TAIWANESE JOURNAL OF MATHEMATICS

Vol. 23, No. 5, pp. 1252] October 2019
DOI: 10.11650/tjm /181109

General Decay Rates for a Laminated Beam with Memory
Zhijing Chen, Wenjun Liu* and Dongqin Chen

Abstract. In previous work [23], Mustafa considered a viscoelastic laminated beam
system with structural damping in the case of equal-speed wave propagations, and
established explicit energy decay formula which gives the best decay rates. In this
paper, we continue to consider the similar problems and establish the general decay
result for the energy, to system with structural damping in the case of non-equal wave
speeds and to system without structural damping in the case of equal wave speeds,
respectively. For the first case, we use the second-order energy method to overcome the
difficulty of estimating the non-equal speeds term. For the second case, we construct
an appropriated perturbed functional to estimate ||w||3 so as to overcome the absence

of structural damping.

1. Introduction

In previous work [23], Mustafa considered the following viscoelastic laminated beam sys-

tem with structural damping

(bt + G = pr)a = 0 (,1) € (0,1) x (0,00),

(1.1) Ip(?’w — )i — G — pz) — DBw — 1Y)
+ [ gt — 8) (3w — ¥)u(s) ds = 0 (z,t) € (0,1) x (0, 00),
| o = Dwae + G = pr) + 37w + 38w =0 (2,1) € (0,1) x (0,00)

under initial conditions

gp(x,O) = (PO(x)v 1/)(9070) = 7/}0(33)’ w(:z,O) = wﬂ(x) x € (Oa 1)7

(1.2)
ei(2,0) = p1(z), di(z,0) =1(z), wi(z,0) =wi(z) z€(0,1)

and boundary conditions
(13) (PI(O?t) = (P(l?t) = T/J(Oat) - wm(lat) - w(oat) = wr<17t) =0, te€ (07 00)7

where ¢ denotes the transverse displacement of the beam which departs from its equilib-

rium position, ¢ denotes the rotation angle, w is proportional to the amount of slip along
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the interface at time ¢ and longitudinal spatial variable x, 3w — v represents the effective
rotation angle. Moreover, the third equation of describes the dynamics of the slip;
p, G, 1,, D, vy, 8 are positive constant coefficients and denote the density of the beams,
the shear stiffness, the mass moment of inertia, the flexural rigidity, the adhesive stiffness
of the beams, and the adhesive damping parameter, respectively. If 8 # 0, the adhesion
at the interface supplies a restoring force proportion to the interfacial slip. If 5 = 0, the
third equation of describes the coupled laminated beams without structural damping
at the interface. In that paper, the author established the general decay result under the
equal-speed wave propagation case: G/p = D/I,. As for the previous results and develop-
ments of the viscoelastic laminated beam system, the authors have stated and summarized
in great detail [23], thus we just omit it here. The readers, for a better understanding
of present work, are recommended to see [1,|6,10-13}/16}20,25-27,29] and the references
therein.

Apart from studying the laminated beam system itself, many people have been inter-
ested in the relationship between the laminated beam and the thermal conditions. For
example, Liu and Zhao [18] considered the stabilization of a thermoelastic laminated beam

with past history as

(o + Gt~ pa)a + 0, =0 (2,1) € (0.1) x (0,50)
I,(3w — )y — G(¢p — ¢z) = D(Bw — ©)aa

(1.4) + [ 9(8)(Bw — Y)ge(x,t — 5)ds —0 = 0 (z,t) € (0,1) x (0,00),
Lwy — Dwee + G(Y — p) + %’Yw + %ﬁwt =0 (z,t) € (0,1) x (0,00),
\kgt_Texx+¢xt+(3w_¢)t:0 (z,t) € (0,1) x (0, 00),

in which, g is assumed to satisfy, for a positive constant £ and 1 < p < 3/2,
g'(t) < =&gP(t), Vt<O.

For system with structural damping and without any restriction on the speeds of wave
propagations, they obtained the exponential and polynomial stabilities. For system
without structural damping, they established the exponential and polynomial stabilities
in case of equal speeds and lack of exponential stability in case of non-equal speeds. In the
recent work [20], Apalara investigated a laminated beam with structural damping under
Cattaneo’s law of heat conduction, and proved the exponential and polynomial stability
results depend on a stability number. However, the case of the absence of structural
damping was left as an open problem. We refer the reader to [3-54(7H9,/14, 15,17,/ 19}[24}28]
for some other related results.

In this paper, we first investigate the general decay rate of the solutions for prob-
lem f with structural damping (8 # 0) in the case of non-equal wave speeds:
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G/p # D/1,. For our this purpose, we use the second-order energy method to overcome
the difficulty of estimating the non-equal speeds term. We then consider system ([1.1)—
without structural damping (8 = 0), and prove the general stability in the case of
equal wave speeds G/p = D/I, by using the perturbed energy method. To overcome
the absence of structural damping (8 = 0), we shall construct an appropriated perturbed
functional J(t) (see Lemma 5.1 below) to estimate ||w;]|3.

This paper is organized as follows. In Section [2| we give some assumptions. In Sec-
tion [3| we state and prove some technical lemmas that are useful in the entire work. In
Section 4] we state and prove decay result for system f with structural damping
in the case of non-equal wave speeds. Finally, Section [5]is devoted to proving the decay
result for system — without structural damping in the case of equal wave speeds.

