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Character Formulas for Simple Modules of Hamiltonian Lie Superalgebras of

Odd Type

Wende Liu, Jixia Yuan* and Shujuan Wang

Abstract. In this paper, character formulas are explicitly characterized for all simple

restricted modules of Hamiltonian Lie superalgebras of odd type over an algebraically

closed field of characteristic p > 3. In the process we use the lengths and highest

weights of simple quotients of restricted Kac modules of atypical weights with respect

to a series of Borel subalgebras to determine the composition factors, composition

series and the character formulas for the restricted Kac modules of atypical weights

for the Lie superalgebras under consideration.

1. Introduction

Restricted Lie superalgebras and their restricted representations play a central role in the

theory of modular Lie superalgebras, just as in the modular Lie algebra situation. A

modular Lie superalgebra is referred to be restricted if its Lie algebra is restricted and the

adjoint representation of its Lie algebra on the odd part is restricted. Let L = L0 ⊕ L1

be a restricted Lie superalgebra. The p-mapping [p] of Lie algebra L0 is also called the

p-mapping of the whole Lie superalgebra L. An L-module M is called restricted provided

that

xp ·m = x[p] ·m for all x ∈ L0, m ∈M.

Over an algebraically closed field of characteristic p > 3, there are four series of finite-

dimensional graded simple Lie superalgebras, called the generalized Witt, the special,

the Hamiltonian and the contact Lie superalgebras, respectively, which are analogous to

the corresponding four series of finite-dimensional graded simple modular Lie algebras of

Cartan type [17]. Modular representations of these four series of Lie superalgebras have
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been sufficiently studied by many authors (for example, see [10–15]). Apart from these

four series of graded simple Lie superalgebras, there are additionally four infinite series

of finite-dimensional graded simple Lie superalgebras over an algebraically closed field of

characteristic p > 3, called the Hamiltonian Lie superalgebras of odd type, the special

Hamiltonian Lie superalgebras of odd type, the contact Lie superalgebras of odd type and

the special contact Lie superalgebras of odd type [1,7,8], which are analogous to the four

series of infinite-dimensional simple Lie superalgebras of vector fields over C defined by

odd differential forms [4]. Note that the latter four series of Lie superalgebras possess more

complicated structures and have no analogues in Lie algebra case. In 2014, the authors

obtained a sufficient and necessary condition for the restricted Kac modules to be simple

for the restricted Hamiltonian Lie superalgebras of odd type over an algebraically closed

field of characteristic p > 3 [16].

Let g be a Hamiltonian Lie superalgebra of odd type over an algebraically closed

field of characteristic p > 3. In [16] root reflections are used to construct a series of

Borel subalgebras of g and to observe how the highest weights for simple quotients of

restricted Kac modules change along with the Borel subalgebras of g (see Lemma 3.1

below). Moreover, a group action on restricted Kac modules of g is also introduced, which

is consistent with the module action of Lie superalgebra g itself and then the lengths of

simple quotients are determined for the restricted Kac modules of g with atypical weights

(see Lemma 3.3). In this paper, we use the lengths and highest weights of simple quotients

of restricted Kac modules of g with atypical weights with respect to a series of Borel

subalgebras to determine the composition factors, composition series and the character

formulas for the restricted Kac modules of g with atypical weights (see Theorem 4.4).

Since a simple restricted module of g is necessarily isomorphic to a simple quotient of a

restricted Kac module of g, all simple restricted modules of g are determined in a sense.

We should mention that our methods are close to the ones used by Serganova for Cartan

type Lie superalgebras over a field of characteristic zero [9] and by Shu and Zhang for

Witt type Lie superalgebras over a field of prime characteristic [11,12].

2. Basics

The ground field F is assumed to be algebraically closed and of characteristic p > 3

and its prime subfield is denoted by Fp. All algebras, modules are assumed to be finite-

dimensional, unless specified otherwise. Denote by Z2 = {0, 1} the additive group of order

two. For a vector superspace V = V0 ⊕ V1, write |x| for the parity of a homogeneous

element x in V . The symbol |x| implies that x is already assumed to be a homogeneous

element. We also adopt the following notation: For a proposition P , put δP = 1 if P is

true and δP = 0 otherwise.
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By definition, the restricted enveloping algebra u(L) of a restricted Lie superalgebra

(L, [p]) is the quotient algebra of the universal enveloping algebra U(L) modulo the two-

sided ideal generated by all elements xp − x[p] with x ∈ L0.

2.1. Divided power superalgebras

Fix a pair of positive integers m, n and write r = (r1, . . . , rm | rm+1, . . . , rm+n) for

an (m,n)-tuple of non-negative integers. For an m-tuple of positive integers, N =

(N1, . . . , Nm), let I(m,N | n) be the set of all (m,n)-tuples r such that ri < pNi for

1 ≤ i ≤ m and ri = 0 or 1 for m < i ≤ m + n. Following [5, 6], write O(m,N | n) for

the divided power superalgebras, which is a supercommutative associative superalgebra

having a basis {x(r) | r ∈ I(m,N | n)} with parity |x(r)| =
(∑

i>m ri
)
1 and multiplication:

x(r)x(s) =

m+n∏
i=m+1

min(1, 2− ri − si)(−1)
∑
m<i<j≤m+n rjsi

(
r + s

r

)
x(r+s).

Note that O(m,N | n) is a generalization of the divided power algebra O(m,N) and is

isomorphic to the tensor product the divided power algebra with the trivial Z2-grading

and the exterior algebra of rank n with the natural Z2-grading:

O(m,N | n) ' O(m,N)⊗ Λ(n).

2.2. Hamiltonian Lie superalgebras of odd type

Let εi be the (m+ n)-tuple with 1 in the i-th place and 0 elsewhere. For simplicity, write

xi for x(εi). Define the distinguished partial derivative ∂i with parity |∂i| = |xi| by letting

∂i(xj) = δij for 1 ≤ i, j ≤ m+ n.

From now on, suppose m = n. As in [5, 6], write

Def =

2n∑
i=1

(−1)|∂i||f |∂i(f)∂i′ ,

where

i′ =

i+ n if 1 ≤ i ≤ n,

i− n if n < i ≤ 2n.

Note that

|Def | = |f |+ 1

and

[Def ,Deg] = De{f,g}B for all f, g ∈ O(n,N | n),
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where { · , · }B is the Buttion bracket given by

{f, g}B = Def (g) =

2n∑
i=1

(−1)|∂i||f |∂i(f)∂i′(g).

