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Abstract. In analyzing time-to-event data, proportional hazards (PH) regression is

an ubiquitous model used in many fields. PH regression, however, requires a strong

assumption that is not always appropriate. Threshold regression (TR) is one of the

alternative models. A first-hitting-time (FHT) survival model postulates a health

status process for a patient that gradually declines until the patient dies when the

health level first reaches a critical threshold. In this article, we review the development

of threshold regression models and their applications.

1. Introduction

Proportional hazards (PH) regression introduced by Sir David Cox in 1972 is an ubiquitous

methodology for analyzing survival and time-to-event data. The PH regression model

assumes that the time to the event or endpoint of interest is a positive random variable

with a hazard function of the following form:

h(t) = h0(t) exp(zβ).

Here h0(t) is a fixed baseline hazard function, z is a row vector of covariates, and β is a

column vector of regression coefficients that are to be estimated. Although extensions with

time-varying covariates of the form z(t) exist, we limit our attention to fixed covariates in

this review.

PH regression is easy to use and has found applications in many disciplines ranging

from engineering to medicine. The wide use of the PH model reflects more its mathematical

convenience than its realism. The occurrence of proportional hazard functions in nature

is actually rare. Realizing that the proportional hazards assumption of PH regression is
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not always appropriate, statistical researchers have explored many alternative models and

methods over the past forty years. One of these alternatives is threshold regression (TR).

Aalen and Gjessing [2, p. 1] make the telling point that the “hazard rate is really an

elusive concept, especially when one tries to interpret its shape considered as a function of

time.” These authors are highlighting the important point that the hazard function is only

a derivative feature that may lie on the pathway to understanding but is not the end of

the journey itself. A deeper understanding will be obtained if the risk mechanism behind

the hazard pattern is probed by the investigator. See also Aalen, Borgan and Gjessing [1].

2. Threshold regression models

2.1. First-hitting-time models

Instead of focusing on hazard rate, threshold regression is based on the concept of a first

hitting time. The approach provides an investigator with a general conceptual framework.

The defining feature of threshold regression is that the event time is defined as the first

time an underlying stochastic process hits a boundary threshold. In a medical context,

for example, the event of interest might be death and the time of death is the moment

when the patient’s latent health status first reaches a critical threshold at zero.

For a stochastic process {Y (t), t ≥ 0}, let B denote the boundary threshold and S, the

first hitting time. Then their interconnection can be expressed mathematically as follows:

S = inf{t : Y (t) ∈ B},

where initial level Y (0) /∈ B. In medical applications, the stochastic process {Y (t)} may

describe the time trajectory of health or disease for a subject. The parameter t denotes

time. The boundary B is a critical health state, disease state or other medical end point,

such as death, a diagnosis of cancer, or hospital discharge. The first hitting time S is the

time for the sample path of the stochastic process to first reach the boundary B. It is this

first hitting time, or FHT for short, that is the time-to-event or survival time of interest.

The stochastic process {Y (t)} may take many forms, including a Wiener process,

gamma process, Ornstein-Uhlenbeck process, or Markov chain. The nature of the bound-

ary state may vary widely, for example, a fixed threshold in a Wiener process or an

absorbing state in a Markov chain.

Previous work that has considered regression structures for FHT models includes Whit-

more [22], Whitmore, Crowder and Lawless [23], Lee, DeGruttola and Schoenfeld [10] and

Lee et al. [14]. Lee, DeGruttola and Schoenfeld [10] use a bivariate Wiener diffusion pro-

cess as the basis of a regression model for the study of progression to death in AIDS, with

CD4 cell count serving as a marker process.
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2.2. Computational aspects of threshold regression models

Consider a Wiener process {Y (t), t ≥ 0} with mean parameter µ, variance parameter σ2,

and initial value Y (0) = y0 > 0. The time required for the process to reach the zero level

for the first time has an inverse Gaussian distribution if the process mean parameter µ is

negative so the process tends to drift toward the zero level. See Lee and Whitmore [11].

Computational details of threshold regression methods in STATA and R packages can

be found in user manuals by Xiao et al. [25, 26].

