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Minimal Ideals and Primitivity in Near-rings

Gerhard Wendt

Abstract. We address and answer the question when a minimal ideal of a zero sym-

metric near-ring is a primitive near-ring. This implies that a minimal ideal of a zero

symmetric near-ring is a simple near-ring in many natural situations.

1. Introduction

In what follows, we consider right near-rings, this means the right distributive law holds,

but not necessarily the left distributive law. The notation is that of [7]. It is well known

in ring theory that given a minimal ideal I of a ring, then I2 = {0} or I is a simple ring

(a consequence of the so called “Andrunakievich Lemma” in rings, see for example [2,

Theorem 5.7.1]). In near-ring theory an analogous result is not true. Minimal ideals in

zero symmetric near-rings exist which are neither square zero nor simple near-rings. A

first example of such an ideal was given by K. Kaarli (see [4]). Thus, the study of the

structure of minimal ideals in near-rings is much more complicated as in the ring case and

still incomplete.

First thorough studies on minimal ideals in near-rings were carried out by S. Scott

(see [7] for references and detailed discussions on Scott’s results) and K. Kaarli (see [3])

where it basically has been shown that under the presence of chain conditions in a zero

symmetric near-ring a minimal ideal decomposes into a finite direct sum of minimal left

ideals of the near-ring. The question if a non-nilpotent minimal ideal in a near-ring is

a simple near-ring could be answered to the positive by K. Kaarli in [5] in case of dis-

tributively generated (d.g.) near-rings which satisfy the descending chain condition on

N -subgroups contained in the near-ring N . In general, it is only known that minimal

ideals in d.g. near-rings are either nilpotent or subdirectly irreducible, see [5]. This need

not be true for arbitrary zero symmetric near-rings. In [10] there is an example of a

non-nilpotent minimal ideal in a finite zero symmetric near-ring where the ideal is not

subdirectly irreducible, another example will be given here in Section 5. So, the question
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concerning the simplicity or the subdirect irreducibility of a minimal ideal in a zero sym-

metric near-ring is a complicated one. However, if one changes the question from asking

for simplicity to asking for primitivity of an ideal, considered as a subnear-ring, then we

can derive powerful theorems as we will see in this paper. Since primitive near-rings are

simple near-rings in case of suitable finiteness conditions, we are able to derive results

concerning simplicity of ideals under this point of view.

2. Basic definitions and notation

In our discussion that will follow we have to deal with N -groups of type v, v ∈ {0, 1, 2},
of a near-ring and the concept of v-primitivity. Thus, we give a brief overview of these

definitions and follow the notation of [7]. Let N be a zero symmetric near-ring, this means

that n ∗ 0 = 0 for all n ∈ N where ∗ is the near-ring multiplication. Let Γ be an N -group

of the near-ring N . An N -ideal I of Γ is a normal subgroup of the group (Γ,+) such that

∀n ∈ N , ∀ γ ∈ Γ, ∀ δ ∈ I: n(γ+ δ)−nγ ∈ I. A left ideal L of a near-ring N is an N -ideal

of the natural N -group N and in case N is zero symmetric, a left ideal is also an N -group.

The left ideal L is an ideal, if LN ⊆ L.

A subgroup S of Γ is called an N -subgroup if NS ⊆ S. In case of zero symmetric

near-rings, N -ideals of an N -group Γ are also N -subgroups.

Given an N -group Γ and a non-empty subset S ⊆ Γ then (0 : S) = {n ∈ N | ∀ s ∈
S, ns = 0} is called the annihilator of S. Such annihilators always are left ideals of the

near-ring N . The annihilator of an N -subgroup is always an ideal of the near-ring N . We

call an N -subgroup faithful, if (0 : S) = {0}.
Let Γ be a non-zero N -group. We define two sets, the set θ1 := {γ ∈ Γ | Nγ = Γ}

and θ0 := {γ ∈ Γ | Nγ 6= Γ}. θ1 is called the set of generators of the N -group Γ and θ0 is

called the set of non-generators. Note that Γ = θ1 ∪ θ0. We now introduce three different

types of simplicity of N -groups.

A non-zero N -group Γ of the near-ring N is of type 0 if there is an element γ ∈ Γ such

that Nγ = Γ, so θ1 6= ∅ and there are no non-trivial N -ideals in Γ. A non-zero N -group

Γ is of type 1 if it is of type 0 and N acts strongly monogenic on Γ. N acting strongly

monogenic on Γ means that Nγ = Γ or Nγ = {0} for all γ ∈ Γ. The N -group Γ is called

N -group of type 2 if NΓ 6= {0} and there are no non-trivial N -subgroups in Γ. In case N

has an identity element with respect to multiplication, an N -group is of type 1 if and only

if it is of type 2 (see [7, Propositions 3.7 and 3.4]). In general we have for an N -group

that type 2 implies type 1 and type 1 implies type 0, see [7, Proposition 3.7].

A near-ring is called v-primitive if it acts on a faithful N -group Γ of type v. The

structure of 0-primitive near-rings is not completely known. However, the 2- and 1-

primitive zero symmetric near-rings can be described in a satisfactory way, see [9] for
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references and methods using so called sandwich near-rings to describe 2- and 1-primitive

near-rings.

The Jacobson radicals of type v of a near-ring N are defined as the intersection of the

annihilators of the N -groups of type v of the near-ring, so Jv(N) :=
⋂

Γ of type v(0 : Γ). In

our discussion we also need J1/2(N), which is the intersection of all 0-modular left ideals

(see [7, Definition 3.28]) of N and we have that J0(N) ⊆ J1/2(N) ⊆ J1(N).

3. Minimal ideals and primitivity

Let N be a zero symmetric near-ring and I a minimal ideal of N . In [1] it is proved that

in case J2(I) = {0}, I is a 2-primitive near-ring and under suitable finiteness conditions

N = I+̇(0 : I). The proofs in [1] make use of a powerful theorem on 2-primitive ideals

of a subnear-ring of a near-ring, due to K. Kaarli and to be found in [6, Corollary 8.5],

for example. It states that given a 2-primitive ideal T of a subnear-ring S of a near-

ring N , then T is already an ideal of N . Kaarli’s theorem is powerful and needed for

the study of Jacobson radicals of type 2 of subnear-rings of a near-ring. For example,

one can show with Kaarli’s theorem that for an ideal I of a zero symmetric near-ring we

have J2(I) = I ∩ J2(N). For more details in this line of discussion we refer to [6] or [7].

Here we quickly outline how it is proved in [1] that J2(I) = {0}, I a minimal ideal in a

zero symmetric near-ring N , implies I being 2-primitive. J2(I) = {0} implies that I is a

subdirect product of 2-primitive near-rings. The kernel of each projection mapping from

this subdirect product is then a 2-primitive ideal of I, T say. By Kaarli’s Theorem, T is

an ideal of N and by minimality of I as an ideal of N we have that the subdirect product

decomposition of I consists exactly of one term. This means that I is itself a 2-primitive

near-ring. For more details consult [1].

Of course it is interesting what happens if we consider minimal ideals not sitting in

J1(N) of a near-ring N , which means that I ∩ J1(N) = {0} by minimality of I. It turns

out that we can transfer the results of [1] accordingly. We want to emphasize that the

results presented here do not simply carry over from [1] because Kaarli’s powerful theorem

on 2-primitive ideals does not extend to 1-primitive ideals, as the examples in Section 5

show.

First we prove some facts about strongly monogenic N -groups. Parts of the following

discussion can be found in [8] and is included here for completeness and self containment.

Lemma 3.1. Let N be a zero symmetric near-ring with a strongly monogenic N -group Γ.

Then there exists a greatest proper N -ideal in Γ.

Proof. Remember that θ1 := {γ ∈ Γ | Nγ = Γ} and θ0 := {γ ∈ Γ | Nγ 6= Γ}. N acting

strongly monogenic on Γ means that Nθ0 = {0}. Let L be a proper N -ideal of Γ. Since
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N is zero symmetric, L is an N -subgroup of Γ. Hence NL ⊆ L 6= Γ. Consequently,

L ∩ θ1 = ∅ so each proper N -ideal L of Γ is contained in θ0 and so NL = {0}.
Note that the sum of N -ideals is again an N -ideal (see [7, Corollary 2.3]). We now

show that a finite sum
∑n

i=1 Li of proper N -ideals is again a proper N -ideal. We use

induction on the natural number n of N -ideals appearing in the sum
∑n

i=1 Li, Li a proper

N -ideal of Γ.

