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Power-free Values of Strongly Q-additive Functions

Karam Aloui*, Mohamed Mkaouar and Walid Wannes

Abstract. Let f be a strongly q-additive function with integer values. Given an integer

k ≥ 2, we try to estimate the number of positive integers n ≤ N (resp. primes p ≤ N)

for which f(n) is k-free (resp. f(p) is k-free).

1. Introduction

Throughout this paper, P, N, N0, Z and R denote respectively the sets of prime numbers,

positive integers, nonnegative integers, integers and real numbers. p denotes always a

prime number, ζ is the Riemann zeta function and ϕ is the Euler totient function. For

any real number x, we define bxc as the largest integer smaller than or equal to x, ‖x‖ is

the distance from x to the nearest integer, e(x) = exp(2πix), π(x) is the number of primes

p ≤ x and π(x;m, l) denotes the number of primes p ≤ x that are congruent to l mod m

for some coprime integers l, m (m ∈ N). The notations (a, b) and [a, b] refer respectively

to the greatest common divisor and the least common multiple of the integers a and b

and more generally, given n integers a1, . . . , an, we denote by (a1, . . . , an) their greatest

common divisor. We denote by |A| the number of elements of a given set A. We recall the

Vinogradov’s notation U � V equivalent to the Bachmann-Landau notation U = O(V )

for complex valued functions U and V where the implied constants in the symbols “O”,

“�” are absolute. If the implied constants depend on certain parameters α, β, . . . (but on

no other parameters), then we write U(N) = Oα,β,...(V (N)) and U(N)�α,β,... V (N).

Let k ≥ 2 be an integer, a positive integer n is said to be k-free if for each prime p,

one has pk - n. Let µk denote the characteristic function of k-free integers, then one has

the identity:

µk(n) =
∑
dk|n

µ(d),
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where µ is the Möbius function.

Let Mk(x) =
∑

n≤x µk(n) be the number of k-free integers ≤ x, using elementary

arguments, one can assert

Mk(x) =
x

ζ(k)
+O(x1/k).

Several authors worked intensively to improve the error term and the best uncondi-

tional result remains that due to Walfisz [28] who showed that, uniformly on k, there

exists an absolute constant c such that

Mk(x) =
x

ζ(k)
+O

(
x1/k exp

(
−ck−8/5 (log x)3/5

(log log x)1/5

))
.

Under the Riemann hypothesis, Montgomery and Vaughan [22] proved that for every

ε > 0,

Mk(x)− x

ζ(k)
= O(x1/(k+1)+ε).

This error term was improved by many authors, still under the Riemann hypothesis, such

as Graham, Baker and Pintz, Jia, Graham and Pintz and Baker and Powell [1,2,9,10,13,

14]. Their error terms are of the form xf(k) for some f(k) ∼ 1/k as k → +∞. The best

bound for square-free numbers (k = 2) is that of Jia [14] of the form x17/54+ε.

Recently, Meng [19] studied the analytic properties of the ζ function in order to prove

that, under the Riemann hypothesis, we have

Mk(x)− x

ζ(k)
�k,ε x

1/(2k)(log x)1/2−1/(2k)+ε,

except on a set of finite logarithmic measure. Actually, [25] provides a nice survey about

this topic for interested readers.

Another question related to k-freeness is the asymptotic behaviour of

(1.1) |{n ≤ x, f(n) is k-free}|

for any function f : N → Z. We mention a result of Mirsky [20] that deals with the case

f(t) = 1P(t) + c where 1P denotes the characteristic function of the primes and c ∈ Z. In

this case, we get for any real number B > 1,

(1.2) |{p ≤ x, p+ c is k-free}| = βArπ(x) +O

(
x

logB x

)
,

where

(1.3) βAr =
∏
p∈P

(
1− 1

pk(p− 1)

)
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is called Artin’s k-dimensional constant. In the same context, Heath-Brown [12] considered

an irreducible polynomial of the form f(X) = Xd + c ∈ Z[X] and showed that for k ≥
(5/d+ 3)/9, there exists a constant δ(d) such that

|{n ≤ x, f(n) is k-free}| = C(f, k)x+O(x1−δ(d)).

Here, the constant C(f, k) is given by

C(f, k) =
∏
p

(1− ρf (pk)p−k)

where

ρf (d) = |{n mod d : d | f(n)}|.

Using Heath-Brown’s method, Reuss [24] provided an asymptotic formula for the number

of primes p ≤ x such that f(p) is (d − 1)-free, where f is an irreducible polynomial of

degree d ≥ 3 with no fixed prime divisors.

Now, let q ≥ 2 be an integer. Then we can represent every positive integer n in a

unique way as

(1.4) n =
∑

0≤j≤ν
njq

j , nj ∈ {0, . . . , q − 1} and nν 6= 0.

This representation is called the q-ary expansion of n with respect to base q; and the set

{0, . . . , q − 1} is called the set of digits.

According to (1.4), we may define the sum of digits of the integer n by

Sq(n) =
∑

0≤j≤ν
nj

which might also be denoted by S(n) if there is no risk of confusion.