Then

le(n,N | n) = {Def | f ∈ O(n,N | n)}

is a finite-dimensional simple Lie superalgebra, called the Hamiltonian Lie superalgebra

of odd type. This Lie superalgebra was also called the odd Hamiltonian superalgebra and

denoted by HO(n, n;N) in [8]. In the present paper, we adopt the notation in [5,6]. Note

that it is analogous to the infinite-dimensional Lie superalgebra HO(n, n) of vector fields

over C (see [4]).

2.3. Extension

We extend le(n, 1 | n) to

le(n, 1 | n) = le(n, 1 | n) + F
2n∑
i=1

xi∂i.

By letting deg xi = 1 = −deg ∂i, le(n, 1 | n) becomes a Z-graded Lie superalgebra

le(n, 1 | n) =
⊕
i≥−1

le(n, 1 | n)[i]

and the corresponding descending filtration is denoted by (le(n, 1 | n)i)i≥−1. By abuse

language, we also call le(n, 1 | n) a Hamiltonian Lie superalgebra of odd type.

Note that le(n, 1 | n) is a Z-graded subalgebra of le(n, 1 | n) and
∑2n

i=1 xi∂i is precisely

the degree derivation of le(n, 1 | n). In this paper we aim to determine the character

formulas for simple restricted modules of le(n, 1 | n).

Convention. In the subsequent sections we will write g for le(n, 1 | n).

2.4. Triangular decompositions

Let h = h⊕ F
∑2n

i=1 xi∂i, where

h = spanF{Dexixi′ | 1 ≤ i ≤ n}.

Then h is a Cartan subalgebra of g[0] and g =
⊕

α∈h∗ gα, where

gα = {x ∈ g | [h, x] = α(h)x for h ∈ h}.
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Write the dual basis of h as follows:

εi = (Dexixi′ )
∗, δ =

 2n∑
j=1

xj∂j

∗ for all 1 ≤ i ≤ n.

Clearly,

Dexi ∈

g−εi−δ if 1 ≤ i ≤ n,

gεi′−δ if n < i ≤ 2n.

Note that g[0] has a standard triangular decomposition g[0] = n−[0] ⊕ h⊕ n+[0], where

n−[0] = spanF{Dexixn+j | n ≥ i > j ≥ 1}+ spanF{Dexkxl | n < k, l ≤ 2n},

n+[0] = spanF{Dexixn+j | 1 ≤ i < j ≤ n}+ spanF{Dexkxl | 1 ≤ k, l ≤ n}.

Then g has a standard triangular decomposition g = n−0 ⊕ h⊕ n+0 , where

n−0 = n−[0] ⊕ g[−1], n+0 = n+[0] ⊕
⊕
i>0

g[i].

As in [16], we define a sequence of root reflections in the order:

γ−ε1−δ, . . . , γ−εn−δ, γεn−δ, . . . , γε1−δ

and then obtain a series of new triangular decompositions:

g = n−i ⊕ h⊕ n+i for all 1 ≤ i ≤ 2n.

For 0 ≤ i ≤ 2n, put bi = n+i ⊕ h. Then bi are Borel subalgebras containing b[0], where

b[0] = h⊕ n+[0] is the canonical Borel subalgebra of g[0].

2.5. Restricted Kac modules

Suppose g (resp. g[0]) has a triangular decomposition

g = N− ⊕ h⊕N+ (resp. g[0] = N−[0] ⊕ h⊕N+
[0]).

Let V = V0⊕ V1 be a g-module (resp. g[0]-module). If for λ ∈ h
∗

there is a nonzero vector

v ∈ V0 ∪ V1 such that

h · v = λ(h)v for all h ∈ h;

x · v = 0 for all x ∈ N+ (resp. x ∈ N+
[0]),

then v is called a highest weight vector in V of highest weight λ with respect to Borel

subalgebra B = h ⊕N+ (resp. B[0] = h ⊕N+
[0]). If V is a restricted g-module (resp. g[0]-

module) with weight λ, then λ ∈ Fn+1
p , where Fn+1

p = spanFp{ε1, . . . , εn, δ}. A weight
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λ ∈ Fn+1
p is called atypical if λ ∈ Ω and typical otherwise, where Ω consists of the

following weights with a, b ∈ Fp, 1 ≤ i ≤ n:

εi,a,b =

i−1∑
j=1

εj + aεi + (b+ a+ i− 1)δ,

εi,b =

n∑
j=1

εj +

n∑
l=i

εl + (b+ i− 1)δ.

In the sequel, for λ ∈ h
∗
, we write Fvλ for the 1-dimensional module of h with module

action

h · vλ = λ(h)vλ for all h ∈ h.

Write L0(λ) for the simple head of the restricted Verma module u(g[0])
⊗

u(b[0])
Fvλ. Note

that every simple u(g[0])-module is isomorphic to some L0(λ) with some highest weight λ

(see [3]). Let b be a Borel subalgebra of g containing b[0]. Then

Ib(λ) = u(g)
⊗

u(b+g[0])

L0(λ)

is called a restricted Kac module of g with respect to b. Obviously Ib(λ) is a Z-graded

g-module and Ib(λ) has a unique simple quotient module, which will be denoted by Lb(λ).

2.6. (u(g),T)-modules

Recall that the conformal symplectic supergroup CSP(n,F) is a direct product of the

symplectic group SP(n,F) and the one-dimensional multiplicative supergroup F∗. Let T

be the canonical maximal torus of the CSP(n,F) and χ(T) be the character group of T.

A rational T-module V is by definition that V =
⊕

λ∈χ(T) Vλ, where

Vλ = {υ ∈ V | t · υ = λ(t)υ, t ∈ T}.

Note that u(g) and u(g[0]) are rational T-modules [16].

According to [11], a finite-dimensional superspace V = V0 ⊕ V1 is called a (u(g),T)-

module if V is both a u(g)-module and a rational T-module for which each Vα with α ∈ Z2

is a T-module and the following statements hold:

(1) The actions of h coming from g and from T coincide.

(2) t · (a · v) = (t · a) · (t · v) for all t ∈ T, a ∈ u(g), v ∈ V .