The case n = 1 is clear since we only consider proper N -ideals. So suppose that n > 1

and each sum of n − 1 proper N -ideals is again a proper N -ideal of Γ. We have to show

that the sum of n proper N -ideals is a proper N -ideal. Let
∑n

k=1 Lk be a sum of n proper

N -ideals. Let l1 + · · ·+ ln ∈
∑n

k=1 Lk. Then, for all m ∈ N , m(l1 + (l2 + · · ·+ ln))−ml1 ∈∑n
k=2 Lk ⊆ θ0, by induction hypothesis. Since ml1 = 0, m(l1 + l2 + · · · + ln) ∈ θ0 for all

m ∈ N . Thus, N(l1 + l2 + · · ·+ ln) ∈ θ0 and we see that we cannot have (l1 + · · ·+ ln) ∈ θ1.

Hence, (l1 + · · ·+ ln) ∈ θ0 and
∑n

k=1 Lk is a proper N -ideal.

Now let S be the sum of all proper N -ideals of Γ. If s ∈ S, then s can be written as

a finite sum of elements of some proper N -ideals. Therefore, s ∈ θ0 as we have seen. So,

S ⊆ θ0 and hence, S is the greatest proper N -ideal. This finishes our proof.

Lemma 3.2. Let N be a zero symmetric near-ring which has a strongly monogenic N -

group Γ. Let 4 be the greatest proper N -ideal in Γ, existing by Lemma 3.1. Then, Γ/4
is an N -group of type 1.

Proof. Γ/4 is again an N -group by defining n(γ+4) := nγ+4 for all n ∈ N and γ ∈ Γ.

If γ ∈ θ1, then N(γ +4) = Γ/4 and if γ ∈ θ0 then N(γ +4) = {0 +4}. So, Γ/4 is a

strongly monogenic N -group. The fact that 4 is the greatest proper N -ideal of Γ implies

that Γ/4 contains no non-trivial N -ideals.

We now prove our main tool for studying minimal ideals in this paper.

Lemma 3.3. Let N be a zero symmetric near-ring which has a faithful and strongly

monogenic N -group Γ. Then J1(N) = J0(N) and N/J1(N) = N/J0(N) is a 1-primitive

near-ring, acting 1-primitively on Γ/4, 4 the greatest proper N -ideal in Γ existing by

Lemma 3.1. Furthermore, NJ1(N) = NJ0(N) = {0} and J0(N) = J1(N) = (0 : Γ/4).

Proof. By Lemma 3.2, Γ/4 is an N -group of type 1, so we have J1(N) ⊆ (0 : Γ/4).

We now prove that the annihilator ideal (0 : Γ/4) is a nilpotent ideal. We consider

the natural action of (0 : Γ/4) on Γ. We have (0 : Γ/4)Γ ⊆ 4 ⊆ θ0. Thus, N(0 :

Γ/4)Γ ⊆ Nθ0 = {0}. Faithfulness of Γ implies that N(0 : Γ/4) = {0} and therefore

also (0 : Γ/4)2 = {0}. Thus, (0 : Γ/4) is nilpotent. So, (0 : Γ/4) ⊆ J1(N) by [7,

Theorem 5.37]. So we finally have J1(N) = (0 : Γ/4) and following from that, because
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N(0 : Γ/4) = {0}, NJ1(N) = {0}. Thus, J1(N) is a nilpotent ideal and we have that

J1(N) ⊆ J0(N) by [7, Theorem 5.37]. Therefore, J0(N) = J1(N).

By [7, Proposition 3.14], Γ/4 is a faithful N -group of type 1 of the near-ring N/(0 :

Γ/4). Consequently, the near-ring N/J1(N) is a 1-primitive near-ring.

Note that if N fulfilles the assumptions of Lemma 3.3 and additionally has an identity

element then N acts 2-primitively on Γ and so J2(N) = J1(N) = J0(N) = {0}. This

is because in that case we must have that Nγ 6= {0} for each γ ∈ Γ \ {0}, due to the

identity element in N (see [7, Proposition 3.4]). Then, since N is strongly monogenic, we

must have Nγ = Γ for each γ ∈ Γ \ {0}. So, Γ is of type 2 and N is 2-primitive. Thus,

Lemma 3.3 is a generalisation of this easy observation to near-rings without an identity

element.

We need another lemma which will be frequently used in this paper.

Lemma 3.4. Let N be a zero symmetric near-ring and let I be an ideal of N . Let Γ be

an N -group of type 0 such that I ∩ (0 : Γ) = {0}. Let γ ∈ Γ such that Nγ = Γ. Then,

Iγ = Γ.

Proof. Let γ ∈ Γ such that Nγ = Γ. Suppose that Iγ = {0}. Then IΓ = INγ ⊆ Iγ = {0}
contradicting the fact that I ∩ (0 : Γ) = {0}. Since Γ = Nγ we have that Iγ is an N -ideal

in Γ (see [7, Proposition 3.4]). By assumption, Γ is an N -group of type 0 implying that

Iγ = Γ.

We now present our main theorem of this section and one of our main theorems in this

paper.

Theorem 3.5. Let N be a zero symmetric near-ring. Let I be a minimal ideal of N and

I 6⊆ J1(N). Then, I is a 1-primitive near-ring.

Proof. I 6⊆ J1(N) implies that I ∩J1(N) = {0} due to minimality of I. Thus, J1(N) 6= N

and since I 6⊆ J1(N) there exists an N -group Γ of type 1 such that IΓ 6= {0}. Since (0 : Γ)

is an ideal, minimality of I implies that I ∩ (0 : Γ) = {0}. Hence, I acts faithfully on Γ.

Γ is an N -group of type 1, so N acts strongly monogenic on Γ. Thus, Nθ0 = {0} and so

also Iθ0 = {0}. From Lemma 3.4 we have that for γ ∈ θ1, Iγ = Γ. This implies that also

I acts strongly monogenic on Γ. Therefore we can apply Lemma 3.3 which shows that

I/J1(I) is a 1-primitive near-ring. By [7, Theorem 5.33], J1(I) ⊆ J1(N) ∩ I = {0} which

proves that I is a 1-primitive near-ring.

We will prove that simplicity of a minimal ideal arises naturally when considering near-

rings satisfying the descending chain condition on left ideals (abbreviated by DCCL) and

minimal ideals sitting outside the Jacobson 1 radical of the near-ring. We need a technical
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lemma first. As usual, the symbol +̇ means a direct composition of the near-rings in

question.

Lemma 3.6. Let N be a zero symmetric near-ring and suppose that N = I+̇(0 : I), I an

ideal of the near-ring. Let L be a left ideal of the subnear-ring I. Then L is a left ideal of

the near-ring N .

Proof. Since (L,+) is normal in (I,+) and (I,+) is a direct summand of (N,+) it follows

from standard group theory that (L,+) is a normal subgroup of (N,+). We now have to

show the following: ∀n,m ∈ N , ∀ l ∈ L, n(m + l) − nm ∈ L. Let n,m ∈ N . We use the

direct sum decomposition to get n = i+ a and m = j + b with i, j ∈ I and a, b ∈ (0 : I).

Then we have that n(m+ l)−nm = (i+a)(j+b+ l)−(i+a)(j+b). By right distributivity,

this expression equals i(j+b+l)+a(j+b+l)−a(j+b)−i(j+b). Since j+l ∈ I and j ∈ I we

have a(j+l) = 0 = aj. Since j ∈ I and b ∈ (0 : I) we have that j+b = b+j from the direct

sum decomposition of (N,+). Thus we have a(j+b+ l) = a(b+j+ l) = a(b+(j+ l)), j ∈ I
and l ∈ I, so we can use that the sum N = I+̇(0 : I) is distributive (see [7, Theorem 2.30]

or [7, Proposition 2.6]) to get a(b+(j+ l)) = ab+a(j+ l) = ab and a(j+b) = aj+ab = ab.

Thus, a(j + b+ l)− a(j + b) = ab− ab = 0.