When we assume that the latent stochastic process is a Wiener process Y (t) starting

at y0 with drift µ and variance σ2, we know that it has the following properties:

1. Y (t) has independent increments; for any non-overlapping time intervals (t1, t2),

(t3, t4), Y (t2)− Y (t1) and Y (t4)− Y (t3) are independent.

2. Y (t2)− Y (t1) is normally distributed with mean µ(t2 − t1) and variance σ2(t2 − t1)
with t1 < t2.

When we regard this Wiener process as a latent health status process, we can let

Y (0) = y0 > 0 be the initial health status, and define S as the first time a sample path of

the health status process reaches level 0, i.e., S = inf{t : Y (t) = 0}.
By using either the backward or forward diffusion equations subject to the initial

condition and the boundary condition for the absorbing barrier, it can be shown that S

follows an inverse Gaussian distribution with the following probability density function

(p.d.f.).

f(t | µ, σ2, y0) =
y0√

2πσ2t3
exp

[
−(y0 + µt)2

2σ2t

]
,

where σ2 > 0, y0 > 0 and −∞ < µ < ∞. The p.d.f. is proper if µ ≤ 0. The cumulative

distribution function (c.d.f.) of the first hitting time is

F (t | µ, σ2, y0) = Φ

[
−(y0 + µt)√

σ2t

]
+ exp

(
−2y0µ

σ2

)
Φ

[
µt− y0√
σ2t

]
,

where Φ(·) is the cumulative distribution function of the standard normal distribution.

Note that if µ > 0, the Wiener process may never hit the boundary at zero and hence

there is a probability that the FHT is ∞, with P (FHT = ∞) = 1− exp(−2y0µ/σ
2). See

Cox and Miller [6].

By carefully examining the above equations, it can be seen that both f(t | µ, σ2, y0) and

F (t | µ, σ2, y0) actually depend on y0/σ and µ/σ only. Hence we need to fix one of the three

parameters (µ, y0, σ) to avoid over-parameterization. Because the degradation process is

latent with undefined measurement scale, we choose to set the variance parameter σ2 = 1

in computations without loss of generality. Then we can regress the other two process
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parameters, y0 and µ, on covariates. Including a constant intercept term, the covariate

vector can be written as z′ = (1, z1, . . . , zk), where z1, . . . , zk are covariates.

Note that the leading 1 in z′ allows for a constant term in the regression relationship.

We assume that µ and ln(y0) are linear in regression coefficients, so they are linked to the

covariates with the following regression forms:

ln(y0) = γ0 + γ1z1 + · · ·+ γkzk = z′γ,(2.1)

µ = β0 + β1z1 + · · ·+ βkzk = z′β,

where γ = (γ0, . . . , γk)′ and β = (β0, . . . , βk)′ are regression coefficient vectors. If some

covariates are regarded as unimportant in predicting ln(y0) or µ, then these covariates can

be removed from the regression model by setting the corresponding elements in γ or β to

zero. For example, if covariate z1 in z′ is not important to predict ln(y0), we can set γ1

to zero in (2.1).

Maximum likelihood estimation (MLE) is used to estimate the regression coefficients.

A subject i in the sample data set with an observed exact death time t(i) contributes the

FHT probability density f(t(i) | µ(i), y(i)0 ) to the sample likelihood function. A subject

j in the sample data set who lives to the end of the study provides a right-censored

event time. All we know about this subject is that the event time is larger than the on-

study time. Therefore the contribution by a surviving subject j to the sample likelihood

function is the survival function evaluated at the corresponding on-study time t(j), namely,

1− F (t(j) | µ(j), y(j)0 ). Among the n subjects in the sample, subjects with observed death

times are indexed from 1 to n1 and subjects with right-censored event times are indexed

from n1 + 1 to n. Hence, the log-likelihood function is

lnL(β, γ) =

n1∑
i=1

ln f(t(i) | µ(i), y(i)0 ) +

n∑
j=n1+1

ln
[
1− F (t(j) | µ(j), y(j)0 )

]
.