Note that Ibi(λ) and Lbi(λ) are (u(g),T)-modules, where 0 ≤ i ≤ 2n and λ ∈ Fn+1
p

(see [16]).
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3. Reduction lemmas

For 1 ≤ i ≤ n, put

hi := spanF{Dexjxj′ | 1 ≤ j ≤ n, j 6= i}.

Clearly, for λ ∈ Fn+1
p and a fixed i, λ(hi) = 0 if and only if λ is of one of the following

forms bεi + aδ, where a, b ∈ Fp. From [16, Proposition 3.1], we have the following lemma.

In the sequel, we identify two weight vectors of a weight if they are proportional.

Lemma 3.1. Let λ ∈ Fn+1
p , 1 ≤ i ≤ n and υ0, . . . , υ2n be highest weight vectors of Lb0(λ)

with respect to b0, . . . , b2n, respectively.

• If λ(hi) 6= 0, then

υi = Dexi ·υi−1 and υ(n−i+1)′ = Dep−1xi′
·υ(n−i)′ .

In particular,

Lbi−1(λ) ∼= Lbi(λ− εi − δ), Lb(n−i)′ (λ) ∼= Lb(n−i+1)′ (λ− εi + δ).

• If λ(hi) = 0, then υi = υi−1 and

υ(n−i+1)′ =


υ(n−i)′ λ = aδ, a ∈ Fp,

Dep−2xi′
·υ(n−i)′ λ = εi + aδ, a ∈ Fp,

Dep−1xi′
·υ(n−i)′ λ = bεi + aδ, a, b ∈ Fp, b 6= 0, 1.

In particular,

Lbi−1(λ) ∼= Lbi(λ)

and

Lb(n−i)′ (λ) ∼=


Lb(n−i+1)′ (λ) λ = aδ, a ∈ Fp,

Lb(n−i+1)′ (λ− 2(εi − δ)) λ = εi + aδ, a ∈ Fp,

Lb(n−i+1)′ (λ− εi + δ) λ = bεi + aδ, a, b ∈ Fp, b 6= 0, 1.

The following lemma was obtained in [16, Theorem 1]. However, for the reader’s

convenience, we give a proof with more clear explanations.

Lemma 3.2. Let λ ∈ Fn+1
p . Then g-module Ib0(λ) is simple if and only if λ is typical.

Proof. Let υ0 and υ2n be highest weight vectors of Lb0(λ) with respect to b0 and b2n,

respectively. Note that highest weight vectors of Lb0(λ) with respect to b0 are propor-

tional and the nonzero homomorphic image of a highest weight vector of Ib0(λ) with
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respect to b0 is also a highest weight vector. Then υ0 can be viewed as a canoni-

cal homomorphic image of υλ. Note that any nonzero submodule of Ib0(λ) contains

Dep−1x1′
· · ·Dep−1xn′

Dexn · · ·Dex1 υλ. Then Ib0(λ) is simple if and only if

υ2n = Dep−1x1′
· · ·Dep−1xn′

Dexn · · ·Dex1 ·υ0.

Then it is sufficient to show that λ is atypical if and only if

υ2n 6= Dep−1x1′
· · ·Dep−1xn′

Dexn · · ·Dex1 ·υ0.

By Lemma 3.1, one may express υ2n by υ0 and elements of u(g[−1]), that is, there exists

x ∈ u(g[−1]) such that υ2n = x · υ0. Consequently, λ is atypical if and only if

υ2n 6= Dep−1x1′
· · ·Dep−1xn′

Dexn · · ·Dex1 ·υ0.

Set

J = {diag(1, . . . , 1, t) | t ∈ F∗}.

Since we have the following group isomorphism

T ∼= {diag(t1, . . . , tn, t
−1
1 , . . . , t−1n , t) | t, ti ∈ F∗},

J can be viewed as a subgroup of T.

Note that any rational T-module V has a Z-grading decomposition V =
⊕

s∈Z Vs,

where

Vs = {υ ∈ V | t(υ) = tsυ, t = diag(1, . . . , 1, t) ∈ J}.

Let L = L0 ⊕ L1 be an abelian Lie superalgebra with the trivial p-mapping, dimL0 = m

and dimL1 = n. Then we have the following superalgebra isomorphism

u(L) ∼= (F[x1, . . . , xm]/〈xp1, . . . , x
p
m〉)⊗ Λ(n),

where 〈xp1, . . . , x
p
m〉 is the two-sided ideal of the polynomial algebra F[x1, . . . , xm] generated

by xp1, . . . , x
p
m. So u(L) has a natural Z-grading structure induced by the standard Z-

grading structures of F[x1, . . . , xm] and Λ(n). Let λ =
∑n

i=1 aiεi + aδ, where ai, a ∈ Fp.
Then

Ib0(λ) =
a⊕

i=a−pn
Ib0(λ)i, Lb0(λ) =

a⊕
i=a−pn

Lb0(λ)i,

where

Ib0(λ)i = u(g[−1])a−iu(g[0])υλ, Lb0(λ)i = u(g[−1])a−iu(g[0]) · υλ.

Put

suppJ(V ) = {s ∈ Z | Vs 6= 0}.
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For any (u(g),T)-module V , we define the length of V to be the number | suppJ(V )| minus

1 and denote it by len(V ). Then len(Ib0(λ)) = pn and len(Lb0(λ)) ≤ pn. If λ is a typical

weight, then Ib0(λ) ∼= Lb0(λ) and so len(Lb0(λ)) = pn.

The following lemma is already contained in the proof of [16, Theorem 1]. However,

for the reader’s convenience, we also give a proof.

Lemma 3.3. Let λ be an atypical weight. Then

len(Lb0(λ)) =


0 if λ = aδ, a ∈ Fp,

pn− 2 if λ = εn,1,a, a ∈ Fp,

pn− 1 otherwise.

Proof. Let υ0 and υ2n be highest weight vectors of Lb0(λ) with respect to b0 and b2n,

respectively. Write Lb0(λ) =
⊕h

i=l L
b0(λ)i and λ =

∑n
i=1 aiεi + aδ with ai, a ∈ Fp. As in

the proof of Lemma 3.2, we can view υ0 as a canonical homomorphic image of υλ. Then

we have υ0 ∈ Lb0(λ)a and therefore h = a. By Lemma 3.1, we have

υ2n ∈


Lb0(λ)a if λ = aδ, a ∈ Fp,

Lb0(λ)a−pn+2 if λ = εn,1,a, a ∈ Fp,

Lb0(λ)a−pn+1 otherwise.

