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Second-order Necessary Optimality Conditions for an Optimal Control

Problem

Toan Nguyen* and Thuy Le

Abstract. Second-order necessary optimality conditions for an optimal control prob-

lem with a nonconvex cost function and state-control constraints are studied in this

paper. By establishing an abstract result on second-order necessary optimality con-

ditions for a mathematical programming problem, we obtain second-order necessary

optimality conditions for an optimal control problem.

1. Introduction

A wide variety of problems in optimal control problem can be posed in the following form.

Determine a control vector u ∈ Lp([0, 1],Rm) and a trajectory

x ∈W 1,p([0, 1],Rn), 1 < p <∞,

which minimize the cost

(1.1) J(x, u) =

∫ 1

0
L(t, x(t), u(t)) dt,

with the state equation

(1.2) ẋ(t) = A(t)x(t) +B(t)u(t) a.e. t ∈ [0, 1],

the initial condition

(1.3) x(0) = c,

and the mixed constraint

(1.4) g(t, x(t)) + bu(t) ≤ 0 a.e. t ∈ [0, 1].
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Here, W 1,p([0, 1],Rn) is the Sobolev space, which consists of absolutely continuous func-

tions x : [0, 1]→ Rn such that ẋ ∈ Lp([0, 1],Rn). Its norm is given by

‖x‖1,p = |x(0)|+ ‖ẋ‖p.

The notations in (1.1)–(1.4) have the following meanings:

– x, u are the state variable and the control variable, respectively,

– L : [0, 1]× Rn × Rm → R and g : [0, 1]× Rn → Rm are given functions,

– A(t) = (akl(t))n×n and B(t) = (bkl(t))n×m are matrix-valued functions,

– c ∈ Rn and b ∈ R∗ are constants.

Put

X = W 1,p([0, 1],Rn), U = Lp([0, 1],Rm), Z = X × U,

and

(1.5) E = {z = (x, u) ∈ X × U : (1.2) and (1.3) are satisfied}.

We define a mapping

G(z) = G(x, u) = g( · , x) + bu.

When g( · , x(·)) + bu(·) ∈ C([0, 1]) by a traditional approach, we can define a mapping

Φ(x, u) = max
t∈[0,1]

{g(t, x(t)) + bu(t)}

and reduce the problem (1.1)–(1.4) to the mathematical programming problem

Minimize J(x, u) subject to (x, u) ∈ E, Φ(x, u) ≤ 0.

Unfortunately, g( · , x(·)) + bu(·) belongs to Lp([0, 1],Rm) in general, we fail to define Φ as

above. Therefore, we need to find a suitable model for the problem (1.1)–(1.4). Let us

define a closed convex cone

Q = {v ∈ Lp([0, 1],Rm) : v(t) ≤ 0 a.e. t ∈ [0, 1]}.

Then, the problem (1.1)–(1.4) becomes

Minimize J(x, u) subject to (x, u) ∈ E, G(x, u) ∈ Q.

Note that E is a closed convex set and Q is a nonempty closed convex cone. By the

assumption (H2), we also have E 6= ∅ (see Lemma 5.2).

This type of problems is considered and investigated in [7, 8, 10, 22, 31, 38–40, 42, 44]

and the references therein.

The study of optimality conditions is an important topic in variational analysis and

optimization. In order to give a general idea of such optimality conditions, we consider
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for the moment the simplest case, when optimization problem is unconstrained. Then,

stationary points are given by the first-order optimality condition. It is well known that

the second-order necessary condition for stationary points to be locally optimal is that the

Hessian matrix should be positive semidefinite. There have been many papers dealing with

the first-order optimality condition and second-order necessary condition for mathematical

programming problems; see, for example, [2, 3, 5, 9, 17,19,32,36].

By considering a set of assumptions involving different kinds of the critical direction

and the Mangasarian-Fromovitz condition, Kawasaki [19] derived second-order optimality

conditions for a mathematical programming problem. However, the results of Kawasaki

cannot be applied for nonconical constraints. In [9], Cominetti extended the results of

Kawasaki. He gave second-order necessary optimality conditions involving Kuhn-Tucker-

Lagrange multipliers for optimization problem with geometrical and functional constraints.

The novelty of this result with respect to the classical positive semidefiniteness condition

on the Hessian of the Lagrangian function is that it contains an extra term, which repre-

sents a kind of “second-order derivative” associated with the target set of the functional

constraints of the problem.

Besides the study of optimality conditions in mathematical programming, the study of

optimality conditions in optimal control is also of interest. There have been many papers

dealing with the optimality condition for optimal control; see, for example, [4,6,11,12,14–

16, 20, 23, 24, 26–28,32–35, 41, 43, 45]. We refer the reader to [4, 11, 12, 16, 20, 23, 32–35] for

recent studies on first-order necessary optimality conditions and second-order necessary

optimality conditions for continuous optimal control problems. To deal with second-

order optimality conditions for the problem (1.1)–(1.4), one often require that Q has a

nonempty interior. When Q ⊂ Lp([0, 1],Rm) with 1 ≤ p < ∞ then its interior is likely

empty (see [21, Example 1.1]). Hence, in order to have that Q is of nonempty interior,

one must requires that Q ⊂ L∞([0, 1],Rm) and so we need control variable u belonging

to L∞([0, 1],Rm). By this approach, Páles and Zeidan in [32–35] obtained second-order

necessary optimality conditions for the optimal control problem (1.1)–(1.4).

Note that if we consider the problem under the assumption that control variable

u ∈ L∞([0, 1],Rm) then, when the constraint sets are unbounded, the problem (1.1)–

(1.4) generally has no solutions in W 1,p([0, 1],Rn)× L∞([0, 1],Rm) because the objective

function does not satisfy coercivity conditions. Besides, multipliers belong to the dual

space L∞([0, 1],Rm)∗, which are measures rather than functions. Therefore, it had better

we require (x, u) ∈ W 1,p([0, 1],Rn) × Lp([0, 1],Rm) with 1 < p < ∞. For this we first es-

tablish the second-order optimality conditions for a mathematical programming problem.

We then derive the second-order optimality conditions for an optimal control problem.

This approach allows us to obtain necessary optimality conditions when the interior of Q
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is empty.

The paper is organized as follows. In Section 2, we state our main result (Theorem 2.3).

Section 3 gives basic definitions and preliminaries which will be used in the sequel. To

prove the main result, we first derive necessary optimality conditions for a mathematical

programming problem (Theorem 4.3), which is given in Section 4, and then apply the

obtained results for the problem (1.1)–(1.4). The proof of the main result is given in

Section 5. In Section 6, we give some examples to show that if the second-order necessary

condition is not satisfied, then the admissible couple is not a solution even it satisfies

first-order necessary conditions.

2. Statement of the main result

Recall that a couple (x, u) is said to be admissible if it satisfies constraints (1.2)–(1.4).

For a given admissible couple (x, u), the symbols

L(t), Lx(t), Lxx(t), etc.,

stand, respectively, for

L(t, x(t), u(t)), Lx(t, x(t), u(t)), Lxx(t, x(t), u(t)), etc.

An admissible couple (x, u) is said to be a locally optimal solution of the problem (1.1)–

(1.4) if and only if there exists ε > 0 such that for all admissible couples (x, u), the

following implication holds:

‖(x, u)− (x, u)‖Z ≤ ε =⇒ f(x, u) ≥ f(x, u).

To deal with our problem, we impose the following assumptions:

(H1) The function L : [0, 1] × Rn × Rm → R has properties that L( · , x, u) is measurable

for all (x, u) ∈ Rn×Rm, L(t, · , · ) is a function of class C2 for almost every t ∈ [0, 1],

L(t, 0, 0) ∈ L1([0, 1],R) and for each M > 0, there exist a positive number kLM and

a non-negative function wLM ∈ L∞([0, 1],R) such that

|Lx(t, x, u)|+ |Lu(t, x, u)| ≤ kLM (|x|+ |u|p−1) + wLM (t),

|Lx(t, x, u)− Lx(t, x′, u′)| ≤ kLM (|x− x′|+ |u− u′|),

|Lu(t, x, u)− Lu(t, x, u′)| ≤ kLM
p−1−j>0∑
j=0

|u− u′|p−1−j |u′|j

for all x, x′ ∈ Rn satisfying |x|, |x′| ≤M and u, u′ ∈ Rm. Also for each M > 0, there

exists a constant kLM > 0 such that

|Lxx(t, x, u)− Lxx(t, x′, u′)| ≤ kLM (|x− x′|+ |u− u′|),

|Lxu(t, x, u)− Lxu(t, x′, u′)| ≤ kLM (|x− x′|+ ε|u− u′|p−1)
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(with ε = 0 if 1 < p ≤ 2 and ε = 1 if p > 2) and

|Luu(t, x, u)− Luu(t, x, u′)|

= 0 if 1 < p ≤ 2,

≤ kLM
∑p−2−j>0

j=0 |u− u′|p−2−j |u′|j if p > 2

for a.e. t ∈ [0, 1], for all x, x′ ∈ Rn with |x|, |x′| ≤M and u, u′ ∈ Rm.

(H2) The matrix-valued functions A : [0, 1] → Mn,n(R) and B : [0, 1] → Mn,m(R) are

measurable and essentially bounded.

(H3) The function g : [0, 1]× Rn → Rm is continuous and of class C2 with respect to the

second variable, and satisfies the following properties: g( · , 0) ∈ Lp([0, 1],Rm) and

for each M > 0, there exists a constant lgM > 0 such that

|gx(t, x)|+ |gxx(t, x)| ≤ lgM ,

|gx(t, x)− gx(t, x′)|+ |gxx(t, x)− gxx(t, x′)| ≤ lgM |x− x′|

for a.e. t ∈ [0, 1], for all x, x′ ∈ Rn with |x|, |x′| ≤M .

(H4) For each v ∈ Q, there exists u ∈ Lp([0, 1],Rm) such that

gx(·)(x− x) + bu+ g(·)− v ∈ Q,

where x and u are satisfied the state equation (1.2) and the initial condition (1.3).