2.3. Three building blocks of threshold regression models

It can be seen that a TR model has three building blocks: (1) a stochastic process that

describes the evolution of a subject’s underlying health state; (2) a boundary or threshold

that defines a critical level or condition that triggers the event of interest when it is

reached by the process for the first time; and (3) a time scale on which the process

unfolds. Each of these building blocks may have parameters that depend on a covariate

vector z through regression link functions. After a specification of the threshold regression

model, the regression functions can be estimated and then various inferences made using

conventional statistical theory. Lee and Whitmore [12] investigate theoretical connections

between PH regression and threshold regression and show that PH regression can be
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considered as a special case of TR using one of two methods of construction: one based

on altering the TR time scale and the other based on varying the TR boundary. A case

demonstration was presented in Lee and Whitmore [12] to highlight the understanding

of scientific foundations that TR can offer in comparison to PH regression. Stogiannis

et al. [20] and William and Law [21] also discussed comparisons between FHT and PH

regression models.

2.4. Analytical running time versus calendar time

As pointed in Lee and Whitmore [11], the natural time scale of the parent stochastic

process in many applications is not calendar or clock time. For example, a mechanical

component may wear according to the amount of its usage. Mathematical research on

different time scales has been carried out by many researchers. Cox and Oakes [7, Sec-

tion 1.2, p. 34] pointed out that often the scale for measuring time is clock time, although

other possibilities certainly arise, such as the use of operating time of a system, mileage

of a car, or some measure of cumulative load encountered.

These accumulation measures are increasing with calendar time and thus are alterna-

tive progression scales for the stochastic process. Such measures are given a variety of

names, depending on the context, such as operational time, disease progression, running

time, or analytical time.

If r(t) denotes the transformation of calendar time t to running time r, with r(0) = 0,

and Y (r) is the process of interest defined in terms of running time r, then the resulting

process expressed in terms of calendar time is the subordinated process Y ∗(t) = Y [r(t)].

The running time scale r(t) is included in the FHT model in order to make the model

a more valid representation of reality. With a correct specification of running time, one

would expect health status or component strength to decline steadily and predictably

against the scale that measures the accumulating ear and tear of running time.

2.5. Threshold regression for longitudinal data analysis

Assume that each individual has observation vectors of form (tj , fj , yj , zj), j = 0, 1, . . . ,m,

where t0 = 0 ≤ t1 ≤ · · · ≤ tm. Here tj is the time of the jth observation, fj is an indicator

variable for whether the time tj is an FHT, yj is the state of the process at time tj , and

zj is the covariate vector of the jth observation for the individual.

Time points: 0 = t0 ≤ t1 ≤ · · · ≤ tm,

Failure codes: f0 = 0, f1 = 0, . . . , fm−1 = 0, fm = 0 or 1,

Readings on the process: y0, y1, . . . , ym,

Covariate vectors: z0, z1, . . . ,zm.
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The data structures may have a variety of specialized features.

1. The data sets usually consist of a sample of individuals, i = 1, . . . , n, with individual

parent processes {Yi(t)} and boundary sets B(i). The individual processes are often

assumed to be mutually independent.

2. Where there are competing modes of failure, then the cause of failure d will be

recorded for each individual.

3. The final observation time tm for an individual is a random stopping time if fm = 1.

4. Thus, tm = S and ym = Y (S) if fm = 1. Here Y (S) ∈ B is the threshold state

realized by the individual at the FHT. If fm = 0 then time tm is a right censoring

time for the FHT, i.e., tm < S. If tm−1 < S ≤ tm then the survival time S is interval

censored.

5. The data are longitudinal if there is more than one reading available for some indi-

viduals, i.e., if m > 1 for some individuals.

6. If the stochastic process Y is latent then the data set will have no observations yj ,

although there may still be readings on the covariate vectors zj .

7. If the data set consists only of a single time t and failure indicator f for each

individual then the data set constitutes censored survival data. With a baseline

covariate vector z0 available, the data provide a basis for censored survival threshold

regression.

8. Let Y (tj) be abbreviated yj for any individual. The reading yj on the parent pro-

cess, for j < m, is a realization of the conditional random variable Yj | S > tj .

The conditioning event is that the process has reached state yj at time tj without

experiencing an FHT.

