗)w∗

(
3− g(u∗)

g(u(x))
− g(u(x))v∗w

g(u∗)vw∗
− vw∗

vw∗

)
+ rw∗

(
2− vw∗

v∗w
− v∗w

vw∗

)
− dg′(u(x))(u′(x))2

g2(u(x))
− v′2(x)v∗

v2(x)
− Cw

′2(x)w∗

w2(x)
.

Due to the mean inequality, we know that

g(u∗)

g(u(x))
+
g(u(x))v∗w

g(u∗)vw∗
+
vw∗

v∗w
≥ 3,

v∗w

vw∗
+
vw∗

v∗w
≥ 2, ∀x ∈ R.

In addition, it follows from the second assumption of (H1) that

(u∗ − u)
g(u(x))− g(u∗)

g(u(x))
≤ 0, ∀u ≥ 0.

As a consequence, it has dV/dx ≤ 0, ∀x ∈ R, precisely, the function is non-increasing in

x ∈ R. When V (x) is a constant, we obtain

dV (x)

dx
≡ 0, ∀x ∈ R,

which states that

(3.23) u′(x) ≡ 0, v′(x) ≡ 0, w′(x) ≡ 0, u(x) ≡ u∗, v∗w(x) ≡ w∗v(x), ∀x ∈ R.
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It further follows from (3.23) that

(3.24) u(x) ≡ u∗, v(x) ≡ A, w(x) ≡ B, ∀x ∈ R,

where A and B are two nonnegative constants. Note that (u, v, w) is a solution of sys-

tem (2.4). Thus, plugging (3.24) into system (2.4), it has

u(x) ≡ u∗, v(x) ≡ v∗, w(x) ≡ w∗, ∀x ∈ R.

This completes this proof.

Based on the previous arguments, it has that there exist functions

(u(·), v(·), w(·))

such that (2.4), (3.16), (3.17), (3.18) and

lim
x→−∞

u(x) = 1, lim
x→−∞

v(x) = lim
x→−∞

w(x) = 0.

Consider an increasing sequence {xm}m≥0 which owns positive real numbers so that xm →
+∞ as m→ +∞. For ∀m ∈ N, define

um(x) = u(x+ xm), vm(x) = v(x+ xm), wm(x) = w(x+ xm), x ∈ R.

According to elliptic estimates, up to a sequence, assume that the sequences {um},
{vm} and {wm} converge towards some functions u∞, v∞, w∞ in C2

loc(R) × C2
loc(R) ×

C2
loc(R). Consequently, system (2.4)–(2.5) admits solutions (u∞, v∞, w∞). Due to the

non-increasing of the map x→ V (x), for each m ≥ 0, it has

V (um, vm, wm)(x) = V (u, v, w)(x+ xm)

≤ V (u, v, w)(x), ∀x ∈ R.

On the basis of the uniform boundedness of the sequence {V (um, vm, wm)(x)}m∈N, there

exists l ∈ R satisfying

lim
m→+∞

V (um, vm, wm)(x) = l, ∀x ∈ R.

According to

lim
m→+∞

V (um, vm, wm)(x) = V (u∞, v∞, w∞)(x)

for x ∈ C1
loc(R), one gets V (u∞, v∞, w∞)(x) ≡ l. Theorem 3.7 indicates that

u∞ ≡ u∗, v∞ ≡ v∗, w∞ ≡ w∗.

Then it follows that

lim
x→+∞

u(x) = u∗, lim
x→+∞

v(x) = v∗, lim
x→+∞

w(x) = w∗.

This completes the proof of the existence of traveling wave solutions of system (1.1) if

R0 > 1 and c > c∗.
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3.2. Case II: R0 > 1 and c = c∗

Secondly, we show that if R0 > 1 and c = c∗, then system (1.1) admits a traveling wave

solution (u(ξ), v(ξ), w(ξ)) on R3 such that (2.4) and (2.5). We prove the conclusion by

using the similar argument as those in [39, Theorem 2.11]. Thus, we omit it.

4. Proof of assertion (ii) in Theorem 2.3

In the section, we show the nonexistence of nonnegative traveling wave solutions of sys-

tem (1.1) when R0 > 1 and 0 < c < c∗. We first discuss some properties of v(x) and

w(x).