The assumptions (H1) and (H3) guarantee that J(x, u) and G(x, u) are second-order

Fréchet differentiable onW 1,p([0, 1],Rn×Lp([0, 1],Rm) (see [21, Proposition A] or Lemma 5.3

and Lemma 5.4), where the last condition in (H1) ensures that the second-order Taylor ex-

pansion is valid. Meanwhile, (H4) guarantees that the Robinson condition is satisfied (see

Lemma 5.5). In contrast with the case where the control variable u ∈ L∞([0, 1],Rm),

the objective function J(x, u) is difficult to be second-order Fréchet differentiable on

W 1,p([0, 1],Rn) × Lp([0, 1],Rm). However, when L(t, x, u) is a polynomial of variables x

and u then the assumption (H1) is easily fulfilled. Let us give some illustrative examples

to show that L(t, x, u) satisfies (H1).

Example 2.1. Let p = 11/5 and L : [0, 1]× R2 × R2 → R is defined by

L(t, x, u) = x21 + u
11/5
1 + u

11/5
2 , ∀x = (x1, x2) ∈ R2, u = (u1, u2) ∈ R2.

Then, L(t, x, u) satisfies the assumption (H1).

Indeed, we have

Lx(t, x, u) = (2x1, 0), Lu(t, x, u) =
11

5
(u

6/5
1 , u

6/5
2 ), Lxu(t, x, u) = Lux(t, x, u) = 0
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and

Lxx(t, x, u) =

2 0

0 0

 , Luu(t, x, u) =
66

25

u1/51 0

0 u
1/5
2

 .
So,

|Lx(t, x, u)| = 2|x1| ≤ 2(|x|+ |u|6/5),

|Lx(t, x, u)− Lx(t, x′, u′)| = 2|x1 − x′1| ≤ 2(|x− x′|+ |u− u′|).

Since

(2.1) am + bm ≤ (a+ b)m, ∀ a, b ≥ 0, m ≥ 1,

we get

|Lu(t, x, u)| = 11

5

√
(u21)

6/5 + (u22)
6/5 ≤ 11

5
|u|6/5 ≤ 11

5
(|u|6/5 + |x|).

We now show that there is a constant C > 0 such that

(2.2) |Lu(t, x, u)− Lu(t, x, u′)| ≤ C(|u− u′|6/5 + |u− u′|1/5|u′|).

We have

|Lu(t, x, u)− Lu(t, x, u′)| = 11

5

√
(u

6/5
1 − (u′1)

6/5)2 + (u
6/5
2 − (u′2)

6/5)2.

We will prove that there exists C1 > 0 such that

(2.3)

∣∣∣∣ 5

√
u61 −

5

√
(u′1)

6

∣∣∣∣ ≤ C1

[
5

√
|u1 − u′1|6 + 5

√
|u1 − u′1||u

′
1|
]
.

Put u′1 = a, u1 = a+ h, then (2.3) is equivalent to

(2.4)
∣∣∣ 5
√

(a+ h)6 − 5
√
a6
∣∣∣ ≤ C1

[
5
√
h6 + 5

√
|h||a|

]
.

Since

a5 − b5 = (a− b)(a4 + a3b+ a2b2 + ab3 + b4)

= (a− b)
(
(a2 − b2)2 +

(√
a3b+

√
ab3
)2

+ a2b2
)
, ∀ a, b ∈ R,

we have

|a3b2 − a2b3| = |a2b2(a− b)| ≤ |a5 − b5|,

|a4b− ab4| = |ab(a3 − b3)| = |(a− b)(a3b+ a2b2 + ab3)| ≤ |a5 − b5|.

So,

(2.5) |a− b|5 ≤ |a5 − b5|+ 5|a4b− ab4|+ 10|a3b2 − a2b3| ≤ 16|a5 − b5|.
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This implies that∣∣∣ 5
√

(a+ h)6 − 5
√
a6
∣∣∣5 ≤ 16|(a+ h)6 − a6|

≤ 16
[
|h|6 + 6|h|5|a|+ 15|h|4|a|2 + 20|h|3|a|3 + 15|h|2|a|4 + 6|h||a|5

]
≤ 320

[
|h|6 + |h|5|a|+ |h|4|a|2 + |h|3|a|3 + |h|2|a|4 + |h||a|5

]
≤ 320

[
5
√
|h|6 + 5

√
|h||a|

]5
.

Therefore, the inequality (2.4) is valid with C1 = 5
√

320, and so is (2.3). Thus,

|Lu(t, x, u)− Lu(t, x, u′)|

=
11

5

√
(u

6/5
1 − (u′1)6/5)2 + (u

6/5
2 − (u′2)6/5)2

≤ 11

5

√
C1

√(
5

√
|u1 − u′1|6 + 5

√
|u1 − u′1||u′1|

)2

+

(
5

√
|u2 − u′2|6 + 5

√
|u2 − u′2||u′2|

)2

≤ 11

5

√
2C1

√(
5

√
|u1 − u′1|6

)2

+

(
5

√
|u1 − u′1||u′1|

)2

+

(
5

√
|u2 − u′2|6

)2

+

(
5

√
|u2 − u′2||u′2|

)2

≤ 11

5

√
2C1

√(
5

√
|u1 − u′1|6

)2

+

(
5

√
|u2 − u′2|6

)2

+

√(
5

√
|u1 − u′1||u′1|

)2

+

(
5

√
|u2 − u′2||u′2|

)2

.

(2.6)

Since (2.1) holds, we have√(
5

√
|u1 − u′1|6

)2

+

(
5

√
|u2 − u′2|6

)2

≤
(√
|u1 − u′1|2 + |u2 − u′2|2

)6/5

= |u− u′|6/5.

(2.7)

From the inequalities

a8c2 ≤ (a2 + c2)5, a6c4 ≤ (a2 + c2)5,

we have

5b8d2(a8/5c2/5) ≤ 5b8d2(a2 + c2), 10b6d4(a6/5c4/5) ≤ 10b6d4(a2 + c2).

So,

(a2/5b2 + c2/5d2)5 ≤ (a2 + c2)(b2 + d2)5.

Hence, √(
5

√
|u1 − u′1||u′1|

)2

+

(
5

√
|u2 − u′2||u′2|

)2

≤
(√
|u1 − u′1|2 + |u2 − u′2|2

)1/5√
(u′1)

2 + (u′2)
2 = |u− u′|1/5|u′|.

(2.8)
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Combining (2.6), (2.7) and (2.8), we obtain (2.2) with C = 11
5

√
2C1. We also have

|Lxx(t, x, u)− Lxx(t, x′, u′)| = 0, |Lxu(t, x, u)− Lxu(t, x′, u′)| = 0

and

|Luu(t, x, u)− Luu(t, x, u′)| ≤ 66

25

(
|u1/51 − (u′1)

1/5|+ |u1/52 − (u′2)
1/5|
)
.

Since f(y) = y1/5 is Hölder continuous with order δ = 1/5, there exists a constant k such

that

|Luu(t, x, u)− Luu(t, x, u′)| ≤ 66
√

2

25

√
|u1/51 − (u′1)

1/5|2 + |u1/52 − (u′2)
1/5|2

≤ 66
√

2k

25

√
|u1 − u′1|2/5 + |u2 − (u′2)|2/5.

From (2.5), we have

|Luu(t, x, u)− Luu(t, x, u′)| ≤ 66
√

2k 10
√

16

25

(√
|u1 − u′1|2 + |u2 − (u′2)|2

)1/5

=
66
√

2k 10
√

16

25
|u− u′|1/5.

Thus, the function L(t, x, u) satisfies the assumption (H1).

Example 2.2. Let p = 3 and L : [0, 1]× R2 × R2 → R is defined by

L(t, x, u) = u31 −
√

(1 + u61) + u32, ∀x = (x1, x2) ∈ R2, u = (u1, u2) ∈ R2.

Then, L(t, x, u) also satisfies the assumption (H1).

Indeed, we have

Lu(t, x, u) = 3

(
u21 −

u51√
1 + u61

, u22

)
,

Lx(t, x, u) = 0, Lxu(t, x, u) = Lux(t, x, u) = Lxx(t, x, u) = 0

and

Luu(t, x, u) = 3

2u1 −
2u101 +5u41

(1+u61)
√

1+u61
0

0 2u2

 .
So,

|Lu(t, x, u)| ≤ 3

√√√√(u21 − u51√
1 + u61

)2

+ u42 ≤ 3
√

2

√
u41 + u42 +

u101
1 + u61

≤ 6
√
u41 + u42 = 6|u|2 ≤ 6(|u|2 + |x|).
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We also have

|Lu(t, x, u)− Lu(t, x, u′)|

= 3

√√√√(u21 − (u′1)
2 − u51√

1 + u61
+

(u′1)
5√

1 + (u′1)
6

)2

+ (u22 − (u′2)
2)2

≤ 3

(
|u21 − (u′1)

2|+

∣∣∣∣∣ u51√
1 + u61

− (u′1)
5√

1 + (u′1)
6

∣∣∣∣∣+ |u22 − (u′2)
2|

)
.

Put

(2.9) g(y) =
2y10 + 5y4

(1 + y6)
√

1 + y6
.

By Lagrange theorem and

|g(y)| =

∣∣∣∣∣ 2y10 + 5y4

(1 + y6)
√

1 + y6

∣∣∣∣∣ ≤
∣∣∣∣∣ 2y10

(1 + y6)
√

1 + y6

∣∣∣∣∣+

∣∣∣∣∣ 5y4

(1 + y6)
√

1 + y6

∣∣∣∣∣
≤
∣∣∣∣2y10y9

∣∣∣∣+

∣∣∣∣5y4y3
∣∣∣∣ = 7|y|,

there exist θ1, θ2 ∈ (0, 1) such that

|u21 − (u′1)
2| ≤ 2|u′1 + θ1(u1 − u′1)||u1 − u′1| ≤ 2(|u′1||u1 − u′1|+ |u1 − u′1|2),

|u22 − (u′2)
2| ≤ 2(|u′2||u2 − u′2|+ |u2 − u′2|2)

and ∣∣∣∣∣ u51√
1 + u61

− (u′1)
5√

1 + (u′1)
6

∣∣∣∣∣ = |g(u′1 + θ2(u1 − u′1))||u1 − u′1|

≤ 7|u′1 + θ2(u1 − u′1)||u1 − u′1|

≤ 7|u1 − u′1||u′1|+ |u1 − u′1|2.