9. Where {Y (t)} is a Markov process (which is the most common type of model), we

have for any individual that

P (Yj = yj | yj−1, . . . , y0, S > tj) = P (Yj = yj | Yj−1 = yj−1, S > tj) for j < m.

In other words, the distribution of the next observation Yj depends only on the

value of preceding observation yj−1 and the fact that no FHT has yet occurred. The

sample path by which yj−1 was attained is immaterial (Lee and Whitmore [11]).

Using previous notation, let {Aj} denote the longitudinal observation process, defined

on the time points tj , j = 0, 1, . . .. If the individual survives beyond time tj then failure
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code fj = 0 and Aj = {S > tj , yj , zj} for j ≤ m. If the individual fails in the final

interval (tm−1, tm] then fm = 1 and Am = {S ∈ (tm−1, tm], xm ∈ B}. As defined earlier,

S is the stopping time for the longitudinal observation process. We note that zm is not

defined when the individual has failed and, hence, is dropped from the expression for Am.

Moreover, the final reading ym for the parent process lies inside the boundary set B when

the individual has failed.

Longitudinal data of this kind pose an interesting challenge for first-hitting-time mod-

els, as for most time-to-event models. This method can be referred to as an uncoupling

procedure because it effectively unlinks the longitudinal observations into a set of indepen-

dent conditional observations. Lee, Whitmore, Rosner [16] used the uncoupling procedure

to analyze longitudinal data from the Nurses Study. With the preceding notation, the

probability of observing the longitudinal data record of an individual can be expanded as

a product of conditional probabilities as follows:

(2.2) P (Am, Am−1, . . . , A1, A0) = P (A0)
m∏
j=1

P (Aj | Aj−1, . . . , A0).

Now we come to the crucial assumption. If it can be assumed that {Aj , j = 0, 1, . . .}
is a Markov process with initial state A0, then (2.2) can be simplified as follows:

(2.3) P (Am, Am−1, . . . , A1, A0) = P (A0)

m∏
j=1

P (Aj | Aj−1).

In other words, the probability of observing Aj depends only on its preceding state Aj−1

and not on the earlier history of the observation process. The explicit forms of the prob-

ability elements on the right-hand side of (2.3) are as follows:

P (Aj | Aj−1) = P (S > tj , yj , zj | S > tj−1, yj−1, zj−1) if fj = 0, j ≤ m,(2.4)

P (Am | Am−1) = P (S ∈ (tm−1, tm], ym ∈ B | S > tm−1, ym−1, zm−1) if fm = 1.(2.5)

If no observations are available on the parent process then yj is dropped from the Aj

notation, giving Aj = {S > tj , zj} if fj = 0, j ≤ m, and Am = {S ∈ (tm−1, tm]} if fm = 1.

Again, invoking the Markov assumption for the observation process, (2.4) and (2.5) take

the revised forms:

P (Aj | Aj−1) = P (S > tj , zj | S > tj−1, zj−1) if fj = 0 for j ≤ m,

P (Am | Am−1) = P (S ∈ (tm−1, tm] | S > tm−1, zm−1) if fm = 1.

Statement (2.3) is the theoretical justification for the uncoupling procedure.
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2.6. Cure rate

Some FHT models may offer a positive probability of no FHT taking place in finite time.

Thus, for example, a medical treatment may offer a cure, some animals in a population may

be immune to infection, some stock prices may never reach $1000, and some marriages may

never end in divorce. The fact that P (S =∞) > 0 in some FHT models is closely related

to competing risks. Generally, if the FHT model takes account of all competing risks then

eventual failure from some cause is assured. If, however, the FHT model takes account of

only one or a few competing risks then there is a positive probability that the FHT will be

infinite to accommodate those individuals who are not susceptible to the limited array of

causes of failure that are considered in the model. To illustrate the natural way in which

FHT models take account of a cure rate, consider a Wiener diffusion model with a fixed

boundary at zero (the time axis). If the drift of the process is away from the boundary, i.e.,

µ > 0, then a finite FHT is not assured and, in particular, P (S < ∞) = exp(−2y0µ/σ
2).