In 1967, Gelfond [8] wrote a survey on strongly q-additive functions, namely the func-

tions f : N → R that satisfy f(aqi + b) = f(a) + f(b), for all (a, i, b) ∈ N2 × N0 and

0 ≤ b < qi. In particular, we have f(0) = 0 and

(1.5) f(n) =
∑

0≤j≤ν
f(nj),

meaning that a strongly q-additive function is completely determined by its values on the

integers 1, . . . , q − 1. A simple example of such a function is the sum of digits function.

Besides, Gelfond’s paper dealt with a non trivial estimate of the exponential sum∑
n≤x

e

(
l

m
Sq(n) + βn

)
,

where β ∈ R, q, l and m are integers ≥ 2 such that 1 ≤ l < m and (q − 1,m) = 1.

He proved also the following theorem concerning the sum of digits function along k-free

integers:



780 Karam Aloui, Mohamed Mkaouar and Walid Wannes

Theorem 1.1. (see [8, Théorème II]) Let q,m, k ≥ 2 and l be integers such that (q −
1,m) = 1, then we have

|{n ≤ x, n is k-free, Sq(n) ≡ l mod m}| = x

mζ(k)
+Oq(N

λ1),

where λ1 = 1+(k−1)λ0
k and λ0 = 1

2 log q log q sin(π/(2m))
sin(π/(2mq)) .

The strongly q-additive functions have been extensively discussed in the literature,

mainly their asymptotic distribution (see for instance [4,5,16–18,21]). For further informa-

tion and details, the reader is advised to refer to the interesting survey of Pappalardi [23].

Our goal in this paper is to consider the analogue version of problem (1.1) in the case

of strongly q-additive functions. Indeed, we try to estimate the asymptotic behaviour of

|{n ≤ x, f(n) is k-free}|,

and

|{p ≤ x, f(p) is k-free}|, whenever q = 2

where f is a strongly q-additive function with integer values.

In order to achieve such estimates, we should introduce the class of digital functions,

i.e., functions f : N→ R such that there exists a0, . . . , aq−1 ∈ R satisfying

f(n) =
∑

0≤k<q
ak|n|k for every n ∈ N,

where we denote, according to (1.4),

(1.6) |n|k = |{0 ≤ j ≤ ν | nj = k}|.

The sum of digits function is a trivial example of a digital function since

Sq(n) =
∑

0≤k<q
k|n|k.

Note that every strongly q-additive function is digital since, according to (1.5),

f(n) =
∑

0≤j≤ν
f(nj) =

∑
1≤k<q

f(k)|n|k.

In particular, ak = f(k), ∀ k ∈ {0, . . . , q − 1}.
Conversely, every digital function f(n) =

∑
1≤k<q f(k)|n|k is strongly q-additive.

We shall denote by | · |k the function that assigns to each positive integer n, the integer

|n|k already defined in (1.6), F is the set of digital functions f =
∑

0≤k<q ak| · |k and F0 is

the subset of F such that the sequence a0, . . . , aq−1 is an arithmetic progression modulo
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1 (i.e., there exists some r ∈ R such that aj ≡ a0 + jr mod 1). It is easily seen that

Sq(·) ∈ F0.

Let f =
∑

0≤k<q ak| · |k ∈ F , we define the real number λq(f) as follows:

(1.7) λq(f) =


c0 min

t∈R

∑
0≤j<i<q

‖ai − aj − (i− j)t‖2 if f /∈ F0,

c0‖(q − 1)(a1 − a0)‖2 if f ∈ F0,

where c0 is a constant depending only on q (defined in [17, Théorème A]). Actually, the

authors showed that λq(f) > 0. Furthermore, they extended the theorems of Hadamard-

de La Vallée Poussin (the Prime Number Theorem) and Vinogradov (see [6,11,27]) to the

case of prime numbers under digital constraints. Their method relies on the estimate of

exponential sums such as the following

Theorem 1.2. (see [17, Théorème A]) Let q ≥ 2 be an integer and f ∈ F . Then, for all

x ≥ 2 and β ∈ R, we have∑
n≤x

Λ(n)e(f(n) + βn)�q x
1−λq(f)(log x)4,

where λq(f) is the constant defined in (1.7).

We can find a generalized version of Theorem 1.2 in [21].

Our work is organized as follows: In Section 2, we give some preliminary results

including the estimate of the exponential sum
∑

1≤n≤x e(αn+βf(n)), where f is a digital

function. Moreover, we provide a theorem investigating the asymptotic behaviour of

Ξ = |{1 ≤ n ≤ x : n ≡ l mod r, f(n) ≡ a mod b}|.

Indeed, we affirm that there exists a set J1 and some positive constant θf,b,q such that

Ξ =
x

rb

∑
(j,h)∈J1

cos

(
2π

(
l

r
j +

a

b
h

))
+Oq(x

1−θf,b,q),

generalizing results known from Gelfond’s work [8].

Section 3 deals with a problem of k-freeness on a subclass of strongly q-additive func-

tions. Indeed, let F1
q be the set of strongly q-additive functions with integer values such

that f(j) = 1 for some j ∈ {1, . . . , q − 1} and let F+
q be the set of strongly q-additive

functions f such that

(1.8) f =
∑

1≤k<q
ak| · |k, a1, . . . , aq−1 ∈ Z and (a1, . . . , aq−1) = 1.

These sets will be of major interest in our article since they include the sum of digits

function (for instance) and they enable estimates involving congruences.

