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Functional Model and Spectral Analysis of Discrete Singular Hamiltonian

System

Bilender P. Allahverdiev

Abstract. A space of boundary values is constructed for a minimal symmetric opera-

tor, generated by a discrete singular Hamiltonian system, acting in the Hilbert space

`2A(N0;E ⊕ E) (N0 = {0, 1, 2, . . .}, dimE = m <∞) with maximal deficiency indices

(m,m) (in limit-circle case). A description of all maximal dissipative, maximal ac-

cumulative, self-adjoint and other extensions of such a symmetric operator is given

in terms of boundary conditions at infinity. We construct a self-adjoint dilation of a

maximal dissipative operator and its incoming and outgoing spectral representations,

which make it possible to determine the scattering matrix of the dilation. We establish

a functional model of the dissipative operator and construct its characteristic function

in terms of the scattering matrix of the dilation. Finally, we prove the theorem on

completeness of the system of eigenvectors and associated vectors (or root vectors) of

the dissipative operator.

1. Introduction

The theory of extensions of symmetric operators is one of the main branches in operator

theory closely related to various fields of mathematics. In operator theory there exists an

abstract scheme of constructing maximal dissipative (self-adjoint) extensions of symmetric

operators that are parametrized by contraction (unitary) operators (see [3, 4, 7, 10, 11, 14,

19, 23, 26, 28, 30]). The extension theory developed originally by J. von Neumann [19].

He gives an affirmative answer to the question under which conditions does a symmetric

densely defined operator possess self-adjoint extensions and describes all such extensions.

However, regardless of the general scheme, the problem of the description of the maxi-

mal dissipative, maximal accumulative, self-adjoint and other extensions of the given sym-

metric differential and difference operator via the boundary conditions is of considerable

interest. This problem is particularly interesting in the case of singular operators, because

Received January 22, 2018; Accepted October 8, 2018.

Communicated by Cheng-Hsiung Hsu.

2010 Mathematics Subject Classification. Primary: 47B39, 47B44, 47A20, 47A40, 47A45; Secondary:

47B25, 47A75, 39A70.

Key words and phrases. discrete Hamiltonian system, minimal symmetric operator, deficiency indices,

space of boundary values, self-adjoint and maximal dissipative extensions of minimal operator, self-adjoint

dilation, scattering matrix, functional model, characteristic function, completeness of the root vectors.

653



654 Bilender P. Allahverdiev

at the singular ends of the interval under consideration the usual boundary conditions in

general are meaningless.

As is well known [1–5,16,18,20–22], the most adequate approach in the spectral theory

of dissipative (and also contractive) operators is that based on a study of the characteristic

function and the corresponding functional model representing an operator unitary equiv-

alent to the original operator and defined in a certain L2-space of vector-valued functions

by a relatively simple formula that is convenient for investigation. According to the well-

known series of results of Lax, Phillips, Sz.-Nagy, Foiaş and Pavlov, the computation of

the characteristic function is, in turn, preceded by the construction and investigation of a

self-adjoint (unitary for contractions) dilation and of the corresponding scattering theory

problem, in which this function is realized as the scattering matrix (see [17, 18, 21, 22]).

This method (also called the functional model method) has already been used in many

investigations, of which we mention only [16–18, 21, 22]. Efficiency of this approach for

dissipative discrete Dirac and Hamiltonian operators has been demonstrated in [1–5].

In this paper, we consider the minimal symmetric operator, generated by discrete

singular Hamiltonian system, acting in the Hilbert space `2A(N0;E⊕E) (N0 = {0, 1, 2, . . .},
dimE = m < ∞) with maximal deficiency indices (m,m) (in limit-circle case). We

construct a space of boundary values of minimal symmetric operator and description of

all maximal dissipative, maximal accumulative, self-adjoint and others extensions of such a

symmetric operator is given in terms of the boundary conditions at infinity. We construct

a self-adjoint dilation of the maximal dissipative operator and its incoming and outgoing

spectral representations, which makes it possible to determine the scattering matrix of

dilation according to the scheme of Lax and Phillips [17]. With the help of the incoming

spectral representation, we then construct a functional model of the maximal dissipative

operator and define its characteristic function in terms of the scattering matrix of the

dilation. Finally, using these results, we prove the theorem on completeness of the system

of eigenvectors and associated vectors (or root vectors) of the maximal dissipative discrete

Hamiltonian operator.

