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Diophantine Approximation with Mixed Powers of Primes

Huafeng Liu and Jing Huang*

Abstract. Let k be an integer with k ≥ 3. Let λ1, λ2, λ3 be non-zero real numbers, not

all negative. Assume that λ1/λ2 is irrational and algebraic. Let V be a well-spaced

sequence, and δ > 0. In this paper, we prove that, for any ε > 0, the number of υ ∈ V
with υ ≤ X such that the inequality

|λ1p21 + λ2p
2
2 + λ3p

k
3 − υ| < υ−δ

has no solution in primes p1, p2, p3 does not exceed O(X1−2/(7m2(k))+2δ+ε), where

m2(k) relies on k. This refines a recent result. Furthermore, we briefly describe how

a similar method can refine a previous result on a Diophantine problem with two

squares of primes, one cube of primes and one k-th power of primes.

1. Introduction

Diophantine approximation is an important topic in number theory. We first introduce

the definition of a well-spaced sequence. We call an increasing sequence υ1 < υ2 < · · · of

positive real numbers a well-spaced sequence if there exist positive constants C > c > 0

such that

0 < c < υi+1 − υi < C, i = 1, 2, . . . .

Let k be an integer. In this paper, we first consider a Diophantine problem with two

squares of primes and one k-th power of primes. Let

(1.1) m2(k) =



4 if k = 3,

2k/2 if k = 4, 6, 8,

1
2

(
2(k−1)/2 + 2(k+1)/2

)
if k = 5, 7, 9,

min
(
2[(k+1)/2], [k+1

2 ]
(
[k+1

2 ] + 1
))

if k ≥ 10,

where [x] denotes the greatest integer not exceeding x. Let λ1, λ2, λ3 be non-zero real

numbers, not all negative. Let V be a well-spaced sequence, and δ > 0. Let Ek(V, X, δ)
denote the number of υ ∈ V with υ ≤ X such that the inequality

(1.2) |λ1p21 + λ2p
2
2 + λ3p

k
3 − υ| < υ−δ
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has no solution in primes p1, p2, p3. The inequality (1.2) with k = 2 is considered in

Harman [6]. Throughout this paper, constants, both explicit and implicit, in Vinogradov

symbols may depend on λ1, λ2, λ3, λ4. We study the inequality (1.2) with k ≥ 3 and

prove the following theorems.

Theorem 1.1. Let k be an integer with k ≥ 3. Let λ1, λ2, λ3 be non-zero real numbers,

not all negative. Assume that λ1/λ2 is irrational and algebraic. Let V be a well-spaced

sequence, and δ > 0. Then we have, for any ε > 0,

(1.3) Ek(V, X, δ)� X1−2/(7m2(k))+2δ+ε,

where m2(k) is defined by (1.1).

Theorem 1.2. Let k be an integer with k ≥ 3. Let λ1, λ2, λ3 be non-zero real numbers,

not all negative. Assume that λ1/λ2 is irrational. Let V be a well-spaced sequence, and

δ > 0. Then there is a sequence Xj →∞ such that, for any ε > 0,

(1.4) Ek(V, Xj , δ)� X
1−2/(7m2(k))+2δ+ε
j ,

where m2(k) is defined by (1.1). Moreover, if the convergent denominators qj for λ1/λ2

satisfy

(1.5) q1−wj+1 � qj for some w ∈ [0, 1),

then we have, for all X ≥ 1 and any ε > 0,

(1.6) Ek(V, X, δ)� X1−(2−4χ)/m2(k)+2δ+ε

with

(1.7) χ = max

(
5− 3w + 2/m2(k)

12− 8w + 4/m2(k)
,
3

7

)
.

Results of this type were first obtained by Ge and Wang [5]. Let

σ(k) = min

(
2[(k+1)/2]−1,

1

2

[k + 1

2

]([k + 1

2

]
+ 1
))

.

They proved that

Ek(V, X, δ)� X1−1/(8σ(k))+2δ+ε,

Ek(V, Xj , δ)� X
1−1/(8σ(k))+2δ+ε
j ,

Ek(V, X, δ)� X1−(1−χ)/σ(k)+2δ+ε
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with

χ = max

(
5 + 1/σ(k)− 3w

6 + 1/σ(k)− 4w
,
7

8

)
,

in replace of (1.3), (1.4), (1.6) and (1.7), respectively. It is easy to verify that the results

in Theorems 1.1 and 1.2 improve Ge and Wang’s results.

Theorem 1.1 follows immediately from Theorem 1.2, since, in the case of λ1/λ2 alge-

braic, we can take w = ε.

To prove Theorem 1.2, we apply the Davenport-Heilbronn version of the Hardy-

Littlewood method. On the one hand, the improvement not only derives from more

carefully estimating the integral by using an optimal choice of different Hölder’s inequali-

ties from [5], but also the recent new breakthrough of Vinogradov’s mean value theorem [1].