2. Preliminaries and main results

In this section, we give some assumptions and state some main theorems. We use ¢ > 0 to
denote a positive constant which does not depend on the initial data. First, we consider

the following assumptions as in [23]:

(A1) g: RT — R* is a non-increasing differentiable function such that
+oo
g(0) >0, D—/ g(s)ds=1>0.
0

(A2) There exists an non-increasing differentiable function ¢: R — R* and a C* function
H: [0,00) — [0,00) which is either linear or strictly increasing and strictly convex
C? function on (0,7], r < g(0), with H(0) = H'(0) = 0, such that

g'(t) < =€) H(g(t)), Vt>0.

Remark 2.1. [23, Remark 2.8] (1) From assumption (A1), we deduce that

D -1
g(t) >0 ast — +oo and g(t)ST, Vit >0.

Furthermore, from the assumption (A2), we obtain that there exists tg > 0 such that
g(to) =7 and g(t) <r, Vt>tp.

The non-increasing property of g gives
0 <g(to) < g(t) <g(0), Vtel0,to].

A combination of this with the continuity of H, for two constants a,d > 0, yields

a<H(g(t) <d, Vtel0,tp.
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Consequently, for any t € [0, to], we get

a a

50 < ~EOH(9(0) < ~at(t) = ~—=€(09(0) < ——sE(Wa(t)
and, hence,
(2.1) enot) <Dy, viepu)

(2) If H is a strictly increasing and strictly convex C? function on (0, 7], with H(0) =
H'(0) = 0, then it has an extension H, which is a strictly increasing and strictly convex
C? function on (0,00). For example, if H(r) = A, H'(r) = B, H"(r) = C, we can define
H, for any t > r, by

— C C
H(t) = 5# + (B - Cr)t + (A + 51"2 — Br> .
Next, we introduce the vector function

U= ((107 3w — d}a w, P, 3wt - 2;Z)ta wt)T
and
Uo = (o, 3w — 1o, wo, @1, 3wi — 11, wy)” .
Then, we consider the following Hilbert spaces
o = H(0,1) x (HL(0,1))* x (L*(0,1))?
and

s ={U € A5 | p € HX(0,1),3w —,w € H2(0,1), ¢, € H}(0,1),
3wy — wtawt € Hi(ov 1)79093(0775) = 07w$(17t) = wI(Lt) - 0}7

where
H}(0,1) = {n|ne H'(0,1),9(0) =0}, HL0,1)={n|ne H(0,1),n(1) =0},
H2(0,1) = H*(0,1) N H}(0,1), H2(0,1) = H*(0,1) N H}(0,1).

For completeness, we state, without proof, the following global existence and regularity

result which can be easily proved by the standard Galerkin method.

Theorem 2.2. [13] Let Uy € 4 be given. Assume that g satisfies hypothesis (Al). Then
problem (1.1))—(1.3) has a unique weak solution
p € C(RT; H(0,1)) N C' (R L*(0,1)),
3w — vy, we C(RT; HL(0,1)) nCHRT; L2(0,1)).
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Moreover, if Uy € 741, then the solution satisfies

p € C(RY; HZ(0,1)) N CH (RT3 HL(0,1)) N CHRT; L2(0,1)),
3w — ¢, w € C(RY; HZ(0,1)) N CH(RT; HI(0,1)) N C*(R*; L2(0,1)).

Now, we introduce the following energy functional:
B0) = (Pl + 3w — B + 3Ll + Gl — .13
# (D= [ 90615 ) 1302 — vul} + 3Dl + 4ol
+3(90 (Bun —62))(1),

where, for any v € L%(0, 1),

1 pt
oot = [ [ att= o))~ v(s)?asaa.

The following lemmas play an important role in the proof of our main results.

Lemma 2.3. [13] The following inequalities hold:

2

</0 g1t = 9Bz = 2)(1) = (Guc — () ds )

< go(t) / 9t — 3)((Buws — ¥2)(£) — (3we — 1)(s))? ds,
2

( /0 §(— 8)((Bwa — ) () — (Bug — 1) (s)) ds
< —g(0) /0 ¢t — 5)((Bwa — 02 (t) — (3uwg — ) (5))2 ds,

where go(t) = fgg(s) ds.

Lemma 2.4 (Jensen’s inequality). Let P: [c,d] — R be a convex function. Assume that
the functions f: Q — [e,d] and h:  — R are integrable such that h(z) > 0 for any x € Q
and [o h(x)dx =k > 0. Then,

P (,1 | s@ni) dx) <1 [ PU@HE .

Lemma 2.5. [13] Let (¢, 3w — ¥, w) be the solution of (1.1)—(1.3). Then

d 1,
@ 1) = a3 — 2 3w, 13+ 100 (B — )0 <0
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In [23], Mustafa presented the following general decay result for problem (|1.1[)—(1.3)

with structural damping (8 # 0) in the case of equal wave speeds:

Theorem 2.6. [23]| Let Uy € . Assume that (Al) and (A2) hold and G/p = D/I,.

Then, there exist positive constants k1 and ko such that the energy functional associated

to problem (1.1)—(1.3]) satisfies
t
E(t) < ko H;? <k1 £(s) d5> . Yt >to,
to

where Hy is given by Hi(t ft SH/ dS and tg =g 1(7“)-

We are now in a position to state our the first general decay result for problem (1.1])—

(1.3) with structural damping (3 # 0) in the case of non-equal wave speeds.