Basically, we find the following theorem.
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Theorem 1.3. Let k ≥ 2 be an integer and let f ∈ F1
q . Then, we have

|{1 ≤ n ≤ x, f(n) is k-free}| = x

ζ(k)
+O

(
x

logk−1 x

)
.

The second theorem states the corresponding estimate along prime numbers for com-

pletely 2-additive functions. Let f ∈ F+
q and let b ≥ 2 be an integer, we set the integer

d = df,b,q ≥ 1 as the greatest divisor of (b, q − 1) such that (f(1), d) = 1 and for all

nonnegative integers n

(1.9) f(n) ≡ f(1)Sq(n) ≡ f(1)n mod d.

Obviously, such an integer must exist (1 is the least positive integer satisfying these as-

sumptions).

By using the result of Martin-Mauduit-Rivat (see [17, Lemme 6]), we have for all

j ∈ J2 = {0 ≤ j < b, b/d - j},∑
p≤N

e

(
j

b
f(p) + rp

)
�q N

1−σf,b,q(logN)3.

Using elementary means and the above result, Martin, Mauduit and Rivat [17] proved the

following

Theorem 1.4. (see [17, Théorème 3]) Let q, b ≥ 2 be integers, let f ∈ F+
q and d = df,b,q

be the integer defined in (1.9). Let c = f(1)∗ be the inverse of f(1) modulo d. Then, for

every a ∈ Z, there exists a positive constant σf,b,q such that

|{p ≤ x, f(p) ≡ a mod b}| =

0 or 1 if (a, d) > 1,

d
bπ(x; d, ac) +Oq((log x)3x1−σf,b,q) otherwise.

In view of the above, our second theorem is the following

Theorem 1.5. Let k ≥ 2 be an integer, let f ∈ F+
2 . Then,

|{p ≤ x, f(p) is k-free}| = π(x)

ζ(k)
+O

(
x

logk x

)
.

Section 4 is devoted to the distribution of k-free numbers in congruence classes with

respect to strongly q-additive functions. Indeed, we look for

Db(x) = |{n ≤ x, n is k-free, f(n) ≡ a mod b}|,

which extends Theorem 1.1 and in the same vein

|{p ≤ x, p+ c is k-free, f(p) ≡ a mod b}|
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is extending (1.2). In fact, we prove that

Db(x) =
x

bζ(k)

∑
h∈J

cos
(

2π
a

b
h
)

+Oq(x
θ̃f,b,q),

where

(1.10) J =

{
0 ≤ h < b,

h

b
f(`) ∈ Z,∀ ` ∈ {1, . . . , q − 1}

}
.

Martin-Mauduit-Rivat provided an extended version of Theorem 1.4 in the following form.

Theorem 1.6. (see [17, Théorème 5]) Let the setup be as in Theorem 1.4. For all integers

k ≥ 2 and l ,a, we have

∑
p≤x

p≡l mod k
f(p)≡a mod b

1 =

0 if l 6≡ bc mod (k, d),

d
bπ(x; [k, d], v) +O((log x)3x1−σf,b,q) otherwise,

where v is a solution of the congruence system

v ≡ l mod k, v ≡ bc mod d

and σf,b,q is the constant stated in Theorem 1.4.

In particular, if d = 1, we have

|{p ≤ x, p ≡ l mod k, f(p) ≡ a mod b}| = π(x; k, l)

b
+O((log x)3x1−σf,b,q).

Relying on Theorem 1.6, we shall find the following estimate

|{p ≤ x, p+ c is k-free, f(p) ≡ a mod b}| = βAr

b
π(x) +O

(
x

log2 x

)
,

where βAr is the Artin’s k-dimensional constant defined in (1.3).

Finally, in the last section, we combine the results of Sections 3 and 4 with a lemma

of Banks, Harman and Shparlinski [3], in order to evaluate the cardinality of the set

{n ≤ x, f(P(n)) is k-free},

where P(n) is the largest prime factor of n and f is a strongly 2-additive function. As a

matter of fact, we prove that in this case, we have

|{n ≤ x, f(P(n)) is k-free}| = x

ζ(k)
+O(x log x exp(−C log1/3 x))

for some positive constant C.
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2. An estimate of exponential sums involving digital functions

Given a digital function f =
∑

0≤k<q ak| · |k, we set φ the periodic function of period 1

defined by

φ(t) =

∣∣∣∣∣∣
∑

0≤k<q
e(ak − kt)

∣∣∣∣∣∣ , t ∈ R.

Given λ ∈ N, we introduce the function | · |λ,k defined by

|n|λ,k = |{0 ≤ j < λ, nj = k}| with respect to (1.4),

and the function fλ defined by

fλ(n) =
∑

0≤k<q
ak|n|λ,k.

Set the function Φλ(t) =
∑

0≤l<qλ e(fλ(l) + lt), t ∈ R.

We introduce a classic lemma, estimating some exponential sums that will be needed

later and whose proof can be found in [16, Lemme 12].

Lemma 2.1. Let f ∈ F , λ ∈ N. For t ∈ R, N ≥ 1, we have∣∣∣∣∣ ∑
0<n<N

e(f(n) + nt)

∣∣∣∣∣ ≤ 2(q − 1)
∑

λ≤ logN
log q

|Φλ(t)|.

Now, we set the real number γq(f) defined by

(2.1) qγq(f) = max
t∈R

√
φ(t)φ(qt).