Likewise, a modified gamma process with a cure rate might be defined as follows:

Y (t) =

y0 with probability 1− p,

y0 − Z(t) with probability p.

Here parameter p is a susceptibility fraction, with 0 ≤ p ≤ 1, and Z(t) is a gamma

stochastic process. As an example of this last model, a subject may have a malignant or

benign form of a disease with probabilities p and 1− p, respectively. The malignant form

progresses monotonically towards a medical endpoint (e.g., death).

See Lee and Whitmore [11] and Balka et al. [5] for a review on the implementation of

cure models based on first hitting times for Wiener processes.

3. Applications

The TR model has recently begun to attract more attention. Bayesian random effects

threshold regression was discussed in Pennell et al. [19]. Longitudinal analysis was exam-

ined in Lee, Whitmore and Rosner [16]. In this section, we review some case studies using

TR regression models.

Lee, Chang, Whitmore [9] use the TR model to analyze data from a randomized clinical

trial for treatment of multiple myeloma. The trial compares VELCADE and high-dose

Dexamethasone, the former being a new therapy and the latter an established therapy

for this disease. Patients are switched between the two drugs based on patient response.

The novel contribution of this work is the modeling of this clinical trial design using a

mixture of TR models. Specifically, they propose a mixture FHT model to fit the survival

distribution. The model includes a composite time scale that differentiates the rate of
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disease progression before and after switching. The analysis shows significant benefit from

initial treatment by VELCADE. A comparison is made with a Cox proportional hazards

regression analysis of the same data. Although the Cox regression results agree broadly

with the TR results, TR provides more subtle insights into the source and nature of the

comparative benefits of VELCADE than offered by the Cox methodology.

Lee et al. [15] considered a case-control study of lung cancer mortality in U.S. railroad

workers. The case-control study data for workers in jobs with and without diesel exhaust

exposure are reanalyzed using threshold regression methodology. The study included 1256

workers who died of lung cancer and 2385 controls who died primarily of circulatory system

diseases. Diesel exhaust exposure was assessed using railroad job histories from the US

Railroad Retirement Board and an industrial hygiene survey. Smoking habits were avail-

able from next-of-kin and potential asbestos exposure was assessed by job history review.

The new analysis reassesses lung cancer mortality and examines circulatory system disease

mortality. Jobs with regular exposure to diesel exhaust had a survival pattern character-

ized by an initial delay in mortality, followed by a rapid deterioration of health prior to

death. The pattern is seen in subjects dying of lung cancer, circulatory system diseases,

and other causes. The unique pattern is illustrated using a new type of KaplanMeier

survival plot in which the analytical time scale represents a measure of disease progression

rather than calendar time. The disease progression scale accounts for a healthy-worker

effect when describing the effects of cumulative exposures on mortality.

Aaron et al. [3] compares a Poisson process TR model with a Wiener diffusion TR

model for the occurrence of acute exacerbations in chronic obstructive pulmonary disease

(COPD). They incorporate the causal determinants of disease operating in each patient.

They test the methodology on COPD data from a randomized clinical trial. Results show

that both models provide reasonably accurate fits to the clinical trial data. Analysis of

the clinical trial data set using these TR models revealed that patients who experienced

multiple exacerbations showed a progressive acceleration in the rate of exacerbations, and

successive shortening of stable intervals between exacerbations.

Li and Lee [17] consider a semi-parametric modeling approach for TR and contribute

details about theory and implementation for model fitting and statistical inferences with

semi-parametric varying coefficients. Extensive simulations are carried out to examine

the finite sample performance of the parametric and non-parametric estimates. A real

example is analysed to illustrate the methods, along with a careful diagnosis of model

assumptions.

Whitmore, Ramsay and Aaron [24] formulate a recurrent event process as a succession

of independent and identically distributed first hitting times for a Wiener sample path as it

passes through successive equally-spaced levels. They develop exact mathematical results
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for statistical inferences based on several observation schemes that include observation

initiated at a renewal point, observation of a stationary process over a finite window, and

other variants. They demonstrate their results using data from a clinical trial for COPD

in which the recurrent events are successive exacerbations of the condition.