Theorem 2.7. Let Uy € 7. Assume that (Al) and (A2) hold and G/p # D/I,. Then,
there exist positive constants ki, ks and t; > to = g~ 1(r) such that the energy functional
associated to problem (1.1)—(1.3)) satisfies the estimate

— —1 kl
E(t) < kg(t to)H2 ((t ~ to) jfl 5(3) d5> s Vit > t1,

where Hoy is given by Ho(t) = tH'(t).

Remark 2.8. Assume H(s) = sP, 1 < p < 2 in (A2), then by simple calculations, we see
that the decay rates of E(t) is given by, for constants C' and k,

14 g(s) ds .
C | Tho 22 fp=1,
(2:2) E(t) < ( st ) o
E(t — o) —1/P <ft§(15)ds> ifl1<p<2.
0

Remark 2.9. Note that the estimate (2.2)) was obtained by Li et al. in [13].

The second general decay result for problem (|1.1))—(1.3)) without structural damping

(8 = 0) in the case of equal wave speeds reads as follows.

Theorem 2.10. Let Uy € . Assume that (Al) and (A2) hold, 3 =0 and G/p = D/I,.

Then, there exist positive constants k1 and ko such that the energy functional associated

to problem (1.1)—(1.3)) satisfies
t
E(t) < koH;? <k1 £(s) ds> . Yt > to,
to

where Hy is given by Hi(t) = [ SH/ yds and to = g ().
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Remark 2.11. Assume that H(s) = sP, 1 <p < 2in (A2), then by simple calculations, we
see that the decay rates of E(t) is given by, for constants ki, ko and ks,

kwm%—bﬁk@M? ifp=1,
(-1)

B(t) < 1/l
W @(Lﬂﬁﬂ&%)lpl ifl<p<2.

3. Technical lemmas

In this section, we establish several lemmas needed to prove our main results. For our

purpose, we will adopt the functionals introduced in 23] with some modifications.

Lemma 3.1. Assume that (A1) and (A2) hold. Then, the functional Fi(t) defined as

1
Fi(t) = —P/ oy da
0

satisfies, for any 1 > 0,
G 9G
(3.1) F(t) < =plleell3 + Gerlly — @l + 5 13we — ¥l + o= [lwaf3-
2e1 2e1
Proof. By differentiating F(t) with respect to t, using (1.1]) and integrating by parts, we
obtain .
RO = =pllalf =G [ euv 0o

Note that

1 G 9G¢
e /0 0a(t) — ) dz < Gey [t — a2 +

13wz — sl + o llwall3.

Tfl 281

This completes the proof. O
Lemma 3.2. Under the conditions (Al) and (A2), the functional F5(t) defined by
1
Fy(t) = Ip/ (Bw — ¥)(Bwy — ) dz
0

satisfies, for any e9 > 0,

Fy(t) < —(1 — £2(G + 1)) [|3wz — ¥z |13 + Lol|3wy — tel3
(3.2) G D—1
+ EHw - 90$H% + E(g ° (3w£ - %))(t)

Proof. Tt follows from (|1.1)) and integration by parts that
1
Fy(t) = Ip|13we — 3 + G/ (3w — ) (¢ — px) dx — Dl|3ws — 3
0

1 t
- /0 (Bw =) /0 g(t = 8) (3w — V) zz(s) dsdz.

Using Young’s inequality and Lemma with g2 > 0, we obtain (3.2]). d
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Lemma 3.3. Assume that (Al) and (A2) hold. Then, the functional F3(t) defined by

1
Fs(t) :Ip/o ww dx

satisfies the estimate

4
F < - (yr-a 6+ ))H 13 Dlful}

(3.3)
(4 2wl + -E -l
p 363 463 ’

where €3 > 0.

Proof. Differentiating F5(t) with respect to ¢, using the third equation of ([1.1)) and inte-
grating by parts, we obtain

45

wwy dz — D||w, .

1
E(t) = L|wil} - G /0 w( — pe) dz — Tl -

Next, it follows from Young’s inequality that

4 453 I3 G
R0 <= (-2 (645 )) W0l = Dllwsl+ (54 22 ) ol + = 1o - B

which completes the proof of Lemma O

Lemma 3.4. Assume that (Al) and (A2) hold, after fizing 4 > 0, the functional Fy(t)
defined by

1 t
Fy(t) = —fp/o (Bwi — 1) /0 g(t = 8)[Bw — ¥)(t) — Bw — ¢)(s)] dsdx

satisfies the estimate

£t) < 1090 13, )2+ S0 — 13+ 2 s, — w3
(0))‘0 ’
(3.4) - ;mJT(g o (Bwy — ) (t)
#0054 32 ) (g0 G~ )0

where go(t) = fgg(s) ds

Proof. Taking the derivative of Fy(t) with respect to ¢ and using the second equation of

, we get
t) = —G/O (¢ — %)/0 9(t = 8)[Bw — ¥)(t) — Bw — P)(s)] dsdz
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+<D42@mﬁzﬁw)wh42aﬂmwwaw@w@A@MMx

2

2—%<AE@Ma%%—%ﬁ
—@A?&w—wallﬂv—@mw—wxw—@w—¢xﬂdmm

Now, we estimate the terms on the right-hand side of the above equation.