On the other hand, motivated by the work of Wang and Yao [13], we use the sieve functions

ρ±(m) constructed in Harman [6], which also results in the improvement.

Many authors also considered the inequality

(1.8) |λ1p21 + λ2p
2
2 + λ3p

3
3 + λ4p

k
4 − υ| < υ−δ.

Let λ1, λ2, λ3, λ4 be positive real numbers. Assume that λ1/λ2 is irrational and algebraic.

Let V be a well-spaced sequence, and δ > 0. Let E∗k(V, X, δ) denote the number of υ ∈ V
with υ ≤ X such that the inequality (1.8) has no solution in primes p1, p2, p3, p4. In

2010, Li and Wang [8] proved that, for any ε > 0,

E∗3(V, X, δ)� X20/21+2δ+ε.

Subsequently, the exponent 20/21 was improved to 67/72 by Mu and Lü [9]. Recently

Mu and Lü [10] refined the exponent to 29/33. In the same paper [10], Mu and Lü also

considered the case k ≥ 4 and proved that

E∗k(V, X, δ)�

X1−1/11+2δ+ε if k = 4,

X1−2/(11k)−16/(11k2(k+1))+2δ+ε if k ≥ 5.

It is not hard to show that the argument proving Theorem 1.2 leads also to improve-

ments on the results established by Mu and Lü [10]. Let

(1.9) m3(k) =

2[(k−1)/6]+1 if 5 ≤ k ≤ 48,

2
[
k2+k+6

12

]
if k ≥ 49.

We have the following theorem.

Theorem 1.3. Let k be an integer with k ≥ 3. Let λ1, λ2, λ3, λ4 be positive real numbers.

Assume that λ1/λ2 is irrational and algebraic. Let V be a well-spaced sequence, and δ > 0.

Then we have, for any ε > 0,

E∗k(V, X, δ)� X1−σ∗(k)+2δ+ε,
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where

(1.10) σ∗(k) =


1/7 if k = 3, 4,

1/14 + 1/(7m3(k)) if 5 ≤ k ≤ 48,

1/14 + 2/(7m2(k)) if k ≥ 49,

and m2(k), m3(k) are defined by (1.1) and (1.9), respectively.

Since the proof of Theorem 1.3 is similar to that of Theorem 1.2, we prove Theorem 1.2

in the following Sections 2–6 and sketch the proof of Theorem 1.3 in Section 7.

Notation. Throughout this paper, the letter p, with or without a subscript, always

denotes a prime. We use ε to denote a sufficiently small positive number, and the value

of ε may change from statement to statement. We abbreviate log x to L.

2. Outline of the method

To use the Davenport-Heilbronn method, we first introduce some notations. Suppose that

k ≥ 3 is an integer and η is a fixed sufficiently small positive number. Let 0 < τ < 1,

indeed we shall chose τ = X−δ in Section 6. Let

Kτ (α) =

(
sin(πτα)

πα

)2

for τ > 0 and α 6= 0. By continuity, we define Kτ (0) = τ2. Then we have

(2.1) Kτ (α)� min(τ2, |α|−2),

and

(2.2) K̂τ (t) :=

∫
R
e(tα)Kτ (α) dα = max(0, τ − |t|).

Assume that a/q is a convergent to λ1/λ2, with the denominator q sufficiently large. Fix

X = q7/3. We write

I1 =

[(
ηX

λ1

)1/2

,

(
2ηX

λ1

)1/2 ]
, I2 =

[(
ηX

λ2

)1/2

,

(
2ηX

λ2

)1/2 ]
, I3 =

[(
ηX

λ3

)1/k

,

(
2ηX

λ3

)1/k ]
.

Let ρ0(m) denote the characteristic function of the set of primes. To prove Theorem 1.2,

we suppose that we have arithmetic functions ρ±(m) such that, for m ∈ Ii, i = 1, 2,

ρ−(m) ≤ ρ0(m) ≤ ρ+(m).

Our choice of ρ±(m) is borrowed from Harman [6]. Namely, ρ− and ρ+ are the functions

b0 and b1 constructed in Section 8 of [6], respectively. Here we just state some properties



Diophantine Approximation with Mixed Powers of Primes 1077

of the sieve functions ρ±(m), one can refer to [6] (see also [7]) for their construction in

detail. In many ways, the functions ρ±(m) imitate the characteristic functions of primes.

In particular, as in Section 8 of [6], for any subinterval I ∈ Ii, i = 1, 2, one has

(2.3)
∑
m∈I

ρ±(m) = κ±i |I|L
−1 +O(X1/2L−2),

where κ±i > 0 are absolute constants satisfying

(2.4) κ−i > 0.9, κ+i < 1.7, i = 1, 2.