Aaron et al. [4] construct a statistical model to assess the risk of death for cystic

fibrosis (CF) patients between scheduled annual clinic visits. The model includes a CF

health index that shows the influence of risk factors on CF chronic health and on the

severity and frequency of CF exacerbations. Their model produces an accurate clinical

scoring tool for prediction of one-year survival of CF patients. The tool can be used by

clinicians to decide on optimal timing for lung transplant referral.

Mulatya et al. [18] propose utilizing a longitudinal threshold model to estimate the

distribution of the elapsed time between two thresholds of the longitudinal process from

repeated measurements. They extend this modeling framework to be used with multiple

thresholds. A Wiener process under the first hitting time framework is used to represent

a survival distribution. They demonstrate their model through simulation studies and an

analysis of data from the Consortium on Safe Labor study.

Considering a composite of a chronic degradation process for skeletal health combined

with a random stream of shocks from external traumas, He et al. [8] develop a shock-

degradation TR model and study first and second fractures of elderly women using data

from the Study of Osteoporotic Fractures.

Lee and Whitmore [13] consider a family of system failure models in which shock

streams that follow a Fréchet process are superimposed on a degrading system described

by a stochastic process with stationary independent increments.

Li and Whitmore [13] extended the TR model to the setting of complex sample survey

designs that involve (a) differential selection probabilities of study subjects and (b) in-

tracluster correlations induced by multistage cluster sampling. The pseudo-maximum

likelihood estimation technique is applied to estimate the TR model parameters. Compu-

tationally efficient Taylor linearization variance estimators that consider both the intra-

cluster correlation and the differential selection probabilities are developed. The proposed

methods are evaluated by using simulation experiments with various complex designs and

illustrated empirically by using mortality-linked Third National Health and Nutrition Ex-

amination Survey Phase II genetic data.

4. Future research

The earlier work on model validation has been largely restricted to the FHT model for a

Wiener process and thus extensions to other FHT models need attention. Much remains to

be done on model validation and diagnostic techniques in the general context of threshold
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regression.

Because the TR model involves the simultaneous estimation of several regression func-

tions, variable selection is an important aspect that needs attention. For a Wiener diffusion

TR model, for example, at least two regression functions are estimated; one for the initial

baseline process level and another for the mean drift. It is also important to work closely

with subject-matter specialists to ensure that the FHT models have realistic features and

that the findings emerging from the analysis make practical sense.

Acknowledgments

The work is support in part by R01EY02445.

References

[1] O. O. Aalen, Ø. Borgan and H. K. Gjessing, Survival and Event History Analysis: A

Process Point of View, Statistics for Biology and Health, Springer, New York, 2008.

[2] O. O. Aalen and H. K. Gjessing, Understanding the shape of the hazard rate: a process

point of view, Statist. Sci. 16, (2001), no. 1, 1–22.

[3] S. D. Aaron, T. Ramsay, K. Vandemheen and G. A. Whitmore, A threshold regression

model for recurrent exacerbations in chronic obstructive pulmonary disease, J. Clin.

Epidemiol. 63 (2010), no. 12, 1324–1331.

[4] S. D. Aaron, A. L. Stephenson, D. W. Cameron and G. A. Whitmore, A statisti-

cal model to predict one-year risk of death in patients with cystic fibrosis, J. Clin.

Epidemiol. 68 (2015), no. 11, 1336–1345.

[5] J. Balka, A. F. Desmond and P. D. McNicholas, Review and implementation of cure

models based on first hitting times for Wiener processes, Lifetime Data Anal. 15

(2009), no. 2, 147–176.

[6] D. R. Cox and H. D. Miller, The Theory of Stochastic Processes, John Wiley & Sons,

New York, 1965.

[7] D. R. Cox and D. Oakes, Analysis of Survival Data, Monographs on Statistics and

Applied Probability, Chapman & Hall, London, 1984.

[8] X. He, G. A. Whitmore, G. Y. Loo, M. C. Hochberg and M.-L. T. Lee, A model for

time to fracture with a shock stream superimposed on progressive degradation: the

study of osteoporotic fractures, Stat. Med. 34 (2015), no. 4, 652–663.