2. Extensions of symmetric operators generated by discrete Hamiltonian system

Let E be the m-dimensional (m < ∞) Euclidean space. For sequences x(1) = {x(1)n },
x(2) = {x(2)n } (n ∈ N0 := {0, 1, 2, . . .}) of vectors x

(1)
n ∈ E, x

(2)
n ∈ E, we consider the

discrete Hamiltonian system

(2.1) (Λ1x)n :=

−Cnx
(2)
n+1 +Bnx

(2)
n + Pnx

(1)
n = λ(Anx

(1)
n +Dnx

(2)
n ),

B∗nx
(1)
n − Cn−1x(1)n−1 +Qnx

(2)
n = λ(D∗nx

(2)
n +Rnx

(2)
n ),
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where λ is a complex spectral parameter, C−1, Cn, Bn, Pn, Qn, An, Dn, Rn, are linear

operators (matrices) acting in E, detCl 6= 0, (l = −1, 0, 1, 2, . . .), Pn = P ∗n , Qn = Q∗n, and

An :=
(
An Dn
D∗n Rn

)
is a positive operator in E ⊕ E, i.e., An > 0, n ∈ N0.

System (2.1) is a discrete analog (for C−1 = Cn = ±I, n ∈ N0, where I is the identity

operator on E) of Hamiltonian system shown as

J
dx(t)

dt
+ B(t)x(t) = λA(t)x(t), t ∈ [0,∞),

where

J =

 0 ∓I

±I 0

 , x(t) =

x1(t)
x2(t)

 , x1(t), x2(t) ∈ E,

B(t) =

 P (t) E(t)

E∗(t) Q(t)

 , A(t) =

 A(t) D(t)

D∗(t) R(t)

 ,

B(t) = B∗(t), A(t) > 0 (for almost all t ∈ [0,∞)), entries of the 2m × 2m matrices

A(t) and B(t) are Lebesgue measurable and locally integrable functions on [0,∞) (see,

for example, [6, 12,13,15]).

For two arbitrary vector-valued sequences

x := {xn} :=

x
(1)
n

x
(2)
n

 and y := {yn} :=

y
(1)
n

y
(2)
n

 ,

denote by [x, y] the sequence with components [x, y]n defined by

[x, y]n = (x(1)n , Cny
(2)
n+1)E − (Cnx

(2)
n+1, y

(1)
n )E , n ∈ {−1} ∪ N0.

For all vectors x = {xn}, y = {yn}, n ∈ {−1} ∪ N0, we have Green’s formula

(2.2)
l∑

n=0

[((Λ1x)n, yn)E − (xn, (Λ1y)n)E ] = [x, y]l − [x, y]−1, l ∈ N0.

For passing from the system (2.1) to operators, we consider the Hilbert space H :=

`2A(N0;E ⊕ E) consisting of all vector-valued sequences x = {xn} (n ∈ N0) such that∑∞
n=0(Anxn, xn)E < ∞ with the inner product (x, y) =

∑∞
n=0(Anxn, yn)E , where A :=

{An} (n ∈ N0).

Denote by Λ1x (resp. Λx) the vector-valued sequence with components (Λ1x)n (resp.

(Λx)n := A−1n (Λ1x)n) for n ∈ N0. Next, denote by Dmax the linear set of all vectors x ∈ H
such that Λx ∈ H and x

(1)
−1 = 0. We define the maximal operator Lmax on Dmax by the

equality Lmaxx = Λx.



656 Bilender P. Allahverdiev

Using (2.2) we get that the limit [x, y]∞ = limn→∞[x, y]n exists and is finite for all

x, y ∈ Dmax. Hence passing to the limit as l → ∞ in (2.2), we get for arbitrary vectors

x, y ∈ Dmax that

(2.3) (Lmaxx, y)− (x, Lmaxy) = [x, y]∞.

Let D′0 be a dense linear set in H consisting of finite vectors (i.e., vectors having only

finite many nonzero components). Denote by L′0 the restriction of the operator Lmax to

D′0. It follows from (2.3) that L′0 is symmetric. Consequentially, it admits closure which

is denoted by Lmin. The domain of Lmin consists of those vectors x ∈ Dmax satisfying the

condition

(2.4) [x, y]∞ = 0, ∀ y ∈ Dmax.

The minimal operator Lmin is a symmetric operator with deficiency indices (n−, n+), where

0 ≤ n∓ ≤ m, and satisfying Lmax = L∗min [8, 10,24,25,28–30].

In this paper, we assume that the symmetric operator Lmin has maximal deficiency in-

dices (m,m), so that the Weyl limit-circle case holds for the expression Λ or the symmetric

operator Lmin (see [8, 24,25,28–30]).

The Wronskian of the two matrix-valued solutions Y = {Yn} =
{
Y

(1)
n

Y
(2)
n

}
, Z = {Zn} ={

Z
(1)
n

Z
(2)
n

}
of the system (2.1) is Wn(Y,Z) := Z

(2)∗
n+1C

∗
nY

(1)
n −Z(1)∗

n CnY
(2)
n+1, n ∈ N0. Wn(Y,Z)

is independent of n. The solutions Y and Z of this equation are linearly independent if

and only if Wn(Y, Z) is nonzero.

