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Some Properties of the Signless Laplacian and Normalized Laplacian Tensors

of General Hypergraphs

Cunxiang Duan, Ligong Wang* and Xihe Li

Abstract. In this paper, we obtain some properties of signless Laplacian eigenvalues

of general hypergraphs. We give the upper and the lower bound of edge connectivity

of general hypergraphs in terms of average degree, minimum degree, the rank and

the number of vertices, or analytic connectivity α(G), respectively. We also give the

upper bound of analytic connectivity α(G) of general hypergraphs in terms of the

degrees of vertices. Finally, we obtain the bounds of the smallest H+-eigenvalue of

the normalized Laplacian sub-tensors of general hypergraphs.

1. Introduction

A hypergraph H is a pair (V,E), where E ⊆ P (V ) and P (V ) stands for the power set

of V . The elements of V = V (H) are called vertices, and the elements of E = E(H) are

called edges. If each edge e ∈ E contains precisely m vertices, then the hypergraph H is

called m-uniform. If H = (V,E) and H ′ = (V ′, E′) are hypergraphs such that V ′ ⊆ V

and E′ ⊆ E, then H ′ is called a subhypergraph of H. For a vertex v ∈ V , we denote by

Ev the set of edges containing v, that is, Ev = {e ∈ E | v ∈ e}. The cardinality |Ev| of

the set Ev is defined as the degree dv = dH(v) of the vertex v. Similarly, for a subset

S ⊂ [n] = {1, 2, . . . , n}, we denoted by ES the set of edges {e ∈ E | S ∩ e 6= ∅}. The rank

of H, denoted by rank(H), is the maximum cardinality of the edges in the hypergraph H.

A nearly m-uniform supertree is both connected and acyclic, in which each edge contains

either m− 1 or m vertices.

Spectral graph theory has a long history behind its development [2, 3, 5]. It is nat-

ural to generalize spectral graph theory from graphs to hypergraphs. In 2005, Qi [18]

and Lim [12] independently introduced the concept of the eigenvalues of tensors and the

spectra of tensors. In 2008, Lim [13] proposed the study of the spectra of hypergraphs

by using the spectra of tensors. Recently, there are lots of papers concerning spectral

hypergraph theory [4, 6, 8–10, 17, 19, 21, 24]. Li et al. [9] gave some operations such as

Received December 23, 2018; Accepted June 23, 2019.

Communicated by Xuding Zhu.

2010 Mathematics Subject Classification. 05C50, 15A18, 05C40.

Key words and phrases. signless Laplacian tensor, normalized Laplacian tensor, general hypergraph, edge

connectivity, H+-eigenvalue.

*Corresponding author.

265



266 Cunxiang Duan, Ligong Wang and Xihe Li

moving edges, edge-releasing and total grafting on hypergraphs, and determined the first

two spectral radius of m-uniform supertrees with n vertices. Lu and Man [16] general-

ized Smith’s theorem to m-uniform hypergraphs, and classified all connected m-uniform

hypergraphs with spectral radius at most ρm = m
√

4 which is the smallest limit point of

the spectral radii of connected m-uniform hypergraphs. Xiao et al. [23] investigated the

spectral radius of the k-uniform hypergraph when the uniform hypergraph is perturbed by

2-switch operation, and determined the maximum spectral radius of k-uniform supertrees

with given a degree sequence. Xiao et al. [22] determined the first two largest spectral

radii of uniform supertrees with given diameter. Liu et al. [15] investigated the bounds

of the principal ratio γ(H) = xmax/xmin and gave an estimate of the gap of spectral radii

between H and its proper sub-hypergraph H ′. Many scholars also started to investigate

the signless Laplacian spectral radius of m-uniform hypergraphs [7, 14,25].

In 2003, Qi [20] investigated the H+-eigenvalues of Laplacian tensors and signless

Laplacian tensors. Banerjee et al. [1] gave some spectral properties of those hypermatri-

ces of a general hypergraph, and found that these properties are similar for graphs and

uniform hypergraphs. Zhang et al. [26] studied Perron-Frobenius theorem, the techniques

of weighted incidence matrix and moving edges of general hypergraphs. And they deter-

mined the maximum spectral radius in two classes of nearly uniform supertrees. Inspired

by the idea of Qi [20] and Banerjee et al. [1], we continue to study properties of the signless

Laplacian and normalized Laplacian tensors of general hypergraphs.