+»Ag@—$%w—@Aﬂ—@w—WA@Ms

Using Young’s inequality, Poincaré’s inequality ||ul|3 < Aollug]|3 with Ao > 0 and
Lemma [2.3] we obtain, for 0 < &4 < 1,

—G/‘¢ g%”/ (t— 5)[(3w — ¥)(t) — (3w — ) (s)] dsdz

2
éﬂw¢m+— (/@pﬁwpﬂij>@ww@m>m
<y - g+ G@Q@o@w—@ﬂw
< %4y - ully + CE20 g0 (3w — w))(0)

Also, we have, for 0 < g4 < 1,

szfa@w)A%m—wullu—@Mw—waw—@w—@ggmmx

L0 s — )+ DD =D g (= )
4

D D(D —1
< %Hs _¢m||g+(2&4)(go(3wm—¢z))(t)

2

< (D~ 1)(go (Buwy — 1)) (8).

2

Ag@—@%w—@dﬂ—@w—@ﬂﬁws

Exploiting Young’s inequality, Poincaré’s inequality and Lemma we obtain, for any
0<eqs <1,

1 t
- fp/o (Bwe — w/o g'(t = $)[(Bw —)(t) — (Bw — ) (s)] dsdz

ngO( ) ?

t
< 2000, — ) + s | [0 = 90— )0 = G =)o) as|
p”“)uz =l - 220 0 G - D))
Igo() Tpg(0)Ao ,
0 3w = ]~ LR o (G~ )0

A combination of all the above estimates gives the desired result. O
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Lemma 3.5. Assume that (A1) and (A2) hold. Then for any es > 0, the functional F5(t)
defined by

1 1
F(t) = e | elwe—vdo =1, [ (G = v - po)da

/ @t/ (t — 5)(Bwy — ¥p)(s) dsdx

satisfies the estimate

D 1
R0 < ~Gllo =l + (o = 1n) [ tBun vy da

1
(3.5) + 1855Ip|]wt||% =+ Ip (265 + 4) ||3wt — 7,/}15”%

( ) p9(0)

+ 22140 ))Hsotller G 13wa —all3 — 4 G(g’0(3wx—¢x))(t)-

G

Proof. Taking the derivative of F5(t) with respect to ¢ and using (|1.1)), we have

F5 = _D/ ¢ Px x(gw:p %) dx + / Pt 3th - w:rt)
2
1
<,
1
+ /0 U= pa)e | 9= 5)Bwe = t)(s) dsda
1 t 1
_ g'/o @t/o g'(t = 5)(Bwz — ;) (s) dsda — ng(O)/O i (Bwy — y)(t) dz

Next, making use of Young’s inequality, Lemma and integrating by parts, we deduce
that (3.5) (see [13] for details). This completes the proof. O

t 1
(6 — ) /0 9t — 3)(3uwas — as)(s) dsdz — I, /0 (3uwr — o) (4 — gu)e da
(% — pa)a /

As in [22], we use the functional

1 pt
:// £t — ) (Bw — 1) (s)[2 dsda,
0JO0

where f(t) = [ g(s)ds.

Lemma 3.6. [22| Lemma 3.6] Under conditions (Al) and (A2), the functional K(t)

satisfies the estimate

K'() < —5(g0 (Buq — $2))(0) +3(D )3 — 3.
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Lemma 3.7. The functional L defined by
L(t) := NE(t) + Fi(t) + NaFa(t) + N3F5(t) + NaFy(t) + N5 F5(t)
satisfies, for a suitable choice of N, Ny, N3, Ny, N5 > 0,
L(t) ~ E(t)

and the estimate

L'(t) < =1 [lell3 + [13we = el3 + [lwel3 + [lws |3 + [lwll3 + 1% — @al3 + 1Bws — va][3]

D 1
Gp—lp)/ 01 (Bwar — o) da, V> o,
0

3.6
( ) +02(9°(3ww—%))(t)+N5 (

where ¢; > 0, ca > 0 and ty has been introduced in Remark [2.1]

Proof Let go(t fo ds > fgo g(s)ds = g1 > 0 for any t > tg. According to ([3.1)—
, we have
(3.7)

N, 1 Nse
20 < 1, (Mo - o= s (20 ) ) = vl - (o= 200+ 0(0)) el

4 4 €
— (4]\76— N3 (Ip + 353) — 18N5€5Ip) H’th% — (Ng (?;Y — G€3> — b 3) || H2

- (W6 - 6 - S22 - T BN g - (D - 22

= (90 (3 - £28) + Malt - =2(G + 1) = 5 = T2 3w, - vl
Do (N2 N ((;“ ; f)) (g0 (Bus — ) (1)

+ (5 - Mg - 0 (5 o (s~ v

D 1
+ N5 <Gp - Ip) / 0t (Bwat — ay) da
0

At this point, we need to choose our constants very carefully. First, we choose

a o] 1 1 B G
€1 =G, 82—N2a 63_]\[3) 84_N47 55_2N5(1+g(0))7
and (3.7) becomes
Nygr NZ(1+ g(0)) G
W) < —PlodE -1, (49 N, - 5 - — 1|3

Ngﬁ 9IPG 2 4N3'y ,8 2
— |4NB — N3 | I — -
(45— v (1,+ 257 ) - 208 g - (150 - (04 ) ) g
GN? GN2 @& 9
- (wie- S - -G - ) -l - (a0~ 5 ) g
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_ (g(t) <N _ N52Ml+9(0))> + Nyl — (g +G+ l;)) 3w, — 13

2 2G?2
2
L (Jff N2 (GQO . 127)) (g0 (Bus — )0
N L,9(0) Ao N2pg(0)(1+9(0)Y , ,
! (2 BT —TcE > (97 (B =00
1
+ N5 <lép — Ip> /0 0t (Bwy — Vay) da.