Hence,

|Lu(t, x, u)− Lu(t, x, u′)|

= 3

(
|u21 − (u′1)

2|+ |u22 − (u′2)
2|+

∣∣∣∣∣ u51√
1 + u61

− (u′1)
5√

1 + (u′1)
6

∣∣∣∣∣
)

≤ 27
(
|u1 − u′1||u′1|+ |u1 − u′1|2 + |u2 − u′2||u′2|+ |u2 − u′2|2

)
= 27

(
|u1 − u′1||u′1|+ |u2 − u′2||u′2|+ (|u1 − u′1|2 + |u2 − u′2|2)

)
≤ 27

(√
|u1 − u′1|2 + |u2 − u′2|2

√
(u′1)

2 + (u′2)
2 + (|u1 − u′1|2 + |u2 − u′2|2)

)
= 27

(
|u− u′||u′|+ |u− u′|2

)
.
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From (2.9), we have

|g′(y)| =

∣∣∣∣∣(20y9 + 20y3)(1 + y6)3/2 − 9y5
√

1 + y6(2y10 + 5y4)

(1 + y6)3

∣∣∣∣∣
≤ 20

|y|9

(1 + y6)
√

1 + y6
+ 20

|y|3

(1 + y6)
√

1 + y6

+ 18
|y|15

(1 + y6)2
√

1 + y6
+ 45

|y|9

(1 + y6)2
√

1 + y6

≤ 103.

Also by Lagrange theorem, there exists θ3 ∈ (0, 1) such that

|Luu(t, x, u)− Luu(t, x, u′)|

≤ 3

∣∣∣∣∣2(u1 − u′1)−
2u101 + 5u41

(1 + u61)
√

1 + u61
+

2(u′1)
10 + 5(u′1)

4

(1 + (u′1)
6)
√

1 + (u′1)
6

∣∣∣∣∣+ 2|u2 − u′2|

≤ 6(|u1 − u′1|+ |u2 − u′2|) + 3

∣∣∣∣∣ 2u101 + 5u41
(1 + u61)

√
1 + u61

− 2(u′1)
10 + 5(u′1)

4

(1 + (u′1)
6)
√

1 + (u′1)
6

∣∣∣∣∣
≤ 6
√

2
√
|u1 − u′1|2 + |u2 − u′2|2 + 3|g′(u′1 + θ3(u1 − u′1))||u1 − u′1|

≤ 6
√

2
√
|u1 − u′1|2 + |u2 − u′2|2 + 309|u1 − u′1|

≤ 618
√
|u1 − u′1|2 + |u2 − u′2|2 = 618|u− u′|.

Thus, the function L(t, x, u) also satisfies the assumption (H1).

A pair z = (x, u) ∈ X ×U is said to be a critical direction for the problem (1.1)–(1.4)

at z = (x, u), if and only if the following conditions hold:

(C1)

∫ 1

0

[∫ 1

t
Lx(s, x(s), u(s)) ds

]
ẋ(t) dt+

∫ 1

0
Lu(t, x(t), u(t))u(t) dt = 0;

(C2)

ẋ(t) = A(t)x(t) +B(t)u(t) a.e. t ∈ [0, 1],

x(0) = 0;

(C3) gx(t)x(t) + bu(t) ∈ T ((−∞, 0]; g(t) + bu(t)) a.e. t ∈ [0, 1].

We denote by Θ(x, u) the set of all critical directions to the problem (1.1)–(1.4) at

(x, u). Clearly, Θ(x, u) is a convex cone, which contains (0, 0).

We now state our main result.

Theorem 2.3. Suppose that (x, u) is a locally optimal solution of the problem (1.1)–

(1.4) and the assumptions (H1)–(H4) are satisfied. Then, there exist an unique w∗ ∈
Lq([0, 1],Rm), and an unique v ∈ W 1,q([0, 1],Rn), v(1) = 0 such that the following condi-

tions are fulfilled:
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(a) Adjoint equation:

Lx(t) = v̇(t) +AT (t)v(t)− w∗(t)gx(t) a.e. t ∈ [0, 1];

(b) Stationarity condition with respect to u:

Lu(t)−BT (t)v(t) + bw∗(t) = 0 a.e. t ∈ [0, 1];

(c) Non-negative second-order condition:∫ 1

0

[
Lxx(t)x2(t) + 2Lxu(t)x(t)u(t) + Luu(t)u2(t)

]
dt+

∫ 1

0
w∗(t)gxx(t)x2(t) dt ≥ 0

for all (x, u) ∈ Θ(x, u);

(d) Complementarity condition:

w∗(t) ≥ 0 and w∗(t)(g(t) + bu(t)) = 0 a.e. t ∈ [0, 1].

Here, AT stands for the transpose of A and q is the conjugate number of p, that is,

1 < q < +∞ and 1/p+ 1/q = 1.

3. Basic definitions and preliminaries

In this section, we recall some notations and facts from variational analysis and generalized

differentiation, which will be used in the sequel. These notations and facts can be found

in [9, 13,20,25,29,30,37].

Let Y1 and Y2 be Banach spaces and F : Y1 → 2Y2 be a set-valued map. The effective

domain, denoted by domF , and the graph of F , denoted by gphF , are defined as

domF := {z ∈ Y1 : F (z) 6= ∅}

and

gphF := {(z, v) ∈ Y1 × Y2 : v ∈ F (z)}.

Let Y be a Banach space, D be a nonempty closed and convex subset of Y , and z ∈ D.

We define

D(z) = cone(D − z) = {λ(d− z) : d ∈ D,λ > 0}.

The set

T (D; z) = lim
t↓0

inf
D − z
t

= {h ∈ Y : ∀ tn ↓ 0,∃hn → h, z + tnhn ∈ D}
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is called the tangent cone to D at z. It is well known that

T (D; z) = cl(D(z)) = cl(cone(D − z)).

The second-order tangent set to D at z in the direction v ∈ E is defined by

T 2(D; z, v) = lim
t↓0

inf
D − z − tv

t2/2

=

{
w : ∀ tn ↓ 0,∃wn → w, z + tnv +

t2n
2
wn ∈ D

}
.

When v ∈ D(z) = cone(D − z), then there exists λ > 0 such that v = λ(z − z) for some

z ∈ D. By the convexity of D, for any tn ↓ 0, we have

tnv = tnλz + (1− tnλ)z − z ∈ D − z.

This implies that z + tnv ∈ D, and so, 0 ∈ T 2(D; z, v). By [9, Proposition 3.1], we have

T 2(D; z, v) = T (T (D; z); v).

The set

N(D; z) = {z∗ ∈ Y ∗ : 〈z∗, z〉 ≤ 0,∀ z ∈ T (D; z)}

is call normal cone to D at z. We are familiar with

N(D; z) = {z∗ ∈ Y ∗ : 〈z∗, z − z〉 ≤ 0,∀ z ∈ D}.

Obviously, T 2(D; z, 0) = T (D; z). It is clear that if T 2(D; z, z) 6= ∅ then z ∈ T (D; z).

However, if we let D = {(z1, z2) ∈ R2 : z2 ≥ |z1|3/2} and z = (0, 0), v = (1, 0) then

v ∈ T (D, z) = {(z1, z2) ∈ R2 : z2 ≥ 0}, but T 2(D, z, v) = ∅ by [5, Example 3.29].

4. The optimal control problem as a programming problem

By using some results from [9] on second-order necessary optimality conditions for a

mathematical programming problem under inclusion constraints, this section establishes

the theorem, which is the main tool for our subsequent investigations on the optimal

control problem.

We suppose that X, Y , and Z are Banach spaces with the dual spaces X∗, Y ∗, and Z∗,

respectively. Assume that f : Z → R, F : Z → Y are continuous mappings, H : Z → X is

a continuous linear mapping, and D ⊂ Y is a closed convex set. Let H∗ : X∗ → Z∗ be an

adjoint mapping of H. Fixing c ∈ X, we put

E = {z ∈ Z : H(z) = c}.
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Consider the programming problem

(4.1) Minimize {f(z) : z ∈ E and F(z) ∈ D}.

By Φ = E ∩ F−1(D), we denote the feasible set of the problem (4.1), that is,

Φ = {z ∈ E : F(z) ∈ D}.

Let Q be a subset of Z. The usual support function σ( · ,Q) : Z∗ → R of the set Q is

defined by

σ(z∗,Q) := sup
z∈Q
〈z∗, z〉.

In this section, we assume that f and F are second-order Fréchet differentiable around

z. In the sequel, we shall need the following lemmas.

Lemma 4.1. [9, Theorem 3.1] Assume that the following regularity condition is satisfied:

∇F(z)(E(z))−D(F(z)) = Y.

Then, the following formulas are valid:

(i) T (E ∩ F−1(D); z) = T (E ; z) ∩∇F(z)−1[T (D;F(z))];

(ii) T 2(E ∩ F−1(D); z, z) = T 2(E ; z, z)∩
[
∇F(z)−1(T 2(D;F(z),∇F(z)z)−∇2F(z)zz)

]
.

Lemma 4.2. [9, Lemma 3] Let L : Z → Y be a continuous linear mapping, and let P ⊂ Z,

Q ⊂ Y be two closed convex sets. If Y = L(P)−Q, then for all z∗ ∈ dom[σ( · ,P∩L−1(Q))]

we have

σ(z∗,P ∩ L−1(Q)) = inf
y∗∈Y ∗

{σ(z∗ − L∗y∗,P) + σ(y∗,Q)},

the infimum being in fact attained.