In Section 2, some necessary notations and definitions are given. In Section 3, we

mainly give some properties of signless Laplacian spectral of general hypergraphs, such

as the bounds of H+-eigenvalues of the signless Laplacian tensors and the relationship

of the signless Laplacian spectral radius of cartesian product of two hypergraphs and so

on. In Section 4, we mainly give the bounds of edge connectivity of general hypergraphs,

the bound of analytic connectivity α(G) of general hypergraphs and the bounds of the

smallest H+-eigenvalue of the normalized Laplacian sub-tensors of general hypergraphs,

respectively.

2. Preliminaries

A tensor A with order m and dimension n over the real field R is a multidimensional array

A = (ai1i2...im), 1 ≤ i1, i2, . . . , im ≤ n.

The tensor A is called symmetric if its entries are invariant under any permutation of their

indices.

For a vector x = (x1, x2, . . . , xn)T ∈ Rn, Axm−1 is a vector in Rn with its i-th compo-
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nent defined as

(Axm−1)i =

n∑
i2,...,im=1

aii2...imxi2 · · ·xim , ∀ i ∈ [n].

Also, a tensor A of order m and dimension n uniquely determines an mth degree

homogeneous polynomial function Axm, which is

xT (Axm−1) =
n∑

i1,i2,...,im=1

ai1i2...imxi1xi2 · · ·xim .

Definition 2.1. [20] Let A be a nonzero tensor with order m and dimension n. A pair

(λ, x) ∈ C× (Cn \{0}) is called eigenvalue and eigenvector (or simply an eigenpair) if they

satisfy the following equation

Axm−1 = λx[m−1].

For x[m−1] is a vector with i-th entry xm−1i . We call (λ, x) an H-eigenpair (i.e., λ and

x are called H-eigenvalue and H-eigenvector, respectively) if they are both real. An H-

eigenvalue λ is called an H+ (H++)-eigenvalue if the corresponding eigenvector x ∈ Rn
+

(Rn
++).

Definition 2.2. [1] Let H = (V,E) be a hypergraph with V = {v1, v2, . . . , vn} and

E = {e1, e2, . . . , ek}. Suppose that rank(H) = m. The adjacency tensor AH of H is as

follows:

AH = (ai1,i2,...,im), 1 ≤ i1, i2, . . . , im ≤ n.

For all edges e = {vl1 , vl2 , . . . , vls} ∈ E of cardinality s ≤ m,

ai1,i2,...,im =
s

α(s)
, where α(s) =

∑
k1,...,ks≥1

k1+···+ks=m

m!

k1!k2! · · · ks!
,

and i1, i2, . . . , im are chosen in all possible ways from L = {l1, . . . , ls} with at least

once for each element of the set L, while each ki represents the times that li appears

in {i1, i2, . . . , im}. The other positions of the tensor are zero.

The adjacency tensor is symmetric, while the nonzero elements of adjacency tensor may

have different values. Even if the subscript of the elements contains two same indices, the

value may be nonzero. Specially, when H is an m-uniform hypergraph, we know that the

nonzero elements of adjacency tensor are 1/(m− 1)!.

Let H = (V,E) be a hypergraph, where V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , ek}.
The degree of a vertex vi is given by

di = dH(vi) =

n∑
i2,i3,...,im=1

aii2i3...im .
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Let Ei be the set of all the edges containing vi and e = {vi, vi2 , . . . , vis} ∈ Ei. We

denote an i-th component of a vector A(e)x by

(A(e)x)i =
s

α(s)

∑
k1≥0, k2,...,ks≥1
k1+···+ks=m−1

(m− 1)!

k1!k2! · · · ks!
xk1i x

k2
i2
· · ·xksis ,

then we have

(Ax)i =
∑
e∈Ei

(A(e)x)i.

And we also have

xTA(e)x =
s

α(s)

∑
k1,k2,...,ks≥1
k1+···+ks=m

m!

k1!k2! · · · ks!
xk1i1 x

k2
i2
· · ·xksis ,

then we have

xTAx =
∑
e∈E

xTA(e)x.