Since b2n = b[0] ⊕ g[−1], we have u(g[−1])g[−1] · υ2n = 0. It follows that

l =


a if λ = aδ, a ∈ Fp,

a− pn+ 2 if λ = εn,1,a, a ∈ Fp,

a− pn+ 1 otherwise.

The proof is complete.

Remark 3.4. Let λ be an atypical weight. Then any simple subquotient of Ib0(λ) must

be Lb0(µ) for some atypical weight µ. To see this, it is sufficient to show that Lb0(ν) is

not a simple subquotient of Ib0(λ) for any typical weight ν. By Lemma 3.2, one sees that

Ib0(ν) = Lb0(ν). Then len(Lb0(ν)) = len(Ib0(ν)). Since len(Ib0(ν)) = len(Ib0(λ)) = pn,

Lb0(ν) is not a simple subquotient Ib0(λ).

For any fixed i with 0 ≤ i ≤ 2n, {Lbi(λ) | λ ∈ Fn+1
p } constitute the set of iso-classes

of simple restricted g-modules. Hence for any λ ∈ Fn+1
p , there is unique λ′ ∈ Fn+1

p such

that Lb0(λ) ∼= Lb2n(λ′). Write mult(λ, µ) for the multiplicity of Lb0(µ) in Ib0(λ), where

λ, µ ∈ Fn+1
p . The ingredient mult(λ, µ) is crucial for computing the character formulas of

Ib0(λ). If λ is an atypical weight, then in view of Remark 3.4, we have mult(λ, ν) = 0
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for all typical weights ν. Therefore, it is sufficient to discuss mult(λ, µ), where λ, µ are

atypical weights.

The following lemma is straightforward.

Lemma 3.5. Let λ, µ be atypical weights.

(1) Suppose len(Lb0(µ)) = pn− 1. If mult(λ, µ) 6= 0, then µ = λ or µ′ = λ− 2
∑n

i=1 εi.

(2) Suppose len(Lb0(µ)) = pn − 2. If mult(λ, µ) 6= 0, then either µ = λ, λ − εk − δ,
λ+ εk − δ for some k with 1 ≤ k ≤ n or µ′ = λ− 2

∑n
i=1 εi.

Let λ, µ be atypical weights. By Lemma 3.3, when µ ∈ {aδ, εn,1,a | a ∈ Fp}, we have

len(Lb0(µ)) < pn − 1. In this situation, it is not easy to determine whether Lb0(µ) is a

composition factor of Ib0(λ). Therefore we establish the following two lemmas to treat

this special case.

Lemma 3.6. Let λ be any atypical weight and µ = aδ, where a ∈ Fp. Then mult(λ, µ) 6= 0

if and only if one of the following statements hold:

(1) λ = εi,1,a for some i with 1 ≤ i ≤ n;

(2) λ = εi,a for some i with 1 ≤ i ≤ n.

Proof. As g[0]-modules, we have Ib0(λ) ∼= L0(λ)⊗g[0] u(g[−1]). Therefore,

(3.1) Homg[0](L
b0(λ), Ib0(µ)) ∼= Homg[0](L

0(λ)⊗g[0] u(g[−1]), L
b0(µ)).

Note that for a Lie superalgebra L and L-modules V , W and N ,

V ∗
⊗
L

W ∼= HomL(V,W )

and

HomL(V,HomL(W,N)) ∼= HomL

(
V
⊗
L

W,N

)
.

Then we have

(3.2) Homg[0]

L0(λ)
⊗
g[0]

u(g[−1]), L
b0(µ)

 ∼= Homg[0]

u(g[−1]), L
b0(µ)

⊗
g[0]

(L0(λ))∗


and

(3.3) Homg[0](I
b0(λ), Lb0(µ)) ∼= Ib0(λ)∗

⊗
g[0]

Lb0(µ).
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To consider the necessity, suppose mult(λ, µ) 6= 0. Then by (3.3), we have Ib0(λ)∗
⊗

g[0]

Lb0(µ) 6= 0. It follows from (3.1), (3.2) and (3.3) that

Homg[0]

u(g[−1]), L
b0(µ)

⊗
g[0]

(L0(λ))∗

 6= 0.

Since µ ∈ Fpδ, we have dimLb0(µ) = 1 and then Lb0(µ)
⊗

g[0]
(L0(λ))∗ ∼= Lb0(µ−λ). Hence

Homg[0]

u(g[−1]), L
b0(bδ)

⊗
g[0]

(L0(λ))∗

 ∼= Homg[0](u(g[−1]), L
0(µ− λ)) 6= 0.

It follows that g[0]-module u(g[−1]) contains a highest weight vector, denoted by υµ−λ,

of weight µ − λ with respect to b[0]. Since υµ−λ ⊗ υλ is a highest weight vector in

u(g[−1])
⊗

g[0]
L0(λ) of weight µ with respect to b[0] and

Ib0(λ) ∼= u(g[−1])
⊗
g[0]

L0(λ),

one sees that Ib0(λ) contains a highest weight vector of weight µ. Moreover, all weights

of g[0]-module u(g[−1]) are of the form:

(−εi1 − δ) + · · ·+ (−εik − δ) + r1(εj1 − δ) + · · ·+ rl(εjl − δ)

where 1 ≤ i1 < · · · < ik ≤ n, 1 ≤ j1 < · · · < jl ≤ n and 0 ≤ ri ≤ p− 1. Then we have

µ = λ+ (−εi1 − δ) + · · ·+ (−εik − δ) + r1(εj1 − δ) + · · ·+ rl(εjl − δ).

Since λ is atypical, it follows that

λ = εi,1,a or εi,a

for some a ∈ Fp and some i with 1 ≤ i ≤ n.

Suppose λ = εi,1,a, where a ∈ Fp and 1 ≤ i ≤ n. Note that the natural Z-grading of

u(g[−1]):

u(g[−1]) =

pn⊕
i=0

u(g[−1])i

is a decomposition of simple g[0]-submodules. Moreover, for 0 ≤ i ≤ n we have

(3.4) u(g[−1])i ∼= L0

− i∑
j=1

εj − iδ
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and for n+ 1 ≤ i ≤ pn we have

(3.5) u(g[−1])i ∼= L0

− n∑
j=1

εj −
n∑

j=k+1

εj + lεk − (k + l)δ

 ,

where 1 ≤ k ≤ n and 0 ≤ l ≤ p− 1 with n+ l + (p− 1)(n− k) = i. Since Ib0(λ) contains

a highest weight vector of weight µ, it follows from (3.4) and (3.5) that µ = aδ.