Therefore i(j+b+l)+a(j+b+l)−a(j+b)−i(j+b) = i(j+b+l)−i(j+b). From j+b = b+j

and the distributivity of the sumN = I+̇(0 : I) we get i(j+b+l) = i(b+(j+l)) = ib+i(j+l)

and i(j+b) = i(b+j) = ib+ij. Thus, i(j+b+l)−i(j+b) = ib+i(j+l)−ij−ib. Now we use

that L is a left ideal of I, i ∈ I and j ∈ I and we see that i(j+ l)− ij ∈ L. Since (L,+) is a

normal subgroup of (N,+) we finally have that n(m+l)−nm = ib+i(j+l)−ij−ib ∈ L.

We have the next theorem which shows simplicity of the minimal ideal in question, in

case the near-ring has DCCL.

Theorem 3.7. Let N be a zero symmetric near-ring with DCCL. Let I be a minimal ideal

not contained in J1(N). Then, I is a 1-primitive near-ring and N = I+̇(0 : I). I is a

simple subnear-ring of N and I is a direct sum of left ideals of N which are I-isomorphic

as well as N -isomorphic and which are I-groups of type 1 as well as N -groups of type 1.

Proof. That I is a 1-primitive near-ring follows from Theorem 3.5. I 6⊆ J1(N) implies

that there is an N -group Γ of type 1 such that IΓ 6= {0}. Since (0 : Γ) is an ideal,

minimality of I implies that I ∩ (0 : Γ) = {0}. Now N/(0 : Γ) is a 1-primitive near-

ring with DCCL (see [7, Proposition 3.14 and Theorem 2.35]) and therefore simple by [7,

Theorem 4.46]. Thus, (0 : Γ) is a maximal ideal and this already implies N = I+̇(0 : Γ).

Since (0 : Γ)I ⊆ I ∩ (0 : Γ) = {0} we see that (0 : Γ) ⊆ (0 : I).

Due to the DCCL there is a minimal left ideal L contained in I. Then I∩(0 : Γ) = {0},
so LΓ 6= {0}. As N acts strongly monogenic on Γ, there must be a generator γ of the
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N -group Γ such that Lγ 6= {0}. Thus, by [7, Proposition 3.10] L ∼=N Γ and consequently,

(0 : L) = (0 : Γ) (see [7, Proposition 1.45]). Hence, (0 : I) ⊆ (0 : L) = (0 : Γ) which proves

N = I+̇(0 : I).

This decomposition shows that each left ideal of the subnear-ring I is a left ideal of N

by Lemma 3.6. Consequently, the 1-primitive near-ring I satisfies the DCC on left ideals

of I and by [7, Theorem 4.46], I is a simple near-ring and I decomposes into a finite direct

sum of I-isomorphic left ideals which are I-groups of type 1. Using the fact that each

element n ∈ N decomposes as n = i+ a with i ∈ I and a ∈ (0 : I) it is a straightforward

calculation to see that these left ideals are also N -isomorphic N -groups of type 1.

Corollary 3.8. Let N be a zero symmetric near-ring with J1(N) nilpotent. Let I be a

minimal ideal, I2 6= {0}. Then I is a 1-primitive near-ring. In case N has DCCL, I is a

simple near-ring and a direct summand as an ideal of the near-ring.

Proof. From [7, Proposition 3.53] it follows that in a nilpotent minimal ideal I we already

have I2 = {0}. Thus, our assumption implies I 6⊆ J1(N). So, the result follows from

Theorems 3.5 and 3.7.

Remark 3.9. In Example 5.3 we have an example of a near-ring N of order 32 which

contains a non nilpotent minimal ideal K which is a 1-primitive and simple near-ring and

J1(N) = K. Moreover, K is not a direct summand as an ideal in the near-ring N .

We now state the corresponding version of Theorem 3.5 for minimal ideals not con-

tained in J2 of a near-ring. We get analogous results. Note that this basically has been

proved in [1]. In [1] Kaarli’s theorem on 2-primitive ideals was used to get the result. It

turns out that we can re-prove this with much easier methods now, probably making the

result more accessible.

Theorem 3.10. Let N be a zero symmetric near-ring. Let I be a minimal ideal not

contained in J2(N). Then I is a 2-primitive near-ring. If N has the DCCL, then N =

I+̇(0 : I), I is a simple near-ring and I is a direct sum of left ideals of N which are I-

isomorphic as well as N -isomorphic and which are I-groups of type 2 as well as N -groups

of type 2.

Proof. Let I 6⊆ J2(N). This implies that there is an N -group Γ of type 2 such that that

IΓ 6= {0}, which by minimality of I implies that I ∩ (0 : Γ) = {0}. Let γ ∈ θ1. From

Lemma 3.4 we get that Iγ = Γ. Thus, each nontrivial I-subgroup of Γ must be contained

in θ0. N is acting strongly monogenic on the N -group Γ, so for each δ ∈ θ0, Iδ = {0}.
So I acts strongly monogenic on Γ, also. Since for each δ ∈ θ0 we have Nδ = {0}, every

non-trivial subgroup of θ0 is an N -subgroup of N . Since Γ is of type 2, we see that θ0

does not contain any non-trivial subgroup. Since each non-trivial I-subgroup must also be
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contained in θ0, we see that Γ contains no non-trivial I-subgroups. Thus, Γ is an I-group

of type 2 and I acts faithfully on Γ. Hence, I is a 2-primitive near-ring. That I is simple

and N = I+̇(0 : I) in case N has DCCL follows from Theorem 3.5 because I 6⊆ J2(N)

implies I 6⊆ J1(N). The fact that I is a direct sum of I- and N -isomorphic left ideals

which are I- and N -groups of type 2 follows as in Theorem 3.5, in case N has DCCL.

As we will explicitly point out in Example 5.6, Theorems 3.5 and 3.10 cannot be ex-

tended accordingly to non-nilpotent minimal ideals having zero intersection with J1/2(N)

(with J0(N), respectively).

As we will see in the following section, the situation for describing non-nilpotent mini-

mal ideals sitting inside J1(N) of a zero symmetric near-ring N is not completely hopeless.

To the contrary, such ideals have quite a clear structure, but they need not be primitive

near-rings anymore.

4. Minimal ideals which are not necessarily primitive

In this section we first prove that non-zero ideals of a certain type always exist in a

zero symmetric near-ring, provided we have a suitable chain condition which is more

general than the DCCN (the descending chain condition on N -subgroups contained in N).

This then leads to the result that certain minimal ideals I have faithfully and strongly

monogenic I-groups which enables us to apply Lemma 3.3.

First we have to show that minimal left ideals which do not have zero multiplication

and satisfy a generalized finiteness condition contain a multiplicative right identity when

considered as subnear-ring. From this we then are able to derive the existence of certain

non-zero ideals in a near-ring. To fix a notation, the symbol ⊃ means a proper subset.

Proposition 4.1. Let N be a zero symmetric near-ring. Let L be a minimal left ideal

such that L satisfies the DCC on N -subgroups contained in L. Suppose M ⊆ L is an

N -subgroup such that M 6= L. Then, L and M cannot be N -isomorphic.

Proof. Suppose to the contrary that M and L are N -isomorphic. Then, due to N -

isomorphism also M contains a proper subgroup M1 which is N -isomorphic to M . Then

also M1 does, and so on. Hence we get an infinite decreasing chain of N -isomorphic

N -subgroups L ⊃M ⊃M1 ⊃ · · · .

In particular, Proposition 4.1 applies to zero symmetric near-rings with DCCN.

We now can show that minimal left ideals which do not have zero multiplication

and satisfy a generalized finiteness condition are N -groups of type 0. The following two

Lemmas 4.2 and 4.3 were proved in [10] (see [10, Lemmas 2.2 and 2.5]). Since they are
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central for our main results in this section, we include their proofs for self containment of

the paper.

Lemma 4.2. Let N be a zero symmetric near-ring and let L be a minimal left ideal such

that L2 6= {0}. Suppose that L does not contain N -subgroups properly contained in L

and being N -isomorphic to L. Then L contains a multiplicative right identity e when

considered as subnear-ring of N . Furthermore, L is an N -group of type 0.

Proof. We first show that L has a generator as an L-group. Since we have L2 6= {0}, there

is an element l ∈ L such that Ll 6= {0}. By minimality of L as a left ideal, this implies

L ∩ (0 : l) = {0}. Consequently, the map ψl : L→ Ll, j 7→ jl is injective. Certainly, ψl is

a surjective N -homomorphism and thus L and Ll are N -isomorphic. By assumption this

implies L = Ll. So, we see that L has the generator l.