Given a vector z ∈ Z, the set

C(z) = {z ∈ Z : 〈∇f(z), z〉 = 0, H(z) = 0,∇F(z)z ∈ T (D;F(z))}

is called the set of critical directions for the problem (4.1) at z, and the set

C0(z) = {z ∈ Z : 〈∇f(z), z〉 = 0, H(z) = 0,∇F(z)z ∈ cone(D −F(z))}

is called the set of strictly critical directions for the problem (4.1) at z.

The following theorem is a shaper version of Commineti, which gives second-order

necessary optimality conditions for the mathematical programming problem (4.1).
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Theorem 4.3. Suppose that z is a local minimum for (4.1) at which the following regu-

larity condition is satisfied:

∇F(z)(E(z))−D(F(z)) = Y.

Assume that the mapping H is surjective. Then for each z ∈ C(z), there exist w∗ ∈
N(D;F(z)) and x∗ ∈ X∗ such that the following conditions are fulfilled:

(i) (Adjoint equation)

∇f(z) +∇F(z)∗w∗ +H∗(x∗) = 0;

(ii) (Non-negative second-order condition)

∇2f(z)zz + 〈w∗,∇2F(z)zz〉 ≥ σ(w∗, T 2(D;F(z),∇F(z)z));

(iii) 〈w∗,∇F(z)z〉 = 0.

When D is in fact a cone, then we also have

(iv) (Complementarity condition)

〈w∗,F(z)〉 = 0; w∗ ∈ N(D; 0).

Proof. We first claim that

(4.2) N(E ; z1) = {H∗(x∗) : x∗ ∈ X∗}

for each z1 ∈ E . Indeed, we have

E = {z ∈ Z : Hz = c} = H−1(c).

Note that H is a continuous linear mapping, so its derivative ∇H(z) = H for all z ∈ Z.

Hence, [29, Corallary 1.15] implies that

N(E ; z1) = N(H−1(c); z1) = H∗N({c};H(z1)) = H∗(X∗).

By the definition of tangent cone and N(E ; z) = H∗(X∗), we have

T (E ; z) = {z ∈ Z : 〈y∗, z〉 ≤ 0,∀ y∗ ∈ N(E ; z)}

= {z ∈ Z : 〈H∗(x∗), z〉 ≤ 0, ∀x∗ ∈ X∗}

= {z ∈ Z : 〈x∗, Hz〉 ≤ 0, ∀x∗ ∈ X∗}

= {z ∈ Z : Hz = 0} = H−1(0) := K.
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Fixing any z ∈ C(z), we get H(z + z) = c. Hence,

z ∈ E − z ⊂ E(z) ⊂ cl(E(z)) = T (E ; z).

Therefore,

T 2(E ; z, z) = T (T (E ; z); z) = T (K; z) = K and 0 ∈ T 2(E ; z, z).

We now consider the following two cases:

Case 1: T 2(D;F(z),∇F(z)z) = ∅. In this case, the non-negative second-order condi-

tion is automatically fulfilled because

σ(w∗, T 2(D;F(z),∇F(z)z)) = −∞.

To obtain the assertions (i) and (iii), we shall separate the sets Ω and T (E ∩ F−1(D); z).

Here,

Ω = {v ∈ Z : 〈∇f(z)v < 0}.

From the regularity condition, we obtain

(4.3) Y = ∇F(z)T (E ; z)− T (D;F(z)).

So, we can find w ∈ T (E ; z) such that

∇F(z)w ∈ T (D;F(z)).

By Lemma 4.1, w ∈ T (E ∩ F−1(D); z). Now, if ∇f(z) = 0, we may just take w∗ = 0 and

x∗ = 0, so let us assume the contrary, in which case Ω 6= ∅. We note that

Ω ∩ T (E ∩ F−1(D); z) = ∅.

Indeed, if w ∈ T (E ∩ F−1(D); z) we may choose wt → w so that for t > 0 small enough

such that

z + twt ∈ E ∩ F−1(D)

and

f(z) ≤ f(z + twt) = f(z) + t〈∇f(z), wt〉+ o(t).

So

〈∇f(z), w〉 ≥ 0,

which is equivalent to w /∈ Ω. Thus, sets Ω and T (E ∩ F−1(D); z) are nonvoid, convex,

open and closed, respectively. The strict separation theorem implies that there exist a

nonzero functional z∗ ∈ Z∗ and a real r ∈ R such that

〈z∗, v〉 < r ≤ 〈z∗, z〉, ∀ v ∈ Ω, z ∈ T (E ∩ F−1(D); z),
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or equivalently

(4.4) σ(z∗,Ω) + σ(−z∗, T (E ∩ F−1(D); z)) ≤ 0.

So, we have

(4.5) σ(z∗,Ω) < +∞.

We will prove that z∗ = λ∇f(z) for some positive λ. Indeed, suppose that z∗ /∈ {λ∇f(z) :

λ > 0}. It follows from the strict separation theorem that there exists z1 6= 0 such that

〈λ∇f(z), z1〉 ≤ 0 < 〈z∗, z1〉, ∀λ ≥ 0.

Hence, ∇f(z)z1 ≤ 0. Let z2 ∈ Ω then

〈∇f(z), z2 + αz1〉 ≤ 〈∇f(z), z2〉 < 0, ∀α > 0.

Therefore, z2+αz1 ∈ Ω for all α > 0. On the other hand, 〈z∗, z2+αz1〉 → +∞ as α→ +∞,

this implies that σ(z∗,Ω) = +∞, which contradicts (4.5). By eventually dividing by this

λ, we may assume that z∗ = ∇f(z) and then a direct calculation gives us

(4.6) σ(z∗,Ω) = 0.

Concerning the second term in (4.4), we notice that Lemma 4.1 implies that

T (E ∩ F−1(D); z) = P ∩ L−1(Q),

where

P = T (E ; z), Q = T (D,F(z)) and L = ∇F(z).

Moreover, (4.3) gives us Y = L(P) −Q, so that we may use Lemma 4.2 in order to find

w∗ ∈ Y ∗ such that

σ(−z∗, T (E ∩ F−1(D); z)) = σ(−∇f(z)− w∗ ◦ ∇F(z), T (E ; z))

+ σ(w∗, T (D;F(z))).

Combining (4.4) and (4.6), we have

(4.7) 〈∇f(z) + w∗ ◦ ∇F(z), w〉 ≥ σ(w∗, T (D;F(z))), ∀w ∈ T (E ; z).

Choosing w = 0 ∈ T (E ; z), we get

〈w∗, z〉 ≤ 0, ∀ z ∈ T (D;F(z)).
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So, w∗ ∈ N(D;F(z)). Since 0 ∈ T (D;F(z)) and (4.7), we obtain

〈−∇f(z)− w∗ ◦ ∇F(z), w〉 ≤ 0, ∀w ∈ T (E ; z).

Hence, −∇f(z)− w∗ ◦ ∇F(z) ∈ N(E ; z). Therefore, there exists x∗ ∈ X∗ such that

∇f(z) + w∗ ◦ ∇F(z) +H∗(x∗) = 0,

this is the adjoint equation. From z ∈ T (E ; z) and −∇f(z) − w∗ ◦ ∇F(z) ∈ N(E ; z), we

have

(4.8) 〈∇f(z) + w∗ ◦ ∇F(z), z〉 ≥ 0.

Besides,

〈∇f(z) + w∗ ◦ ∇F(z), z〉 = 〈∇f(z), z〉+ 〈w∗ ◦ ∇F(z), z〉 = 〈w∗,∇F(z)z〉.

Since ∇F(z)z ∈ T (D;F(z)) and w∗ ∈ N(D;F(z)), we get 〈w∗,∇F(z)z〉 ≤ 0. Hence,

(4.9) 〈∇f(z) + w∗ ◦ ∇F(z), z〉 ≤ 0.

Combining (4.8) and (4.9), we obtain

〈w∗ ◦ ∇F(z), z〉 = 0,

this is the assertion (iii).

Case 2: T 2(D;F(z),∇F(z)z) 6= ∅. By [9, Theorem 4.2], there exists w∗ ∈ N(D;F(z))

such that the lagrangian function L = f + w∗F satisfies:

−∇L(z) ∈ N(E ; z),(4.10)

〈∇L(z), z〉 = 0,(4.11)

〈∇L(z), w〉+ 〈∇2L(z)z, z〉 ≥ σ(w∗, T 2(D;F(z),∇F(z)z)), ∀w ∈ T 2(E ; z, z).(4.12)

From (4.2), (4.10) and ∇L(z) = ∇f(z) +∇F(z)∗w∗, we have the adjoint equation. Since

(4.12) and 0 ∈ T 2(E ; z, z), we get

〈∇2L(z)z, z〉 ≥ σ(w∗, T 2(D;F(z),∇F(z)z)),

this is the non-negative second-order condition. From (4.11) and z ∈ C(z), we obtain

〈w∗,∇F(z)z〉 = 0. The proof of theorem is complete.

Let z be a local minimum for the problem (4.1). The set of Lagrange multipliers

denoted by Λ(z) is defined as

Λ(z) =
{

(w∗, x∗) ∈ Y ∗ ×X∗ : ∇f(z) +∇F(z)∗w∗ +H∗x∗ = 0, w∗ ∈ N(D;F(z))
}
.

The following lemma gives the property of the set of Lagrange multipliers.
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Lemma 4.4. Suppose z is a local minimum for (4.1) at which the following regularity

condition is satisfied:

∇F(z)(E(z))−D(F(z)) = Y.

Assume that the function H is surjective. Then, the set of Lagrange multipliers Λ(z) is

non-empty and bounded.

Proof. By the adjoint equation of Theorem 4.3, the set of Lagrange multipliers Λ(z) is

non-empty. We will prove that the set Λ(z) is bounded. Fixing (w∗0, x
∗
0) ∈ Λ(z), and let

(w∗, x∗) be an any element of Λ(z). Since the definition of Λ(z), we have

(4.13) ∇F(z)∗w∗0 = −∇f(z)−H∗(x∗0) = 0, w∗0 ∈ N(D;F(z))

and

(4.14) ∇F(z)∗w∗ = −∇f(z)−H∗(x∗) = 0, w∗ ∈ N(D;F(z)).