Definition 2.3. [1] Let H = (V,E) be a (general) hypergraph without isolated vertex

where V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , ek}. Let rank(H) = m. We define

the Laplacian hypermatrix, LH , of H = (V,E) as LH = DH − AH = (li1i2...im), 1 ≤
i1, i2, . . . , im ≤ n, where DH = (di1,i2,...,im) is the m order n dimensional hypermatrix with

dii...i = di and others are zero. The signless Laplacian hypermatrix of G is defined as

QH = DH +AH .

Let H = (V,E) be a general hypergraph with rank(H) = m. For any edge e =

{vi1 , vi2 , . . . , vis}, we have

L(e)xm =
s∑

j=1

xmij −
s

α(s)
xem,

where xem =
∑

k1,...,ks≥1
k1+···+ks=m

m!
k1!k2!···ks!x

k1
i1
· · ·xksis .

And we also have

Lxm =
∑
e∈E
L(e)xm.

Similarly, we have

Q(e)xm =
s∑

j=1

xmij +
s

α(s)
xem.

And we also have

Qxm =
∑
e∈E
Q(e)xm.
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3. Some properties of signless Laplacian eigenvalues of general hypergraphs

In this section, we mainly give some basic properties of signless Laplacian tensors of general

hypergraphs.

Theorem 3.1. Let G be a general hypergraph with n vertices and maximum degree ∆

such that rank(G) = m, and let q be an H-eigenvalue of QG. Then we have |q| ≤ 2∆.

Proof. Let x = (x1, x2, . . . , xn)T be an eigenvector of a hypergraph G corresponding to q

and xt = max{|x1|, |x2|, . . . , |xn|}. Without loss of generality, we can assume that xt = 1.

|q| = |qxm−1t | =

∣∣∣∣∣∣dtxm−1t +

n∑
i2,i3,...,im=1

ati2i3...imxi2xi3 · · ·xim

∣∣∣∣∣∣
≤ |dtxm−1t |+

∣∣∣∣∣∣
n∑

i2,i3,...,im=1

ati2i3...imx
m−1
t

∣∣∣∣∣∣
≤ |dt||xm−1t |+

n∑
i2,i3,...,im=1

|ati2i3...im ||xt|m−1

≤ 2dt ≤ 2∆.

A hypergraph is called k-regular if every vertex has the same degree k. By Theorem 3.1,

we have |q| ≤ 2k for a k-regular hypergraph.

Corollary 3.2. Let G be a k-regular general hypergraph with rank(G) = m and n vertices.

Then 2k is an H++-eigenvalue of QG.

Proof. For a vector x = (1, 1, . . . , 1)T ∈ Rn, and 1 ≤ i ≤ n, we have

(QGx
m−1)i = di +

n∑
i2,i3,...,im=1

aii2i3...im = 2k.

Definition 3.3. [1] LetA be a nonzero hypermatrix. A pair (λ, x) ∈ (C×Cn\{0}) is called

an E-eigenpair (where λ and x are called E-eigenvalue and E-eigenvector, respectively) if

they satisfy the following equations

Axm−1 = λx,

n∑
i=1

x2i = 1.

We call (λ, x) a Z-eigenpair if both of them are real.

Theorem 3.4. Let G be a k-regular general hypergraph with rank(G) = m and n vertices.

Then 2k(1/
√
n)m−2 is a Z-eigenvalue of QG.
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Proof. For a vector x = (1/
√
n, 1/
√
n, . . . , 1/

√
n)T ∈ Rn, we have

∑n
i=1 x

2
i = 1. And for

1 ≤ i ≤ n, we have

(QGx
m−1)i = dix

m−1 +

n∑
i2,i3,...,im=1

aii2i3...imxi2xi3 · · ·xim

= k

(
1√
n

)m−1
+

(
1√
n

)m−1 n∑
i2,i3,...,im=1

aii2i3...im

= 2k

(
1√
n

)m−2
·
(

1√
n

)
.

By a similar argument to the proof of Theorem 3.4 in [1], we have the following result.