Denote by P (λ) = {Pn(λ)} and Q(λ) = {Qn(λ)} (n ∈ N0) the matrix-valued solutions

of (2.1) satisfying the initial conditions

P
(1)
−1 = I, P

(2)
0 = 0, Q

(1)
−1 = 0, Q

(2)
0 = C−1−1 .

We have that Wn(P (λ), Q(λ)) = I, n ∈ N0. Consequently P (λ) and Q(λ) form a

fundamental system of solutions of (2.1). Since Lmin has deficiency indices (m,m),

P (λ)a,Q(λ)a ∈ H (a ∈ E ⊕ E) for all λ ∈ C.

We set Υ = P (0), Ψ = Q(0), and

x(i)n := V(i)
n a := (Υ(i)

n ,Ψ
(i)
n )

a1
a2

 = Υ(i)
n a1 + Ψ(i)

n a2, i = 1, 2,

where a1, a2 ∈ E, and let

Un =

 Υ
(1)
n Ψ

(1)
n

Υ
(2)
n+1 Ψ

(2)
n+1

 , n ∈ N0.
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Then one can show that

U−1n =

 Ψ
(2)∗
n+1C

∗
n −Ψ

(1)∗
n Cn

−Υ
(2)∗
n+1C

∗
n Υ

(1)∗
n Cn

 , and U−1n = JU∗nJ

C∗n 0

0 Cn

 , n ∈ N0,

where J = i
(

0 I
−I 0

)
, J = J∗, J2 = IE⊕E , IE⊕E is the identity operator on E ⊕ E.

Now we introduce the following notation:

(Sx)n :=

(S1x)n

(S2x)n

 := U−1n

 x
(1)
n

x
(2)
n+1

 =

 Ψ
(2)∗
n+1C

∗
nx

(1)
n −Ψ

(1)∗
n Cnx

(2)
n+1

−Υ
(2)∗
n+1C

∗
nx

(1)
n + Υ

(1)∗
n Cnx

(2)
n+1

 , n ∈ N0.

Then we have

Lemma 2.1. For arbitrary vector x ∈ Dmax the limit limn→∞(Sx)n = (Sx)(∞) exists

and is a finite.

Proof. Let x, y ∈ Dmax. Then the Green’s formulas (2.2) and (2.3) hold. Further, for

x
(i)
n = V(i)

n a (i = 1, 2), x = {xn} ∈ Dmax and y = {yn} ∈ Dmax (n ∈ N0), we have

[x, y]n = i

J
 C∗nx

(1)
n

Cnx
(2)
n+1

 ,

 y
(1)
n

y
(2)
n+1


E⊕E

= i

J
 C∗nV

(1)
n a

CnV
(2)
n+1a

 ,

 y
(1)
n

y
(2)
n+1


E⊕E

= i

J
C∗n 0

0 Cn

Una,

 y
(1)
n

y
(2)
n+1


E⊕E

= i

a,U∗n
Cn 0

0 C∗n

 J

 y
(1)
n

y
(2)
n+1


E⊕E

= i

a, J2U∗nJ

C∗n 0

0 Cn

 y
(1)
n

y
(2)
n+1


E⊕E

= i

Ja,U−1n
 y

(1)
n

y
(2)
n+1


E⊕E

= i(Ja, (Sy)n)E⊕E .

From this it follows that, for all y ∈ Dmax, there exists the limit limn→∞(Sy)n = (Sy)(∞)

and is a finite. Lemma 2.1 is proved.

Lemma 2.2. For any vectors γ, δ ∈ E, there exists a vector x ∈ Dmax satisfying the

conditions

(S1x)(∞) = γ, (S2x)(∞) = δ.

Proof. Consider that g be an arbitrary vector in H satisfying the conditions

(2.5) (g,Ψϕj) = γj , (g,Υϕj) = −δj , j = 1, 2, . . . ,m,

where {ϕj} (j = 1, 2, . . . ,m) is an orthonormal basis in E, and γj = (γ, ϕj)E , δj = (δ, ϕj)E

(j = 1, 2, . . . ,m). Such an vectors g exists, and even among linear combinations of the
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vectors Υϕj and Ψϕn (j, n = 1, 2, . . . ,m). Since the operator Lmin has deficiency indices

(m,m), we have Υϕj ,Ψϕj ∈ H, j = 1, 2, . . . ,m. Indeed, if we set g =
∑m

j=1 a
(j)
1 Υϕj +∑m

j=1 a
(j)
2 Ψϕj , then condition (2.5) is a system of equations for the constants a

(j)
1 and a

(j)
2

(j = 1, 2, . . . ,m) whose determinant is the Gram determinant of the linearly independent

vectors Υϕj and Ψϕn (j, n = 1, 2, . . . ,m) and is therefore nonzero.