By [46, Theorem 2.1], there exists a constant ρ > 0 such that

BY (0, ρ) ⊂ ∇F(z)[E(z) ∩BZ ]− [(D −F(z)) ∩BY ],

where BY (0, ρ) is a ball around zero with radius ρ, BZ and BY are unit balls in Z and Y ,

respectively. Thus, for each y ∈ BY (0, ρ), there exists z ∈ E(z)∩BZ and v ∈ (D−F(z))∩
BY such that y = ∇F(z)z − v. From (4.13) and (4.14), we have

〈w∗0 − w∗, y〉 = 〈w∗0 − w∗,∇F(z)z − v〉

= 〈∇F(z)∗(w∗0 − w∗), z〉+ 〈w∗ − w∗0, v〉

= 〈H∗(x∗ − x∗0), z〉+ 〈w∗ − w∗0, v〉

= 〈x∗0 − x∗, Hz〉+ 〈w∗, v〉 − 〈w∗0, v〉

= 〈w∗, v〉 − 〈w∗0, v〉.

We note that w∗ ∈ N(D;F(z)) and v ∈ D − F(z) ⊂ T (D;F(z)). So, 〈w∗, v〉 ≤ 0. Hence,

〈w∗0 − w∗, y〉 ≤ −〈w∗0, v〉 ≤ ‖w∗0‖‖v‖ ≤ ‖w∗0‖.

Moreover, −y also belongs to BY (0, ρ), one has

〈w∗0 − w∗, y〉 = −〈w∗0 − w∗,−y〉 ≥ ‖w∗0‖.

So,

‖w∗0 − w∗‖ = sup
y∈BY (0,ρ)

∣∣∣∣〈w∗0 − w∗, 1

ρ
y

〉∣∣∣∣ ≤ 1

ρ
‖w∗0‖.
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Therefore,

(4.15) ‖w∗‖ ≤
(

1 +
1

ρ

)
‖w∗0‖.

Since ∇H(z) = H is surjective, there exists γ > 0 such that BX(0, γ) ⊂ H(BZ). Thus,

for any x ∈ BX(0, γ), there is z ∈ BZ satisfying x = H(z). Then, one has

〈x∗, x〉 = 〈x∗, H(z)〉 = 〈H∗(x∗), z〉

= 〈−∇f(z)−∇F(z)w∗, z〉

≤ ‖∇f(z) +∇F(z)w∗‖‖z‖

≤ ‖∇f(z)‖+ ‖∇F(z)‖‖w∗‖.

Thus for all x ∈ BX , we have

〈x∗, x〉 ≤ 1

γ
(‖∇f(z)‖+ ‖∇F(z)‖‖w∗‖),

which implies that

‖x∗‖ ≤ 1

γ
(‖∇f(z)‖+ ‖∇F(z)‖‖w∗‖).

Therefore, we have

‖x∗‖ ≤ 1

γ

(
‖∇f(z)‖+ ‖∇F(z)‖

(
1 +

1

ρ

)
‖w∗0‖

)
.

From this and (4.15), (w∗, x∗) is bounded, and this implies the boundedness of the set of

Lagrange multipliers Λ(z). The proof of the lemma is complete.

The set D is said to be polyhedric at y ∈ D if for all q∗ ∈ N(D; z), then

T (D; y) ∩ (q∗)⊥ = cl[cone(D − y) ∩ (q∗)⊥],

where (q∗)⊥ = {q ∈ Y : 〈q∗, q〉 = 0}. We say that the problem (4.1) satisfies the strong

extended polyhedricity condition at a feasible point z if C0(z) is a dense subset of C(z).

When the problem (4.1) satisfies the strong extended polyhedricity condition, we have

the following result.

Corollary 4.5. Suppose that the problem (4.1) satisfies the strong extended polyhedricity

condition at z and z is a local minimum for (4.1) at which the following regularity condition

is satisfied:

∇F(z)(E(z))−D(F(z)) = Y.

Assume that the mapping H is surjective. Then for each z ∈ C(z), there exist w∗ ∈
N(D;F(z)) and x∗ ∈ X∗ such that the following conditions are fulfilled:
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(i) (Adjoint equation)

∇f(z) +∇F(z)∗w∗ +H∗(x∗) = 0;

(ii) (Non-negative second-order condition)

∇2f(z)zz + 〈w∗,∇2F(z)zz〉 ≥ 0;

(iii) 〈w∗,∇F(z)z〉 = 0.

When D is in fact a cone, then we also have

(iv) (Complementarity condition)

〈w∗,F(z)〉 = 0; w∗ ∈ N(D; 0).

Proof. Take any z ∈ C(z). Since the strong extended polyhedricity condition of (4.1),

there exists a sequence zn ∈ C0(z), zn → z as n→∞. For each n ∈ N, we have

〈∇f(z), zn〉 = 0, zn ∈ T (A; z), ∇F(z)zn ∈ cone(D −F(z)).

Since ∇F(z)zn ∈ cone(D−F(z)), we have 0 ∈ T 2(D;F(z),∇F(z)zn). From zn ∈ C0(z) ⊂
C(z) and Theorem 4.3, there exist x∗n ∈ X∗ and w∗n ∈ N(D;F(z)) such that the following

conditions are fulfilled:

(i’) (Adjoint equation)

∇f(z) +∇F(z)∗w∗n +H∗x∗n = 0;

(ii’) (Nonnegativeness second-order condition)

∇2f(z)znzn + 〈w∗n,∇2F(z)znzn〉 ≥ σ(w∗n, T
2(D;F(z),∇F(z)zn))

≥ 〈w∗n, 0〉 = 0;

(iii’) 〈w∗n,∇F(z)zn〉 = 0.

When D is in fact a cone, then we also have

(iv’) (Complementarity condition)

〈w∗n,F(z)〉 = 0; w∗n ∈ N(D; 0).

By Lemma 4.4, w∗n and x∗n are bounded for all n ∈ N. So, w∗n weakly∗ converges to w∗ and

x∗n weakly∗ converges to x∗ as n → ∞. Letting n → ∞, we obtain the adjoint equation,

the nonnegativeness second-order condition and the assertion (iii) of corollary from (i’),

(ii’) and (iii’). The proof of the corollary is complete.
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5. Proof of the main result

The next step is to apply Theorem 4.3 to the problem (1.1)–(1.4). In order to use this

theorem, we first define the following linear mappings: A : X → X defined by

Ax := x−
∫ (·)

0
A(τ)x(τ) dτ,

B : U → X defined by

Bu := −
∫ (·)

0
B(τ)u(τ) dτ

and M : X × U → X defined by

M(x, u) := Ax+ Bu.

Under the hypothesis (H2), (1.5) can be written in the form

E =

{
(x, u) ∈ X × U : x = c+

∫ (·)

0
Axdτ +

∫ (·)

0
Budτ

}

=

{
(x, u) ∈ X × U : x−

∫ (·)

0
Axdτ −

∫ (·)

0
Budτ = c

}
= {(x, u) ∈ X × U :M(x, u) = c}.

Recall that for 1 < p <∞, we have Lp([0, 1],Rn)∗ = Lq([0, 1],Rn), where

1 < q < +∞, 1

p
+

1

q
= 1.

Besides, Lp([0, 1],Rn) is pared with Lq([0, 1],Rn) by the formula

〈x∗, x〉 =

∫ 1

0
x∗(t)x(t) dt

for all x∗ ∈ Lq([0, 1],Rn) and x ∈ Lp([0, 1],Rn).

Also, we have W 1,p([0, 1],Rn)∗ = Rn×Lq([0, 1],Rn) and W 1,p([0, 1],Rn) is pared with

Rn × Lq([0, 1],Rn) by the formula

〈(a, u), x〉 = 〈a, x(0)〉+

∫ 1

0
u(t)ẋ(t) dt

for all (a, u) ∈ Rn × Lq([0, 1],Rn) and x ∈W 1,p([0, 1],Rn) (see [18, p. 21]).

In the case of p = 2, W 1,2([0, 1],Rn) becomes a Hilbert space with the inner product

given by

〈x, y〉 = 〈x(0), y(0)〉+

∫ 1

0
ẋ(t)ẏ(t) dt

for all x, y ∈W 1,2([0, 1],Rn).

In the sequel, we shall need the following lemma for formulas to define the adjoint

mappings M∗, A∗ and B∗.



246 Toan Nguyen and Thuy Le

Lemma 5.1. [44, Lemma 2.3] Suppose that M∗ is the adjoint mapping of M. Then, the

following assertions are valid.

(i) The mapping M is continuous;

(ii) M∗(a, u) = (A∗(a, u),B∗(a, u)), where B∗(a, u) = −BTu, and

A∗(a, u) =

(
a−

∫ 1

0
AT (t)u(t) dt;u+

∫ (·)

0
AT (τ)u(τ) dτ −

∫ 1

0
AT (t)u(t) dt

)

for all (a, u) ∈ Rn × Lq([0, 1],Rn).

Using a similar technique to the proof of [18, Corollary, p. 52], we obtain the following

result.

Lemma 5.2. Suppose that the assumption (H2) is satisfied and x̃ ∈ X = W 1,p([0, 1],Rn).

Then, the equation

x =

∫ (·)

0
AT (τ)x(τ) dτ + x̃

has an unique solution in X.

By Lemma 5.2, the mapping A is surjective and the set E is not empty.

The following lemma gives the second-order Fréchet differentiability of the objective

function.