What is more, L contains an idempotent e which is a right identity in L. To see this,

let e ∈ L such that el = l. Such an e exists since Ll = L. Thus, e2l = el and consequently,

(e2 − e)l = 0. So, e2 − e ∈ L ∩ (0 : l) = {0} and we see that e = e2. Let j ∈ L. Then,

je = je2, so (j − je)e = 0. Hence, j − je ∈ L ∩ (0 : e). Since e ∈ Le by idempotence of e

we see that Le 6= {0} and so, by minimality of L we have that L ∩ (0 : e) = {0}. Hence,

j = je and e is a multiplicative right identity in L.

Consequently, we have a Peirce decomposition of N as N = (0 : e)+̇Ne = (0 : e)+̇L.

Suppose that I ⊆ L is an N -ideal contained in L. Consequently, (I,+) is a normal

subgroup of (L,+). From the direct decomposition (0 : e)+̇L = N as a group we have

from standard group theory (or an easy verification) that this implies that (I,+) is also

normal in (N,+).

Let n,m ∈ N . So, there is an element l ∈ L and a ∈ (0 : e) such that m = a+ l. Let

i ∈ I. Then,

n(m+ i)− nm = n((a+ l) + i)− n(a+ l).

By [7, Proposition 2.29] the sum N = (0 : e)+̇L is distributive, so

n((a+ l) + i) = n(a+ (l + i)), n(a+ (l + i)) = na+ n(l + i) and n(a+ l) = na+ nl.

Consequently,

n(m+ i)− nm = na+ n(l + i)− nl − na.

By assumption, n(l+ i)− nl ∈ I and since (I,+) is a normal subgroup of (N,+) we have

that

na+ n(l + i)− nl − na ∈ I.

This shows that I ⊆ L is a left ideal of N . By minimality of L as a left ideal we either

have I = {0} or I = L. Thus, L contains no non-trivial N -ideals and this proves that L

is an N -group of type 0.
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In particular the results of Lemma 4.2 apply to near-rings with DCCN. Lemma 4.2

can be used to derive powerful structure results for 0-primitive near-rings, see [10].

The next lemma guarantees the existence of certain non-zero ideals provided we have

minimal left ideals which do not have zero multiplication in a zero symmetric near-ring

N . In a zero symmetric near-ring N a left ideal L always is an N -group. We use the

notation θL0 := {l ∈ L | Nl 6= L} and θL1 := {l ∈ L | Nl = L} for the set of non-generators,

generators respectively, of this N -group L.

Lemma 4.3. Let N be a zero symmetric near-ring and let L be a minimal left ideal such

that L2 6= {0}. Suppose that L does not contain N -subgroups properly contained in L and

being N -isomorphic to L. Then (0 : θL0 ) is a non-zero ideal of N containing L.

Proof. As an annihilator, (0 : θL0 ) is a left ideal of N . Let l ∈ θL0 and n ∈ N . Then

N(nl) ⊆ Nl 6= L, so nl ∈ θL0 . Let a ∈ (0 : θL0 ), n ∈ N and l ∈ θL0 . Then (an)l = a(nl) = 0

because nl ∈ θL0 . So, we have shown that (0 : θL0 ) is an ideal of N .

It remains to show that the non-zero left ideal L is contained in (0 : θL0 ). Let l ∈ θL0 ,

so Nl 6= L.

Let m ∈ Nl. Then (0 : m) ∩ L is a left ideal contained in L and so, by minimality

of L either (0 : m) ∩ L = L which gives Lm = {0} or (0 : m) ∩ L = {0}. Suppose that

(0 : m) ∩ L = {0}. Then, the map ψm : L → Lm, l 7→ lm, is injective. ψm clearly is

a surjective N -homomorphism between L and Lm and so we have that L and Lm are

N -isomorphic. Since m ∈ Nl ⊆ L we have Lm ⊆ L and it follows from our assumption

that L = Lm. Also we have Lm ⊆ LNl ⊆ Nl and therefore, L = Lm ⊆ Nl ⊆ L, which

contradicts the fact that Nl 6= L. Thus, for all m ∈ Nl, Lm = {0} or in other words,

LNl = {0}.
By Lemma 4.2, L contains a multiplicative right identity e and therefore, LNl = {0}

implies Lel = Ll = {0}. So we have shown that for l ∈ θL0 , Ll = {0}. This finally shows

that L ⊆ (0 : θL0 ).

Now we are in a position to prove that under the finiteness conditions we used in the

previous lemmas, a minimal ideal I in a zero symmetric near-ring hosts a faithful and

strongly monogenic I-group.

Proposition 4.4. Let I be a minimal ideal of a zero symmetric near-ring N . Let L ⊆ I

be a minimal left ideal such that L2 6= {0}. Suppose that L does not contain N -subgroups

properly contained in L and being N -isomorphic to L. Then I acts faithfully and strongly

monogenic on L and I ⊆ (0 : θL0 ).

Proof. By Lemma 4.3, (0 : θL0 ) is a non-zero ideal of N , containing the left ideal L. Thus,

we must have L ⊆ I ∩ (0 : θL0 ). Minimality of I implies that I ⊆ (0 : θL0 ). On the other
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hand, by Lemma 4.2, L is an N -group of type 0. Due to the fact that L2 6= {0} and L ⊆ I
we must have I ∩ (0 : L) = {0}, by minimality of I as an ideal. Hence, I acts faithfully

on L and we can apply Lemma 3.4 to see that Il = L for l ∈ θL1 . Thus, I acts strongly

monogenic on L and the proposition is proved.

The next theorem is the main theorem concerning the structure of non-nilpotent min-

imal ideals I which are contained in J1(N) of a zero symmetric near-ring N . Note that

the containement I ⊆ J1(N) is not an assumption in the theorem but of course, in case

I 6⊆ J1(N) we can apply the much stronger Theorems 3.5 and 3.10. The examples given

in Section 5 show non-nilpotent minimal ideals sitting inside the J1-radical of a zero sym-

metric near-ring.

Theorem 4.5. Let I be a minimal ideal of a zero symmetric near-ring N . Let L ⊆ I be

a minimal left ideal such that L2 6= {0}. Suppose that L does not contain N -subgroups

properly contained in L and being N -isomorphic to L. Then I/J0(I) is a 1-primitive

near-ring, J1(I) = J0(I) and IJ0(I) = {0}.

Proof. That I/J0(I) is 1-primitive, J1(I) = J0(I) and IJ0(I) = {0} follows from the fact

that I acts faithfully and strongly monogenic on the minimal left ideal L as shown in

Proposition 4.4 and then applying Lemma 3.3.

Remember Kaarli’s result on 2-primitive ideals in a near-ring we discussed in the

introduction of the paper. According to Theorem 4.5, J0(I) is a 1-primitive ideal of the

minimal ideal I. But as we will see by examples in Section 5 there are non-nilpotent

minimal ideals I with J0(I) 6= {0}. So Kaarli’s result indeed does not extend to the case

of 1-primitive ideals in a near-ring. A 1-primitive ideal of an ideal I of a near-ring N need

not be an ideal of the near-ring N . But we can use Kaarli’s result to decide when the

near-ring I/J0(I) occurring in Theorem 4.5 is not only 1-primitive but even 2-primitive.

As we will see this will not be the case, as long as we restrict to the interesting case (in

the light of Theorem 3.10) where I ⊆ J1(N). We also collect some additional information

concerning the Jacobson radicals of the subnear-ring I.

Corollary 4.6. Let I be a minimal ideal of a zero symmetric near-ring N . Let L ⊆ I

be a minimal left ideal such that L2 6= {0}. Suppose that L does not contain N -subgroups

properly contained in L and being N -isomorphic to L. Suppose that I ⊆ J1(N). Then

I/J0(I) is a 1-primitive near-ring which is a 2-radical near-ring, J2(I) = I and J1(I) =

J0(I) 6= I and IJ0(I) = {0}.

Proof. By assumption, I ⊆ J1(N) ⊆ J2(N), so I = I ∩ J2(N) and we have from [7,

Theorem 5.21] J2(I) = I ∩ J2(N) = I. Since the map which assigns to each near-ring

its Jacobson 2 radical is a radical map, we have (J2(I) + J0(I))/J0(I) ⊆ J2(I/J0(I))
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(see [7, Proposition 5.15]). Using the fact that J2(I) = I, this results in I/J0(I) =

(I+J0(I))/J0(I) = (J2(I)+J0(I))/J0(I) ⊆ J2(I/J0(I)). Thus, J2(I/J0(I)) = I/J0(I) and

I/J0(I) is a 2-radical near-ring. The rest of the statements follow from Theorem 4.5.