Then, we select Ny large enough so that
3 D
Nol — [ = — .
2 <2 +G+ 5 > >0

Next, we choose N3 large enough so that

AN 4
N3D—§>O and ;’7—<G+35>>0.

Furthermore, we select N5 large enough so that

Ni NG e

After that, we choose N4 large enough so that

N. N2(1+4g¢(0 G
o 5(1+g(0) >0
2 2G 1+ ¢(0)
Finally, let us choose N large enough so that
N3f 9,G N NZp(1+9(0))
AN — N3 (I — —— 2 >0
b 3<p+ 3 ) 1+90) 7 2 22

and
N Nalpg(0)ho  NZpg(0)(1 + g(0))

2 290(t) 2G2

So we arrive at, for positive constants ¢; and co,

> 0.

L'(t) < —er [lledls + 13wy = el + llwell3 + lwellz + wl3 + 1 — @ell3 + [3we — 1o ll3]
D 1
+ ca(g o (Bwy — ¥y))(t) + N5 <Gp — Ip> / ot (Bwgy — ) dex.
0

On the other hand, we find that
1 1 1
|L(t) — NE(t)] < p/ | o] dz + Nglp/ |(Bw — ) (3w — ¢ )| da + Nglp/ |wwy| dz
0 0 0

1 t
N, /0 13wy — v /O ot — 9)|(3w — ¥)(t) — (3w — )(s)] dsdz
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1 1
#3500 [l = volds 4 1, [ 1Gu - w(w - o)l do
1 t
+ 2 [ led [ ot =9l — v (o) dsae|
< eE()

where c is a positive constant.

Therefore, we can choose N even large (if needed) so that the proof is completed. [

4. The case with structural damping under non-equal wave speeds

In this section, we will give an estimate to the decay rate for system with structural
damping in the case of non-equal speeds of wave propagation. We give some lemmas that
is beneficial to prove the main result.

We introduce the second-order energy as
By =+ 2+ L||3wi — w3 + 31 24 Glvor — @utll2 + 3D 244 2
(t) = 5 { Plleellz + Lol 3wee — urlly + 3Lp[weellz + Glltbe — @anllz + 3Dl[waell3 + dyllewe 2

t
1
# (D= [ a90as) 13 — vl ) + a0 Gui — )0
Then we give the following lemmas.

Lemma 4.1. [13] Let U be the strong solution of (1.1))—(1.3). Then, the second energy
functional satisfies, for allt >0,

B(1) = ~480walld — 22 3w — il + 56" (Bt — ) (1)

(4.1) 2

—g(?) /0 (Bwy — Yu) (3wozz — Yowe) dv
and
(4.2) E(t) < ¢(B(0) + [Bwozs — toasll3).

Lemma 4.2. [13]| Let U be the strong solution of (1.1)—(1.3). Then, we have

D 1
(GP - Ip> /0 (pt(?’th - T/th) dz

< ellpul + 9O EO) + (g0 (Buwat — i) = © (B — bar)) (1)

where ¢ > 0 and € > 0.

As in [21], we give the following inequality which is important to prove our main result.
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Lemma 4.3. Let U be the strong solution of (1.1)—(1.3). Assume that conditions (Al)
and (A2) hold with H being linear. Then

E(8)(g 0 Bwgr — vur))(8) < e(—E'(1) + Cig(t), V>0
for some positive constants ¢ and C1.

Proof. Using the non-increasing property of {(t) and H is linear, we obtain

g O 3wzt - th))( )

/ / E(t — 5)g(t — 8)[(Bwar — Var) (t) — (Bwer — e ) ()] dsdz
(4.3)

/ / (t = 8)[(3tt — at)(£) — (et — ve) (5)]2 disdla

—(¢' o (Bwgt — thgt))(t), Vit > 0.
From equation (4.1)), inequality (4.2]) and Young inequality, we have, for any ¢ > 0,

—(9" © (Bwar — 1)) (1) = —2E'(£) — 8B||wurl|5 — g(8)[3war — thuel|3
—29(t) /0 1(3wtt — V1) (BWoze — Yoge) d

< —2E'(t) — 2¢9(t) /0 1(3wtt — V1) (BWoze — Yoge) d

< —2E'(t) + g(t) [13ws — Yeel3 + 130002 — Yoza 3]

< 2B(t) + 9(1) (”f( !

(4.4)

< o(—E'(t) + cag(t)),
where ¢ and C7 are some fixed positive constants.
Combining (4.3)) and ( ., we obtain the desired result. O

Now, we turn to prove Theorem 2.7}

Proof of Theorem [2.7. Our proof starts with the observation that, for any ¢t > ¢, and
m > 0,

£'(t) < e [lleell3 + 13w — vl + llwel3 + wall3 + w3 + ¥ — @al3 + [3wa — ¢al3]

+aalgo (e =)0 + 85 (20— 1) [ uau )

1
< _mE(t) + CQ(g © (311}@ - %))(t) + N5 (DGP - Ip) /(; (Pt(3th - wa:t> dx

< —(m = ) E(t) + ealg © (8w — ) (1)
+ 29 E(0) + =g 0 (Buar — ) — (9 © (Bue — ) (1),
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which are derived from (3.6) and Lemma After fixing € small enough, we arrive at
L'(t) < —mE(t) + (g o (Bwy — ¥u) + g0 (Bwar — 1har))(t) + cg(t) E(0) — cE'(t),

where m; is a fixed positive constant. Taking F(t) := L(t) + cE(t), which is obviously
equivalent to E(t), to get, for any t > t,

(4.5) F'(t) < —miE(t) + c(g o (Bwy — Pz) + g o (Bwer — ) (t) + cg(t).