Lemma 5.3. Suppose that the assumption (H1) is satisfied. Then, the functional J is

second-order Fréchet differentiable around (x, u) and ∇J(z), ∇2J(z) are given by

(i) ∇J(z) = ∇J(x, u) = (Jx(x, u), Ju(x, u)) with

Ju(x, u) = Lu( · , x, u)

and

Jx(x, u) =

(∫ 1

0
Lx(t, x(t), u(t)) dt,

∫ 1

(·)
Lx(s, x(s), u(s)) ds

)
;

(ii)

∇2J(z)zz

=

∫ 1

0

(
Lxx(t, x(t), u(t))x2(t) + 2Lxu(t, x(t), u(t))x(t)u(t) + Luu(t, x(t), u(t))u2(t)

)
dt

for any z = (x, u) ∈ X × U = Z.
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Proof. By the assumption (H1), the functional J is second-order Fréchet differentiable

around (x, u) and ∇2J(z) is given by

∇2J(z)zz

=

∫ 1

0

(
Lxx(t, x(t), u(t))x2(t) + 2Lxu(t, x(t), u(t))x(t)u(t) + Luu(t, x(t), u(t))u2(t)

)
dt

for any z = (x, u) ∈ X × U = Z (see [21, Proposition A]). We now compute Ju(x, u) and

Jx(x, u). It is easy to verify that

Ju(x, u) = Lu( · , x(·), u(·)).

Taking any h ∈W 1,p([0, 1],Rn), we have

Jx(x, u)h =

∫ 1

0
Lx(t, x(t), u(t))h(t) dt.

Integrating by part yields

Jx(x, u)h = h(1)

∫ 1

0
Lx(t, x(t), u(t)) dt−

∫ 1

0

[∫ t

0
Lx(s, x(s), u(s)) ds

]
ḣ(t) dt

=

∫ 1

0
Lx(t, x(t), u(t)) dt

[
h(0) +

∫ 1

0
ḣ(t) dt

]
−
∫ 1

0

[∫ t

0
Lx(s, x(s), u(s)) ds

]
ḣ(t) dt

=

(∫ 1

0
Lx(t, x(t), u(t)) dt

)
h(0)

+

∫ 1

0

[∫ 1

0
Lx(t, x(t), u(t)) dt−

∫ t

0
Lx(s, x(s), u(s)) ds

]
ḣ(t) dt.

Hence,

Jx(x, u) =

(∫ 1

0
Lx(t, x(t), u(t)) dt,

∫ 1

0
Lx(t, x(t), u(t)) dt−

∫ (·)

0
Lx(s, x(s), u(s)) ds

)

=

(∫ 1

0
Lx(t, x(t), u(t)) dt,

∫ 1

(·)
Lx(s, x(s), u(s)) ds

)
.

Thus, the proof of the lemma is complete.

Given x ∈ X, we put M = ‖x‖0 = maxt∈[0,1] |x(t)|. By the assumption (H3), there

exists a constant lgM > 0 such that |gx(t, x)| ≤ lgM for all x ∈ Rn with |x| ≤ M . By the

Taylor expansion, we get

|g(t, x(t))| ≤ |g(t, x(t))− g(t, 0)|+ |g(t, 0)|

= |gx(t, θ(t)x(t))x(t)|+ |g(t, 0)|

≤ lgMM + |g(t, 0)|.
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This implies that g( · , x) ∈ Lp([0, 1],Rm).

The following lemma gives the second-order Fréchet differentiability of the constraint

function.

Lemma 5.4. Suppose that the assumption (H3) is satisfied. Then, the functional G is

second-order Fréchet differentiable around z = (x, u) and

(i) ∇2G(z)zz = gxx(·)x2, ∀ z = (x, u) ∈ X × U = Z;

(ii) w∗ ◦ ∇G(z) = w∗ ◦ ∇G(x, u) = (w∗ ◦Gx(x, u), w∗ ◦Gu(x, u)) is given by

w∗ ◦Gu(x, u) = bw∗,

w∗ ◦Gx(x, u) =

(∫ 1

0
w∗(t)gx(t) dt,

∫ 1

(·)
w∗(τ)gx(τ) dτ

)
for any w∗ ∈ Lq([0, 1],Rm).

Proof. We first prove that the functional G is Fréchet differentiable around z = (x, u) and

∇G(x, u) = (gx(·), b).

Fixing any h ∈ X, v ∈ U , we choose a positive M > ‖h‖0 + ‖x‖0. We have

‖G(x+ h, u+ v)−G(x, u)− gx(·)h− bv‖p

=

∫ 1

0
|g(t, x+ h)− g(t, x)− gx(t, x)h|p dt.

By the mean value theorem,

‖G(x+ h, u+ v)−G(x, u)− gx(·)h− bv‖p

=

∫ 1

0

∣∣∣∣∫ 1

0
gx(t, x+ θh)h dθ − gx(t, x)h

∣∣∣∣p dt
≤
∫ 1

0

(∫ 1

0
|gx(t, x+ θh)h− gx(t, x)h| dθ

)p
dt

≤
∫ 1

0

∫ 1

0
|gx(t, x+ θh)h− gx(t, x)h|p dθdt.

By the assumption (H3), there exists lgM > 0 such that inequalities in (H3) are fulfilled.

This implies that

‖G(x+ h, u+ v)−G(x, u)− gx(·)h− bv‖p ≤
∫ 1

0

∫ 1

0
lpgM |θh|

p|h|p dθdt.

For any t ∈ [0, 1], we have

h(t) = h(0) +

∫ t

0
ḣ(τ) dτ.



Second-order Necessary Optimality Conditions for an Optimal Control Problem 249

So,

|h(t)| ≤ |h(0)|+
∣∣∣∣∫ t

0
ḣ(τ) dτ

∣∣∣∣ ≤ |h(0)|+
∣∣∣∣∫ 1

0
ḣ(t) dt

∣∣∣∣ ≤ |h(0)|+ ‖ḣ‖p = ‖h‖1,p.

Hence,

‖h‖0 ≤ ‖h‖1,p.

Since |θ| ≤ 1, |h|p ≤ ‖h‖p0 and ‖h‖0 ≤ ‖h‖1,p, we get

‖G(x+ h, u+ v)−G(x, u)− gx(·)h− bv‖p ≤ lpgM‖h‖
p
p‖h‖

p
0

≤ lpgM‖h‖
p
p(‖h‖1,p + ‖v‖p)p.

So,
‖G(x+ h, u+ v)−G(x, u)− gx(·)h− bv‖

‖h‖1,p + ‖v‖p
≤ lgM‖h‖p.

Hence,

‖G(x+ h, u+ v)−G(x, u)− gx(·)h− bv‖
‖h‖1,p + ‖v‖p

→ 0 as ‖h‖1,p + ‖v‖p → 0.

Therefore, the functional G is Fréchet differentiable and

∇G(x, u) = (gx(·), b).

We now show that ∇G is continuous on a neighborhood of (x, u). In fact, for each (x0, u0)

in a neighborhood of (x, u), for any sequence zn = (xn, un)→ z0 = (x0, u0) in X × U and

for any z = (x, u) ∈ Z with ‖z‖Z ≤ 1, we have

‖∇G(zn)z −∇G(z0)z‖pp =

∫ 1

0
|(gx(t, xn)− gx(t, x0))x|p dt.

Using the assumption (H3) and the similar technique to the above, we can show that

‖∇G(zn)z −∇G(z0)z‖pp → 0 as n→∞.

This implies that ∇G is continuous at z0. Also by the assumption (H3), we can prove that

H(x, u) = gx( · , x, u) and K(x, u) = b

are Fréchet differentiable and H, K are of class C1 around (x, u). So, the functional G is

second-order Fréchet differentiable around z = (x, u), which is given by

∇2G(z)zz = gxx(·)x2, ∀ z = (x, u) ∈ X × U = Z;
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this is the assertion (i) of the lemma. For any w∗ ∈ Lq([0, 1],Rm), we now compute

w∗ ◦ ∇G(x, u). We have

w∗ ◦ ∇G(x, u) = (w∗ ◦ gx(·), bw∗).

Taking any h ∈ X = W 1,p([0, 1],Rn), we have

〈w∗ ◦ gx(·), h〉 =

∫ 1

0
w∗(t)gx(t)h(t) dt.

Integrating by part yields

〈w∗ ◦ gx(·), h〉

= h(1)

∫ 1

0
w∗(t)gx(t) dt−

∫ 1

0

(∫ t

0
w∗(τ)gx(τ) dτ

)
ḣ(t) dt

=

∫ 1

0
w∗(t)gx(t) dt

(
h(0) +

∫ 1

0
ḣ(t) dt

)
−
∫ 1

0

(∫ t

0
w∗(τ)gx(τ) dτ

)
ḣ(t) dt

=

(∫ 1

0
w∗(t)gx(t) dt

)
h(0) +

∫ 1

0

(∫ 1

0
w∗(t)gx(t) dt−

∫ t

0
w∗(τ)gx(τ) dτ

)
ḣ(t) dt

=

(∫ 1

0
w∗(t)gx(t) dt

)
h(0) +

∫ 1

0

(∫ 1

t
w∗(τ)gx(τ) dτ

)
ḣ(t) dt.

Hence,

w∗ ◦ gx(·) =

(∫ 1

0
w∗(t)gx(t) dt,

∫ 1

(·)
w∗(τ)gx(τ) dτ

)
.

Thus, the proof of the lemma is complete.

.

We have the following result on the regularity condition for the problem (1.1)–(1.4).

Lemma 5.5. Suppose that the assumptions (H2)–(H4) are satisfied. Then, the regularity

condition is fulfilled, that is,

∇G(z)(E(z))−Q(G(z)) = U.

Proof. We have

Q(G(z)) = cone(Q−G(z)) = Q(g(·) + bu).

So, the proof will be complete if we can show that

∇G(z)(E(z))−Q(g(·) + bu) = U.

Taking any v ∈ U , we now represent

v = v1 − v2, where v1, v2 ∈ Q.
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By the assumption (H4), there exists u ∈ Lp([0, 1],Rm) such that

gx(·)(x− x) + bu+ g(·)− v1 ∈ Q,

where x and u are satisfied the state equation (1.2) and the initial condition (1.3). Define

d = gx(·)(x− x) + b(u− u) + g(·) + bu− v

= gx(·)(x− x) + bu+ g(·)− v1 + v2.