We now will add some additional information to Theorem 4.5, namely we want to

describe the subideal structure of the minimal ideal I and give a condition when I has

to be simple. Our proof requires that the minimal ideal I in question decomposes into

a direct sum of minimal left ideals of the near-ring N . This is known to be the case

when the near-ring has DCCN and is available in the standard literature on near-rings

(see [7, Theorem 3.54] for example). Therefore, we give the proof of the following corollary

in the setting of DCCN near-rings. Often such direct sum compositions of minimal ideals

are available even if the near-ring itself does not satisfy the DCCN, see for example [10].

So the results in Corollary 4.8 could be generalized to these more general situations.

First we need another technical lemma.

Lemma 4.7. Let N be a zero symmetric near-ring with DCCN and I a minimal ideal,

I2 6= {0}. Then, each minimal left ideal L ⊆ I has the property that L2 6= {0}.

Proof. Suppose there is a left ideal L ⊆ I such that L2 = {0}. Then by [7, Corollary 3.55],

I is nilpotent. From [7, Proposition 3.53] we have that I2 = {0}, contradicting our

assumptions. The DCCN guarantees the existence of minimal left ideals in I.

Corollary 4.8. Let I be a minimal ideal of a zero symmetric near-ring N satisfying the

DCCN, I2 6= {0}. Then J0(I) is the greatest proper ideal of I and for each proper ideal A

of the subnear-ring I we have IA = {0}. Furthermore, I is a simple near-ring if and only

if J0(I) = {0}. In case I is simple it is a 1-primitive near-ring.

Proof. From Lemma 4.7 we have the existence of a minimal left ideal L ⊆ I such that

L2 6= {0}. The DCCN of N implies that L does not contain proper N -subgroups being

N -isomorphic to L (see Proposition 4.1). Thus we have Theorem 4.5 and Proposition 4.4

at hand. By [7, Theorem 3.54], I (considered as an N -group) decomposes into a finite

direct sum of minimal left ideals of N , which are all N -isomorphic. We write I =
∑

i∈S Li,

S a suitable finite index set, where for i, j ∈ S we have that Li and Lj are N -isomorphic,

each Li is a minimal left ideal of the near-ring N and L2
i 6= {0}, by Lemma 4.7. Thus by

Lemma 4.2, each Li, i ∈ S, is an N -group of type 0. Proposition 4.4 shows that I acts

strongly monogenic on Li, i ∈ S.

Let A be a non-trivial ideal of I. Since A is non-trivial we have A 6= I which implies

the existence of i ∈ S such that Li 6⊆ A. Let θ0 := {l ∈ Li | Il = {0}} and θ1 := {l ∈
Li | Il = Li}. By Proposition 4.4, I acts faithfully and strongly monogenic on Li. Thus,

Li = θ0∪θ1. Note that by Lemma 4.2, Li contains a right identity element, so θ1 6= ∅. Let
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l ∈ θ1 and suppose that Al = Li. Since A is an ideal of I we must have Li = Al ⊆ A which

contradicts Li 6⊆ A. Thus, Al 6= Li. Since Li = Il we have that Al is a proper I-ideal of

Li (see [7, Proposition 3.4]). Since I acts strongly monogenic on Li, Al being proper in

Li implies Al ⊆ θ0. Thus we have I(Al) ⊆ Iθ0 = {0}. Since l was chosen arbitrarily from

θ1, IAθ1 = {0}. Clearly, Aθ0 = {0}, so we also have IAθ0 = {0}. From Li = θ0 ∪ θ1 we

now have IALi = {0}. The action of I on Li is faithful by Proposition 4.4, so IA = {0}.
This shows also that A2 = {0}. So, by [7, Theorem 5.37], A ⊆ J0(I). By Theorem 4.5 we

have IJ0(I) = {0}. Thus J0(I) 6= I and we have shown that J0(I) is the greatest proper

ideal of I. That I is a simple near-ring if and only if J0(I) = {0} now follows immediately

from the fact that J0(I) is the greatest proper ideal in I. From Theorem 4.5 we have that

I is 1-primitive in case I is simple.

Note that in general, without any finiteness condition, the result of Corollary 4.8 is

not true! Let N be a zero symmetric near-ring with identity and N being 2-primitive.

Thus, J2(N) = J1(N) = J0(N) = {0}. But J0(N) cannot be the greatest proper ideal

in general because there exist 2-primitive near-rings (even primitive rings) which are not

simple near-rings!

When we have a zero symmetric near-ring N and an ideal I, then we have that J2(I) ⊆
J2(N) and J1(I) ⊆ J1(N) (see [7]). As we have seen in Theorems 3.5 and 3.10 this leads

to I being 2-primitive, 1-primitive respectively when I is a non-nilpotent minimal ideal

not contained in J2(N), J1(N) respectively. For near-rings in general we do not have that

J0(I) ⊆ J0(N), I an ideal in the near-ring N (for examples of that kind, see Section 5).

This is the deeper reason why non-nilpotent minimal ideals in zero symmetric near-rings

with DCCN are not necessarily simple near-rings, as we will point out in the following.

Corollary 4.9. Let N be a zero symmetric near-ring with DCCN. Let I be a minimal

ideal, I2 6= {0}. Then I is a simple near-ring if and only if J0(I) ⊆ J0(N).

Proof. Suppose that I is a simple near-ring. Application of Corollary 4.8 shows that

J0(I) = {0} in this case and thus, J0(I) ⊆ J0(N).

Let I be a minimal ideal, I2 6= {0} and J0(I) ⊆ J0(N). In case of a near-ring with

DCCN we know that J0(N) is nilpotent (see [7, Theorem 5.40]). By minimality of I we

must have J0(N) ∩ I = I or {0}. If J0(N) ∩ I = I, this would imply I being nilpotent.

It follows from [7, Proposition 3.53] that I2 = {0}, contradicting our assumption. Thus

we must have I ∩ J0(N) = {0}. From our assumption we have that J0(I) ⊆ J0(N). This

implies J0(I) = {0} and simplicity by Corollary 4.8.

Distributively generated near-rings are examples of near-rings where we have J0(K) ⊆
J0(N) for each ideal K of the near-ring, see [7, Theorem 6.34]. It is known that a non-
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nilpotent minimal ideal in a d.g. near-ring with DCCN is a simple near-ring (cf. [5]). Here

we have obtained it from another point of view.

Remark 4.10. Note that if we have a zero symmetric near-ring N which is a simple near-

ring, satisfies DCCN and N2 6= {0}, then N is a 1-primitive near-ring. This result has

been originally proved in [3]. We can also quickly deduce this fact now: By simplicity

of N we have that N is a minimal ideal. Proposition 4.1 allows us to apply Lemma 4.7

and then Theorem 4.5, from which we have that N/J0(N) is a 1-primitive near-ring and

NJ0(N) = {0}. Thus, J0(N) 6= N . Simplicity of N now forces J0(N) = {0} and we have

that N is 1-primitive.

5. Examples

In this section the results obtained in this paper will be illustrated by numerous examples.

The examples are chosen such that one can verify the calculations by easy computations

with the help of the theory developed in this paper. To help our presentation, we introduce

a well known notation. Let Γ be a (additively written) group with zero 0. Then, the set of

all zero preserving functions M0(Γ) := {f : Γ→ Γ | f(0) = 0} is a near-ring with respect

to pointwise addition of functions and function composition.

Of course, the statements of Theorem 4.5 and its corollaries are only of interest if the

minimal ideal I sits inside the Jacobson radical J1(N) of the near-ring N . Otherwise the

much stronger Theorems 3.5 and 3.10 apply. Can we find minimal ideals which sit inside

J1(N) and which are not nilpotent at all? Does this happen frequently? If N is a ring and

satisfies the DCCL it will not happen of course, since the Jacobson radical of an artinian

ring is nilpotent.

Proposition 5.1. Let N be a zero symmetric near-ring containing a minimal ideal H.

Suppose that N is 0-primitive on the N -group Γ. Then N is a subdirectly irreducible

near-ring, H is the unique non-trivial minimal ideal and H2 6= {0}.