Lemma 4.1. Assume R0 > 1. For any c > 0, if there exists a positive traveling wave

solution (u(x + ct), v(x + ct), w(x + ct)) of system (1.1) such that (2.4) and (2.5), then

there are two positive constants T and M which is large enough satisfying∫ x

−∞
v(ξ) dξ ≤ T and

∫ x

−∞
w(ξ) dξ ≤ T , x < −2M.

Proof. Fix c > 0. Let (u(x + ct), v(x + ct), w(x + ct)) be a nonnegative traveling waves

of (1.1) which satisfies (2.4) and (2.5). According to u(−∞) = 1, there exists an M > 0

large enough satisfying

u(ξ) > (1− ν), ∀ ξ ∈ (−∞,−2M),

where ν ∈ (0, 1) which is a small constant will be determined later.

For each ξ < −2M , it has

(4.1) βg(u(ξ))w(ξ) + rw(ξ)− σv(ξ) ≥ βg(1− ν)w(ξ) + rw(ξ)− σv(ξ).

For y < x < −2M , set J̃v(x, y) =
∫ x
y v(ξ) dξ and J̃w(x, y) =

∫ x
y w(ξ) dξ. In addition,

we can get

(4.2) βg(1− ν)J̃w(x, y) + rJ̃w(x, y)− σJ̃v(x, y) ≤
∫ x

y
(βg(u(ξ))w(ξ) + rw(ξ)− σv(ξ)) dξ

by integrating two sides of (4.1) from y to x (y < x < −2M).

Based on Lemma 3.6 and (3.18), we can obtain

(4.3) ‖v(·)‖C2(R), ‖w(·)‖C2(R) ≤ P, lim
x→−∞

v′(x) = lim
x→−∞

w′(x) = 0,

where P is a positive constant. From (4.3), it follows that

(4.4)

∫ x

−∞
(βg(u(ξ))w(ξ) + rw(ξ)− σv(ξ)) dξ = −Dw′(x) + cw(x), ∀x ∈ (−∞,+∞)
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and

(4.5)

∫ x

−∞
(γv(ξ)− δw(ξ)) dξ = −Dvv

′(x) + cv(x), ∀x ∈ (−∞,+∞).

Now, we prove that there exists a positive constant T > 0 so that∫ x

−∞
v(ξ) dξ ≤ T and

∫ x

−∞
w(ξ) dξ ≤ T , ∀x < −2M.

Let

A =

−σ βg(1− ν) + r

γ −δ

 .
On the basis of R0 = (βg(1) + r)γ/(σδ) > 1, it gets |A| < 0 for ν > 0 sufficiently small.

Using multiplying (4.2) by −δ and then adding

−(βg(1− ν) + r)(γJ̃v(x, y)− δJ̃w(x, y))

to the both sides of the inequality, it obtains

−|A|J̃v(x, y) dξ ≤ δ
∫ x

y
(βg(u(ξ))w(ξ) + rw(ξ)− σv(ξ)) dξ

+ (βg(1− ν) + r)(γJ̃v(x, y)− δJ̃w(x, y)),

(4.6)

where y < x < −2M . Letting y → −∞ in (4.6) and then using (4.4) and (4.5), it gets∫ x

−∞
v(ξ) dξ ≤ T , ∀x < −2M.

In the same method, we can show that∫ x

−∞
w(ξ) dξ ≤ T , ∀x < −2M.

The proof is completed.

Lemma 4.2. Assume R0 > 1. For any c > 0, if system (1.1) admits a nontrivial and

nonnegative traveling wave solution (u(x + ct), v(x + ct), w(x + ct)) which satisfies (2.5),

then there is a positive constant µ0 such that

sup
x∈R
{v(x)e−µ0x} < +∞, sup

x∈R
{|v′(x)|e−µ0x} < +∞, sup

x∈R
{|v′′(x)|e−µ0x} < +∞

and

sup
x∈R
{w(x)e−µ0x} < +∞, sup

x∈R
{|w′(x)|e−µ0x} < +∞, sup

x∈R
{|w′′(x)|e−µ0x} < +∞.
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Proof. Fix c > 0. Assume that (u(x + ct), v(x + ct), w(x + ct)) is a nontrivial traveling