Then the vector sieve of Brüdern and Fouvry [2] gives

(2.5) ρ0(m1)ρ0(m2) ≥ ρ−(m1)ρ
+(m2) + ρ+(m1)ρ

−(m2)− ρ+(m1)ρ
+(m2).

We define

S1(α, ρ) =
∑
m∈I1

ρ(m)e(m2α), S2(α, ρ) =
∑
m∈I2

ρ(m)e(m2α), Sk(α) =
∑
p∈I3

(log p)e(pkα).

For any measurable subset X of R, write

I(τ, υ,X, ρ1, ρ2) =

∫
X
S1(λ1α, ρ1)S2(λ2α, ρ2)Sk(λ3α)e(−αυ)Kτ (α) dα.

Then from (2.2), we have

I(τ, υ,R, ρ0, ρ0) =
∑

mi∈Ii,i=1,2
p3∈I3

ρ0(m1)ρ0(m2) log p3

×
∫ ∞
−∞

e
(
(λ1m

2
1 + λ2m

2
2 + λ3p

k
3 − υ)α

)
Kτ (α) dα

=
∑

mi∈Ii,i=1,2
p3∈I3

ρ0(m1)ρ0(m2) log p3

×max(0, τ − |λ1m2
1 + λ2m

2
2 + λ3p

k
3 − υ|).

Thus we have

I(τ, υ,R, ρ0, ρ0)� τ logXN(X),

where N(X) denotes the number of solutions of the inequality

|λ1p21 + λ2p
2
2 + λ3p

k
3 − υ| < τ

with pj ∈ Ij for 1 ≤ j ≤ 3. Recalling (2.5), we have

(2.6) I(τ, υ,R, ρ0, ρ0) ≥ I(τ, υ,R, ρ−, ρ+) + I(τ, υ,R, ρ+, ρ−)− I(τ, υ,R, ρ+, ρ+).
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Then it is sufficient to give a positive lower bound for the right side of (2.6). Due to a

dyadic dissection argument, we focus on those υ such that X/2 ≤ υ ≤ X. To do this, we

divide the real line into the major arc M, the minor arc m and the trivial arc t. We define

M = {α : |α| ≤ P/X}, m = {α : P/X < |α| ≤ R}, t = {α : |α| > R},

where P = X1/4 and R = τ−2X1/2+2ε. Thus we can write

I(τ, υ,R, ρ1, ρ2) = I(τ, υ,M, ρ1, ρ2) + I(τ, υ,m, ρ1, ρ2) + I(τ, υ, t, ρ1, ρ2).

We write

H(α) = S1(λ1α, ρ
−)S2(λ2α, ρ

+) + S1(λ1α, ρ
+)S2(λ2α, ρ

−)− S1(λ1α, ρ+)S2(λ2α, ρ
+).

We estimate the integrals on the major arc, the minor arc and the trivial arc in the follow-

ing Sections 3, 4 and 5, respectively. In Section 6, we complete the proof of Theorem 1.2.

3. The major arc

In this section, we estimate the contribution from the right side of (2.6) on the major arc.

Since the methods of estimating I(τ, υ,M, ρ−, ρ+), I(τ, υ,M, ρ+, ρ−) and I(τ, υ,M, ρ+, ρ+)

are similar, we can focus on I(τ, υ,M, ρ−, ρ+) in the following. As in [5], we first consider

the standard major arc M̃ = {α : |α| ≤ φ = X−1+5/(6k)−ε}. Let

(3.1) T1(α) =

∫
I1

e(t2α) dt, T2(α) =

∫
I2

e(t2α) dt, Tk(α) =

∫
I3

e(tkα) dt.

Then, using a trivial bound for Sj , and the first derivative estimate for trigonometric

integrals (see Titchmarsh [11, Lemma 4.2]), one has

(3.2)

S1(α, ρ
−)� X1/2, T1(α)� X1/2−1 min(X, |α|−1),

S2(α, ρ
+)� X1/2, T2(α)� X1/2−1 min(X, |α|−1),

Sk(α)� X1/k, Tk(α)� X1/k−1 min(X, |α|−1).

Then we can rewrite I(τ, υ, M̃, ρ−, ρ+) as follows:

I(τ, υ, M̃, ρ−, ρ+)

= κ−1 κ
+
2 L
−2
∫
M̃
T1(λ1α)T2(λ2α)Tk(λ3α)e(−αυ)Kτ (α) dα

+ κ+2 L
−1
∫
M̃

(
S1(λ1α, ρ

−)− κ−1 L
−1T1(λ1α)

)
T2(λ2α)Tk(λ3α)e(−αυ)Kτ (α) dα

+

∫
M̃
S1(λ1α, ρ

−)
(
S2(λ2α, ρ

+)− κ+2 L
−1T2(λ2α)

)
Tk(λ3α)e(−αυ)Kτ (α) dα

+

∫
M̃
S1(λ1α, ρ

−)S2(λ2α, ρ
+)
(
Sk(λ3α)− Tk(λ3α)

)
e(−αυ)Kτ (α) dα

:= J + J1 + J2 + J3.