Proof. Suppose there is a non-zero ideal I such that H 6⊆ I. By minimality of H, this

implies H ∩ I = {0} and therefore, HI = {0}. Let γ be a generator of the N -group Γ.

Since (0 : Γ) = {0}, I ∩ (0 : Γ) = {0} and H ∩ (0 : Γ) = {0}, so Lemma 3.4 shows that

Iγ = Γ = Hγ. Consequently, there is an i ∈ I such that γ = iγ. Thus, Hγ = Hiγ = {0},
a contradiction. Thus, N is subdirectly irreducible. H2 6= {0} because J0(N) = {0}
(see [7, Theorem 5.37]).

Following the notation used in [1, 2] we call the unique non-trivial minimal ideal of a

subdirectly irreducible near-ring N the heart of N . The following corollary to Proposi-

tion 5.1 shows that we can find minimal ideals of interest as in Theorem 4.5 and Corol-

lary 4.8 when looking at 0-primitive near-rings with DCCN, for example.
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Corollary 5.2. Let N be a zero symmetric 0-primitive near-ring with DCCN which is not

a 1-primitive near-ring. Then N has a unique non-trivial minimal ideal H with H ⊆ J1(N)

and H satisfying the assumptions of Theorem 4.5.

Proof. From Proposition 5.1 we have that N is subdirectly irreducible with heart H.

Suppose that J1(N) = {0}. Then, N is a subdirect product of 1-primitive near-rings

by [7, Theorem 5.29]. By subdirect irreducibility, we get that N itself must be 1-primitive,

contradicting our assumptions. Thus, J1(N) 6= {0} and therefore H ⊆ J1(N). By 0-

primitivity of N we have that J0(N) = {0} and therefore, by [7, Theorem 5.37], N

contains no nilpotent ideals. Thus, H is not nilpotent. From Lemma 4.7 we see that each

minimal left ideal L in H is non-nilpotent. From Proposition 4.1 we have that L does

not contain properly N -groups which are N -isomorphic to L, so H is a minimal ideal as

described in Theorem 4.5.

From [2, Proposition 5.7.3] we have that once we have given a minimal ideal I with

I2 6= {0} in a zero symmetric near-ring N , then N/(0 : I) is a subdirectly irreducible

and 0-prime near-ring whose heart is isomorphic to I (this result was originally proved

in [1]). 0-prime near-rings with DCCN are known to be 0-primitive, see [7, Theorem 5.40].

Thus, in case of zero symmetric near-rings N with DCCN it suffices to study the unique

minimal ideal of 0-primitive near-rings to get results about non nilpotent minimal ideals

up to isomorphism. This justifies that we focus on 0-primitive near-rings in the following

examples.

The first example in this section presents a non-nilpotent minimal ideal I in a zero

symmetric near-ring, where I is simple as a subnear-ring. This example is discussed for

other purposes than ours in detail in [7, Examples 5.11 and 5.19], so we omit the details.

Example 5.3. Let Γ := Z4, the cyclic group of order 4. Let S := {0, 2} the subgroup of

order 2 in Z4. Consider the near-ring N := {f ∈ M0(Z4) | f(S) ⊆ S}. It is shown in [7,

Example 5.11] thatN is 0-primitive but not 1-primitive on Γ and J2(N) = J1(N) = (0 : S).

From [7, Example 5.19] we have that J1(N) is 1-primitive on Γ, so by [7, Theorem 4.46] it is

a simple near-ring. Thus, J1(N) is a non-nilpotent minimal ideal of the near-ring N which

is a simple subnear-ring of N . Note that N is subdirectly irreducible by Proposition 5.1,

so J1(N) is not a direct summand as an ideal, see Remark 3.9.

Examples of a non-nilpotent minimal ideal I in a zero symmetric near-ring where I is

not simple as a subnear-ring seem to be rare in the near-ring literature. The first example

of that kind was given by K. Kaarli and is presented in [2, Example 5.7.2], for example.

We do not discuss the details here, only that it is the near-ring N := {f ∈ M0(Z8) |
f({0, 2, 4, 6}) ⊆ {0, 2, 4, 6} and ∀x ∈ Z8, f(5x) = 5f(x)}. N is 0-primitive on Z8 and has
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the non-nilpotent minimal ideal I = (0 : {0, 2, 4, 6}) which is not simple as a subnear-

ring. Kaarli’s example is not only the first one which has been presented in this line of

discussion, it is also of interest because the near-ring has an identity element and abelian

addition.

Our first example of a non-simple non-nilpotent minimal ideal in a zero symmetric

near-ring is the example discussed in [7, Remark 4.50] and thus being available in the

standard literature on near-rings (though not observed as an example of such a type

in [7, Remark 4.50]). It will also show that Theorem 3.5 cannot be extended to the

Jacobson radicals of type 1/2 and type 0 (since J0(N) ⊆ J1/2(N)) of a near-ring N .

In [7, Remark 4.50] it is discussed as an example of a zero symmetric near-ring N which is

0-primitive and contains an ideal I which is not 0-primitive and hence not 1-primitive. So,

according to Theorem 4.5 and Corollary 4.8, I is not simple. Of course, this is a situation

we exactly need when obtaining an example of a non-nilpotent minimal ideal which is not

simple as a subnear-ring (according to the results of Corollary 4.8). We only need to show

that I is indeed a minimal ideal (this question was not considered in [7, Remark 4.50] and

also not in [6, Example 6.42] where we find a discussion of Pilz’s example, also). This will

be done with the help of the following lemmas.

Lemma 5.4. [7, Lemma 1 of Theorem 3.54] Let N be a zero symmetric near-ring with

DCCN and Γ a faithful N -group. Let K be a minimal N -ideal of Γ. Let {0} 6= L ⊆ (K : Γ)

be a left ideal such that ∀ γ ∈ Γ, Nγ = Γ or Lγ = {0}. Then L is a finite direct sum of

N -isomorphic minimal left ideals of N .

Lemma 5.4 is one of the key lemmas in Scott’s proof that a minimal ideal in a zero

symmetric near-ring N with DCCN decomposes as a direct sum of minimal left ideals. A

proof of this result can be found in [7].

The following lemma now will help us identifying when a given ideal I is indeed a

minimal ideal.

Lemma 5.5. Let N be a zero symmetric and 0-primitive near-ring with DCCN which is

acting 0-primitively on Γ. Let θ0 := {δ ∈ Γ | Nδ 6= Γ}. Then, H := (0 : θ0) is the unique

minimal ideal of N ; H acts strongly monogenic and faithfully on Γ; H is a finite direct

sum of minimal left ideals which are all N -isomorphic to Γ; Γ can be considered as an

H-group containing a greatest proper H-ideal 4H ; and J0(H) = (0 : Γ/4H).

Proof. For each δ ∈ θ0 we have Nδ 6= Γ. Let n ∈ N and δ ∈ θ0. Then N(nδ) ⊆ Nδ 6= Γ,

so nδ ∈ θ0. The annihilator (0 : θ0) is a left ideal in N . Let a ∈ (0 : θ0), n ∈ N and δ ∈ θ0.

Then (an)δ = a(nδ) = 0 because nδ ∈ θ0. This shows that (0 : θ0) is an ideal in N .

From Proposition 5.1 we know that N is subdirectly irreducible with heart H, H2 6=
{0}. From [7, Theorem 3.54] we know that H is the direct sum of minimal left ideals of
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N . From Lemma 3.4 we know that for γ ∈ θ1, Hγ = Γ. Thus, there is a minimal left

ideal L in the sum decomposition of H, such that Lγ 6= {0}. By [7, Proposition 3.10]

we have L ∼=N Γ. Faithfulness of Γ (or Lemma 4.7) implies L2 6= {0}. Since N has

DCCN, Proposition 4.1 applies and from Proposition 4.4 we know that H ⊆ (0 : θL0 ). A

straightforward calculation shoes that L ∼=N Γ implies H ⊆ (0 : θ0), in particular (0 : θ0)

is non-zero.

We now apply Lemma 5.4. By 0-primitivity, Γ is a faithful N -group and Γ is minimal

as an N -ideal. We let K := Γ and so, (K : Γ) = N . Hence, {0} 6= (0 : θ0) ⊆ (K : Γ).