wave solution of system (2.4)–(2.5). It follows from u(−∞) = 1 and u(ξ) ≤ 1, ∀ ξ ∈ R
that there exists Mν > 0 sufficiently large such that

u(ξ) > 1− ν, ∀ ξ ∈ (−∞,−2Mν)

and

(4.7)
(βg(1− ν) + r)γ

σδ
> 1 (R0 > 1),

where ν ∈ (0, 1) is a small constant and then will be determined later. For ∀ ξ < −2Mν ,

it has

(4.8) cv′(ξ) ≥ Dvv
′′(ξ) + (βg(1− ν) + r)w(ξ)− σv(ξ)

and

cw′(ξ) = Dw′′(ξ)− γE(ξ)− δw(ξ).

Due to Lemma 4.1, it has J0(ξ) :=
∫ ξ
−∞ v(η) dη < +∞ and J1(ξ) :=

∫ 0
−∞w(η) dη < +∞

for ξ ≤ 0. Integrating two sides of inequality (4.8) from −∞ to ξ with ξ < −2Mν , it has

(4.9) cv(ξ) ≥ Dvv
′(ξ) + (βg(1− ν) + r)J1(ξ)− σJ0(ξ).

Furthermore, integrating two sides of inequality (4.9) from −∞ to ξ (ξ < −2Mν) causes

to

(4.10) (βg(1− ν) + r)

∫ ξ

−∞
J1(x)dx− σ

∫ ξ

−∞
J0(x)dx+Dvv(ξ) ≤ cJ0(ξ).

Similarly, for ξ < −2Mν , we also obtain that

(4.11) γ

∫ ξ

−∞
J0(x) dx− δ

∫ ξ

−∞
J1(x) dx+Dw(ξ) = cJ1(ξ),

which can reduce to

(4.12)

∫ ξ

−∞
J1(x) dx =

1

δ

(
γ

∫ ξ

−∞
J0(x) dx− cJ1(ξ) +Dw(ξ)

)
.

In the following, we prove that there are two positive constants a, b such that

(4.13) a

1∑
i=0

∫ ξ

−∞
Ji(η) dη ≤ b

1∑
i=0

Ji(ξ), ∀ ξ < −2Mν .
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Substituting (4.12) into (4.10), one has

cJ0(ξ) ≥ (βg(1− ν) + r)

(
γ
∫ ξ
−∞ J0(x) dx− cJ1(ξ) +Dw(ξ)

)
δ

− σ
∫ ξ

−∞
J0(x) dx+Dvv(ξ)

=

(
(βg(1− ν) + r)γ

δ
− σ

)∫ ξ

−∞
J0(η) dη +

(βg(1− ν) + r)D

δ
w(ξ) +Dvv(ξ)

− cβg(1− ν) + r

δ
J1(ξ),

which implies that

c

(
J0(ξ) +

βg(1− ν) + r

δ
J1(ξ)

)
≥
(

(βg(1− ν) + r)γ

δ
− σ

)∫ ξ

−∞
J0(η) dη

+
(βg(1− ν) + r)D

δ
w(ξ) +Dvv(ξ).

Since v(ξ) and w(ξ) are positive functions, then one has(
(βg(1− ν) + r)γ

δ
− σ

)∫ ξ

−∞
J0(η) dη ≤ c

(
J0(ξ) +

βg(1− ν) + r

δ
J1(ξ)

)
.

Due to (4.7), it is obvious that

(βg(1− ν) + r)γ

δ
− σ > 0.

As a consequence, there exists a0 > 0 and b0 > 0 such that

(4.14) a0

∫ ξ

−∞
J0(η) dη ≤ b0(J0(ξ) + J1(ξ)), ∀ ξ < −2Mν .

Plugging (4.14) into (4.10), we can obtain that there exists a > 0 and b > 0 such that

(4.15) a

∫ ξ

−∞
J1(η) dη ≤ b(J0(ξ) + J1(ξ)), ∀ ξ < −2Mν .

Adding (4.14) and (4.15), we can obtain the inequality (4.13).

Let

D(ξ) = J0(ξ) + J1(ξ).