Now suppose λ = εi,a, where a ∈ Fp and 1 ≤ i ≤ n. Then, completely analogous to

the arguments in the situation λ = εi,1,a, one may obtain that µ = aδ.

Finally, let us consider the sufficiency. Suppose (1) or (2) holds, say, (1). By a direct

verification, we get that Dexi · · ·Dex1 υλ is a highest weight vector in Ib0(λ) of weight

µ = aδ with respect to bi. Since Lbi(µ) ∼= Lb0(µ), we have mult(λ, µ) 6= 0.

Lemma 3.7. Let λ be any atypical weight and µ = εn,1,a, where a ∈ Fp. Then mult(λ, µ) 6=
0 if and only if λ is one of the following weights

µ, µ+ 2δ, µ− εn + δ, µ+ εn + δ.

Proof. Suppose mult(λ, µ) 6= 0. By Lemmas 3.1, 3.3 and 3.5, λmust be one of the following

weights

µ, µ+ 2δ, µ− εn + δ or µ+ εn + δ.

Conversely, it easy to see that mult(µ, µ) 6= 0 and mult(µ+ 2δ, µ) 6= 0. Let λ ∈ Ω and υλ

be a highest weight vector in Ib0(λ) of weight λ with respect to b0. If λ = µ+ εn+ δ, then

Dex1′xnxn′ · · ·Dex(n−1)′xnxn′ Dexn · · ·Dex1 ·υλ

is a highest weight vector in Ib0(λ) of weight µ with respect to b0. If λ = µ− εn + δ, then

Dex1′xnxn′ · · ·Dex(n−1)′xnxn′ Dexn′xn−1x(n−1)′ Dexn−1 · · ·Dex1 ·υλ

is a highest weight vector in Ib0(λ) of weight µ with respect to b0. Thus mult(λ, µ) 6= 0.

By PBW theorem, any element v ∈ Ib0(λ) can be uniquely written in the form

v =
∑

s∈I(n,1|n)

Des⊗v(s)

where v(s) ∈ L0(λ) and

Des = Des1x1′ · · ·Desnxn′ Desn+1
x(n+1)′

· · ·Des2nx(2n)′ .

We conclude this section by establishing the following lemma, which will be used in

the next section to determine mult(λ, µ) for atypical weights (see Proposition 4.1).
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Lemma 3.8. Let v =
∑

s∈I(n,1|n) Des⊗v(s) be a highest weight vector in Ib0(λ) of weight

aδ with respect to b[0], where a ∈ Fp. If v(s) 6= 0 for some s ∈ I(n, 1 | n), then the

following statements hold:

(1) if si′ = 1, then si ∈ {0, p− 1}, where 1 ≤ i ≤ n;

(2) if si′ = 0, then si ∈ {0, 1, p− 1}, where 1 ≤ i ≤ n;

(3) if si = p− 1 for some 1 ≤ i ≤ n, then s = (p− 1, . . . , p− 1 | 1, . . . , 1);

(4) if si = 1 for some 1 ≤ i ≤ n, then s = εi.

Proof. For each 1 ≤ i ≤ n, we have

0 = Dexixi′ ·v =
∑

s∈I(n,1|n)

Des⊗(Dexixi′ ·v(s) + (si − si′)v(s)).

Therefore, Dexixi′ ·v(s) = (si′ − si)v(s).

(1) For each 1 ≤ i ≤ n, we have

0 = De
x(2εi+εi′ )

·v = −
∑

s∈I(n,1|n)

si′ Des−εi′ ⊗Dex(2εi) ·v(s)(3.6)

−
∑

s∈I(n,1|n)

si(si + 1)

2
Des−εi ⊗v(s).(3.7)

If si′ = 1, then the term si(si+1)
2 Des−εi′ ⊗v(s) in (3.7) does not cancel with any other

terms in (3.6) and (3.7). It follows that si = 0 or p− 1.

(2) Suppose si /∈ {0, p − 1}. Then the term si(si+1)
2 Des−εi ⊗v(s) in (3.7) is nonzero

and ∑
s∈I(n,1|n)

Des−εi ⊗Dex(2εi) ·v(s− εi + εi′)

in (3.6) is nonzero. By (1), we have si − 1 ∈ {0, p− 1}. Then si = 1.

(3) If 1 ≤ i 6= j ≤ n, we have

0 = De
x
(2εi+εj′ ) ·v = −

∑
s∈I(n,1|n)

sj′ Des−εj′ ⊗Dex(2εi) ·v(s)

+
∑

s∈I(n,1|n)

si Des−εi ⊗Dexixj′ ·v(s)

+
∑

s∈I(n,1|n)

si(si − 1)

2
Des−2εi+εj ⊗v(s)

−
∑

s∈I(n,1|n)

si Des−εi−εj′+εi′ ⊗v(s).

(3.8)
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Suppose si = p− 1, sj 6= p− 1 for some i and j with 1 ≤ i 6= j ≤ n. Then by (1) and (2),

the term (p−1)(p−2)
2 Des−2εi+εj ⊗v(s) in the third sum of the right-hand side of (3.8) does

not cancel with any other terms in (3.8). Hence v(s) = 0. So far, we have shown that if

v(s) 6= 0 and si = p−1 for some i with 1 ≤ i ≤ n, then sj = p−1 for all j with 1 ≤ j ≤ n.

If 1 ≤ i 6= j ≤ n, we have

0 = Dexixj ·v =
∑

s∈I(n,1|n)

Des⊗Dexixj ·v(s)

+
∑

s∈I(n,1|n)

sj Des−εj+εi′ ⊗v(s)

+
∑

s∈I(n,1|n)

si Des−εi+εj′ ⊗v(s).

(3.9)

Suppose si = p − 1, sj′ = 0 with 1 ≤ i 6= j ≤ n. Then by (1) and (2), the term

si Des−εi+εj′ ⊗v(s) in the third sum of the right-hand side of (3.9) does not cancel with

any other terms in (3.9). Hence v(s) = 0. So far, we have shown that if v(s) 6= 0 and

si = p− 1 for some i with 1 ≤ i ≤ n, then sj′ = 1 for all j with 1 ≤ j ≤ n.