Martin, Mauduit and Rivat could find significant bounds for γq(f) in [16, Lemmes 8, 10,

11]. These bounds shall be useful in order to state the following result.

Theorem 2.2. Let α be a real number, let f ∈ F0 such that f(0) = 0 and (q−1)f(1) ∈ Z.

Then,

(2.2)
∑

1≤n≤x
e(αn+ f(n)) =


bxc if (α+ f(1)) ∈ Z,

e(α+ f(1))
sin(πbxc(α+ f(1)))

sin(π(α+ f(1)))
otherwise.

Otherwise, we have ∑
1≤n≤x

e(αn+ f(n))�q x
γq(f)
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where

γq(f) ≤


1− 16

q2(q − 1) log q
σq(f) if f /∈ F0,

1− 4‖(q − 1)f(1)‖2

q(q +
√

2− 1)2 log q
if f ∈ F0 and (q − 1)f(1) ∈ R \ Z

and σq(f) = mint∈R
∑

0≤j<i<q ‖(f(i)− f(j))− (i− j)t‖2 > 0 according to the identity (8)

of [16].

Proof. We set N = bxc =
∑ν

h=0 ahq
h with aν 6= 0 (then in particular ν =

⌊ log x
log q

⌋
). We

shall deal with two cases depending on whether f ∈ F0 or not.

Case 1. If f ∈ F0, the sequence 0, f(1), . . . , f(q − 1) is an arithmetic progression

modulo 1. Thus, we argue according to (q − 1)f(1) ∈ Z or not.

So, if (q − 1)f(1) = l ∈ Z then we write f(j) ≡ j l
q−1 mod 1, for 0 ≤ j < q, and

reminding that Sq(n) ≡ n mod (q − 1), for every positive integer n, we get∑
1≤n≤x

e(αn+ f(n)) =
∑

1≤n≤x
e(αn+ f(1)|n|1 + · · ·+ f(q − 1)|n|q−1)

=
∑

1≤n≤x
e

(
αn+

l

q − 1
|n|1 +

2l

q − 1
|n|2 + · · ·+ l|n|q−1

)
=

∑
1≤n≤x

e

(
αn+

l

q − 1
S(n)

)
=

∑
1≤n≤x

e

((
α+

l

q − 1

)
n

)

=


bxc if (α+ l/(q − 1)) ∈ Z,

e(α+ l/(q − 1))
sin
(
πbxc

(
α+ l

q−1

))
sin
(
π
(
α+ l

q−1

)) otherwise.

Furthermore, if (q − 1)f(1) /∈ Z, then according to Lemma 2.1, we have

(2.3)

∣∣∣∣∣∣
∑

1≤n≤x
e(αn+ f(n))

∣∣∣∣∣∣ ≤ 1 + 2(q − 1)
∑

λ≤ log x
log q

|Φλ(α)|,

where

Φλ(α) =
∑

0≤l<qλ
e

αl +
∑

0≤k<q
f(k)|l|λ,k

 .

But, it is easy to see that

|Φλ(α)| =
∏

0≤j<λ
φ(−qjα) =

∏
0≤j<λ

∣∣∣∣∣∣
∑

0≤k<q
e(f(k) + αkqj)

∣∣∣∣∣∣ .
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We refer back to (2.1) so to get∏
0≤j<λ

φ(−qjα) ≤ q
∏

0≤j≤b(λ−1)/2c

φ(−q2jα)φ(−q2j+1α)

≤ q2γq(f)b(λ+1)/2c+1 ≤ qγq(f)(λ+1)+1.

Putting this in (2.3), we find∣∣∣∣∣∣
∑

1≤n≤x
e(αn+ f(n))

∣∣∣∣∣∣ ≤ 1 + 2(q − 1)
∑

λ≤ log x
log q

qγq(f)(λ+1)+1 �q x
γq(f),

as claimed, with γq(f) ≤ 1− 4‖(q−1)f(1)‖2
q(q+

√
2−1)2 log q

thanks to [16, Lemme 11].

Case 2. If f ∈ F \ F0, we follow the same steps as in the previous subcase and we

remark, according to [16, Lemme 8], that γq(f) ≤ 1 − 16
q2(q−1) log q

σq(f) which is clearly

satisfactory since σq(f) = 0⇐⇒ f ∈ F0.

Remark 2.3. We want to note that Theorem 2.2 reformulates [7, Corollary 1]. Indeed,

this corollary states that if x0, . . . , xq−1 are complex numbers sufficiently close to the real

axis, with x0 + · · · + xq−1 6= 1 then there exists some function G(x0, . . . , xq−1, t) that is

analytic in x0, . . . , xq−1 and continuous and periodic (of period 1) in t such that∑
0<n<N

x
|n|0
0 x

|n|1
1 · · ·x|n|q−1

q−1 = G(x0, . . . , xq−1, logqN) · (x0 + · · ·+ xq−1)logq N

− x1 + · · ·+ xq−1

x0 + · · ·+ xq−1 − 1
.

This corresponds to the estimate (2.2) for α = 0, xi = e(f(i)), ∀ i ∈ {0, . . . , q − 1} and

f ∈ F0 with f(0) = 0 and f(1) ∈ Z. More precisely,

G(x0, . . . , xq−1, t) = x
1−{t}
0

(
1− q1−{t}(1− x0)

1− qx0

)
.