Theorem 3.5. Let G be a general hypergraph with n vertices and maximum degree ∆

such that rank(G) = m. Let x = (x1, x2, . . . , xn)T be a Z-eigenvector of QG corresponding

to an eigenvalue q. If xt = max{|x1|, |x2|, . . . , |xn|}, then we have |q| ≤ 2∆/xt.

Let x = (x1, x2, . . . , xn)T be a vector in Rn and m ≥ s− 1 be an integer. For an edge

e = {vl1 , vl2 , . . . , vls} and a vertex vli , we define

x
e/vli
m :=

∑
xi1xi2 · · ·xim ,

where the sum is over i1, i2, . . . , im chosen in all possible way from {l1, l2, . . . , ls}, such

that, all lj (j 6= i) occur at least once.

Definition 3.6. [1] Let G and H be two hypergraphs. The Cartesian product, G ×H,

of G and H is defined by the vertex set V (G × H) = V (G) × V (H) and the edge set

E(G×H) = {{v} × e : v ∈ V (G), e ∈ E(H)} ∪ {e× {v} : e ∈ E(G), v ∈ V (H)}.

The following theorem is similar to the proof of uniform hypergraphs in [4].

Theorem 3.7. Let G and H be two general hypergraphs with rank(G) = rank(H). If qG

and qH are H-eigenvalues for G and H, respectively, then qG + qH is an H-eigenvalue for

G×H.

Proof. Let n1 and n2 be the number of vertices in G and H, respectively. Let (qG,u) and

(qH ,v) be H-eigenpairs of QG and QH , respectively. Let w ∈ Cn1n2 be a vector with the

entries indexed by the pairs (a, b) ∈ [n1]× [n2] such that w(a, b) = u(a)v(b). We have

dG×H(a,b) w
m−1(a, b) +

∑
e∈E(a,b)

aG×He w
e/(a,b)
m−1

= (dGa + dHb )wm−1(a, b) +
∑

e×{b}∈E(a,b),e∈Ea

aG×He w
e×{b}/(a,b)
m−1
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+
∑

{a}×e∈E(a,b),e∈Eb

aG×He w
{a}×e/(a,b)
m−1

= dGa w
m−1(a, b) +

∑
e∈Ea(G)

aG×He u
e/a
m−1v

m−1(b)

+ dHb w
m−1(a, b) +

∑
e∈Eb(H)

aG×He um−1(a)v
e/b
m−1

= dGa u
m−1(a)vm−1(b) + vm−1(b)

∑
e∈Ea(G)

aGe u
e/a
m−1

+ dHb u
m−1(a)vm−1(b) + um−1(a)

∑
e∈Eb(H)

aHe v
e/b
m−1

= vm−1(b)qGu
m−1(a) + um−1(a)qHv

m−1(b)

= (qG + qH)wm−1(a, b),

where dG×H(a,b) , dGa and dHb , respectively, are the degree of (a, b) in G×H, the degree of a in

G and the degree of b in H.

Denote by e(j) the jth unit vector in Rn, i.e., e
(j)
i = 1 if i = j and e

(j)
i = 0 if i 6= j, for

i, j = 1, 2, . . . , n.

Theorem 3.8. Let G be a general hypergraph and s = mine∈E(G) |e| ≥ 2. For j =

1, 2, . . . , n, dj is an H+-eigenvalue of QG with eigenvector e(j).

Proof. For a vector e(j), we can easily verify that for j = 1, 2, . . . , n, dj is an H+-eigenvalue

of QG with eigenvector e(j) by the characteristic equation of the signless Laplacian tensor.

Theorem 3.9. Let G be a general hypergraph with rank(G) = m and n vertices. Then

we have

max{∆, 2d} ≤ q1 ≤ 2∆,

where d = 1
n

∑n
i=1 di.

Proof. By the characteristic equation of the signless Laplacian tensor, it is obvious that

∆ ≤ q1 ≤ 2∆. Let x =
(

1
n1/m ,

1
n1/m , . . . ,

1
n1/m

)T
, we have

q1 ≥ QGx
m =

n∑
i=1

dix
m
i +

n∑
i=1

n∑
i2,i3,...,im=1

aii2i3...imxixi2xi3 · · ·xim = 2
1

n

n∑
i=1

di.