(3.3)
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In the following, we restrict our attention to estimate J , J1 and J2, since the compu-

tation for J3 is similar to the corresponding one in Ge and Wang [5]. We first establish

the lower bound for J . Note that

J = κ−1 κ
+
2 L
−2
∫
R
T1(λ1α)T2(λ2α)Tk(λ3α)e(−αυ)Kτ (α) dα

+O

(
L−1

∫
|α|>φ

T1(λ1α)T2(λ2α)Tk(λ3α)e(−αυ)Kτ (α) dα

)
.

(3.4)

Putting this together with (2.1) and (3.2), we obtain that the error term in (3.4) is

(3.5) � τ2X1/k−2
∫
|α|>φ

dα

|α|3
� τ2X1/k−5/(3k)+2ε = o(τ2X1/kL−2).

We write

f(υ) =

∫
R
T1(λ1α)T2(λ2α)Tk(λ3α)e(−αυ)Kτ (α) dα

=

∫
I1×I2×I3

max(0, τ − |λ1t21 + λ2t
2
2 + λ3t

k
3 − υ|) dt1dt2dt3.

(3.6)

Thus from (3.4), (3.5) and (3.6), we get

(3.7) J = f(υ)κ−1 κ
+
2 (1 + o(1))L−2.

Now we turn to establish the upper bound for the integral J1. Using (2.1), we have

(3.8) J1 � τ2L−1
∫
M̃
|S1(λ1α, ρ−)− κ−1 L

−1T1(λ1α)||T2(λ2α)||Tk(λ3α)| dα.

By partial summation, we obtain

S1(λ1α, ρ
−) =

∫
I1

e(λ1t
2α) d

( ∑
m≤t,m∈I1

ρ−(m)

)
.

From (2.3), we have

(3.9) |S1(λ1α, ρ−)− κ−1 L
−1T1(λ1α)| � X1/2L−2(1 + |α|X).

Inserting (3.9) into (3.8), we obtain

J1 � τ2X1/2L−3
∫ 1/X

0
|T2(λ2α)||Tk(λ3α)| dα

+ τ2X3/2L−3
∫ φ

1/X
|α||T2(λ2α)||Tk(λ3α)| dα.

Then from (3.2), we obtain

(3.10) J1 = o(τ2X1/kL−2).
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Arguing similarly, in spite of different sieve functions, we can also get

(3.11) J2 = o(τ2X1/kL−2).

Following the argument in [5, Section 3.3], we can obtain

(3.12) J3 = o(τ2X1/kL−2).

Therefore combining (3.3), (3.7), (3.10), (3.11) and (3.12), we have

(3.13) I(τ, υ, M̃, ρ−, ρ+) = f(υ)κ−1 κ
+
2 (1 + o(1))L−2.

Arguing similarly, we can get

(3.14) I(τ, υ, M̃, ρ+, ρ−) = f(υ)κ+1 κ
−
2 (1 + o(1))L−2

and

(3.15) I(τ, υ, M̃, ρ+, ρ+) = f(υ)κ+1 κ
+
2 (1 + o(1))L−2.

From (3.5) in [5] or by a standard argument (see [3, Lemma 51]), we have

f(υ)� τ2X1/k.

Thus from (3.13), (3.14) and (3.15), we have∫
M̃
H(α)Sk(λ3α)e(−αv)Kτ (α) dα�

(
κ−1 κ

+
2 + κ+1 κ

−
2 − κ

+
1 κ

+
2 + o(1)

)
τ2X1/kL−2.

Recalling (2.4), since 1.7× 0.9 + 0.9× 1.7− 1.7× 1.7 > 0, we know that the coefficient in

the right side of (3.1) is positive.

Note that M̃ ⊇ M when k = 3. The remaining region needed to be handled is

M \ M̃ for k ≥ 4. Although there are sieve functions here, following a similar argument

to [5, Lemma 3.3], we can get, for k ≥ 4,∫
M\M̃

|H(α)Sk(λ3α)|Kτ (α) dα� τ2X1/k−41−k/(2k)+ε = o(τ2X1/kL−2).

Therefore from the above analysis, we can conclude the following lemma.

Lemma 3.1. We have∫
M
H(α)Sk(λ3α)e(−αv)Kτ (α) dα� τ2X1/kL−2.
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4. The minor arc

In this section, we give the estimate of the integral on the minor arc. Note that∫
m
|H(α)Sk(λ3α)|2Kτ (α) dα

�
∫
m
|S1(λ1α, ρ−)S2(λ2α, ρ

+)Sk(λ3α)|2Kτ (α) dα

+

∫
m
|S1(λ1α, ρ+)S2(λ2α, ρ

−)Sk(λ3α)|2Kτ (α) dα

+

∫
m
|S1(λ1α, ρ+)S2(λ2α, ρ

+)Sk(λ3α)|2Kτ (α) dα.