We see that d ∈ Q and

gx(·)(x− x) + b(u− u)− (d− (g(·) + bu)) = v.

We note that

z − z = (x, u)− (x, u) = (x− x, u− u) ∈ E(z),

gx(·)(x− x) + b(u− u) ∈ ∇G(z)(E(z))

and

d− (g(·) + bu) ∈ Q(g(·) + bu).

Hence, the proof of the lemma is complete.

We have the following result on the polyhedricity of Q.

Lemma 5.6. The following formula holds:

T (Q,G(z)) ∩ (q∗)⊥ = cl[cone(Q−G(z)) ∩ (q∗)⊥], ∀ q∗ ∈ N(Q;G(z)).

Proof. The inclusion cl[cone(Q − G(z)) ∩ (q∗)⊥] ⊂ T (Q,G(z)) ∩ (q∗)⊥ being trivial. We

have to prove other one. Note that cone(Q −G(z)) = {v ∈ U : γv + G(z) ∈ Q,∀ γ > 0}.
Now fix q∗ ∈ N(Q;G(z)) and let v0 ∈ T (Q,G(z)) ∩ (q∗)⊥. For ε > 0, we define

vε(t) =

v0(t) if G(z)(t) + εv0(t) ≤ 0,

0 otherwise.

It is clear that vε ∈ cone(Q−G(z)) ∩ (q∗)⊥. Letting ε→ 0, we have vε(t)→ v0(t) a.e. t ∈
[0, 1]. The Dominated Convergence Theorem gives that vε → v0 in U = Lp([0, 1],Rm).

Hence, the proof of the lemma is complete.

Proof of the main result. It is easy to prove that J , G are continuous. From Lemma 5.2

to Lemma 5.5, we see that all assumptions of Theorem 4.3 are fulfilled. Take any (x, u) ∈
Θ(x, u). By Lemma 5.3, ∇J(z) = ∇J(x, u) = (Jx(x, u), Ju(x, u)), where

Ju(x, u) = Lu(·) and Jx(x, u) =

(∫ 1

0
Lx(t) dt,

∫ 1

(·)
Lx(τ) dτ

)
.
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So,

∇J(z)z = ∇J(x, u)(x, u) = Jx(x, u)x+ Ju(x, u)u

= x(0)

∫ 1

0
Lx(t) dt+

∫ 1

0

[∫ 1

t
Lx(τ) dτ

]
ẋ(t) dt+

∫ 1

0
Lu(t)u(t) dt.

(5.1)

By the condition (C1), x(0) = 0 and (5.1), we get

(5.2) ∇J(z)z = 0.

From the condition (C2), we have

x−
∫ (·)

0
Axdτ −

∫ (·)

0
Budτ = 0.

This is equivalent to

(5.3) Mz = 0.

By the condition (C3) and [1, Theorem 8.5.1], we have

(5.4) ∇G(z)z = gxx+ bu ∈ T (Q;G(x, u)).

Combining (5.2), (5.3) and (5.4), the condition z ∈ C(z) of Theorem 4.3 is fulfilled.

According to Theorem 4.3, there exist w∗ ∈ U∗ = Lq([0, 1],Rm) and x∗ = (a, v) ∈ Rn ×
Lq([0, 1],Rn) such that the following conditions are fulfilled:

(a1) (Adjoint equation)

∇J(z) +∇G(z)∗w∗ +M∗(a, v) = 0;

(a2) (Non-negative second-order condition)

∇2J(z)zz + 〈w∗,∇2G(z)zz〉 ≥ σ(w∗, T 2(Q;G(z),∇G(z)z));

(a3) (Complementarity condition)

〈w∗, G(z)〉 = 0; w∗ ∈ N(Q; 0).

By the complementarity condition, we have

〈w∗, w〉 ≤ 0, ∀w ∈ Q.

It is equivalent to

(5.5)

∫ 1

0
w∗(t)w(t) dt ≤ 0, ∀w ∈ Q.
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We will show that

w∗(t)v ≤ 0, ∀ v ≤ 0, a.e. t ∈ [0, 1].

On the contrary, suppose that there exist a set D ⊂ [0, 1], µ(D) > 0 and v0 ≤ 0 such that

w∗(t)v0 > 0, ∀ t ∈ D.

Choosing

v(t) =

v0 if t ∈ D,

0 if t ∈ [0, 1] \D.

Then, v ∈ Q and ∫ 1

0
w∗(t)v(t) dt =

∫
D
w∗(t)v0 dt > 0,

which contradicts (5.5). Thus,

w∗(t)v ≤ 0, ∀ v ≤ 0, a.e. t ∈ [0, 1].

This is equivalent to

(5.6) w∗(t) ≥ 0 a.e. t ∈ [0, 1].

By the complementarity condition, we get∫ 1

0
w∗(t)(g(t) + bu) dt = w∗ ◦G(z) = 0.

We also have w∗(t)(g(t) + bu) ≤ 0 a.e. t ∈ [0, 1]. Hence,

(5.7) w∗(t)(g(t) + bu) = 0 a.e. t ∈ [0, 1].

From (5.6) and (5.7), we obtain the complementarity condition of Theorem 2.3. We have

∇G(z)∗w∗ = w∗ ◦ ∇G(z) = w∗ ◦ ∇G(x, u) = (w∗ ◦Gx(x, u), w∗ ◦Gu(x, u)).

From Lemmas 5.1, 5.3 and 5.4, the adjoint equation (a1) is equivalent to
∫ 1
0 Lx(t) dt+

∫ 1
0 w
∗(t)gx(t) dt+ a−

∫ 1
0 A

T (t)v(t) dt = 0,∫ 1
(·) Lx(τ) dτ +

∫ 1
(·)w

∗(τ)gx(τ) dτ + v(·)−
∫ 1
(·)A

T (τ)v(τ) dτ = 0,

Lu(·) + bw∗(·)−BT (·)v(·) = 0

⇐⇒


a = v(0), v(1) = 0,∫ 1
(·) Lx(τ) dτ =

∫ 1
(·)A

T (τ)v(τ) dτ − v(·)−
∫ 1
(·)w

∗(τ)gx(τ) dτ,

Lu(·) + bw∗(·)−BT (·)v(·) = 0.
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This implies that

v ∈W 1,q([0, 1],Rn), v(1) = 0, Lx(·) = v̇(·) +AT (·)v(·)− w∗(·)gx(·)

and

Lu(·)−BT (·)v(·) + bw∗(·) = 0.

By Lemma 5.2, the set of Lagrange multipliers Λ(z) = {(w∗, x∗)} is unique and inde-

pendent of z. Thus, we obtain the adjoint equation and the stationarity condition with

respect to u of Theorem 2.3. From the regularity condition of theorem, the linear mapping

∇F(z) is onto. By Lemma 5.6 and [5, Proposition 3.54], the problem (1.1)–(1.4) satisfies

the strong extended polyhedricity condition at z. By Corollary 4.5, we get

(5.8) ∇2J(z)zz + 〈w∗,∇2G(z)zz〉 ≥ 0, ∀ z ∈ Θ(z).

By Lemmas 5.3 and 5.4, we have

(5.8) ⇐⇒
∫ 1

0

[
Lxx(t)x2(t) + 2Lxu(t)x(t)u(t) + Luu(t)u2(t)

]
dt

+

∫ 1

0
w∗(t)gxx(t)x2(t) dt ≥ 0, ∀ (x, u) ∈ Θ(x, u);

this is the non-negative second-order condition of Theorem 2.3. The proof of Theorem 2.3

is complete.

6. Some examples

To illustrate Theorem 2.3, we provide the following examples.

Example 6.1. Let

X = W 1,11/5([0, 1],R2), U = L11/5([0, 1],R2).

Consider the problem

J(x, u) =

∫ 1

0
(x21 + u

11/5
1 + u

11/5
2 ) dt −→ inf

subject to ẋ1 = 2x1, ẋ2 = x2 + u2, x1(0) = 0, x2(0) = 1, x1 + u1 ≥ 0, u2 ≥ 0.(6.1)

Suppose that (x, u) is a locally optimal solution of the problem. Then,

x = (0, et); u = (0, 0).

Indeed, by Example 2.1 the function

L(t, x, u) = x21 + u
11/5
1 + u

11/5
2
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is satisfied the assumption (H1) and

Lx(t, x, u) = (2x1, 0), Lu(t, x, u) =
11

5
(u

6/5
1 , u

6/5
2 ), Lxu(t, x, u) = Lux(t, x, u) = 0

and

Lxx(t, x, u) =

2 0

0 0

 , Luu(t, x, u) =
66

25

u1/51 0

0 u
1/5
2

 .
From (6.1), we have

A =

2 0

0 1

 , B =

0 0

0 1

 , b = −1.

It is easy to see that the condition (H2) is also satisfied. Moreover, by (6.1)

g(t, x) = (−x1, 0),

we have

gx =

−1 0

0 0

 , gxx(t, x) =

[ 00 ] [
0
0

][
0
0

] [
0
0

]
 .

So, the assumption (H3) is valid. For each v = (v1, v2) ∈ Q ⊂ L11/5([0, 1],R2), there exists

u = (u1, u2) = (−v1,−v2) ∈ L11/5([0, 1],R2) such that

gx(·)(x− x) + bu+ g(·)− v = (−x1 + x1, 0)− 1(u1, u2) + (−x1, 0)− (v1, v2)

= (−x1 − u1 − v1,−u2 − v2) = (−x1, 0),

where x1(t) is a solution of equations ẋ1(t) = 2x1(t) and x1(0) = 0. So x1(t) = 0. Hence,

gx(·)(x− x) + bu+ g(·)− v = (0, 0) ∈ Q.