Thus,

max{∆, 2d} ≤ q1 ≤ 2∆.

By a similar argument to the proof of Theorem 15 of [20], we have the following result.
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Theorem 3.10. The smallest signless Laplacian H+-eigenvalue of G is δ. We always

have

δ = min

{
Qxk : x ∈ Rn

+,
n∑

i=1

xki = 1

}
.

4. Edge connectivity and H+-eigenvalues of sub-tensors of the normalized

Laplacian tensors

Let S be a proper nonempty subset of V , and S = V \ S be the complement of S in

G. The edge set E is partitioned into three parts E(S), E(S) and E(S, S). The edge

set E(S) (resp. E(S)) consists of edges whose vertices are all in S (resp. S). The edge

set E(S, S) consists of edges whose vertices are in both S and S. We call E(S, S) an

edge cut of G. If we delete all the edges of E(S, S) from G, then G is separated into

two hypergraphs G[S] = (S,E(S)) and G[S] = (S,E(S)) (note that the ranks of G[S] and

G[S] may be different). For an edge ep ∈ E(S, S), t(ep) is the number of vertices contained

in S of ep. For all edges ep ∈ E(S, S), the average value of such t(ep) is denoted t(S). We

call the minimum (resp. maximum) cardinality of such an edge cut the edge connectivity

(resp. maximum cut) of G, and denoted by e(G) (resp. c(G)).

For each edge e = {vi1 , vi2 , . . . , vit}, denote by Se the collection of all the ordered

multisets extended from e, that is |Se| = α(t), and SE(G) =
⋃

e∈E(G) Se represent all the

possible ordered multisets extended from the edges in E(G).

In the following, let G be a hypergraph with n vertices and k edges. When the

hypergraph G is uniform, Theorem 4.1 is exactly Proposition 16 of Qi [20].

Theorem 4.1. Let G be a general hypergraph with n vertices, average degree d, minimum

degree δ and rank(G) = m. Let m ≥ s = mine∈E(G) |e| ≥ 2.

(i) If m− 2s < 0, then, for any nonempty proper subset S of V (G), we have

e(G) ≤ |E(S, S)| ≤ (2d− δ)n
2s−m

.

(ii) If n ≤ 2s− 1, then e(G) = δ.

Proof. (i) Let S be a nonempty proper subset of V . Let x = 1
|S|1/m

∑
i∈S e(i), where

e(i) is a vector whose i-th element is 1, and other elements are 0. For ep ∈ E(S), by

Definition 2.3, we have

QG(ep)x
m = |ep| ·

1

|S|
+
|ep|

α(|ep|)
∑

e′p∈Sep

xe
′
p = |ep| ·

1

|S|
+
|ep|

α(|ep|)
∑

e′p∈Sep

1

|S|

= |ep| ·
1

|S|
+
|ep|

α(|ep|)
· α(|ep|) ·

1

|S|
=

2|ep|
|S|

.
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For ep ∈ E(S), it is obvious that

QG(ep)x
m = 0.

For ep ∈ E(S, S), it is obvious that

QG(ep)x
m =

t(ep)

|S|
.

Thus,

QGx
m =

 ∑
ep∈E(S)

+
∑

ep∈E(S)

+
∑

ep∈E(S,S)

QG(ep)x
m

=
∑

ep∈E(S)

2|ep|
|S|

+
∑

ep∈E(S,S)

t(ep)

|S|
=

∑
ep∈E(S)

2|ep|
|S|

+
t(S)

|S|
|E(S, S)|.

Moreover, by Theorem 3.10, we have

(4.1) δ|S| ≤
∑

ep∈E(S)

2|ep|+ t(S)|E(S, S)|.

Similarly, letting y = 1
|S|1/m

∑
i∈S e(i), we have

QGx
m =

 ∑
ep∈E(S)

+
∑

ep∈E(S)

+
∑

ep∈E(S,S)

QG(ep)x
m =

∑
ep∈E(S)

2|ep|
|S|

+
t(S)

|S|
|E(S, S)|.

By Theorem 3.10, we have

(4.2) δ|S| ≤
∑

ep∈E(S)

2|ep|+ t(S)|E(S, S)|.