(4.1)

From [6, Section 8], we know that the sieve functions can be expressed in terms of finitely

many sums of the form

(4.2)
∑
m=rs

frgs,

where either X1/7 ≤ r ≤ X3/14 or fr ≡ 1 and r ≥ X1/7. In either case, fr, gs are bounded

by divisor functions at worst.

We write

(4.3) Si(α) =
∑
n∈Ii

ane(n
2α), i = 1, 2,

where an takes the form (4.2). Without loss of generality we need only to consider the

integral ∫
m
|S1(λ1α)S2(λ2α)Sk(λ3α)|2Kτ (α) dα.

First we need the following lemmas.

Lemma 4.1. Suppose that X1/2 ≥ Z ≥ X3/7+ε/2 and |Sj(λjα)| > Z for j = 1, 2. Then

there are coprime integers aj, qj satisfying

1 ≤ qj �

(
X1/2+ε/2

Z

)4

, |qjλjα− aj | � X−1

(
X1/2+ε/2

Z

)4

.

Proof. This lemma is Lemma 1 in [13].

Lemma 4.2. Let m2(k) and m3(k) be defined by (1.1) and (1.9), respectively. Suppose

that F ∈
{
S4
1 , S

4
2 , S

8
3 , S

2
2S

m2(k)
k , S2

2S
2
3S

m3(k)
k

}
. Then we have∫ 1

−1
|F (α)| dα� X−1(F (0))1+ε,

∫ ∞
−∞
|F (α)|Kτ (α) dα� τX−1(F (0))1+ε.
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Proof. All of these results follow from [12] by using Hua’s lemma and the recent break-

through of Bourgain-Demeter-Guth [1] on Vinogradov’s mean value theorem. We can find

this result in [4, Lemma 3] for 3 ≤ k ≤ 9 and in [5, Lemma 5.1] for k ≥ 10, respectively.

Let m̃ = m1 ∪m2, where

mj = {α ∈ m : |Sj(λjα)| ≤ X3/7+ε} for j = 1, 2.

Lemma 4.3. For k ≥ 3, we have∫
m̃
|S1(λ1α)S2(λ2α)Sk(λ3α)|2Kτ (α) dα� τX1+2/k−2/(7m2(k))+ε,

where m2(k) is defined by (1.1).

Proof. Using Hölder’s inequality and Lemma 4.2, we can obtain∫
m1

|S1(λ1α)S2(λ2α)Sk(λ3α)|2Kτ (α) dα

�
(

sup
α∈m1

|S1(λ1α)|
)4/m2(k)(∫

R
|S1(λ1α)|4Kτ (α) dα

)1/2−1/m2(k)

×
(∫

R
|S2(λ2α)|4Kτ (α) dα

)1/2−1/m2(k)(∫
R
|S2(λ2α)|2|Sk(λ3α)|m2(k)Kτ (α) dα

)2/m2(k)

� τX1+2/k−2/(7m2(k))+ε.

By symmetry we can get the same bound for the integral on m2. Thus we have∫
m̃
|S1(λ1α)S2(λ2α)Sk(λ3α)|2Kτ (α) dα� τX1+2/k−2/(7m2(k))+ε.

Now the remaining work is to handle the range m∗ = m \ m̃. We have the following

lemma.

Lemma 4.4. We have∫
m∗
|S1(λ1α)S2(λ2α)Sk(λ3α)|2Kτ (α) dα� τX1+2/k−1/7+ε.

Proof. Note that for any α ∈ m∗, we have

|S1(λ1α)| > X3/7+ε and |S2(λ2α)| > X3/7+ε.

We divide m∗ into disjoint sets S(Z1, Z2, y), such that for α ∈ S(Z1, Z2, y), we have

Z1 < |S1(λ1α)| ≤ 2Z1, Z2 < |S2(λ2α)| ≤ 2Z2, y < |α| ≤ 2y,
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where Z1 = 2k1X3/7+ε, Z2 = 2k2X3/7+ε and y = 2k3X−3/4 for some non-negative integers

k1, k2, k3. Then from Lemma 4.1, there exist two pairs of coprime integers (a1, q1) and

(a2, q2) satisfying

1 ≤ qi �

(
X1/2+ε/2

Zi

)4

, |qiλiα− ai| � X−1

(
X1/2+ε/2

Zi

)4

, i = 1, 2.

We remark that a1a2 6= 0, since otherwise we have α ∈ M. Furthermore, we subdivide

S(Z1, Z2, y) into sets S(Z1, Z2, y,Q1, Q2), where Qj < qj ≤ 2Qj on each set. Then we

have ∣∣∣∣a2q1λ1λ2 − a1q2
∣∣∣∣ =

∣∣∣∣(q1λ1α− a1) a2λ2α − (q2λ2α− a2)
a1
λ2α

∣∣∣∣
� Q2X

−1

(
X1/2+ε/2

Z1

)4

+Q1X
−1

(
X1/2+ε/2

Z2

)4

� X3+4εZ−41 Z−42

� X−3/7−4ε.