Let us denote by x = {xn} the solution of the equation Λx = g satisfying the conditions

x
(1)
−1 = x

(2)
0 = 0. This solution belongs to H. Applying (2.2) as l→∞, we obtain

(g,Υϕj) = (Λx,Υϕj) = [x,Υϕj ]∞ + (x,ΛΥϕj),

(g,Ψϕj) = (Λx,Ψϕj) = [x,Ψϕj ]∞ + (x,ΛΨϕj).
(2.6)

Taking into account that ΛΥϕj = 0, ΛΨϕj = 0, we have (x,ΛΥϕj) = 0, (x,ΛΨϕj) = 0,

j = 1, 2, . . . ,m. Then, from relation (2.6) it follows that

−δj = [x,Υϕj ]∞ = −((S2x)(∞), ϕj)E ,

γj = [x,Ψϕj ]∞ = ((S1x)(∞), ϕj)E , j = 1, 2, . . . ,m.

From this we have (S1x)(∞) = γ, (S2x)(∞) = δ. Lemma 2.2 is proved.

Lemma 2.3. For arbitrary vectors x, y ∈ Dmax, the identity

[x, y]n = ((S1x)n, (S2y)n)E − ((S2x)n, (S1y)n)E , n ∈ N0

holds. In particular,

[x, y]∞ = ((S1x)(∞), (S2y)(∞))E − ((S2x)(∞), (S1y)(∞))E .

Proof. For arbitrary x, y ∈ Dmax, we have

((S1x)n, (S2y)n)E − ((S2x)n, (S1y)n)E

= i(J(Sx)n, (Sy)n)E⊕E = i

JU−1n
 x

(1)
n

x
(2)
n+1

 ,U−1n

 y
(1)
n

y
(2)
n+1


E⊕E

= i

JU−1n
 x

(1)
n

x
(2)
n+1

 , JU∗nJ

C∗n 0

0 Cn

 y
(1)
n

y
(2)
n+1


E⊕E

= i

Cn 0

0 C∗n

 JUnJ2U−1n

 x
(1)
n

x
(2)
n+1

 ,

 y
(1)
n

y
(2)
n+1


E⊕E

= i

J
C∗n 0

0 Cn

 x
(1)
n

x
(2)
n+1

 ,

 y
(1)
n

y
(2)
n+1


E⊕E

= [x, y]n, n ∈ N0.
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Passing to the limit as n→∞ in the previous equality, we get

((S1x)(∞), (S2y)(∞))E − ((S2x)(∞), (S1y)(∞))E = [x, y]∞.

Lemma 2.3 is proved.

Theorem 2.4. The domain Dmin of the operator Lmin consists of the vectors x ∈ Dmax

satisfying the boundary conditions at infinity:

(2.7) (S1x)(∞) = (S2x)(∞) = 0.

Proof. As noted above, the domain Dmin of the operator Lmin coincides with the set of all

vectors x ∈ Dmax satisfying condition (2.4). Hence using Lemma 2.3, (2.4) is equivalent

to the condition

(2.8) ((S1x)(∞), (S2y)(∞))E − ((S2x)(∞), (S1y)(∞))E = 0.

Since (S1y)(∞) and (S2y)(∞) (y ∈ Dmax) can be arbitrary (see Lemma 2.2), equality (2.8)

(for all y ∈ Dmax) is possible if and only if conditions (2.7) hold. This proves Theorem 2.4.

The space of boundary values of the symmetric operator stays in the centre of the

extension theory. We shall remind that a triplet (H, G1, G2), where H is a Hilbert space

and G1 and G2 are linear mappings of D(T∗) into H, is called (see [10, p. 152]) a space

of boundary values of a closed symmetric operator T, acting in a Hilbert space H with

equal (finite or infinite) deficiency indices, if

(1) for every f, g ∈ D(T∗), (T∗f, g)H = (f,T∗g)H = (G1f,G2f)H − (G1g,G2g)H;

(2) for every F1, F2 ∈ H, there exists a vector f ∈ D(T∗) such that G1f = F1, G2f = F2.

We consider the following mappings from Dmax into E

(2.9) G1x = −(S2x)(∞), G2x = (S1x)(∞).

Then we have

Theorem 2.5. The triple (E,G1, G2) defined by (2.9) is the space of boundary values of

the minimal operator Lmin.

Proof. By Lemma 2.3, for arbitrary x, y ∈ Dmax we have

(Lmaxx, y)− (x, Lmaxy) = [x, y]∞

= ((S1x)(∞), (S2y)(∞))E − ((S2x)(∞), (S1y)(∞))E

= (G1x,G2y)E − (G2x,G1y)E ,

i.e., the first requirement of the definition of the space of boundary values is valid. The

second requirement is valid due to Lemma 2.2. The theorem is proved.
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Recall that a linear operator T (with dense domain D(T )) acting on some Hilbert space

H is called dissipative (accumulative) if =(Tf, f) ≥ 0 (=(Tf, f) ≤ 0) for all f ∈ D(T ) and

maximal dissipative (accumulative) if it does not have a proper dissipative (accumulative)

extension (see [10, p. 149]).