We can check the analyticity of the function G, in terms of x0, . . . , xq−1, and its continuity

and periodicity, in terms of t, by elementary methods. We finally remark that other

assumptions on f lead to the estimate (2) of [7, Corollary 1].

Hereafter, we shall resume the study of Gelfond on the class of strongly q-additive

functions. The result is compared to the main theorem in [15, Theorem A] (for ` = 1)

and is the following

Theorem 2.4. Let q ≥ 2, r, b ≥ 1, l and a be integers and let f ∈ F with integer values

such that f(0) = 0. If we denote by

Ξ = |{1 ≤ n ≤ x : n ≡ l mod r, f(n) ≡ a mod b}|.
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Then, we have

Ξ =
x

rb

∑
(j,h)∈J1

cos

(
2π

(
l

r
j +

a

b
h

))
+Oq(x

1−θf,b,q)

for some positive constant θf,b,q, where

J1 =

{
(j, h) : 0 ≤ j < r, 0 ≤ h < b,

h

b
f ∈ F0,

h

b
(q − 1)f(1) ∈ Z and

(
j

r
+
h

b
f(1)

)
∈ Z

}
.

Proof. We set H0 =
{

0 ≤ h < b, hb f ∈ F0

}
, H1 =

{
h ∈ H0,

h
b (q− 1)f(1) ∈ Z

}
, H2 =

{
h ∈

H0,
h
b (q − 1)f(1) ∈ R \ Z

}
and H3 =

{
0 ≤ h < b, hb f ∈ F \ F0

}
. Then, we write

Ξ =
∑
n≤x

n≡l mod r
f(n)≡a mod b

1 =
1

rb

r−1∑
j=0

e

(
− l
r
j

) b−1∑
h=0

e
(
−a
b
h
)∑
n≤x

e

(
j

r
n+

h

b
f(n)

)

= S1 +O(S2) +O(S3),

where

S1 =
1

rb

r−1∑
j=0

e

(
− l
r
j

) ∑
h∈H1

e
(
−a
b
h
)∑
n≤x

e

(
j

r
n+

h

b
f(n)

)
and

Si =
1

b

∑
h∈Hi

∣∣∣∣∣∣
∑
n≤x

e

(
j

r
n+

h

b
f(n)

)∣∣∣∣∣∣ for i ∈ {2, 3}.

Whenever h ∈ H2, Theorem 2.2 gives

S2 �q x
1−γf,b,q with γf,b,q =

4 minh∈H2

∥∥h
b (q − 1)f(1)

∥∥
q(q +

√
2− 1)2 log q

> 0.

Similarly, for h ∈ H3, we get

S3 �q x
1−νf,b,q with νf,b,q =

16

q2(q − 1) log q
min
h∈H3

σq

(
h

b
f

)
> 0.

Furthermore, we set

J1 =

{
(j, h) : 0 ≤ j < r, h ∈ H1 and

(
j

r
+
h

b
f(1)

)
∈ Z

}
and

J2 =

{
(j, h) : 0 ≤ j < r, h ∈ H1 and

(
j

r
+
h

b
f(1)

)
/∈ Z
}
.

Subsequently, S1 = T1 + T2 with

T1 =
1

rb

∑
(j,h)∈J1

e

(
− l
r
j − a

b
h

)∑
n≤x

e

(
j

r
n+

h

b
f(n)

)
=

x

rb

∑
(j,h)∈J1

e

(
− l
r
j − a

b
h

)
+O(1)
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and

T2 =
1

rb

∑
(j,h)∈J2

e

(
− l
r
j − a

b
h

)∑
n≤x

e

(
j

r
n+

h

b
f(n)

)
� 1.

Finally, we set θf,b,q = min(γf,b,q, νf,b,q) > 0 to get the desired conclusion.

Remark 2.5. It is worth noticing that, in several cases, the three sets H1, H2 and H3 could

be all nonempty. For instance, this happens if we consider b = 16, q is any even integer

and f is the strongly q-additive function defined by f(i) = 4(i+2) for all i ∈ {1, . . . , q−1}.
In this case, we get

H1 = {0, 4, 8, 12}, H2 = {2, 6, 10, 14} and H3 = {1, 3, 5, 7, 9, 11, 13, 15}.

Indeed, h
16f(i) = h

4 i + 1
2h which is an arithmetic progression modulo 1 if and only if

h ∈ {0, . . . , 15} is even.

Furthermore, for every h ∈ H1 we have h
16f(1) ∈ Z so that for any integer r ≥ 2,( j

r + h
16f(1)

)
∈ Z if and only if r | j and consequently, for 1 ≤ j < r

J1 = {(0, 0), (0, 4), (0, 8), (0, 12)}, J2 = {(j, 0), (j, 4), (j, 8), (j, 12)}.

3. Proofs of Theorems 1.3 and 1.5

Proof of Theorem 1.3. Set z = log x and let F (z) denote the product of all primes up to

z, we write

|{1 ≤ n ≤ x, f(n) is k-free}|

=
∑
n≤x

µk(f(n)) =
∑
d≥1

µ(d)|{n ≤ x, dk | f(n)}|

=
∑
d|F (z)

µ(d)|{n ≤ x, dk | f(n)}|+O

 ∑
d-F (z)

|{n ≤ x, dk | f(n)}|


=
∑
d|F (z)

µ(d)|{n ≤ x, dk | f(n)}|+O

(∑
p>z

|{n ≤ x, pk | f(n)}|

)
.