(4) By (1), (2) and (3), we have s1, . . . , sn ∈ {0, 1}, when v(s) 6= 0 and si = 1 for some

i with 1 ≤ i ≤ n. If 1 ≤ i < j ≤ n, we have

0 = Dexixj′ ·v =
∑

s∈I(n,1|n)

Des⊗Dexixj′ ·v(s)

−
∑

s∈I(n,1|n)

sj′ Des−εj′+εi′ ⊗v(s)

+
∑

s∈I(n,1|n)

si Des−εi+εj ⊗v(s).

(3.10)

Suppose si = 1, sj = 1 for some i and j with 1 ≤ i < j ≤ n. Then by (1) and (2), the

term si Des−εi+εj ⊗v(s) in the third sum of the right-hand side of (3.10) does not cancel

with any other terms in (3.10). Hence v(s) = 0. Suppose si = 1, si′ = 1 for some i

with 1 ≤ i ≤ n. Then the term Des−εi ⊗v(s) in (3.7) does not cancel with any other

terms in (3.6) and (3.7). Hence v(s) = 0. Suppose si = 1, sj′ = 1 for some i and j with

1 ≤ i 6= j ≤ n. Then the term Des−εi+εj ⊗v(s) in the third sum of the right-hand side of

(3.10) does not cancel with any other terms in (3.10). Hence v(s) = 0. So far, we have

shown that s = εi, when v(s) 6= 0 and si = 1 for some i with 1 ≤ i ≤ n.

4. Character formulas

We first establish several propositions, which will be used in determining the character

formulas.
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Proposition 4.1. Let λ, µ be atypical weights. Then mult(λ, µ) ≤ 1.

Proof. One may suppose mult(λ, µ) 6= 0. Then Lb0(µ) is a subquotient of Ib0(λ), that is,

there exist submodules M and N of Ib0(λ) with M ⊇ N such that M/N ∼= Lb0(µ). Let

v ∈ M ⊆ Ib0(λ) be an inverse image of some highest weight vector in Lb0(µ) of weight µ

under the canonical homomorphism. Our discussion is divided into two parts.

Part 1: Suppose µ /∈ Fpδ. One may write Lb0(µ) =
⊕h

i=l L
b0(µ)i and λ =

∑n
i=1 aiεi +

aδ, where ai, a ∈ Fp. Note that any nonzero submodule of Ib0(λ) contains Dep−1x1′
· · ·Dep−1xn′

Dexn · · ·Dex1 υλ. Hence Lb0(µ)a−pn = 0. By Lemma 3.3, we have len(Lb0(µ)) = pn − 1

or pn − 2. Then h ∈ {a, a − 1}. Therefore v ∈ Ib0(λ)a or Ib0(λ)a−1, that is, v ∈
u(g[−1])0 ⊗ L0(λ) or v ∈ u(g[−1])1 ⊗ L0(λ). If v ∈ u(g[−1])0 ⊗ L0(λ), then M = Ib0(λ)

and µ = λ, and hence v is a highest weight vector in Ib0(λ) of weight µ. Suppose

v ∈ u(g[−1])1⊗L0(λ). On the one hand, u(b0)v ⊆
⊕

j≤1 u(g[−1])j⊗L0(λ) from u(b0)v ∈ Fv.

On the other hand, u(b0)I
b0(λ)1 ⊆

⊕
j≥1 I

b0(λ)j , one may prove that v is a highest weight

vector in Ib0(λ) of weight µ. As in the proof of [2, Theorem 3.6], we can prove that the

dimension of the space spanned by highest weight vectors in
⊕1

i=0 u(g[−1])i ⊗ L0(λ) of

weight µ is not bigger than the multiplicity of weight µ− λ in
⊕1

i=0 u(g[−1])i. Note that

the multiplicity of each weight in
⊕1

i=0 u(g[−1])i is 1. Therefore, mult(λ, µ) ≤ 1.

Part 2: Suppose µ ∈ Fpδ, that is, µ = aδ for some a ∈ Fp. As in the proof of

Lemma 3.6, one may see that there exists a highest weight vector of weight µ in Ib0(λ).

Thus one may assume that υ is such a highest weight vector. Then it follows from

Lemma 3.8 that

v ∈ (u(g[−1])pn ⊕ u(g[−1] ∩ g0)1 ⊕ u(g[−1] ∩ g1))⊗ L
0(λ).

Note that the multiplicity is 1 for each weight in

u(g[−1])pn ⊕ u(g[−1] ∩ g0)1 ⊕ u(g[−1] ∩ g1).

Then, similar to Part 1, we have mult(λ, µ) ≤ 1. The proof is complete.

Proposition 4.2. Let λ, µ be atypical weights. Then mult(λ, µ) 6= 0 if and only if

mult(λ, µ) = 1. In this case, (λ, µ) is exactly of one of the following forms for some

a ∈ Fp:

(1) λ = aδ, µ = aδ or ε1,−1,a.

(2) λ = ε1,a, µ = λ or aδ.

(3) λ = εi,a, µ = λ, aδ or εi−1,a for some 2 ≤ i ≤ n− 1.

(4) λ = εn,1,a, µ = λ, aδ or εn,1,a−2.
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(5) λ = εn,a, µ = λ, εn−1,a or εn,1,a−2

(6) λ = εn,a,b, µ = λ or εn,a−1,b with a 6= 0, 1, 2.

(7) λ = εn−1,1,a, µ = λ, εn,−1,a, aδ or εn,1,a−2.

(8) λ = εi,1,a, µ = λ, aδ or εi+1,−1,a for some 1 ≤ i ≤ n− 2.

(9) λ = εi,a,b, µ = λ or εi,a−1,b for some 1 ≤ i ≤ n− 1, a 6= 0, 1.

Proof. The first conclusion follows directly from Proposition 4.1. By the definition of an

atypical weight, λ must be of one of the forms (1)–(9) indicated above.

(1) By Lemma 3.7, we have µ /∈
∑n

j=1 εj + Fpδ. If µ /∈ Fpδ, then by Lemma 3.3, we

have len(Lb0(µ)) = np− 1. By Lemma 3.5, we have µ′ = aδ − 2
∑n

i=1 εi. By Lemma 3.1,

we have µ = ε1,−1,a. Then Lb0(ε1,−1,a) is the minimal submodule of Ib0(aδ). If µ ∈ Fpδ,
then by Lemma 3.6 we have µ = aδ.