By [7], [10, p. 156, Theorem 1.6] and [14], Theorem 3.1 implies the following

Theorem 2.6. For any contraction R in E, the restriction of the operator Lmax to the

set of vectors x ∈ Dmax satisfying the boundary condition

(2.10) (R− I)G1x+ i(R+ I)G2x = 0

or

(2.11) (R− I)G1x− i(R+ I)G2x = 0

is respectively the maximal dissipative and maximal accumulative extension of the operator

Lmin. Conversely, every maximal dissipative (resp. accumulative) extension of the operator

Lmin is the restriction of the operator Lmax to the set of vectors x ∈ Dmax satisfying (2.10)

(resp. (2.11)), and the contraction R is uniquely determined by the extension. These

conditions give a self-adjoint extensions if R is unitary. In this case (2.10), (2.11) are

equivalent to the condition (cosT )G1x−(sinT )G2x = 0, where T is a self-adjoint operator

in E.

The general form of dissipative and accumulative extensions of an operator Lmin is

given by the conditions

R(G1x+ iG2x) = G1x− iG2x, G1x+ iG2x ∈ D(R),(2.12)

R(G1x− iG2x) = G1x+ iG2x, G1x− iG2x ∈ D(R)(2.13)

respectively, where R is a linear operator with ‖Rf‖ ≤ ‖f‖, f ∈ D(R). The general form

of symmetric extensions is given by (2.12) and (2.13), where R is an isometric operator

in E.

In this paper, we consider the maximal dissipative operator LR, where R is the strict

contraction in E, i.e., ‖R‖ < 1, generated by the difference expression Λ and the boundary

condition (2.10). Since R is a strict contraction, the operator R + I must be invertible,

and the boundary condition (2.10) is equivalent to the condition

(2.14) G1x−KG2x = 0,

where K = −i(R− I)−1(R+ I), =K > 0 and R is the Cayley transform of the dissipative

operator K. We denote by L̃K (= LR) the maximal dissipative operator generated by

expression Λ and the boundary condition (2.14).
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3. Self-adjoint dilation of the maximal dissipative operator

We add the ‘incoming’ and ‘outgoing’ channels L2((−∞, 0);E) and L2((0,∞);E) to the

space H and then form the main Hilbert space of the dilation H := L2((−∞, 0);E)⊕H ⊕
L2((0,∞);E). In H we consider the operator LK generated by the expression

L〈φ−, u, φ+〉 =

〈
i
dφ−

dξ
,Λu, i

dφ+

dς

〉
on the set of vectors D(LK) satisfying the conditions: φ− ∈ W 1

2 ((−∞, 0);E), φ+ ∈
W 1

2 ((0,∞);E), u ∈ Dmax,

(3.1) G1u−KG2u = Tφ−(0), G1u−K∗G2u = Tφ+(0),

where W 1
2 is the Sobolev space, and T 2 := 2=K, T > 0. Then we have

Theorem 3.1. The operator LK is self-adjoint in H and is a self-adjoint dilation of the

dissipative operator L̃K (LR).

Proof. For U1 = 〈φ−1 , u1, φ
+
1 〉 ∈ D(LK) and U2 = 〈φ−2 , u2, φ

+
2 〉 ∈ D(LK), we have

(LKU1, U2)H − (U1,LKU2)H = 0. Hence LK is a symmetric operator. One can show

that operators LK and L∗K can be written by the same differential expression L. More-

over, if we suppose that U2 ∈ D(L∗K) and if we accept that φ−2 ∈ W 1
2 ((−∞, 0);E), φ+2 ∈

W 1
2 ((0,∞);E), u2 ∈ Dmax then the following conditions are satisfied: G1u2 −KG2u2 =

Tφ−2 (0), G1u2 −K∗G2u2 = Tφ+2 (0). Hence, L∗K ⊆ LK or L∗K = LK .

It is known that the self-adjoint operator LK generates the unitary group X (s) =

exp(iLKs) (s ∈ R := (−∞,∞)) on H. Denote by P : H → H and P1 : H → H the

mappings acting according to the formulae P : 〈φ−, u, φ+〉 → u and P1 : u → 〈0, u, 0〉,
respectively. Let Z(s) = PX (s)P1, s ≥ 0. The operator family {Z(s)} (s ≥ 0) of operators

is a strongly continuous semigroup of completely nonunitary contractions on H. Let us

denote by T the generator of this semigroup {Z(s)}: Tx = lims→+0(is)
−1(Z(s)x−x). The

operator T is a maximal dissipative and operator LK is called the self-adjoint dilation of

T . We shall show that T = L̃K . So we will have shown that LK is a self-adjoint dilation

of L̃K . We want to verify the following equality

(3.2) P (LK − λI)−1P1x = (L̃K − λI)−1x, x ∈ H, =λ < 0.