If we apply Theorem 2.4 using the parameters r = 1, b = dk, a = 0, we get

|{n ≤ x, dk | f(n)}| = x

dk
|Jd,k|+Oq(x

1−θ
f,dk,q),

where

Jd,k =

{
0 ≤ h < dk,

h

dk
f ∈ F0,

h

dk
f(1) ∈ Z

}
=

{
0 ≤ h < dk,

h

dk
f(j) ∈ Z, ∀ j ∈ {1, . . . , q − 1}

}
.

(3.1)
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Indeed, the last equality follows from the fact that the sequence h
dk
f(1), . . . h

dk
f(q−1) is an

arithmetic progression modulo 1 and since h
dk
f(1) ∈ Z then h

dk
f(j) ∈ Z, ∀ j ∈ {1, . . . , q−1}.

As we assumed that f(j) = 1 for some j ∈ {1, . . . , q − 1} then Jd,k reduces to {0} for

every d and k. So, we obtain

|{1 ≤ n ≤ x, f(n) is k-free}| =
∑
d|F (z)

µ(d)
{ x
dk

+O(x
1−θ

f,dk,q)
}

+O

(∑
p>z

x

pk

)

= x
∑
d|F (z)

µ(d)

dk
+O

( ∑
d|F (z)

x
1−θ

f,dk,q

)
+O

(∑
p>z

x

pk

)

= x
∑
d≥1

µ(d)

dk
+O

(
x
∑
d>z

1

dk

)
+O

(
x
∑
p>z

1

pk

)

=
x

ζ(k)
+O

(
x

logk−1 x

)
.

Hence, the proof is complete.

Remark 3.1. The assumption f ∈ F1
q might seem artificial and unnecessary but going

back to (3.1), we find that this restriction enables a uniform characterization of the set

Jd,k so to avoid cumbersome calculations that would make the statement of Theorem 1.3

unappreciated.

Proof of Theorem 1.5. We keep the same notations and steps as in the previous theorem,

so that we are left with

|{p ≤ x, f(p) is k-free}| =
∑
d|F (z)

µ(d)|{p ≤ x, dk | f(p)}|+O

( ∑
p1>z
p1∈P

|{p ≤ x, pk1 | f(p)}|
)
.

According to Theorem 1.4 and since q = 2 (so that the integer df,dk,2 defined in (1.9)

equals 1), we get

|{p ≤ x, f(p) ≡ 0 mod dk}| = 1

dk
π(x) +O((log x)3x

1−σ
f,dk,2).

Hence, we get

|{p ≤ x, f(p) is k-free}| =
∑
d|F (z)

µ(d)

{
π(x)

dk
+O((log x)3x

1−σ
f,dk,2)

}
+O

( ∑
p1>z
p1∈P

π(x)

pk1

)

= π(x)
∑
d≥1

µ(d)

dk
+O

(
π(x)

∑
d>z

1

dk

)
+O

(
π(x)

∑
p1>z
p1∈P

1

pk1

)

=
π(x)

ζ(k)
+O

(
x

logk x

)
.

Here, the last equality follows from the prime number theorem.
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Remark 3.2. It is worth noting that this method is unable to give a suitable estimate for

any q > 2. Indeed, if we apply Theorem 1.4, the error term will be obviously larger than

the main term.

However, Theorem 1.5 holds for q > 2 assuming that f(q− 1) = 1. Indeed, under this

assumption and considering (1.9) we get df,dk,q = 1 so we can proceed as done above and

get the same estimate.

4. Distribution of k-free numbers in congruence classes

In this section, we look for the distribution of k-free numbers verifying a digital constraint.

So, if we denote by

Db(x) = |{n ≤ x, n is k-free, f(n) ≡ a mod b}|,

we obtain the following result.

Theorem 4.1. Let q, k, b ≥ 2, l, a be integers such that (b, q − 1) = 1 and let f be a

strongly q-additive function with integer values. Then, we have

(4.1) Db(x) =
x

bζ(k)

∑
h∈J

cos
(

2π
a

b
h
)

+Oq(x
θ̃f,b,q),

where θ̃f,b,q = [1 + (k − 1)(1− θf,b,q)]/k < 1 and

J =

{
0 ≤ h < b,

h

b
f(`) ∈ Z,∀ ` ∈ {1, . . . , q − 1}

}
.

Proof. We have

Db(x) =
∑

1≤n≤x
ν(n)µk(n),

where

ν(n) =

1 if f(n) ≡ a mod b,

0 otherwise.

Therefore, if we set x1 = bx1/kc and x2 < x1 to be chosen later, we get

Db(x) =
∑

1≤n≤x
ν(n)

∑
dk|n

µ(d) =

x1∑
d=1

µ(d)
∑

i≤x/dk
ν(dki)

=

x2∑
d=1

µ(d)
∑

i≤x/dk
ν(dki) +

x1∑
d=x2+1

µ(d)
∑

i≤x/dk
ν(dki).