Then we have that

a

∫ ξ

−∞
D(η) dη ≤ bD(ξ), ∀ ξ < −2Mν ,

which meas that

a

∫ 0

−∞
D(ξ + η) dη ≤ bD(ξ), ∀ ξ < −2Mν .
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D(·) is increasing, so it has aηD(ξ − η) ≤ bD(ξ) for any ξ < −2Mν and any η > 0. As a

consequence, there exist an η0 > 0 large enough and ω0 ∈ (0, 1) satisfying

D(ξ − η0) ≤ ω0D(ξ), ∀ ξ < −2Mν .

Let q(x) = D(x)e−µ0x with 0 < µ0 = 1
η0

ln 1
ω0
< λc. Then, it gets

q(ξ − η0) = J(ξ − η0)e−µ0(ξ−η0) ≤ ω0J(ξ)e−µ0(ξ−η0) = q(ξ), ξ < −2Mν .

Since D(x) < +∞ for x < 0, we have that there exists a constant κ0 such that

q(x) ≤ κ0, ∀x < 0,

which implies that D(x) ≤ κ0e
µ0x for any x < 0. Consequently, there exists q0 > 0

satisfying
∫ x
−∞ Ji(η) dη ≤ q0e

µ0x for any x < −2Mν , i = 0, 1. It follows from inequalities

(4.10) and (4.11) that there exists p0 > 0 such that

v(x) ≤ p0e
µ0x, w(x) ≤ p0e

µ0x, ∀x < −2Mν .

Since v(x) and w(x) are bounded on x ∈ R, then we obtain

v(x) ≤ p0e
µ0x, w(x) ≤ p0e

µ0x, ∀x ∈ R.

Using (4.9) and (3.18), we can get

sup
x∈R
{|v′(x)|e−µ0x} < +∞.

Furthermore, by (4.8), it has

sup
x∈R
{|v′′(x)|e−µ0x} < +∞.

Applying the same methods as v(ξ), we also obtain

sup
x∈R
{w(x)e−µ0x} < +∞, sup

x∈R
{|w′(x)|e−µ0x} < +∞, sup

x∈R
{|w′′(x)|e−µ0x} < +∞.

This completes the proof.

Now, we prove the main result of this subsection.

Theorem 4.3. Assume that R0 > 1. For c ∈ (0, c∗), there exists no nontrivial solution

(u(x+ ct), v(x+ ct), w(x+ ct)) of system (2.4)–(2.5).
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Proof. We prove the theorem by way of contradiction. Fix c ∈ (0, c∗). Suppose on the

contrary that system (2.4)–(2.5) admits a nontrivial solution (u(x+ct), v(x+ct), w(x+ct)).

By Lemma 4.2, there are

sup
x∈R
{v(x)e−µ0x} < +∞, sup

x∈R
{|v′(x)|e−µ0x} < +∞, sup

x∈R
{|v′′(x)|e−µ0x} < +∞

and

sup
x∈R
{w(x)e−µ0x} < +∞, sup

x∈R
{|w′(x)|e−µ0x} < +∞, sup

x∈R
{|w′′(x)|e−µ0x} < +∞.

Set R(ξ) := 1− u(ξ) ∈ [0, 1) on ξ ∈ R. Plugging R(ξ) into the u-th equation yields

cR′(ξ)− dR′′(ξ) + µR(ξ)− βw(ξ)g(1−R(ξ)) = 0, ∀ ξ ∈ R.

It further follows from R(−∞) = 0 and the boundedness of R that
∫ ξ
−∞R(x) dx < +∞ on

ξ ≤ 0. Furthermore, integrating two sides of the above equality from −∞ to ξ ≤ 0 leads

to

cR(ξ)− dR′(ξ) + µ

∫ ξ

−∞
R(x) dx−

∫ ξ

−∞
βg(1−R(x))w(x) dx = 0.

Let f(ξ) =
∫ ξ
−∞ βw(x)g(1− R(x)) dx and B0(ξ) = µ

∫ ξ
−∞R(x) dx for any ξ ≤ 0. It is not

difficult to show that f(ξ) ≤ CMe
µ0ξ for any ξ ∈ R, where CM > 0 is a constant. Based

on the definition of R(ξ), it has

dR′(ξ)− cR(ξ) = B0(ξ)− f(ξ), ξ ≤ 0.