Recall that q = X3/7. Thus ∣∣∣∣a2q1λ1λ2 − a1q2
∣∣∣∣ = o(q−1).

We also have |a2q1| � yQ1Q2. Thus, if |a2q1| took W distinct values, we could deduce

the existence of n satisfying∥∥∥∥nλ1λ2
∥∥∥∥� X−3/7−4ε, n� yQ1Q2

W
.

This would contradict a/q being a convergent to λ1/λ2 if q is sufficiently large, unless

W � yQ1Q2

q
.

From the upper bound for the divisor function, each value of |a2q1| corresponds to O(Xε)

values of a2, q1. Then we obtain that each set of S(Z1, Z2, y,Q1, Q2) is made up of

O(WXε) intervals of length

� min

(
Q−11 X−1

(
X1/2+ε/2

Z1

)4

, Q−12 X−1
(
X1/2+ε/2

Z2

)4)
� X1+2ε

Z2
1Z

2
2Q

1/2
1 Q

1/2
2

.
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Let A denote such a set S(Z1, Z2, y,Q1, Q2). Then integrating over A gives∫
A
|S1(λ1α)S2(λ2α)Sk(λ3α)|2Kτ (α) dα

� min(τ2, y−2)Z2
1Z

2
2X

2/k X1+2ε

Z2
1Z

2
2Q

1/2
1 Q

1/2
2

XεyQ1Q2

q

� τX1+2/k−1/7+ε.

(4.4)

Then summing over all possible values of Z1, Z2, y, Q1, Q2, we conclude that∫
m∗
|S1(λ1α)S2(λ2α)Sk(λ3α)|2Kτ (α) dα� τX1+2/k−1/7+ε.

Recalling (4.1), from Lemmas 4.3 and 4.4 we can get the following lemma immediately.

Lemma 4.5. For k ≥ 3, we have∫
m
|H(α)S3(λ3α)Sk(λ4α)|2Kτ (α) dα� τX1+2/k−2/(7m2(k))+ε,

where m2(k) is defined by (1.1).

5. The trivial arc

In this section, we estimate the contribution of the right side of (2.6) from the trivial

arc. Due to the similar reason as in Section 4, we also consider Si(α) instead of Si(α, ρ
±),

i = 1, 2 in the trivial arc. Applying the trivial bounds for Sk(λ3α) and Cauchy’s inequality,

recalling R = τ−2X1/2+2ε we have∫
t
|S1(λ1α)S2(λ2α)S3(λ3α)Sk(λ4α)|Kτ (α) dα

� X1/k

(∫ ∞
R
|S1(λ1α)|2Kτ (α) dα

)1/2(∫ ∞
R
|S2(λ2α)|2Kτ (α) dα

)1/2

� X1/k

( ∞∑
n=[R]

∫ n+1

n
|S1(λ1α)|2 1

α2
dα

)1/2( ∞∑
n=[R]

∫ n+1

n
|S2(λ2α)|2 1

α2
dα

)1/2

� X1/k

( ∞∑
n=[R]

1

n2

)(∫ 1

0
|S1(λ1α)|2 dα

)1/2(∫ 1

0
|S2(λ2α)|2 dα

)1/2

� R−1X1/k+1/2+ε

� τ2X1/k−ε.

Therefore we have

(5.1)

∫
t
|H(α)Sk(λ3α)|Kτ (α) dα� τ2X1/k−ε.



Diophantine Approximation with Mixed Powers of Primes 1085

6. Proof of Theorem 1.2

In this section, we complete the proof of Theorem 1.2. Let m2(k) be defined as in (1.1).

We take τ = X−δ. Let Ek = Ek(V, X, δ) denote the set of υ ∈
[
1
2X,X

]
∩ V such that the

inequality (1.2) has no solution in primes p1, p2, p3, and Ek = Ek(V, X, δ) = |Ek(V, X, δ)|.
Then from Lemma 3.1 and (5.1), we have

(6.1)

∣∣∣∣∣∣
∑
υ∈Ek

∫
m
H(α)Sk(λ3α)e(−αυ)Kτ (α) dα

∣∣∣∣∣∣� τ2X1/kL−2Ek.

Applying Cauchy’s inequality, we have∣∣∣∣∣∣
∑
υ∈Ek

∫
m
H(α)Sk(λ3α)e(−αυ)Kτ (α) dα

∣∣∣∣∣∣
�
(∫ +∞

−∞

∣∣∣∣ ∑
υ∈Ek

e(−αυ)

∣∣∣∣2Kτ (α) dα

)1/2(∫
m
|H(α)Sk(λ3α)|2Kτ (α) dα

)1/2

�
(
τX1+2/k−2/(7m2(k))+ε

)1/2( ∑
υ1,υ2∈Ek

max(0, τ − |υ1 − υ2|)
)1/2

� τE
1/2
k

(
X1+2/k−2/(7m2(k))+ε

)1/2
.