Let γ ∈ θ1. Then, Nγ = Γ. If γ ∈ θ0, then (0 : θ0)γ = {0}. So, Lemma 5.4 applies and

we get that (0 : θ0) is a finite direct sum of N -isomorphic minimal left ideals of N . Let

(0 : θ0) =
∑s

i=1 Li, s ∈ N. Let j ∈ {1, . . . , s}. By faithfulness of Γ and the fact that

Ljθ0 = {0}, there is an element γj ∈ θ1 such that Lj 6⊆ (0 : γj). By [7, Proposition 3.10],

we get Lj
∼=N Γ.

Suppose that H is properly contained in (0 : θ0). Since we know that (0 : θ0) =∑s
i=1 Li, s ∈ N and the Li being minimal left ideals of N , there must be a j ∈ {1, . . . , s}

such that Lj 6⊆ H. By minimality of Lj we get Lj ∩H = {0} and hence HLj ∈ Lj ∩H =

{0}. By N -isomorphism of Lj and Γ this now implies HΓ = {0}, contradicting the

faithfulness of Γ. Hence, H = (0 : θ0) and (0 : θ0) is the unique minimal ideal in

N . Note that H acts faithfully and as a consequence of Lemma 3.4 strongly monogenic

on Γ. Application of Lemma 3.3 shows that H/J0(H) is a 1-primitive near-ring and

J0(H) = (0 : Γ/4H), where 4H is the greatest proper H-ideal contained in Γ.

Note that 4H as in Lemma 5.5 may be {0}. Then we have that J0(H) = (0 : Γ) =

{0} and H is 1 primitive (see Theorem 4.5), simple as a subnear-ring, respectively (see

Corollary 4.8).

Example 5.6. Let Γ := Z8, the cyclic group of order 8. Let S2 := {0, 2, 4, 6} and

S1 := {0, 4}, the subgroups of order 4 and 2 in Z8. Consider the near-ring N := {f ∈
M0(Z8) | f(S2) ⊆ S2 and f(5) = f(1) and f(7) = f(3)}. It is shown in [7, Remark 4.50]

that N acts 0-primitively on Γ with set of generators {1, 3, 5, 7} and S2 the set of non-

generators. H := (0 : S2) has the H-ideal S1 in Γ. In fact, these results can be calculated

in a straightforward way, also. Since S2 is the set of non-generators of the N -group Γ, we

have from Lemma 5.5 that H is a minimal ideal, in fact the unique minimal ideal. Note

that H acts faithfully and strongly monogenic on Γ.

Since H has the H-ideal S1 in Γ it follows from Lemma 3.1 that there exists a greatest

proper and non-zero H-ideal 4H in Γ. Lemma 5.5 shows that J0(H) = (0 : Γ/4H). In

fact, S1 is the greatest proper H-ideal in Γ, because the other possible candidate S2 is

not an H-ideal. This can be seen by taking the function f1 : Γ → Γ, f(5) = f(1) = 1,
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f(γ) = 0 else. f1 ∈ (0 : S2) and f1(3 + 2)− f1(3) = 1 /∈ S2. Since 2 ∈ S2, this shows that

S2 is not an H-ideal.

Consider the function h : Γ→ Γ, h(δ) = 0, δ ∈ θ0, h(γ) = 4 ∈ S1, γ ∈ θ1. Then h ∈ H
and since S1 = 4H , h ∈ (0 : Γ/4H). So we have J0(H) 6= {0} and H is not a simple

near-ring.

It is also shown in [7, Remark 4.50] that N = (0 : 1)∩(0 : 3)+̇H. Since Γ is an N -group

of type 0, (0 : 1) and (0 : 3) are 0-modular left ideals and therefore, J1/2(N) ⊆ (0 : 1)∩ (0 :

3). In fact, for a 0-primitive near-ring with finiteness condition we always have such a

decomposition into two left ideals, one annihilating all the generators of the N -group of

type 0 and the other annihilating all the non-generators, see [10]. Thus, H is not simple

as an ideal and has zero intersection with J1/2(N). This shows that Theorem 3.5 cannot

be extended to the Jacobson radicals of type 1/2 and type 0 (since J0(N) ⊆ J1/2(N)) of

a near-ring N .

We want to give another example of a minimal ideal I in a 0-primitive near-ring N

where I is non-nilpotent and not simple as a subnear-ring. Here we will have an N -group

Γ of type 0 where the set of non-generators is not a subgroup of the N -group Γ. This has

not been the case in Example 5.6 and also not in Kaarli’s example.

Example 5.7. Let Γ := Z16, the cyclic group of order 16. Let θ0 := {0, 1, 4, 5, 8, 9, 12, 13},
S2 := {0, 4, 8, 12} and S1 := {0, 8}, the subgroups of order 4 and 2 in Z16. Con-

sider the near-ring N := {f ∈ M0(Z16) | f(θ0) ⊆ S2 and f(2) = f(10) and f(3) =

f(11) and f(6) = f(14) and f(7) = f(15)}. Since for f ∈ N , f(θ0) is contained in the

subgroup S2 of Γ, N is additively closed and is a near-ring. θ0 is not a group, but a

union of cosets with respect to S1. Note that θ1 = {2, 3, 6, 7, 10, 11, 14, 15} is the set of

generators of the N -group Γ. Always two generators in the same coset with respect to S1

will have the same function values by functions in N .

Suppose that S2 is an N -ideal of Γ. Then, for each f ∈ N , f(2 + 4) − f(2) =

f(6)− f(2) ∈ S2. But 6 and 2 are both generators of the N -group which can be mapped

independently by functions in N and so we can define the function f1 : Γ → Γ, f1(14) =

f1(6) = 1, f1(γ) = 0 else and we see that f1 ∈ N and f1(6) − f1(2) = 1 /∈ S2. So, S2 is

not an N -ideal of Γ.

Suppose that S1 is an N -ideal. Then, for each f ∈ N , we must have f(4 + 8)− f(4) =

f(12) − f(4) ∈ S1. By definition of N we only have to observe that f(12) ∈ S2 and

f(4) ∈ S2, with no further restrictions on the function f . So, we can define the function

f2 : Γ → Γ, f2(12) = 12, f2(γ) = 0 else and we see that f2 ∈ N and f2(4 + 8) − f2(4) =

f2(12) − f2(4) = 12 /∈ S1. So S1 is not an N -ideal also. There are no other possible

candidates for N -ideals in the faithful N -group Γ, so N acts 0-primitively on Γ. From

Lemma 5.5 we know that H := (0 : θ0) is a minimal ideal. Note that the function
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f1 ∈ (0 : θ0), so we see that S2 is not an H-ideal, also.

But S1 is an H-ideal of Γ. To see this, we need to show that h(γ + 8) − h(γ) ∈ S1,

γ ∈ Γ, h ∈ H. Let h ∈ H. In case γ ∈ θ1 we have by definition of N , that h(γ+ 8) = h(γ)

and we see that h(γ + 8)− h(γ) = 0 ∈ S1. In case γ ∈ θ0 we have that γ + 8 ∈ θ0 (θ0 was

taken to be a union of cosets with respect to S1) and so we have that h(γ + 8) = 0 and

h(γ) = 0 and so again, h(γ + 8)− h(γ) ∈ S1. So, S1 is an H-ideal.

Since H has the H-ideal S1 in Γ it follows from Lemma 3.1 that there exists a greatest

proper and non-zero H-ideal 4H in Γ, which is S1 itself (S2 is not an H-ideal as we have

seen and the set θ0 does not contain further non-trivial subgroups). Lemma 5.5 shows

that J0(H) = (0 : Γ/4H) = (0 : Γ/S1).

Consider the function h : Γ→ Γ, h(δ) = 0, δ ∈ θ0, h(γ) = 8 ∈ S1, γ ∈ θ1. Then h ∈ H
and h ∈ (0 : Γ/S1). So we have J0(H) 6= {0} and H is not a simple near-ring.

Now we present an example of a near-ring which has non-abelian addition and some

other interesting property we will outline during our discussion.

Example 5.8. Let Γ be a non-abelian group containing a normal subgroup S1 which

is contained in a subgroup S2 of Γ which is not normal and such that S1 is the unique

non-trivial normal subgroup of Γ contained in S2. An example of such a group is the

dihedral group D6 of order 12. D6 = {aibj | 0 ≤ i ≤ 5, 0 ≤ j ≤ 1, b2 = e = a6, ab = ba5}, e
denoting the neutral element of the group. D6 has a normal subgroup of order 2, namely

the group S1 = {e, a3} and a subgroup S2 = {e, a3, b, ba3} of order 4 containing S1. S2 is

not a normal subgroup of D6 (for example, a2b(a2)−1 = a2ba4 = ba2 /∈ S2).