A directly computation causes to

R(ξ) = ĈMe
c
d
ξ +

1

d
e
c
d
ξ

∫ 0

ξ
e−

c
d
η(−B0(η) + f(η)) dη

= ĈMe
c
d
ξ +

1

d
e
c
d
ξ

∫ 0

ξ
e−

c
d
ηf(η) dη − 1

d
e
c
d
ξ

∫ 0

ξ
e−

c
d
ηB0(η) dη

≤ ĈMe
c
d
ξ +

1

d
e
c
d
ξ

∫ 0

ξ
e−

c
d
ηf(η) dη, ∀ ξ ≤ 0,

where ĈM = R(0). In view of f(ξ) = O(eµ0ξ) as ξ → −∞, we get that R(ξ) = O(eµ
′
0ξ) as

ξ → −∞, where µ′0 = min{µ0, c/d}. It follows from 0 ≤ R(ξ) < 1 that

(4.16) sup
x∈R
{R(x)e−µ

′
0x} < +∞.

On the basis of the above discussion, define the two-sided Laplace transform of v and

w by

L0(λ) =

∫ +∞

−∞
e−λξv(ξ) dξ, L1(λ) =

∫ +∞

−∞
e−λξw(ξ) dξ.
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We only take into account λ ∈ R+, too. v(ξ) and w(ξ) are bounded in R, so it has∫ +∞

0
e−λξv(ξ) dξ < +∞ and

∫ +∞

0
e−λξw(ξ) dξ < +∞

for any λ ≥ 0. Therefor, we only consider

L0(λ) :=

∫ 0

−∞
e−λξv(ξ) dξ, L1(λ) =

∫ 0

−∞
e−λξw(ξ) dξ.

Due to v(ξ) > 0 and w(ξ) > 0 for any ξ ∈ R and Li(·) is increasing in its domain, for each

i = 0, 1, one of the following properties holds: (i) there is a positive constant νi > µ0 so

that Li(λ) < +∞ for any 0 ≤ λ < νi and limλ→νi−0 Li(λ) = +∞; (ii) Li(λ) < +∞ for any

λ ≥ 0.

In the following, we show νi = +∞, namely, for both i = 0, 1, Li(λ) < +∞ for any

λ ≥ 0. First, we prove ν0 = ν1 by a contradiction argument.

According to

Dvv
′′(ξ)− cv′(ξ) + (βg(1) + r)w(ξ)− σv(ξ) = β(g(1)− g(u(ξ)))w(ξ), ∀x ∈ R,

it has

(4.17) (Dvλ
2 − cλ− σ)L0(λ) + (βg(1) + r)L1(λ) = β

∫ +∞

−∞
(g(1)− g(u(ξ)))w(ξ)e−λξ dξ.

On the same way, we get

(Dλ2 − cλ− δ)L1(λ) + γL0(λ) = 0,

which becomes to

(4.18) (−Dλ2 + cλ+ δ)L1(λ) = γL0(λ).

If ν1 6= ν0, then it is a contradiction with (4.18). Thus, we can obtain ν0 = ν1 := ν.

Secondly, we show ν = +∞ by using a contradiction way. Without loss of generality, let

ν < +∞, namely, Li(λ) < +∞ for any 0 ≤ λ < ν and limλ→ν−0 Li(λ) = +∞, i = 0, 1. In

fact, it is easy to see that (−Dν2+cν+δ) > 0 in (4.18). Furthermore, if (Dvν
2−cν−σ) ≥ 0

in (4.17), then by letting λ→ ν−0, the left-hand side of (4.17) tends to infinity, however,

based on (4.16) and (H1), the right-hand side of (4.17) is bounded, that is, it has

β

∫ +∞

−∞
(g(1)− g(u(ξ)))w(ξ)e−νξ dξ

≤ βG sup
ξ∈R

{
(1− u(ξ))e−

µ′0
2
ξ

}∫ +∞

−∞
w(ξ)e−(ν−µ

′
0
2

)ξ dξ

<∞,
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where G = supx∈[0,1]{g′(x)} and µ′0 has been defined in (4.16), which leads to a contradic-

tion. If (Dvν
2 − cν − σ) < 0, then plugging (4.18) into (4.17) yields

(4.19)

(
m0(λ, c)m1(λ, c)

γ
(ρ2(λ, c)− 1)

)
L1(λ) = β

∫ +∞

−∞
(g(1)− g(u(ξ)))w(ξ)e−λξ dξ

for 0 < λ < ν. It is obvious that 0 < ν < λmax(c). Similarly, when λ → ν − 0, then the

left-hand side of (4.19) tends to infinity, however, the right-hand side of (4.19) is bounded,

which causes to a contradiction. Thus, the assumption ν < +∞ is also impossible.