We consider the following two cases relying on the ideas present in [22].
Case 1: H is linear. We multiply (4.5 by £(¢), then on account of assumption (A2),
Lemma and estimate (4.2)), we obtain, for any ¢ > tq,

EBF (1) < —mi&(R)E(t) — cE'(t) + (= E'(t) + Crg(t)) + c£(0)g(0).
As £(t) is non-increasing, we have, for some fixed positive constant cs,
(EF + cE+ cE) (t) < —mi&(0)E(t) + csg(t), Vit > to.
It follows immediately that
miE(t)E(t) < —(EF + cE + cE) (t) + cag(t), Yt > to.

According to the non-increasing property of E(t) and estimate (4.2), we may now integrate
over (t,tg) to conclude that, for any ¢ > to,

t _ ~ t
mi E(t) t E(s)ds < —(EF + cE + cE)(t) + (EF + cE + cE)(ty) + 03/0 g(s)ds

~ 1
< (EF+cE+cE)(0) + c/ (3Woze — VYoze)? dz + c3(D —1).
0
Thus, we have, for some fixed positive constant c,

Bt)< -5 Vt>t.

T [ &(s)ds

Case 2: H is nonlinear. Taking account of (2.1)), Lemma and estimate (4.4), we
get, for any ¢ > tg and ¢4 > 0,

/ / " )3 — )(0) — (B — )t — 9 dsda
//m )[(Bwar — ) (£) — (Burgy — o) (t — 9)]° dsda
£(to) //t05 )(Bwa — Ya)(t) — (Bwe — ¥g)(t — 5)]* dsda
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to 2
to / / £(5)9(s)[(Bwat — Vat)(t) — (Bwar — Yat)(t — 5)]” dsdw

N(Bwy — ¥2)(t) — (3w — 1) (t — 5)]? dsdx

to
/ / N(Bwar — Yur) () — (Bwar — ur) (t — 8)]? dsda
aﬁ t(]
< —c(E/(t) + E'(t) + cag(t).
Inserting this estimate into (4.5]), we obtain, for any ¢ >ty and c5 > 0,
F'(t) < —miE(t) — e(E'(t) + E'(1)) + es9(t)

(46) +e [ g(o)Bus = 02)(0) - (Bus - )t~ 93 ds
s [ g9 B — b)) = Gur — )t — ).

Now, we define the functional 0(t) by

o(t) == —/t 9'(5) ([l (Bwz — ) (t) — (Bwz — 1) (t — 5|13
+ || (Bwgr — Yat) (t) — (Bwar — ) (¢ — 8)[|3) ds

Clearly, we have

0(t) < - /0 ¢ (5)(1(3ws — ) (£) — 3wz — 12 (t — 5)|2

+ (| Bwar — V) () — (Bwar — Yar) (t — s)||%) ds
< —c(E'(t)+ E'(t) + cog(t), Vit >to,

(4.7)

where cg > 0 is a fixed constant.

After that, we define another functional 7(t) by, for any ¢ > to,
2 ! 2
n(t) == ), (Bws = ¥u)(t) = (Bwa — ) (t = s)|3
0
+ ([ (Bwar — ) (t) — (Bwae — ue)(t — 5)|[3) ds

Now, the following inequality holds under energy functional E(t), second energy functional

(t), (4.1), Lemmas [2.5 and [4.1] that

t_lto ) (1(3ws — ) () — (Bwy — ) (t — 9)|I3

+ (| Bwar — Yt ) () — (Bwar — Yar) (t — s)||%) ds
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/t(E(t) VE(t—s) + B(t) + B(t — 5))ds

< £ = /tt {E(O) e <E<0) + /0  (Suons — vio) dx)] ds

[E(O) +c (E(o) + /Ol(SwO%r — 02z dxﬂ < 400, Vit>t.

Then the above inequality allows for a constant 0 < « < 1 chosen so that, for all ¢ > tg,
0<n(t) <1,
otherwise we get the following decay rate from (4.6)

E(t) <

, Yit>tp.
t—to 0
Moreover, recalling that H is strict convex on (0,r] and H(0) = 0, then

H(st) <sH(r) for0<s<1andre(0,r]

From assumption (A2), Lemma and (4.6)), it follows that, for any ¢ > tg,

00 =~ [ #16) (130~ 52)0) - @~ 0(¢ -1
Bt — ) (8) — Buvas — )t — 5)[3) s
=—£bA}NM%MW%&—%MG—@%—ww@—ﬂB
+ (| (Bwar — har) (t) = (Bwar — ) (t — 5)|3) ds

z31/me@ﬂw@xu%%—%xw—@%—wau—@@

n(t) to
+ H(swmt - ¢zt)(t) - (3w$t — th)(t — S)H%) ds
EO(E—to) [* )
> Tt)o 5 H(??(t)g(s))t _— (H(?)wm — ) (t) — (Bwy — ) (t — S)H%

+ [|(Bwar — Wae) (t) — (Bwar — thar) (t — 5)[|3) ds

€0t —t0) (1 [ y
> SO0y ([ tg0(e) 2 (1 = (0) = (= )= )l

1B — at)(£) — (Bwat — ) (t — 5)[2) ds>

S0t (0

gl t—1o

Ag@xw%%—wauwww%—wau—@@

+ 1| (Bwar — ¥at) (t) — (Bwar — Yur) (t — 5)|13) ds).
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Since H is an extension of H (see Remark 2)), we also have

9<t>zf“)“‘t°)ﬂ( T [ o) (I~ 0) = (s = )t~ 9B

v t—to
+ 1| (3wt — Yt (t) — (Bwar — Pue) (t — 8)[|3) ds).