304 Mei-Ling Ting Lee

[9] M.-L. T. Lee, M. Chang and G. A. Whitmore, A threshold regression mixture model

for assessing treatment efficacy in a multiple myeloma clinical trial, J. Biopharm.

Statist. 18 (2008), no. 6, 1136–1149.

[10] M.-L. T. Lee, V. DeGruttola and D. Schoenfeld, A model for markers and latent

health status, J. R. Stat. Soc. Ser. B Stat. Methodol. 62 (2000), no. 4, 747–762.

[11] M.-L. T. Lee and G. A. Whitmore, Threshold regression for survival analysis: mod-

eling event times by a stochastic process reaching a boundary, Statist. Sci. 21 (2006),

no. 4, 501–513.

[12] , Proportional hazards and threshold regression: their theoretical and practical

connections, Lifetime Data Anal. 16 (2010), no. 2, 196–214.

[13] , Practical applications of a family of shock-degradation failure models, in:

Statistical Modeling for Degradation Data, 211–229, ICSA Book Ser. Stat., Springer,

Singapore, 2017.

[14] M.-L. T. Lee, G. A. Whitmore, F. Laden, J. E. Hart and E. Garshick, Assessing lung

cancer risk in railroad workers using a first hitting time regression model, Environ-

metrics 15 (2004), no. 5, 501–512.

[15] , A case-control study relating railroad worker mortality to diesel exhaust ex-

posure using a threshold regression model, J. Statist. Plann. Inference 139 (2009),

no. 5, 1633–1642.

[16] M.-L. T. Lee, G. A. Whitmore and B. A. Rosner, Threshold regression for survival

data with time-varying covariates, Stat. Med. 29 (2010), no. 7-8, 896–905.

[17] J. Li and M.-L. T. Lee, Analysis of failure time using threshold regression with semi-

parametric varying coefficients, Stat. Neerl. 65 (2011), no. 2, 164–182.

[18] C. M. Mulatya, A. C. McLain, B. Cai, J. W. Hardin and P. S. Albert, Estimating time

to event characteristics via longitudinal threshold regression models–an application to

cervical dilation progression, Stat. Med. 35 (2016), no. 24, 4368–4379.

[19] M. L. Pennell, G. A. Whitmore and M.-L. T. Lee, Bayesian random-effects threshold

regression with application to survival data with nonproportional hazards, Biostatistics

11 (2009), no. 1, 111–126.

[20] D. Stogiannis, C. Caroni, C. E. Anagnostopoulos and I. K. Toumpoulis, Comparing

first hitting time and proportional hazards regression models, J. Appl. Stat. 38 (2011),

no. 7, 1483–1492.



A Survey of Threshold Regression for Time-to-event Analysis and Applications 305

[21] C. L. William and C. Law, Threshold regression and first hitting time models, Research

& Reviews: J. Stat. Math. Sci. 1 (2015), no. 1, 38–48.

[22] G. A. Whitmore, A regression method for censored inverse-Gaussian data, Canad. J.

Statist. 11 (1983), no. 4, 305–315.

[23] G. A. Whitmore, M. J. Crowder and J. F. Lawless, Failure inference from a marker

process based on a bivariate Wiener model, Lifetime Data Anal. 4 (1998), no. 3,

229–251.

[24] G. A. Whitmore, T. Ramsay and S. D. Aaron, Recurrent first hitting times in Wiener

diffusion under several observation schemes, Lifetime Data Analysis 18 (2012), no. 2,

157–176.

[25] T. Xiao, G. A. Whitmore, X. He and M.-L. T. Lee, Threg: a new command to

implement threshold regression model in STATA, The STATA Journal 12 (2012),

257–283.

[26] , The R package threg to implement threshold regression model, J. Stat. Softw.

66 (2015), no. 8, 16 pp.

Mei-Ling Ting Lee

University of Maryland, College Park, MD 20742, USA

E-mail address: mltlee@umd.edu


	Introduction
	Threshold regression models
	First-hitting-time models
	Computational aspects of threshold regression models
	Three building blocks of threshold regression models
	Analytical running time versus calendar time
	Threshold regression for longitudinal data analysis
	Cure rate

	Applications
	Future research