Note that for i = 0, 1, Li(λ) < +∞ for any λ ≥ 0 has been proved. However, letting

λ → +∞ in (4.17) yields a contradiction because limλ→+∞(Dvλ
2 − cλ − σ) = +∞. The

proof is completed.

5. Numerical simulations

In this section, we simulate traveling wave solutions for system (1.1) with g(u) = u and

g(u) = u/(1 +u), which connects the disease-free equilibrium (u0, v0, w0) and the endemic

equilibrium (u∗, v∗, w∗). For this purpose, the spatial domain R and the time domain R+

are truncated by [0, 800] and [0, 200], respectively and use piecewise functions as bellows

as initial conditions:

u(t, x) =

u∗ if 0 ≤ x < 400, t = 0,

u0 if 400 ≤ x ≤ 800, t = 0,
v(t, x) =

v∗ if 0 ≤ x < 400, t = 0,

0 if 400 ≤ x ≤ 800, t = 0

and

w(t, x) =

w∗ if 0 ≤ x < 400, t = 0,

0 if 400 ≤ x ≤ 800, t = 0.

It further take Neumann boundary condition for system (1.1).

Case 1: g(u) = u. We take the following parameters of the model:

µ = 0.65, β = 1.8, λ = 0.13, σ = 0.8, r = 0.6, δ = 0.6, γ = 0.5.

It follows from these parameters that the basic reproduction number R0 ≈ 10 > 1, the

minimal speed c∗ ≈ 0.244, the disease-free equilibrium (5, 0, 0) and the endemic equilib-

rium (0.2029, 2.0574, 1.7085) are obtained.

Figure 5.1, which is the simulation results of system (1.1) with the given parameters,

illustrates that system (1.1) admits a traveling wave solution (u, v, w) with the minimal

wave speed c = c∗. Furthermore, traveling wave of system (1.1) is not monotone, see

Figures 5.2 and 5.5(a).
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Figure 5.1: Numerical simulations of solutions for system (1.1) with g(u) = u.
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Figure 5.2: Cross section curves of solutions of system (2.1) at t = 150 in Figure 5.1.

Case 2: g(u) = u/(1 + u). Here, we take the following parameters:

µ = 1, β = 1.2, λ = 0.16, σ = 0.8, r = 0.5, δ = 0.6, γ = 0.5.

By a straightforward computation, it has the basic reproduction number R0 ≈ 8 > 1,

the minimal speed c∗ ≈ 0.12, the disease-free equilibrium (1.16, 0, 0) and the endemic

equilibrium (0.3753, 2.495, 2.0979).

Similarly, Figure 5.3 shows the existence of traveling wave solutions of system (1.1)

with c = c∗ and Figures 5.4 and 5.5(b) demonstrate the non-monotonicity of the traveling

wave solutions.

Figure 5.3: Numerical simulations of solutions for system (1.1) with g(u) = u/(1 + u).
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Figure 5.4: Cross section curves of solutions of system (1.1) at t = 150 in Figure 5.3.
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Figure 5.5: The value of U(x) with x ∈ (380, 430) and x ∈ (300, 420) in Figures 5.2 and

5.4, respectively.

Another incidence rates can be treated similarly.

5.1. Discussion

In this paper, we considered a diffusive SEIR epidemic model with nonlinear incidence

rate and constant recruitment and studied the existence and nonexistence of traveling

wave solutions of the model. When the basic reproduction number R0 > 1, we proved

that there exists a number c∗ satisfying for each wave speed c ≥ c∗, the system admits a

nontrivial and nonnegative traveling wave solution and also investigated the nonexistence

of nonnegative traveling wave solutions of the model when R0 > 1 and 0 < c < c∗.

Compared with [39], we consider the more general case, namely, we extend results for

the nonexistence of traveling wave solutions of the system in [39] by using the Laplace

transform.
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