(4.2)

Using Theorem 2.4 (with r = dk), we can estimate the first sum as follows

x2∑
d=1

µ(d)
∑

i≤x/dk
ν(dki) =

x2∑
d=1

µ(d)

 x

bdk

∑
(0,h)∈J1

cos
(

2π
(a
b
h
))

+Oq(x
1−θf,b,q)

 ,
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where J1 =
{

(0, h) : 0 ≤ h < b, hb f ∈ F0,
h
b (q − 1)f(1) ∈ Z and h

b f(1) ∈ Z
}

according to

Theorem 2.4.

But, the assumption h
b (q − 1)f(1) ∈ Z is equivalent to h

b f(1) ∈ Z since (q − 1, b) = 1.

Henceforth

J1 =

{
(0, h) : 0 ≤ h < b,

h

b
f(`) ∈ Z, ∀ ` ∈ {1, . . . , q − 1}

}
.

Recalling the set J defined in (1.10), we get

x2∑
d=1

µ(d)
∑

i≤x/dk
ν(dki) =

x

b

∑
h∈J

cos
(

2π
a

b
h
) +∞∑
d=1

µ(d)

dk
− x

b

∑
h∈J

cos
(

2π
a

b
h
) +∞∑
d=x2+1

µ(d)

dk

+Oq(x2x
1−θf,b,q)

=
x

bζ(k)

∑
h∈J

cos
(

2π
a

b
h
)

+Oq(x2x
1−θf,b,q) +Oq(xx

1−k
2 ),

where the last O-term above is explained as follows: since the series and the integral are

convergent, we get for M → +∞,∣∣∣∣∣∣
M∑

d=x2+1

µ(d)

dk

∣∣∣∣∣∣ ≤
M∑

d=x2+1

1

dk
≤
∫ M

x2

1

tk
dt =

x1−k
2 −M1−k

k − 1
.

Again by the same argument, we might bound the second sum in (4.2):∣∣∣∣∣∣
x1∑

d=x2+1

µ(d)
∑

i≤x/dk
ν(dki)

∣∣∣∣∣∣ ≤
x1∑

d=x2+1

x

dk
≤ x

∫ x1

x2

1

tk
dt ≤ x x

1−k
2

k − 1
= O(xx1−k

2 ).

Finally, setting x2 = bxθf,b,q/kc, we obtain (4.1) with

θ̃f,b,q =
1 + (k − 1)(1− θf,b,q)

k
,

and the proof is complete as θf,b,q > 0.

Next, we prove a similar estimate over primes:

Theorem 4.2. Let q, b ≥ 2 be integers such that (b, q − 1) = 1. Let f ∈ F+
q , then for

every a, c ∈ Z, we have

|{p ≤ x, p+ c is k-free, f(p) ≡ a mod b}| = βAr

b
π(x) +O

(
x

log2 x

)
,

where βAr is the Artin’s k-dimensional constant defined in (1.3).
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Proof. Let a, c ∈ Z, we have

(4.3)∑
p≤x

p+c k-free
f(p)≡a mod b

1 =
∑
p≤x

f(p)≡a mod b

µk(p+ c) =
∑
p≤x

f(p)≡a mod b

∑
dk|p+c

µ(d) =
∑

d≤x1/k
µ(d)

∑
p≤x

p≡−c mod dk

f(p)≡a mod b

1.

Since (b, q − 1) = 1, we use Theorem 1.6 to obtain∑
p≤x

p≡−c mod dk

f(p)≡a mod b

1 =
1

b
π(x; dk,−c) +O((log x)3x1−σf,b,q).

Then, we can express (4.3) as follows:

∑
d≤x1/k

µ(d)
∑
p≤x

p≡−c mod dk

f(p)≡a mod b

1 =
∑

d≤x1/k
µ(d)

(
1

b
π(x; dk,−c) +O((log x)3x1−σf,b,q)

)

=
∑

d≤log x

µ(d)

(
π(x)

bϕ(dk)
+O

(
x

log3 x

))

+O

( ∑
d≤log x

(log x)3x1−σf,b,q
)

+O

( ∑
log x<d≤x1/k

π(x; dk,−c)
)

=
1

b

∑
d≥1

µ(d)

ϕ(dk)
π(x) +O

( ∑
d>log x

π(x)

ϕ(dk)
+

x

log2 x
+
∑

d>log x

x

dk

)

=
1

b

∏
p∈P

(
1− 1

pk(p− 1)

)
π(x) +O

(
x

log2 x

)
,

where we used the trivial estimate π(x; dk,−c)� x/dk.

5. k-freeness of f(P(n))

Our goal in this section is to provide an asymptotic formula for

|{n ≤ x, f(P(n)) is k-free}|.

We start with two introductory lemmas that will be needed later. A positive integer n is

said to be y-smooth if P(n) ≤ y. Let

ψ(x, y) = |{n ≤ x, n is y-smooth}|.

The following estimate is a simplified version of [26, Theorem 1, Chapter III.5].
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Lemma 5.1. Let u = log x
log y , where x ≥ y ≥ 2, then the following bound holds

ψ(x, y)� x exp

(
−u
2

)
.

In what follows, we denote by P[w, x] the set of primes p such that w ≤ p ≤ x. If the

parameters x ≥ y ≥ 2 are fixed throughout the rest of the section, we put

Lm = max{y,P(m)} for all m ≥ 1, Pm = P[Lm, x/m].