(2) Obviously, Lb0(aδ) is the minimal submodule of Ib0(λ). By Lemma 3.7, we have

len(Lb0(µ)) 6= pn− 2. By Lemma 3.5, we have µ = λ or aδ.

(3) If µ /∈ Fpδ, by Lemma 3.7, we have len(Lb0(µ)) = pn − 1. Then by Lemmas 3.1

and 3.5, we have µ = λ or µ = εi−1,a. If µ ∈ Fpδ, then by Lemma 3.6, we have µ = aδ.

(4) We claim that mult(λ, µ) = 0 if len(Lb0(µ)) = pn−1. Suppose len(Lb0(µ)) = pn−1

and mult(λ, µ) 6= 0. Then by Lemma 3.5, we have µ′ = λ− 2
∑n

i=1 εi. By Lemma 3.1, we

have µ = εn,1,a−2, which contradicts the assumption on µ. Hence our claim is true. Then

len(Lb0(µ)) = pn− 2 or µ ∈ Fpδ. By Lemmas 3.1–3.5, we have µ = λ, εn,1,a−2 or aδ.

(5) By Lemma 3.6, we have µ /∈ Fpδ. Then by Lemma 3.3, we may assume that

len(Lb0(µ)) = pn− 1 or pn− 2. If len(Lb0(µ)) = pn− 1, then by Lemmas 3.1 and 3.5, we

have µ = λ or εn−1,a. If len(Lb0(µ)) = pn− 2, then by Lemma 3.7, we have µ = εn,1,a−2.

(6) By Lemma 3.6, we have µ /∈ Fpδ. Then by Lemmas 3.3 and 3.7, we may assume

that len(Lb0(µ)) = pn− 1. By Lemmas 3.1 and 3.5, we have µ = λ or εn,a−1,b.

(7) Let Lb0(µ) be the minimal submodule of Ib0(λ). Then µ′ = λ+ σ. So µ = εn,−1,a.

We have the following exact sequences

0 −→M −→ Ib0(λ) −→ Lb0(λ) −→ 0,

and

0 −→ Lb0(εn,−1,a) −→M −→ N(λ) −→ 0,

where M is the maximal submodule of Ib0(λ) and N(λ) is the quotient of the maximal

submodule of Ib0(λ) modulo the minimal submodule. Next, we consider the structure

of N(λ). Let Lb0(ν) be a subquotient of N(λ). Since len(N(λ)) ≤ pn − 2, we get that

ν ∈
∑n

j=1 εj + Fpδ or ν ∈ Fpδ. By Lemmas 3.6 and 3.7, we have mult(λ, aδ) 6= 0 and

mult(λ, εn,1,a−2) 6= 0.
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Completely analogous to (3) and (6), one may verify (8) and (9), respectively.

By Proposition 4.2, we have the following corollary.

Corollary 4.3. Let λ be an atypical weight and M the maximal submodule of Ib0(λ).

(1) If λ = aδ with a ∈ Fp, then the following sequence is exact:

0 −→ Lb0(ε1,−1,a) −→ Ib0(λ) −→ Lb0(λ) −→ 0.

(2) If λ = ε1,a with a ∈ Fp, then the following sequence is exact:

0 −→ Lb0(aδ) −→ Ib0(λ) −→ Lb0(λ) −→ 0.

(3) If λ = εi,a with 2 ≤ i ≤ n−1 and a ∈ Fp, then the following two sequences are exact:

0 −→M −→ Ib0(λ) −→ Lb0(λ) −→ 0

and

0 −→ Lb0(εi−1,a) −→M −→ Lb0(aδ) −→ 0.

(4) If λ = εn,1,a with a ∈ Fp, then the following two sequences are exact:

0 −→M −→ Ib0(λ) −→ Lb0(λ) −→ 0

and

0 −→ Lb0(εn,1,a−2) −→M −→ Lb0(aδ) −→ 0.

(5) If λ = εn,a with a ∈ Fp, then the following two sequences are exact:

0 −→M −→ Ib0(λ) −→ Lb0(λ) −→ 0

and

0 −→ Lb0(εn−1,a) −→M −→ Lb0(εn,1,a−2) −→ 0.

(6) If λ = εn,a,b with a, b ∈ Fp \ {0, 1, 2}, then the following sequence is exact:

0 −→ Lb0(εn,a−1,b) −→ Ib0(λ) −→ Lb0(λ) −→ 0.

(7) If λ = εn−1,1,a with a ∈ Fp, then the following two sequences are exact:

0 −→M −→ Ib0(λ) −→ Lb0(λ) −→ 0

and

0 −→ Lb0(εn,−1,a) −→M −→ Lb0(aδ)⊕ Lb0(εn,1,a−2) −→ 0.
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(8) If λ = εi,1,a with 1 ≤ i ≤ n − 2 and a ∈ Fp, then the following two sequences are

exact:

0 −→M −→ Ib0(λ) −→ Lb0(λ) −→ 0

and

0 −→ Lb0(εi+1,−1,a) −→M −→ Lb0(aδ) −→ 0.

(9) If λ = εi,a,b with 1 ≤ i ≤ n− 1 and a, b ∈ Fp \ {0, 1}, then the following sequence is

exact:

0 −→ Lb0(εi,a−1,b) −→ Ib0(λ) −→ Lb0(λ) −→ 0.

Let M =
⊕

µ∈h∗Mµ be a g-module. Recall that the character of M is

chM =
∑
µ∈h∗

(dimMµ)eµ.

Let

Π =

n∏
i=1

(1 + e−εi−δ)

n∏
i=1

(1 + eεi−δ)p−1.

Then ch Ib0(λ) = Π chL0(λ).

Suppose 0 −→M ′ −→M −→M ′′ −→ 0 is a short exact sequence, where M ′ and M ′′

are also weight modules of g. Since dimMµ = dimM ′µ + dimM ′′µ for any µ ∈ h
∗
, we have

chM = chM ′ + chM ′′. Thus chM is determined by the characters and multiplicities of

the composition factors of M . In particular, ch Ib0(λ) =
∑

µ∈h∗ mult(λ, µ) chLb0(µ). Now

we are in the position to prove the main result of this paper.