For this purpose, we set (LK − λI)−1P1x = g = 〈ψ−, y, ψ+〉. Hence we get that (LK −
λI)g = P1x, and Lmaxy − λy = x, ψ−(ξ) = ψ−(0)e−iλξ, ψ+(ς) = ψ+(0)e−iλς . Since

g ∈ D(LK), hence ψ− ∈ L2((−∞, 0);E); it follows that ψ−(0) = 0, and consequently,

y satisfies the boundary condition G1y − KG2y = 0. Therefore, y ∈ D(L̃K), and since
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a point λ with =λ < 0 cannot be an eigenvalue of a dissipative operator, it follows that

y = (L̃K − λI)−1x. Thus for x ∈ H and =λ < 0 we have

(LK − λI)−1P1x =
〈

0, (L̃K − λI)−1x, T−1(G1x−K∗G2x)e−iλζ
〉
.

Applying the mapping P to this equality, we get (3.2).

It is now easy to show that T = L̃K . Indeed, by (3.2)

(L̃K − λI)−1 = P (LK − λI)−1P1 = −iP
∫ ∞
0
X (s)e−iλs dsP1

= −i
∫ ∞
0

Z(s)e−iλs ds = (T − λI)−1.

This implies that L̃K = T and completes the proof of Theorem 3.1.

4. Scattering theory of dilation and functional model of dissipative operator

The unitary group {X (s)} has an important property which allows us to apply the

Lax-Phillips scheme [17]. Namely, it has the incoming and outgoing subspaces D− =

〈L2((−∞, 0);E), 0, 0〉 and D+ = 〈0, 0, L2((0,−∞);E)〉 with the following properties:

(1) X (s)D− ⊂ D−, s ≤ 0; X (s)D+ ⊂ D+, s ≥ 0;

(2)
⋂
s≤0X (s)D− =

⋂
s≤0X (s)D+ = {0};

(3)
⋃
s≥0X (s)D− =

⋃
s≤0X (s)D+ = H;

(4) D− ⊥ D+.

Property (4) follows from the inner product in H. We prove property (1) and (2) for

D+. The proof for D− can be done similarly. Let Rλ = (LK − λI)−1. For all λ with

=λ < 0 and for all f = 〈0, 0, φ〉 ∈ D+, we have

Rλf =

〈
0, 0,−ie−iλξ

∫ ξ

0
eiλsφ(s) ds

〉
.

From this we get that Rλf ∈ D+ and if g ⊥ D+, then one obtains that

0 = (Rλf, g)H = −i
∫ ∞
0

e−iλs(X (s)f, g)H ds, =λ < 0,

which implies that(X (s)f, g)H = 0 for all s ≥ 0. Consequently, X (s)D+ ⊂ D+ for s ≥ 0,

and property (1) is proved.

To prove property (2), let P+ : H → H and P+ : H → D+ be the mappings acting

according to the formulae P+ : 〈φ−, x, φ+〉 → φ+ and P+ : φ → 〈0, 0, φ〉, and we observe



Functional Model and Spectral Analysis of Discrete Singular Hamiltonian System 663

that the semigroup of isometries U+(s) = P+X (s)P+ (s ≥ 0) is the one-sided shift in

H. Indeed, the differentiation operator i
(
d
dξ

)
with boundary condition φ(0) = 0 is the

generator of the one-sided shift semigroup V (s) on H (V (s)φ(ξ) = φ(ξ− s) for ξ > s, and

V (s)φ(ξ) = 0 for 0 ≤ ξ ≤ s). On the other hand, the generator S of the semigroup of

isometries U+(s), s ≥ 0, is given by Sφ = P+LKP+φ = P+LK〈0, 0, φ〉 = P+〈0, 0, idφdξ 〉 =

idφdξ , where φ ∈W 1
2 ((0,∞);E) and φ(0) = 0. But since a semigroup is uniquely determined

by its generator, U+(s) = V (s), hence

⋂
s≥0
X (s)D+ =

〈
0, 0,

⋂
s≥0

V (s)L2((0,∞);E)

〉
= {0},

i.e., property (2) is proved.

We shall remind that the linear operator T (with domain D(T)) acting in the Hilbert

space H is called completely non-self-adjoint (or simple) if there is no invariant subspace

M ⊆ D(T) (M 6= {0}) of the operator T on which the restriction T to M is self-adjoint.

In order to prove property (3), let us prove the following

Lemma 4.1. The operator L̃K is totally non-self-adjoint (simple).