By Inequalities (4.1) and (4.2), we have

δn ≤
∑

ep∈E(S)

2|ep|+ t(S)|E(S, S)|+
∑

ep∈E(S)

2|ep|+ t(S)|E(S, S)|

=
∑

ep∈E(G)

2|ep| −
∑

ep∈E(S,S)

2|ep|+ (t(S) + t(S))|E(S, S)|

≤ 2dn− 2s|E(S, S)|+m|E(S, S)|

= 2dn− (2s−m)|E(S, S)|.

If m− 2s < 0, then we have

e(G) ≤ |E(S, S)| ≤ (2d− δ)n
2s−m

.
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(ii) If n ≤ 2s − 1, then either |S| < s or |S| < s. Without loss of generality, we may

assume that |S| < s. Then E(S) = ∅, that is, |E(S)| = 0. Thus, by (4.1), we have

|S|δ ≤ t(S)|E(S, S)|.

Since t(S) ≤ |S|, we have

δ ≤ |E(S, S)|.

Thus, e(G) ≥ δ.
Assume that dj = δ. Let S = {j}, then

|E(S, S)| = dj = δ.

Thus, e(G) = δ.

Let G = (V,E) be a general hypergraph with rank(G) = m. Similar to Qi [20] the

analytic connectivity α(G) of G is defined as

α(G) = min
j=1,2,...,n

{
min

{
Lxm

∣∣∣ x ∈ Rn
+,

n∑
i=1

xmi = 1, xj = 0

}}
.

When the hypergraph G is uniform, Theorem 4.2 is exactly Proposition 18 of Qi [20].

Theorem 4.2. Let G be a general hypergraph with n vertices and rank(G) = m. Then

we have

e(G) ≥ n

m
α(G).

Proof. Let s = mine∈E(G) |e|, and let S be a nonempty proper subset of V . Then there is

a j /∈ S such that

(4.3) min

{
LGxm : x ∈ Rn

+,
n∑

i=1

xmi = 1, xj = 0

}
≥ α(G).

Let x = 1
|S|1/m

∑
i∈S e(i). It is clear that x is a feasible point of the minimization problem

in (4.3). For ep ∈ E(S), by Definition 2.3, we have

LG(ep)x
m = |ep| ·

1

|S|
− |ep|
α(|ep|)

· α(|ep|) ·
1

|S|
= 0.

For ep ∈ E(S), it is obvious that

LG(ep)x
m = 0.

For ep ∈ E(S, S), it is obvious that

LG(ep)x
m =

t(ep)

|S|
.
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Thus,

LGxm =

 ∑
ep∈E(S)

+
∑

ep∈E(S)

+
∑

ep∈E(S,S)

LG(ep)x
m

=
∑

ep∈E(S,S)

t(ep)

|S|
=
t(S)

|S|
|E(S, S)|.

By Inequality (4.3), we have

(4.4) α(G)|S| ≤ t(S)|E(S, S)|.

Similarly, letting y = 1
|S|1/m

∑
i∈S e(i), we have

LGxm =

 ∑
ep∈E(S)

+
∑

ep∈E(S)

+
∑

ep∈E(S,S)

LG(ep)x
m =

t(S)

|S|
|E(S, S)|

and

(4.5) α(G)|S| ≤ t(S)|E(S, S)|.

Thus, by Inequalities (4.4) and (4.5), we have

α(G)n ≤ t(S)|E(S, S)|+ t(S)|E(S, S)| ≤ m|E(S, S)|.

Then, we have

|E(S, S)| ≥ n

m
α(G).

Hence,

e(G) ≥ n

m
α(G).

By Theorem 4.2 and e(G) ≤ δ, we note α(G) ≤ m
n δ for a hypergraph with rank = m

and minimum degree δ.

Motivated by the idea of Li et al. [11], we have the following theorem. When G is

an m-uniform hypergraph, the upper bound in Theorem 4.3 is min
{di1+di2+···+dim−m

m

∣∣
{vi1 , vi2 , . . . , vim} ∈ E(G)

}
, which is exactly the upper bound of Theorem 3.9 in Li et

al. [11].