(6.2)

Then combining (6.1) and (6.2), we have

(6.3) Ek(V, Xj , δ)� X
1−2/(7m2(k))+2δ+ε
j .

Since λ1/λ2 is irrational, there are infinitely many q we could have taken and this gives

the sequence Xj →∞.

Now, if the convergent denominators for λ1/λ2 satisfy (1.5), then we can modify our

works in Lemmas 4.3 and 4.4. We now assume that

min(Z1, Z2) > Xχ+ε

with χ given by (1.7). We then obtain∣∣∣∣a2q1λ1λ2 − a1q2
∣∣∣∣� X3−8χ−4ε.

However, we know from (1.5) that there is a convergent a/q to λ1/λ2 with

X(1−w)(8χ−3) � q � X8χ−3.

The expression corresponding to (4.4) is now∫
A
|S1(λ1α)S2(λ2α)Sk(λ3α)|2Kτ (α) dα

� τX3+2/k−4χ+εq−1 � τX3+2/k−4χ−(1−w)(8χ−3)+ε

� τX1+2/k−(2−4χ)/m2(k)+ε
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by our choice of χ. Thus∫
m
|S1(λ1α)S2(λ2α)Sk(λ3α)|2Kτ (α) dα� τX1+2/k−(2−4χ)/m2(k)+ε.

Working as (6.1)–(6.3), we can complete the proof of Theorem 1.2 easily.

7. Proof of Theorem 1.3

In this section, we sketch the proof of Theorem 1.3. We write

I ′1 =

[(
ηX

λ1

)1/2

,

(
2ηX

λ1

)1/2 ]
, I ′2 =

[(
ηX

λ2

)1/2

,

(
2ηX

λ2

)1/2 ]
,

I ′3 =

[(
ηX

λ3

)1/3

,

(
2ηX

λ3

)1/3 ]
, I ′4 =

[(
ηX

λ4

)1/k

,

(
2ηX

λ4

)1/k ]
,

and define

S′1(α, ρ) =
∑
m∈I1

ρ(m)e(m2α), S′2(α, ρ) =
∑
m∈I2

ρ(m)e(m2α),

S′3(α) =
∑
p∈I3

(log p)e(p3α), S′k(α) =
∑
p∈I4

(log p)e(pkα).

For any measurable subset X of R, write

I ′(τ, υ,X, ρ1, ρ2) =

∫
X
S′1(λ1α, ρ1)S

′
2(λ2α, ρ2)S

′
3(λ3α)S′k(λ4α)e(−αυ)Kτ (α) dα.

Then from (2.2), we have

I ′(τ, υ,R, ρ0, ρ0) =
∑

mi∈Ii,i=1,2
pj∈Ij ,j=3,4

ρ0(m1)ρ0(m2)(log p3)(log p4)

×
∫ ∞
−∞

e
(
(λ1m

2
1 + λ2m

2
2 + λ3p

3
3 + λ4p

k
4 − υ)α

)
Kτ (α) dα

=
∑

mi∈Ii,i=1,2
pj∈Ij ,j=3,4

ρ0(m1)ρ0(m2) log p3 log p4

×max
(
0, τ − |λ1m2

1 + λ2m
2
2 + λ3p

3
3 + λ4p

k
4 − υ|

)
.

Thus we have

I ′(τ, υ,R, ρ0, ρ0)� τ(logX)2N′(X),

where N′(X) denotes the number of solutions of the inequality

|λ1p21 + λ2p
2
2 + λ3p

3
3 + λ4p

k
4 − υ| < τ
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with pj ∈ Ij for 1 ≤ j ≤ 4. Recalling that (2.5), we have

(7.1) I ′(τ, υ,R, ρ0, ρ0) ≥ I ′(τ, υ,R, ρ−, ρ+) + I ′(τ, υ,R, ρ+, ρ−)− I ′(τ, υ,R, ρ+, ρ+).

Then it is sufficient to give a positive lower bound for the right side of (7.1). To do this,

we divide the real line into the major arc M′, the minor arc m′ and the trivial arc t′. We

define

M′ = {α : |α| ≤ P/X}, m′ = {α : P/X < |α| ≤ R}, t′ = {α : |α| > R},

where P = X8/(11k)−2ε and R = τ−2X1/2+2ε.

We write

H ′(α) = S′1(λ1α, ρ
−)S′2(λ2α, ρ

+) + S′1(λ1α, ρ
+)S′2(λ2α, ρ

−)− S′1(λ1α, ρ+)S′2(λ2α, ρ
+).