In this way,

/ 0(5) (| Bue — ) (1) — (Bug — )t — 5)]2

+ [|(Bwar — Wat) (t) — (Bwar — ar) (t — 5)[3) ds

t—to—r1 ~(t)
R Co =) AL

Then, taking Fi(t) := F(t) + cE(t) + cE(t) , ([4.6) becomes

FlL(t) :== F'(t) + cE'(t) + cE'(t)

. C o\l L(t)
< 1E(t)+7(t to) H <§(t)(t—t0)

Let 0 < &1 < r, we define the functional Fy(t) by, for any ¢ > ¢,

Folt):=H <t flto ng) Fi(t).

Then, recalling that E'(t) < 0, H > 0and H > 0 as well as making use of estimate

,We have
fé(t)z(— 2 E(t))+ = E,(t))H"( £l E(t)) Fi(t)

(*5) > +oesg(t), Vit

(t—to)2 E(0) ' t—to E(0) t—to £(0)
— E(t)
H <t—toE(0)>f()
() (o () o)

_ e1 Et) 7 1 (t)
=-—mEOH t—tOE(O))+C5 (t—t0E0>g

+§(t—to)H’<ti1tog(<(t)))>H‘l< t_t()) Vit > to.

We give the following generalized Young inequality

(4.10) AB < H (A)+ H(B),

where H is the convex conjugate of H in the sense of Young [2], i.e.,

/

H'(s) = s(H)(s) - H[(H ) \(s)]-
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Choosing A = F’( e @)7 B = F_l( 76(t) ) and combining and , we

obtain o o

7 (k)™ (awew)
(411) <7 (7 (7ame) 7 (7 (i)

=H <H/ <t ilto g((é))» i §(t)w(i(i)to)
and

m (1 () <7 (k) (7 (24 E6)
(4.12) _H[(Hl)_l g <:t0 g(((t’))))}
~ i ilto g((é))H, (t ilto g(((t)))> - (t ilto E((S)))
e (Sa)

So, combining (4.9)), (4.11)) and (4.12), we obtain

Then, if we fix £; much smaller (if needed), we will arrive at, for all ¢t > ¢y and mg > 0,

, E)—r( &1 E®)\ —( e E@) o(t)
w0 < -mpT ((Eogg ) el (205G ) a0+ o

From this, we multiply (4.13)) by £(¢) to get

070) < a0 g O H (P s (2 1) o0+ o0

Then, using the fact that, as 51% <, ﬁ/( £l %) = H’( £L %) and inequality (4.7))

t—to t—to
to get, for ¢; > 0,

(070 <m0 o1 (2o )+ (220 ) ot
— c(E'(t) + E'(t)) + crg(2).

Since 1/(t — tg) — 0 when t — oo, there exists t; > to such that 1/(t —tp) < 1, whenever
t > t1. According to the strictly increasing property of H’, non-increasing properties of F

and &, we conclude that

130): 4 <t fltOE((é))> < H'(1)£(0), Vit > t.
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Therefore, it is sufficient to prove that, for some positive constant cs,

SO0+ e(B'() + B'0) < —mas0) oy 1 (20 o)) + sl (c)80) + g0
< —mog(t) g((é)) H' (t ilto E(((t)))) + csg(t).

After that, defining F(t) = £Fa(t) +c(E(t)+ E(t)) and using the non-increasing property
of £(t), we arrive at, for any ¢ > t1,

B0 (o2 0

(4.14) mat O g0y \ = B)

) < —F(t) + csgb)

Moreover, it suffices to show that the map t — E(t)H' ( £l E((é))) is non-increasing by the

non-increasing property of E(t) and H” > 0. Consequently, we can take an integration of

(4.14) over (t1,t) yields

50 (1 20

2 . f(s)ds E(O) P— E(O)> S]:g(tl)—l-Cg(D—l).

If we multiply the above inequality by 1/(t — tg) > 0, for any ¢ > ¢, we will obtain

1 E(t) ’ €1 E(t) fg(tl) + Cg(D — l)
K — 5() S By <t—t0E(O)> = i~y

Finally, define
Ho(t) = tH'(t).

It is immediate that Hj(t), Ha(t) > 0 on (0,r] by the strict convexity of H on (0,7].

Therefore, we obtain, for two positive constants k1 and ko,

— —1 kl
E(t) < kg(t to)H2 <(t — to) fttl 5(3) d3> s Vit >t.

This completes the proof. O

5. The case without structural damping under equal wave speeds

In this section, we will take account of the general decay for system (1.1)—(1.3) without
structural damping (8 = 0) in the case of equal speeds of wave propagation.
To overcome the absence of structural damping (8 = 0), we need to construct a new

perturbed functional to estimate ||w¢|3. As in [18], we consider the functional

1 1
J() =1, / Wit — o) da+ 1, / oyt da.
0 0

Then the following result holds:
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Lemma 5.1. Let U be the solution of (1.1))~(1.3). The functional J(t) satisfies the esti-
mate

31 21 dyeg
70 < =22l + 221w — 00l + D2l + (G + 52 ) o - el

where g > 0.