Theorem 4.3. Let G be a general hypergraph with rank(G) = m, n vertices and more

than one edge. Then we have

α(G) ≤ min

{
di1 + di2 + · · ·+ dil − l

l

∣∣∣ {vi1 , vi2 , . . . , vil} ∈ E(G)

}
.
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Proof. Let e = {vi1 , vi2 , . . . , vil} ∈ E(G) be an edge of G and let x = 1
l1/m

∑
i∈e e(i) be a

vector. It is obvious
∑n

i=1 x
m
i = 1. Thus, we have

α(G) ≤ LGxm =
∑

ep∈E(G)

LG(ep)x
m

= di1x
m
i1 + di2x

m
i2 + · · ·+ dilx

m
il
−
∑
e′∈Se

l

α(l)

1

l

= di1
1

l
+ di2

1

l
+ · · ·+ dil

1

l
− 1 =

di1 + di2 + · · ·+ dil − l
l

.

Let G be a general hypergraph with n vertices and k edges, and rank(G) = m. The

normalized adjacency tensor A, which is an m-th order n-dimensional symmetric nonneg-

ative tensor, is defined as: for any edge e = {vl1 , vl2 , . . . , vls} ∈ E of cardinality s ≤ m,

ai1,i2,...,im =
s

α(s)

m∏
j=1

1

m

√
d(vij )

, where α(s) =
∑

k1,...,ks≥1
k1+···+ks=m

m!

k1!k2! · · · ks!
,

and i1, i2, . . . , im are chosen in all possible ways from {l1, l2, . . . , ls} with at least once for

each element of the set. The rest of the positions are zero.

The normalized Laplacian tensor L, which is an m-th order n-dimensional symmetric

tensor, is defined as

L = I− A,

where I is an m-th order n-dimensional diagonal tensor with the i-th diagonal element

jii...i = 1, and zero otherwise.

In the following, we gave some results of sub-tensors of the normalized Laplacian

tensors.

Definition 4.4. [8] Let T be a real tensor with order k dimensional n and s ∈ [n]. The k-

th order s-dimensional tensor U with entries ui1,i2,...,ik = ti1,i2,...,ik for all i1, i2, . . . , ik ∈ [s]

is called the sub-tensor of T associated to the subset S := {j1, j2, . . . , js}. We usually

denoted U as TS .

Let S ⊆ [n] be nonempty and let κ(S) be the smallest H+-eigenvalue of normalized

Laplacian sub-tensor LS . The proof of the following theorem is similar to that of uniform

hypergraphs in [8]. Hence, we omit its proof.

Theorem 4.5. Let G be a general hypergraph on n vertices without isolated vertices and

rank(G) = m. Let S ⊆ [n] be nonempty. Then we have κ(S) = 1− ρ(AS), and

κ(S) = min

Lym
∣∣∣ y ∈ Rn

+,
∑
i∈[n]

ymi = 1, yi = 0, ∀ i ∈ S

 ,

where ρ(AS) is the spectral radius of normalized adjacency tensor AS.
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Corollary 4.6. Let G be a general hypergraph on n vertices without isolated vertices and

rank(G) = m. Let S, T ⊆ [n] be nonempty such that S ⊂ T . Then we have κ(T ) ≤ κ(S).

Proof. By Theorem 4.5, it is obvious that Corollary 4.6 holds.

Let δ = mini∈[n] di and ∆ = maxi∈[n] di. For a nonempty subset S ⊂ V , define

vol(S) =
∑

i∈S di as the volume of S. Let vol(∅) = 0. The volume vol([n]) of a hypergraph

is simply denoted as dvol. For a subset S ⊂ [n] = {1, 2, . . . , n}, we use ES to denote the

set of edges {e ∈ E | S ∩ e 6= ∅}.

Theorem 4.7. Let G be a general hypergraph on n vertices without isolated vertices and

rank(G) = m, and s = mine∈E(G) |e| ≥ 2. For any nonempty S ⊆ [n], we have

κ(S) ≤ m(s− 1) vol(S) + (m− s)dvol − s(m− s)
m vol(S)

.

In particular, for any i ∈ [n], we have

κ({i}) ≤ m(s− 1)∆ + (m− s)dvol − s(m− s)
m(dvol −∆)

.