Proof. Let M ⊂ H be the subspace on which L̃K induces a self-adjoint operator L̃′K (i.e.,

the subspace M is invariant with respect to the semigroup of isometries Vs = exp(iL̃′Ks),

V ∗s = exp(−iL̃′∗Ks), V ∗−1s = Vs, s > 0). If f ∈ M ∩ (L̃K), then f ∈ D(L̃∗K) and

G1f − KG2f = 0, G1f − K∗G2f = 0, i.e., G1f = G2f = 0. From this for eigenvec-

tors uλ of operator L̃K that lie in K and are eigenvectors of L̃′K we have (S1uλ)(∞) = 0,

(S2uλ)(−∞) = 0. Now we shall prove that uλ ≡ 0. Suppose that it is not correct, i.e.,

uλ 6= 0. The eigenvectors uλ of operator L̃K is expressed by the matrix solution Q(λ):

uλ = Q(λ)a, a 6= 0. It follows from Lemma 2.3 that [P (λ)a,Q(λ)a]∞ = 0, and from the

other hand, we know that [P (λ)a,Q(λ)a]∞ = a 6= 0. The contradiction we have obtained

gives uλ ≡ 0. Since all solutions of Λx = λx belong to H, from this it can be concluded

that the resolvent Rλ(L̃K) of the operator L̃K is compact operator, and the spectrum of

L̃K is purely discrete. Hence, by theorem on expansion in eigenvectors of the self-adjoint

operator L̃′K , we have M = {0}, i.e., the operator LK is simple. The lemma is proved.

To prove property (3), we let

H− =
⋃
s≥0
X (s)D−, H+ =

⋃
s≤0
X (s)D+

and first prove

Lemma 4.2. The equality H− +H+ = H holds.



664 Bilender P. Allahverdiev

Proof. Indeed, by taking into account property (1) of the subspace D±, it is easy to see

that the subspace H′ = H 	 (H− +H+) is invariant under to the group {X (s)} and has

the form H′ = 〈0, H ′, 0〉, where H ′ is subspace of H. hence in the case that the subspace

H′ (and also H ′) is nontrivial, then the unitary group {U ′(s)} restricted of X (s) to H ′

will be a self-adjoint operator in H ′. But this is impossible from Lemma 4.1. Hence the

lemma is proved.

According to the Lax-Phillips scattering theory one can construct the scattering ma-

trix with the help of the spectral representations. Now we shall construct the spectral

representations. We now proceed to their construction, and on this path we also prove

property (3).

The Weyl matrix-valued function M∞(λ) of the self-adjoint operator L∞, generated

by the boundary condition (S1x)(∞) = 0, is uniquely determined from the condition

(S1(P +M∞(λ)Q)(∞) = 0. In view of this we have

M(λ) := M∞(λ) = −(S1P )(∞)[(S1Q)(∞)]−1.

Now let us define F (λ) and Φ(λ) by F (λ) = −(S2Q)(∞)[(S1P )(∞)]−1 and Φ(λ) =

F (λ)M(λ), respectively. It is easy to show that the matrix-valued function Φ(λ) is a

meromorphic in C with all its poles on real axis R, and that it has the following proper-

ties:

(a) =Φ(λ) ≤ 0 for =λ > 0, and =Φ(λ) ≥ 0 for =λ < 0;

(b) Φ∗(λ) = Φ(λ) for all λ ∈ C except at the poles of Φ(λ).

Let

V−λj(ξ, ς) =
〈
e−iλξϕj ,−Q(λ)[(S1Q)(∞)]−1[Φ(λ) +K]−1Tϕj ,

T−1(Φ(λ) +K∗)(Φ(λ) +K)−1Te−iλςϕj
〉
, j = 1, 2, . . . ,m,

where ϕ1, ϕ2, . . . , ϕm are an orthonormal basis for E. It must be noted that vectors V−λj
(j = 1, 2, . . . ,m) for all λ ∈ R do not belong to H. However, V−λj (j = 1, 2, . . . ,m) satisfy

the equation LV = λV and the boundary conditions (3.1) for the operator LK .

With the help of V−λj (j = 1, 2, . . . ,m), we define the transformation F− : f → f̃−(λ)

by

(F−f)(λ) := f̃−(λ) :=

m∑
j=1

f−j (λ)ϕj :=
1√
2π

m∑
j=1

(f,V−λj)Hϕj

on the vectors f = 〈φ−, u, φ+〉 in which φ−, φ+ are smooth, compactly supported vector-

valued functions, and u = {un} (n ∈ N0) is a finite vector sequence.
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Lemma 4.3. The transformation F− maps H− isometrically onto L2(R;E), and for all

f, g ∈ H− the Parseval equality and the inversion formula are valid:

(f, g)H = (f̃−, g̃−)L2 =

∫ ∞
−∞

m∑
j=1

f̃−j (λ)g̃−j (λ) dλ,

f =
1√
2π

∫ ∞
−∞

m∑
j=1

V−λj f̃
−
j (λ) dλ,

where f̃−(λ) = (F−f)(λ) and g̃−(λ) = (F−g)(λ).