Therefore, the assumptions of Theorem 2.3 are satisfied. Assume that (x, u) is a lo-

cally optimal solution of the problem. By Theorem 2.3, there exist w∗ = (w∗1, w
∗
2) ∈

L11/6([0, 1],R2) and v = (v1, v2) ∈ W 1,11/6([0, 1],R2), v1(1) = 0, v2(1) = 0 such that the

following conditions are fulfilled:

(a∗) Adjoint equation:

v̇1(·) + 2v1(·) + w∗1(·) = 2x1(·) = 0,

v̇2(·) + v2(·) = 0;(6.2)

(b∗) Stationarity condition with respect to u:

11

5
u1(·)6/5 − w∗1(·) = 0,(6.3)

11

5
u2(·)6/5 − v2(·)− w∗2(·) = 0;(6.4)
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(c∗) Non-negative second-order condition:

(6.5)

∫ 1

0

[
2x21(t) +

66

25
u
1/5
1 u21(t) +

66

25
u
1/5
2 u22(t)

]
dt ≥ 0 for all (x, u) ∈ Θ(x, u);

(d∗) Complementarity condition:

w∗1(·), w∗2(·) ≥ 0 and w∗1(·)(x1(·) + u1(·)) = 0, w∗2(·)u2(·) = 0.

Consider the following four cases:

Case 1: w∗1(t) = 0 and w∗2(t) = 0 a.e. t ∈ [0, 1]. Substituting w∗1(t) = 0 into (6.3), we

have
11

5
u1(·)6/5 = 0.

This implies that u1(t) = 0. Thus,

x1(t) = 0, u1(t) = 0.

By (6.2) and v2(1) = 0, we have v2(t) = 0. Substituting w∗2(t) = 0 and v2(t) = 0 into

(6.4), we get u2(t) = 0. From the condition

ẋ2(t) = x2(t) + u2(t),

and u2(t) = 0, we have x2(t) = et+c. Since x2(0) = 1, we obtain x2(t) = et. Substituting

u1(t) = 0 and u2(t) = 0 into (6.5), we get∫ 1

0
x21(t) dt ≥ 0, ∀ (x, u) ∈ Θ(x, u),

this is always satisfied. Thus, if (x, u) is a locally optimal solution of the problem then

x = (0, et); u = (0, 0).

Case 2: w∗1(t) = 0 and u2(t) = 0 a.e. t ∈ [0, 1]. Substituting w∗1(t) = 0 into (6.3), we

have u1(t) = 0. From the condition

ẋ2(t) = x2(t) + u2(t)

and

u2(t) = 0, x2(0) = 1,

we have x2(t) = et. In Case 1, we checked that if (x, u) is a locally optimal solution of the

problem then

x = (0, et); u = (0, 0).
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Case 3: w∗2(t) = 0 and x1(t) + u1(t) = 0 a.e. t ∈ [0, 1]. Similarly as in Case 1, we can

check that if (x, u) is a locally optimal solution of the problem then

x = (0, et); u = (0, 0).

Case 4: x1(t) + u1(t) = 0 and u2(t) = 0 a.e. t ∈ [0, 1]. Since x1(t) = 0, we have

u1(t) = 0. In Case 3, we checked that if (x, u) is a locally optimal solution of the problem

then

x = (0, et); u = (0, 0).

The following example shows that if the second-order necessary condition is not satis-

fied, then the admissible couple is not solution even it satisfies first-necessary conditions.

Example 6.2. Let

X = W 1,3([0, 1],R2), U = L3([0, 1],R2).

Consider the problem

J(x, u) =

∫ 1

0

(
u31 −

√
2(1 + u61) + u32

)
dt −→ inf

subject to ẋ1 = 2x1, ẋ2 = x2 + u2, x1(0) = 1, x2(0) = 1, x1 + u1 ≥ 0, u2 ≥ 0.(6.6)

Suppose that (x, u) is a locally optimal solution of the problem. Then, by first-order

optimality conditions, we obtain

x = (e2t, et); u = (1, 0),

or

x = (e2t, et); u = (0, 0),

or

x = (e2t, et); u = (−e2t, 0).

If we let

x1 = (e2t, et); u1 = (1, 0),

or

x2 = (e2t, et); u2 = (−e2t, 0)

then (x1, u1) and (x2, u2) do not satisfy the second-order optimality conditions. Hence,

(x1, u1) and (x2, u2) are not locally optimal solutions of the problem. Thus, if (x;u) is a

locally optimal solution of the problem, then

x = (e2t, et); u = (0, 0).
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Indeed, by Example 2.2 the function

L(t, x, u) = u31 −
√

2(1 + u61) + u32

is satisfied the assumption (H1) and

Lu(t, x, u) = 3

(
u21 −

√
2

u51√
1 + u61

, u22

)
,

Lx(t, xu) = 0, Lxu(t, x, u) = Lux(t, x, u) = Lxx(t, x, u) = 0,

Luu(t, x, u) = 3

2u1 −
√

2
2u101 +5u41

(1+u61)
√

1+u61
0

0 2u2

 .
From (6.6), we have

A =

2 0

0 1

 , B =

0 0

0 1

 , b = −1.

It is easy to see that the condition (H2) is also satisfied. Similarly as in Example 6.1, we

can prove that the conditions (H3) and (H4) are also fulfilled. Hence, the assumptions

of Theorem 2.3 are satisfied. Assume that (x, u) is a locally optimal solution of the

problem. By Theorem 2.3, there exist w∗ = (w∗1, w
∗
2) ∈ L3/2([0, 1],R2) and v = (v1, v2) ∈

W 1,3/2([0, 1],R2), v1(1) = 0, v2(1) = 0 such that the following conditions are fulfilled:

(a∗1) Adjoint equation:

v̇1(·) + 2v1(·) + w∗1(·) = 0,

v̇2(·) + v2(·) = 0;(6.7)

(b∗1) Stationarity condition with respect to u:

3u21(·)−
√

2
3u51(·)√
1 + u61(·)

− w∗1(·) = 0,(6.8)

3u22(·)− v2(·)− w∗2(·) = 0;(6.9)

(c∗1) Non-negative second-order condition:

(6.10)

∫ 1

0

[(
6u1(t)−

√
2

6u101 (t) + 15u41(t)

(1 + u61(t))
√

1 + u61(t)

)
u21(t) + 6u2(t)u

2
2(t)

]
dt ≥ 0

for all (x, u) ∈ Θ(x, u);

(d∗1) Complementarity condition:

w∗1(·), w∗2(·) ≥ 0 and w∗1(·)(x1(·) + u1(·)) = 0, w∗2(·)u2(·) = 0.
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Consider the following four cases:

Case 1: w∗1(t) = 0 and w∗2(t) = 0 a.e. t ∈ [0, 1]. Substituting w∗1(t) = 0 into (6.8), we

have

3u21(t)−
√

2
3u51(t)√
1 + u61(t)

= 0.

This implies that u1(t) = 0, or u1(t) = 1. By (6.6),

ẋ1(t) = 2x1(t) ⇐⇒ x1(t) = e2t+c.

Combining this with the condition x1(0) = 1, we get c = 0. So x1(t) = e2t. Thus

x1(t) = e2t, u1(t) = 0,

or

x1(t) = e2t, u1(t) = 1.

By (6.7) and v2(1) = 0, we have v2(t) = 0. Substituting w∗2(t) = 0 and v2(t) = 0 into

(6.9), we get u2(t) = 0. From the condition

ẋ2(t) = x2(t) + u2(t),

and u2(t) = 0, x2(0) = 1 we have x2(t) = et. Thus, if (x, u) is a locally optimal solution

of the problem, then by first-order optimality conditions, we obtain

x = (e2t, et); u = (0, 0),

or

x = (e2t, et); u = (1, 0).

Substituting u1(t) = 1 and u2(t) = 0 into (6.10), we get

(6.11)

∫ 1

0
−9

2
u21(t) dt ≥ 0.

But, (6.11) is not fulfilled if u1 = 1 and (x, u) ∈ Θ(x, u). Hence,

x = (e2t, et); u = (1, 0)

is not a locally optimal solution of the problem. Substituting

u1(t) = 0 and u2(t) = 0

into (6.10), we obtain ∫ 1

0
0 dt ≥ 0,
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this is always satisfied. Thus, if (x, u) is a locally optimal solution of the problem then

x = (e2t, et); u = (0, 0).

Case 2: w∗1(t) = 0 and u2(t) = 0 a.e. t ∈ [0, 1]. Similarly as in Case 1, we can prove

that if (x, u) is a locally optimal solution of the problem, then

x = (e2t, et); u = (0, 0).

Case 3: w∗2(t) = 0 and x1(t) + u1(t) = 0 a.e. t ∈ [0, 1]. Since x1(t) = e2t, we have

u1(t) = −e2t. By (6.7) and v2(1) = 0, we get v2(t) = 0. Substituting w∗2(t) = 0 and

v2(t) = 0 into (6.9), we get u2(t) = 0. From the condition

ẋ2(t) = x2(t) + u2(t),

and u2(t) = 0, x2(0) = 1, we have x2(t) = et. Substituting u1(t) = −e2t and u2(t) = 0

into (6.10), we obtain

(6.12)

∫ 1

0

(
−6e−2t −

√
2

6e−20t + 15e−8t

(1 + e−12t)
√

1 + e−12t

)
u21(t) dt ≥ 0.

But, (6.12) is not fulfilled if u1 = −1 and (x, u) ∈ Θ(x, u). Hence,

x = (e2t, et); u = (−e2t, 0)

is not a locally optimal solution of the problem.

Case 4: x1(t) + u1(t) = 0 and u2(t) = 0 a.e. t ∈ [0, 1]. Since x1(t) = e2t, we have

u1(t) = −e2t. Similarly as in Case 3, we can show that

x = (e2t, et); u = (−e2t, 0)

is not a locally optimal solution of the problem.

7. Conclusions

We studied second-order necessary optimality conditions for an optimal control problem

with nonconvex cost functions and state-control constraints. In order to achieve these

conditions, we first established an abstract result on the second-order necessary optimality

conditions for a mathematical programming problem and then we derived the second-order

necessary optimality conditions for an optimal control problem. The main result of this

paper is illustrated by two examples.
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