Lemma 5.2. (see [3, Lemma 3]) Let x ≥ y ≥ 2 and let h and g be two arithmetical

functions satisfying max{|h(k)|, |g(k)|} ≤ 1 for all positive integers k, then we have∑
n≤x

h(P(n))g(n) =
∑

m≤x/y

∑
p∈Pm

h(p)g(mp) +O(ψ(x, y)).

We start by proving the following

Theorem 5.3. Let k ≥ 2 be an integer, let f ∈ F+
2 (see (1.8)). Then, there exists a

constant C0 > 0 such that for any C ≤ C0, the following estimate holds

|{n ≤ x, f(P(n)) is k-free}| = x

ζ(k)
+O(x log x exp(−C log1/3 x)).

Proof. For every positive integer e, we consider the functions 1(e) = 1 and

h(e) =

1 if f(e) is k-free,

0 else.

Then, for any real parameters x ≥ y ≥ 2 to be chosen later, we have, by Lemma 5.2,∑
n≤x

f(P(n)) k-free

1 =
∑
n≤x

h(P(n))1(n)

=
∑

m≤x/y

∑
p∈Pm

h(p)1(mp) +O(ψ(x, y))

=
∑

m≤x/y

∑
p∈Pm

f(p) k-free

1 +O(ψ(x, y)).

(5.1)

For any integer m such that mLm ≤ x, we have∑
p∈Pm

f(p) k-free

1 =
∑

p≤x/m

µk(f(p))−
∑
p≤Lm

µk(f(p)) +O(1),

but the sum
∑

p≤x µk(p+ c) was investigated in Theorem 1.5 giving

(5.2)
∑
p≤x

µk(f(p)) =
π(x)

ζ(k)
+O

(
x

logk x

)
.
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We observe that the error term in (5.2) is an increasing function of x. Thus,

(5.3)
∑
p∈Pm

f(p) k-free

1 =
1

ζ(k)

(
π
( x
m

)
− π(Lm)

)
+O

(
x

m logk x
m

)
.

From the prime number theorem, we have

π(x) = Li(x) +O(x exp(−a
√

log x)),

where a is a positive constant. Hence, (5.3) is rewritten as

∑
p∈Pm

f(p) k-free

1 =
1

ζ(k)

(
Li
( x
m

)
− Li(Lm)

)
+O

(
x

m logk x
m

)
+O

(
x

m
exp

(
−a
√

log
x

m

))
.

Then, ∑
n≤x

f(P (n)) k-free

1 =
1

ζ(k)

∑
m≤x/y

(
Li
( x
m

)
− Li(Lm)

)
+O(ψ(x, y) +R1 +R2),

where

R1 =
∑

m≤x/y

(
x

m logk x
m

)
, R2 =

∑
m≤x/y

x

m
exp

(
−a
√

log
x

m

)
.

The same arguments, applied as in (5.1) with h(e) = 1(e), lead to the identity

bxc =
∑
n≤x

1 =
∑

m≤x/y

(
Li
( x
m

)
− Li(Lm)

)
+O(ψ(x, y) +R2).

Hence,

(5.4)
∑
n≤x

f(P(n)) k-free

1 =
x

ζ(k)
+O(ψ(x, y) +R1 +R2).

Going back to R1 and R2, we get by elementary estimates

R1 = O

(
x log x

logk y

)
, R2 = O(x log x exp(−a

√
log y)).

From Lemma 5.1, we have ψ(x, y) = O
(
x exp

(
− log x

2 log y

))
. So, by choosing

y = exp

((
log x

2a

)2/3

+O(log2/3 x log log x)

)
,

we prove that the error term in (5.4) is

O(x log x exp(−C0 log1/3 x)),

where C0 = a/
√

2.
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Using the same arguments as in the proof of the previous theorem, we obtain the

following result.

Theorem 5.4. Let q, k, b ≥ 2 be integers such that (b, q − 1) = 1. Let f ∈ F+
q , then for

every a, c ∈ Z, we have

|{n ≤ x,P(n) + c is k-free, f(P(n)) ≡ a mod b}| = βAr

b
x+O

(
x

log1/3 x

)
,

where βAr is the Artin’s k-dimensional constant defined in (1.3).

Proof. We set

B = {n ≤ x,P(n) + c is k-free, f(P(n)) ≡ a mod b}.

By applying Lemma 5.2, we get

|B| =
∑
n≤x

P(n)+c k-free
f(P(n))≡a mod b

1 =
∑
n≤x

h(P(n))1(n)

=
∑

m≤x/y

∑
p∈Pm

h(p)1(mp) +O(ψ(x, y)) =
∑

m≤x/y

∑
p∈Pm

p+c k-free
f(p)≡a mod b

1 +O(ψ(x, y)),

where we set for every ` ∈ N,

h(`) =

1 if `+ c is k-free and f(`) ≡ a mod b,

0 otherwise,

and 1(`) = 1. According to Theorem 4.2,

∑
p∈Pm

p+c k-free
f(p)≡a mod b

1 =
βAr

b

(
π
( x
m

)
− π(Lm)

)
+O

(
x

m log2 x
m

)
,

which could be handled in the same way as in the proof of Theorem 5.3 to get the desired

conclusion.
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Université de Lorraine, Institut Élie Cartan de Lorraine, UMR 7502, Campus

Aiguillettes, BP 70739, 54506 Vandœvre-lès-Nancy cedex, France

and
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