Proof. If S = V , then it is obvious that κ(S) = κ(V ) = 0 and the result holds. Thus we

may assume that S 6= V . Let y = (y1, y2, . . . , yn)T be the vector with its j-th element

being m
√
dj/

m
√

vol(S) for all j ∈ S and yj = 0 for j ∈ S. Then, by Theorem 4.5, we have

that

κ(S) ≤ Lym = 1− ASym = 1−
∑

e∈E\ES

AS(e)ym

= 1−
∑

e∈E\ES ,|e|=l

l

α(l)

∑
k1,k2,...,kl≥1

k1+k2+···+kl=m

m!

k1! · · · kl!
yk1i1 y

k2
i2
· · · yklil

d
k1/m
i1

d
k2/m
i2

· · · dkl/mil

≤ 1− s
∑

e∈E\ES

1

vol(S)
= 1− s

|E| − |ES |
vol(S)

≤
vol(S) + s|ES | −

sdvol+s(m−s)
m

vol(S)
≤

vol(S) + s vol(S)− sdvol+s(m−s)
m

vol(S)

=
m(s− 1) vol(S) + (m− s)dvol − s(m− s)

m vol(S)
.

Since dvol ≤ s+m(|E|−1), that is, |E| ≥ (dvol+m−s)/m, we know that the inequality

above is true.

Moreover, for any i ∈ [n], it is obvious that

κ({i}) ≤ m(s− 1)∆ + (m− s)dvol − s(m− s)
m(dvol −∆)

.
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Example 4.8. Let G = (V,E) be a general hypergraph, where V = {1, 2, 3, 4, 5} and

E = {{1, 2, 3, 4}, {2, 3, 4}, {3, 4, 5}, {1, 5}}. We know that m (= rank(G)) = 4 and s = 2.

Let S = {1, 2, 3, 4}, then we have vol(S) = d1 + d2 + d3 + d4 = 2 + 2 + 3 + 3 = 10,

vol(S) = d5 = 2, and dvol = vol(S) + vol(S) = 12. By Theorem 4.7, we have that

κ(S) ≤ 4(2− 1) vol(S) + (4− 2)dvol − 2(4− 2)

4 vol(S)
=

8 + 24− 4

40
=

7

10
.

Theorem 4.9. Let G be a general hypergraph on n vertices without isolated vertices and

rank(G) = m, and s = mine∈E(G) |e| ≥ 2. Then we have

minκ({i}) ≤ dvol + s(e(G)− |E|)
dvol

.

Proof. Let S ⊆ [n] be nonempty. Let y = (y1, y2, . . . , yn)T be the vector with its j-th

element being m
√
dj/

m
√

vol(S) for all i ∈ S and yj = 0 for j ∈ S. Then, by Theorem 4.5,

we have that

κ(S) ≤ Lym = 1−
∑

e∈E(S),|e|=l

l

α(l)

∑
k1,k2,...,kl≥1

k1+k2+···+kl=m

m!

k1! · · · kl!
yk1i1 y

k2
i2
· · · yklil

d
k1/m
i1

d
k2/m
i2

· · · dkl/mil

≤ 1− s
∑

e∈E(S)

1

vol(S)
= 1− s |E(S)|

vol(S)
.

Similarly, we have that

κ(S) ≤ 1− s |E(S)|
vol(S)

.

Hence,

κ(S) vol(S) + κ(S) vol(S) ≤ vol(S) + vol(S)− s(|E(S)|+ |E(S)|)

= dvol − s(|E| − |E(S, S)|).

It is obvious that S ⊆ {r} and S ⊆ {t} for some r and t respectively. Without loss of

generality, we assume that κ(S) ≤ κ(S). By Corollary 4.6, we have that

dvol min
i∈[n]

κ({i}) ≤ dvol min
{
κ({r}), κ({t})

}
≤ dvolκ(S) = (vol(S) + vol(S))κ(S)

≤ vol(S)κ(S) + vol(S)κ(S) ≤ dvol − s(|E| − |E(S, S)|).

Thus,

minκ({i}) ≤ dvol + s(e(G)− |E|)
dvol

.
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