Proof. Differentiating J(t) with respect to t, using (1.1)) and integrating by parts, we
obtain

1
J(t) =1, / Wit — p2) dz — 1, /

4y [t 1,G 1
—alv—puli+ g [ w-enart (0-29) [uw-paar-1, [ wanar

1 1 1
Wy (¢t - Q%t) dz + Ip / Pt Wy dz + Ip / PtWgt dz
0 0

Using ¢y = 3w — (3w — ¢)¢, Young’s inequality and G/p = D/I,, we know that, for some
g > 0,

1 4 1
J'(t) = —3IprtH§+Ip/0 wt(3w—¢)tdx+GH¢—<pr§+7/0 w(Y — @) dz

3
(018 s

31 21
< =3L[we3 + S wdllz + SN Gw = 9)el + Gllv = @all3
4y 4y
+ §€6le|§ + *HT/) — oull3
3I 4veg 4y
= 202l + 221w — 0l + Dol + (G4 32 ) - ol
This proof is now completed. O

We define a new Lyapunov function £;(t):
L1(t) := NE(t) + F1(t) + NoFy(t) + N3F5(t) + Ny Fy(t) + N5F5(t) + NgJ(t),

where N, No, N3, Ny, N5, Ng¢ > 0 and F;(t), i = 1,2,3,4,5 remain as defined in Lem-
mas with the derivatives of Fj(t), i = 1,2,4,5 remain the same while derivatives
of E(t) and F3(t) are given as follows:

20 =~ 2D 3w, — il + Lo o Bue )0 <0, Vi 0

and

G 4
F3(t) < L|lwe3 + Gesllwl3 + o wall3 — gll’wH% — Dljw, |3

4 G
_ <37 - ng> w3 — Dljwgl|3 + Lllwell3 + 4—53||w — oa|l3-

Now, we are ready to prove Theorem [2.10
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Proof of Theorem [2.10] Taking derivative about L£;(t), using lemmas in Section [3| and
G/p = D/I,, we have

Nse 3Nsl1,
210 < = (o= V2004 900) ) ol - (52 - Nl 18Nszal, )l

91 N4 1 2Ng
-1, < 5 — Ny — N5 (255 + 4€5> R 3wt _thg

4~y 4 Ngye 9G
= (w (5~ 0ea) = 5l - (oD - 3 )
GN- GN. NyeysG
- (MG -ao- 2 C MOy (64 ) -l

4e €9 453 2

N Nsp G D )
No(l — 1) = — — Nyeg= _
g(t) ( 5 455G> + No(l — e2(G + 1)) = 4€4 2) 13wy — a5

(-1 (N Ny (ZAO ; f)) (9 (Bue —0))(1)

N Nulpg(0)Xo  Nspg(0)
i (2 290(t) 4esG ("0 (Bus

—12))(1).

At this point, we need to choose our constants very carefully. First, we choose

a 1 1 1 G 1
£ = s 1) = -, Eq == — Eqg = -, 1) = — £ o -,
! : ’ PTNG T TN (L4 g(0) T N

so that

(5.1)

N2(1+¢(0 G 2N
£ < ~Llerl - 1 (11 910) 6

Nig1 2
— Ny — — — 3wy —
< 2 2 2G 1+g9(0) 3 ) I3we = 9llz

9 3NgI 91,G
N3D — = 2 L NI, — —F—_ 2
3 2) [we|2 ( 5 3dp 1+g(0)) [[we]|2

4 N3y 4y
~(e+3)) Il

3
N2 N2 4~ N,

NG ONF GNP G o 6)H¢ oull?
4 4 2

g9(t)

N NZp(1+9(0)) 3 D )
<2_2G2 +N2l— §+G+5 HSUJQ:—?/}mHQ

<
<
<
( N. G\ D

+0-0 (2487 (524 2)) o w0

N NuLg(0)ho N2p(1+g(0)\, ,
(2_4£w)m_52@ >@M

Next, we select Ny large enough so that

3 D
Nol — | = — .
2 <2+G+2>>0
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Then, we choose N3 large enough so that

9 AN 4
N;D—5 >0 and 337— <G+;) > 0.

Furthermore, we select Ng large enough so that

Ngl 1
3N p—Nng—ﬁ
2 1+ ¢(0)

After that, we select N5 large enough so that

GN;? GN? G 4yN?
N:G— —2 - =3 = _G? - NgG — 6
5G 1 1 5 G cG 3 >0
Then, we select N4 large enough so that
Nuga NZ(1+¢(0)) G 2N
I — Ny — — — > 0.
p ( 2 2 2G 1+g(0) 3

Finally, we choose N large enough so that
N Nyl,g(0)Ao  N2p(1+ g(0))

N NZp(1+9(0))
AT ) s - 0.
2 2G2 >0 and 5 290(t) 2G2 ”

Combining (5.1)) and the above, we deduce that (5.1 becomes, for positive constants C;,
i=2,34,

Co [llpell3 + l13we — el + [wall3 + l[well3 + llwll + 1 — @zl3 + [13ws — va 3]
C3(g 0 (Bwz — 1)) (t) + Ca(g' © (Bwz — s))(t)

Ca [lleellz + lI3we — el + lwell3 + [[well3 + [[wl3 + 1 — zls + [Bwe — ¢el3]
C3(g o (Bwz — 2))(1)

< —mE(t) — cE'(t) + c/ /t [(Bwe — 2)(t) — (Bwy — 1) (t — 5))% dsda.

The remainder of the proof is similar to that in the proof of Theorem (see [22}123]).
This completes the proof of Theorem [2.10 O
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