Let N := {f ∈ M0(Γ) | f(S2) ⊆ S2 and ∀ γ, δ ∈ Γ \ S2, f(γ) = f(δ)}. N is a zero

symmetric near-ring which operates on the N -group Γ, the set of generators θ1 of this N -

group being Γ\S2. Each generator must be mapped to the same element, this element can

be chosen arbitrarily, by a function in N . Clearly, Γ is a faithful N -group and each proper

N -ideal must be contained in S2. Now S2 itself is an N -subgroup but not an N -ideal of

Γ, because S2 is not normal in Γ. S1 is not an N -ideal in Γ. To see this, let s1 ∈ S1 \ {0}
and take an element s2 ∈ S2 \ S1. Then we can define the function f : Γ→ Γ, f(s1) = s2,

f(γ) = 0, else. f ∈ N but f(s1) /∈ S1 and S1 is not an N -subgroup and therefore not an

N -ideal.

Thus, N acts 0-primitively on Γ. Lemma 5.5 shows that H := (0 : S2) is a minimal

ideal of N . H is acting faithfully and strongly monogenic on Γ.

But now, S1 is an H-ideal of Γ. First, S1 is a normal subgroup of Γ. Then, let h ∈ H
and s2 ∈ S2 and s1 ∈ S1. Thus, s2 + s1 ∈ S2 and so, h(s2 + s1)− h(s2) = 0− 0 = 0 ∈ S1.

Let h ∈ H, γ ∈ Γ \ S2 and s1 ∈ S1. Then, γ + s1 ∈ Γ \ S2. Thus, h(γ + s1) = h(γ) by

definition of functions in N . So we see that h(γ + s1) − h(γ) = 0 ∈ S1 and we have that

S1 is an H-ideal.
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Since H has the H-ideal S1 in Γ it follows from Lemma 3.1 that there exists a greatest

proper and non-zero H-ideal 4H in Γ (which is the H-ideal S1 itself, since it is the only

normal subgroup contained in S2). Lemma 5.5 shows that J0(H) = (0 : Γ/4H). Let

s1 ∈ S1 \ {0}. Consider the function h : Γ→ Γ, h(δ) = 0, δ ∈ θ0, h(γ) = s1, γ ∈ θ1. Then

h ∈ H and since S1 ⊆ 4H , h ∈ (0 : Γ/4H). So we have J0(H) 6= {0} and H is not a

simple near-ring.

In particular, H is an ideal in a 0-primitive near-ring which is not 0-primitive as a

subnear-ring. In [7, Remark 4.50] it says that seemingly the near-ring in [7, Remark 4.50]

which is discussed in Example 5.6 is the smallest 0-primitive near-ring in size which hosts

a proper ideal which is not a 0-primitive near-ring. The Example 5.6 has 4096 elements.

Here we see that there is a smaller 0-primitive near-ring N containing an ideal which is

not 0-primitive. Take Γ = D6, S2 = {e, a3, b, ba3} and S1 = {e, a3}. Then, N has order

12 · 43 = 768. Moreover, N has non-abelian addition. Note that the order of H = (0 : S2)

is only 12 and H ∼=N Γ (see Lemma 5.5). So we have found an example of a small minimal

ideal which is non-nilpotent and not simple. If this is the smallest possible order of an

ideal of such a kind is not known to the author.

Finally, we want to give an example of a minimal ideal in a zero symmetric near-ring

N which as a subnear-ring is not subdirectly irreducible. The first example of such a

kind was given in [10]. It was a long standing open question in the pure structure theory

of near-rings whether such examples exist at all (see [10] for references). Here we give

another example of such a type.

Example 5.9. Let Γ := Z36, θ0 the subgroup of order 18 consisting of the multiples

of 2, and S1 := {0, 18} and S2 := {0, 12, 24}. Let 4 := {0, 6, 12, 18, 24, 30}. Note that

4 = S1 + S2. Consider the near-ring N := {f ∈ M0(Z36) | f(θ0) ⊆ θ0 and ∀ z ∈
{1, 3, 5},∀ δ ∈ 4, f(z) = f(z + δ)}. N is additively closed because θ0 is a subgroup of

Z36, so N is a subnear-ring. Note that the odd numbers in Z36 is the set of generators θ1

of the N -group Γ, N acts on faithfully. Note that the elements 1, 7, 13, 19, 25, 31, which

is the coset of 1 with respect to 4, are always mapped to the same element in Z36 by

functions in N and the same is the case with the elements 3, 9, 15, 21, 27, 33, the coset of

3 with respect to 4 and 5, 11, 17, 23, 29, 35, the coset of 5 with respect to 4.

θ0 is an N -subgroup of Γ. Suppose it is an N -ideal also. Then, for all f ∈ N we must

have f(1 + 2)− f(1) = f(3)− f(1) ∈ θ0. 1 and 3 are elements in θ1 which can be mapped

independently by elements in N and we see that θ0 is not an N -ideal.

As we will point out in the following, the non-trivial proper subgroups of θ0 are no

N -subgroups and so, by zero symmetry of the near-ring, they cannot be N -ideals. First,

S1 is not an N -subgroup. This is because for a given element δ ∈ θ0 and δ1 ∈ θ0\S1 we can

define the function f ∈ N with f(δ) = δ1 and f(γ) = 0, else. Then we have f(S1) 6⊆ S1.
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Similarly we see that S2 and 4 are not N -subgroups and also not the 9-element group of

the multiplies of 4 contained in θ0. This proves that N acts 0-primitively on Γ.

Let H := (0 : θ0). Application of Lemma 5.5 now shows that (0 : θ0) is a minimal

ideal. We now show that S1 and S2 are H-ideals and thus, so is 4.

We first show that S1 is an H-ideal of Γ. Let h ∈ H. We need to show that h(γ +

18)− h(γ) ∈ H, γ ∈ Γ. In case γ ∈ θ1 we have by definition of N , that h(γ + 18) = h(γ)

and we see that h(γ + 8)− h(γ) = 0 ∈ S1. In case γ ∈ θ0 we have that γ + 18 ∈ θ0 and so

we have that h(γ + 18) = 0 and h(γ) = 0 and so again, h(γ + 18)− h(γ) ∈ S1. Thus, S1

is an H-ideal.

We now show that S2 is an H-ideal of Γ. Let h ∈ H. We need to show that h(γ +

12) − h(γ) ∈ H, γ ∈ Γ and h(γ + 24) − h(γ) ∈ H, γ ∈ Γ. In case γ ∈ θ1 we have by

definition of N , that h(γ + 12) = h(γ) and we see that h(γ + 12)− h(γ) = 0 ∈ S2. In case

γ ∈ θ0 we have that γ + 12 ∈ θ0 and so we have that h(γ + 12) = 0 and h(γ) = 0 and so

again, h(γ + 12)− h(γ) ∈ S2. In the same way we see that h(γ + 24)− h(γ) ∈ S2, γ ∈ Γ.

Thus, S2 is an H-ideal.

So, also S1 + S2 = 4 is an H-ideal.

But now we can also show that there are two non-zero ideals I1 and I2 of the subnear-

ring H with I1 ∩ I2 = {0}, proving that H is not a subdirectly irreducible near-ring. We

consider Γ as an H-group. Note that, as S1 is an H-ideal, we have that I1 := (0 : Γ/S1)

is an ideal of H, Γ/S1 being an H-group. Also, I2 := (0 : Γ/S2) is an ideal of H. We need

to show that these are non-zero ideals of H. Let s1 ∈ S1 \ {0}. Consider the function

i1 : Γ→ Γ, i1(δ) = 0, δ ∈ θ0, i1(γ) = s1, γ ∈ θ1. Then i1 ∈ H and i1 ∈ (0 : Γ/S1). In the

same way we can construct a function i2 ∈ H and i2 ∈ (0 : Γ/S2). So, I1 and I2 are two

non-zero ideals of the subnear-ring H. Let i ∈ I1 ∩ I2. Thus, i(Γ) ⊆ S1 ∩ S2 = {0}. By

faithfulness of Γ, i = 0. Therefore, I1 ∩ I2 = {0} and H is not a subdirectly irreducible

near-ring.
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