Theorem 4.4. Let λ ∈ Fn+1
p . If λ is typical, then chLb0(λ) = Π chL0(λ). If λ is atypical,

then λ is of exactly one of the following nine forms and in each case the character formula

is listed below:

(1) If λ = aδ with a ∈ Fp, then chLb0(λ) = eλ.

(2) If λ = ε1,a with a ∈ Fp, then chLb0(λ) = Π chL0(λ)− eaδ.

(3) If λ = εi,a with 2 ≤ i ≤ n− 1 and a ∈ Fp, then

chLb0(λ) =
i∑

j=1

(−1)i−jΠ chL0(εj,a)− δi+1∈2Ze
aδ.

(4) If λ = εn,1,a with a ∈ Fp, then

chLb0(λ) =
1

2

p−1∑
j=0

(−1)j
(

Π chL0(εn,1,a−2j)− e(a−2j)δ
)
.
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(5) If λ = εn,a with a ∈ Fp, then

chLb0(λ) =

n∑
j=1

(−1)n−jΠ chL0(εj,a) + δn∈2Ze
aδ

− 1

2

p−1∑
j=0

(−1)j
(

Π chL0(εn,1,a−2−2j)− e(a−2−2j)δ
)
.

(6) If λ = εn,a,b with a, b ∈ Fp \ {0, 1, 2}, then

chLb0(λ) =
a−2∑
j=0

(−1)jΠ chL0(εn,a−j,b) +
n∑
j=1

(−1)a+n−jΠ chL0(εj,b+2)

+ (−1)aδn∈2Ze
(b+2)δ − 1

2

p−1∑
j=0

(−1)a+j
(

Π chL0(εn,1,b−2j)− e(b−2j)δ
)
.

(7) If λ = εn−1,1,a with a ∈ Fp, then

chLb0(λ) = Π chL0(λ)− eaδ −
p−3∑
j=0

(−1)jΠ chL0(εn,p−1−j,a)

−
n∑
j=1

(−1)n−jΠ chL0(εj,a+2)− δn∈2Ze(a+2)δ

+
1

2

p−1∑
j=0

(−1)j
(

Π chL0(εn,1,a−2j)− e(a−2j)δ
)

− 1

2

p−1∑
j=0

(−1)j
(

Π chL0(εn,1,a−2−2j)− e(a−2−2j)δ
)
.

(8) If λ = εi,1,a with 1 ≤ i ≤ n− 2 and a ∈ Fp, then

chLb0(λ) = Π chL0(λ) +

p−1∑
j=1

n−1∑
l=i+1

(−1)jΠ chL0(εl,−j,a)−Π chL0(εn−1,1,a)

+

p−3∑
j=0

(−1)jΠ chL0(εn,p−1−j,a) +

n∑
j=1

(−1)n−jΠ chL0(εj,a+2)

+ δn∈2Ze
(a+2)δ − 1

2

p−1∑
j=0

(−1)j
(

Π chL0(εn,1,a−2j)− e(a−2j)δ
)

+
1

2

p−1∑
j=0

(−1)j
(

Π chL0(εn,1,a−2−2j)− e(a−2−2j)δ
)
.
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(9) If λ = εi,a,b with 1 ≤ i ≤ n− 1, a, b ∈ Fp and a 6= 0, 1, then

chLb0(λ) =
a−2∑
j=0

(−1)jΠ chL0(εi,a−j,b)) + (−1)aΠ chL0(εi,1,b)

+

p−1∑
j=1

n−1∑
l=i+1

(−1)j+aΠ chL0(εl,−j,b)− (−1)aΠ chL0(εn−1,1,b)

+

p−3∑
j=0

(−1)j+aΠ chL0(εn,p−1−j,b) +

n∑
j=1

(−1)a+n−jΠ chL0(εj,b+2)

+ (−1)aδn∈2Ze
(b+2)δ − 1

2

p−1∑
j=0

(−1)a+j
(

Π chL0(εn,1,b−2j)− e(b−2j)δ
)

+
1

2

p−1∑
j=0

(−1)a+j
(

Π chL0(εn,1,b−2−2j)− e(b−2−2j)δ
)
.

Proof. If λ is typical, by Lemma 3.2, Ib0(λ) is simple and

chLb0(λ) = ch Ib0(λ) = Π chL0(λ).

If λ is atypical, by the definition of an atypical weight, λ is of one of the forms as indicated.

(1) The formula follows from the fact that dimLb0(λ) = 1.

(2) By Corollary 4.3(2), we have

chLb0(λ) = ch Ib0(λ)− chLb0(aδ).

Then the formula follows from (1).

(3) By Corollary 4.3(2) and (3), we have the following complex:

0 −→ Lb0(aδ) −→ Ib0(ε1,a) −→ · · · −→ Ib0(εi−1,a) −→ Ib0(εi,a) −→ 0.

Then the character formula follows from (1) and (2).

(4) By Corollary 4.3(4), we have

chLb0(λ) = ch Ib0(λ)− chLb0(λ− 2δ)− chLb0(aδ).

Then the desired formula holds.

(5) By Corollary 4.3(5), we have

chLb0(εn,a) = ch Ib0(εn,a)− chLb0(εn−1,a)− chLb0(εn,1,a−2).

Then the character formula from (3) and (4).
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(6) By Corollary 4.3(5) and (6), we have the following complex:

0 −→ Lb0(εn−1,b+2) −→ Ib0(εn,2,b) −→ · · · −→ Ib0(εn,a−1,b) −→ Ib0(εn,a,b) −→ 0.

Then the desired formula follows from (5).

(7) By Corollary 4.3(7), we have

chLb0(εn−1,1,a) = ch Ib0(εn−1,1,a)− chLb0(εn,−1,a)− chLb0(εn,1,a−2)− chLb0(aδ).

Then the character formula follows from (4) and (6).

(8) By Corollary 4.3(7) and (8), we have the following complex:

0 −→ Lb0(εn,−1,a) −→ Ib0(εn−1,1,a) −→ · · · −→ Ib0(εi+1,−(p−1),a)

−→ · · · −→ Ib0(εi+1,−1,a) −→ Ib0(εi,1,a) −→ 0.

Then the character formula follows from (7).

(9) By Corollary 4.3(8) and (9), we have the following complex:

0 −→ Lb0(εi+1,−1,b) −→ Ib0(εi,1,b) −→ · · · −→ Ib0(εi,a−1,b) −→ Ib0(εi,a,b) −→ 0.

Then the character formula follows from (8).
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