As in Sections 3 and 5, we can estimate the integral on M′ and t′. Here we just state the

following lemmas without proof.

Lemma 7.1. For k ≥ 3, we have∫
M′
H ′(α)S′3(λ3α)S′k(λ4α)e(−αv)Kτ (α) dα� c′τ2X1/3+1/kL−2,

where c′ > 0 is an absolute constant.

Lemma 7.2. For k ≥ 3, we have∫
t′
|H ′(α)S′3(λ3α)S′k(λ4α)|Kτ (α) dα� τ2X1/3+1/k−ε.

For the minor arc, we follow the argument in Section 4. Also without loss of generality

we only to consider the integral∫
m
|S′1(λ1α)S′2(λ2α)S′3(λ3α)S′k(λ4α)|2Kτ (α) dα,

where S′i(λiα), i = 1, 2 takes the form (4.3). Let m̃′ = m′1 ∪m′2, m
′∗ = m′ \ m̃′, where

m′j = {α ∈ m′ : |Sj(λjα)| ≤ X3/7+ε} for j = 1, 2.

Lemma 7.3. For k ≥ 3, we have∫
m̃′
|S′1(λ1α)S′2(λ2α)S′3(λ3α)S′k(λ4α)|2Kτ (α) dα� τX1+2/3+2/k−σ∗(k)+ε,

where σ∗(k) is defined by (1.10).
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Proof. We first consider the cases k = 3, 4. Using Hölder’s inequality and Lemma 4.2, we

can obtain∫
m′1

|S′1(λ1α)S′2(λ2α)S′3(λ3α)S′k(λ4α)|2Kτ (α) dα

�
(

sup
α∈m′1

|S′1(λ1α)|
)2(∫

R
|S′2(λ2α)|4Kτ (α) dα

)1/4(∫
R
|S′3(λ3α)|8Kτ (α) dα

)1/4

×
(∫

R
|S′2(λ2α|2|S′k(λ4α)|4Kτ (α) dα

)1/2

� τX1+2/3+2/k−1/7+ε.

Now we turn to handle the case 5 ≤ k ≤ 48. Using Hölder’s inequality and Lemma 4.2

again, we have∫
m′1

|S′1(λ1α)S′2(λ2α)S′3(λ3α)S′k(λ4α)|2Kτ (α) dα

�
(

sup
α∈m1

′
|S′1(λ1α)|

)1+2/m3(k)(∫
R
|S′1(λ1α)|4Kτ (α) dα

)1/4−1/(2m3(k))

×
(∫

R
|S′2(λ2α)|4Kτ (α) dα

)1/2−1/m3(k)(∫
R
|S′3(λ3α)|8Kτ (α) dα

)1/4−1/(2m3(k))

×
(∫

R
|S′2(λ2α)|2|S′3(λ3α)|2|S′k(λ4α)|m3(k)Kτ (α) dα

)2/m3(k)

� τX1+2/3+2/k−1/14−1/(7m3(k))+ε.

For k ≥ 49, similarly we have∫
m′1

|S′1(λ1α)S′2(λ2α)S′3(λ3α)S′k(λ4α)|2Kτ (α) dα

�
(

sup
α∈m1

′
|S′1(λ1α)|

)1+4/m2(k)(∫
R
|S′1(λ1α)|4Kτ (α) dα

)1/4−1/m2(k)

×
(∫

R
|S′2(λ2α)|4Kτ (α) dα

)1/2−1/m2(k)(∫
R
|S′3(λ3α)|8Kτ (α) dα

)1/4

×
(∫

R
|S′2(λ2α)|2S′k(λ4α)|m2(k)Kτ (α) dα

)2/m2(k)

� τX1+2/3+2/k−1/14−2/(7m2(k))+ε.

By symmetry we can get the same bound for the integral on m′2. Thus we have∫
m̃′
|S′1(λ1α)S′2(λ2α)S′3(λ3α)S′k(λ4α)|2Kτ (α) dα� τX1+2/3+2/k−σ∗(k)+ε.

We handle m′∗ similarly to Lemma 4.4 and can get the following lemma.
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Lemma 7.4. We have∫
m′∗
|S′1(λ1α)S′2(λ2α)S′3(λ3α)S′k(λ4α)|2Kτ (α) dα� τX1+2/3+2/k−1/7+ε.

Due to a similar reason to (4.1), from Lemmas 7.3 and 7.4 we can deduce that

Lemma 7.5. For k ≥ 3, we have∫
m′
|H ′(α)S′3(λ3α)S′k(λ4α)|2Kτ (α) dα� τX1+2/3+2/k−σ∗(k)+ε,

where σ∗(k) is defined by (1.10).

Then from Lemmas 7.1, 7.2 and 7.5, arguing similarly to (6.1)–(6.3), we can complete

the proof of Theorem 1.3 easily.
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