Proof. For arbitrary f, g ∈ D− such that f = 〈φ−, 0, 0〉, g = 〈ψ−, 0, 0〉, we have

f̃−(λ) =
1√
2π

m∑
j=1

(f,V−λj)H =
1√
2π

∫ 0

−∞
φ−(ξ)eiλξ dξ ∈ H2

−(E).

Using the Parseval equality for Fourier integrals we get that

(f, g)H =

∫ 0

−∞
(φ−(ξ), ψ−(ξ))E dξ

=

∫ ∞
−∞

(f̃−(λ), g̃−(λ))E dλ = (F−f,F−g)L2 .

Here and below, H2
±(E) denotes the Hardy classes in L2(R;E) consisting of the vector-

valued functions analytically extendible to the upper and lower half-planes, respectively.

To extend the Parseval equality to whole of H−, we shall consider the dense set H′− in

H− consisting of the vectors obtained as follows from the smooth, compactly supported

vector-valued functionsD− : f ∈ H′− if f = X (s)f0, f0 = 〈φ−, 0, 0〉, φ− ∈ C∞0 ((−∞, 0);E),

where sf is a non-negative number (depending on f). In this case, if f, g ∈ H−, then for

s > sf and s > sg we have U(−s)f, U(−s)g ∈ D− and, moreover, the first components of

these vectors belong to C∞0 ((−∞, 0);E). Therefore, since the operators X (s) (s ∈ R) are

unitary, by the equality

F−X (s)f =
1√
2π

m∑
j=1

(X (s)f,V−λj)Hϕj =
1√
2π
eiλs

m∑
j=1

(f,V−λj)Hϕj = eiλsF−f,

we have that

(f, g)H = (U(−s)f, U(−s)g)H = (F−U(−s)f,FU(−s)g)L2

= (e−iλsF−f, e−iλsF−g)L2 = (F−f,F−g)L2 .
(4.1)

Hence taking closure in (4.1), we obtain the Parseval equality for the whole of H−. The

inversion formula follows from the Parseval equality if all the integrals in it are understood

as limits in the mean of integrals over finite intervals. Finally we get that

F−H− =
⋃
s≥0
X (s)D− =

⋃
s≥0

e−iλsH2
−(E) = L2(R;E),
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i.e., F− maps H− onto the whole of L2(R;E). Lemma 4.3 is proved.

We set

V+λj(ξ, ς)

= 〈SKe−iλξϕj ,−Q(λ)[(S1Q)(∞)]−1(Φ(λ) +K∗)−1Tϕj , e
−iλςϕj〉, j = 1, 2, . . . ,m,

where

(4.2) SK(λ) := T−1(Φ(λ) +K)(Φ(λ) +K∗)−1T.

It must be noted that vectors V−λj (j = 1, 2, . . . ,m) for all λ ∈ R do not belong to

H. However, V+λj (j = 1, 2, . . . ,m) satisfy the equation LV = λV and the boundary

conditions (3.1) for the operator LK . With the help of V+λj (j = 1, 2, . . . ,m) we define the

transformation F+ : f → f̃+(λ) by

(F+f)(λ) = f̃+(λ) =
m∑
j=1

f̃+j (λ)ϕj =
1√
2π

m∑
j=1

(f,V+λj)Hϕj

on the vectors f = 〈φ−, u, φ+〉 in which φ−, φ+ are smooth, compactly supported vector-

valued functions, and u = {un} (n ∈ N0) is a finite vector sequence. The proof of the next

result is analogous to that of Lemma 4.3.

Lemma 4.4. The transformation F+ maps H+ isometrically onto L2(R;E), and for all

f, g ∈ H+ the Parseval equality and the inversion formula are valid:

(f, g)H = (f̃+, g̃+)L2 =

∫ ∞
−∞

m∑
j=1

f̃+j (λ)g̃+j (λ) dλ,

f =
1√
2π

∫ ∞
−∞

m∑
j=1

V+λj f̃
+
j (λ) dλ,

where f̃+(λ) = (F+f)(λ) and g̃+(λ) = (F+g)(λ).

It is clear that SK(λ) is unitary for all λ ∈ R. So using the explicit expression for the

vectors V+λj and V−λj (j = 1, 2, . . . ,m) we get that

V+λj =

m∑
n=1

Sjn(λ)V−λn, j = 1, 2, . . . ,m,

where Sjn (j, n = 1, 2, . . . ,m) are entries of the matrix SK(λ). Therefore, from Lemmas 4.3

and 4.4 one obtains that H− = H+. Together with Lemma 4.2, this shows that H = H− =

H+, and property (3) for X (s) above has been established for incoming and outgoings

subspaces.
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Thus, the transformation F− maps H isometrically onto L2(R;E); the subspace D−

is mapped onto H2
−(E), while the operator X (s) passing into operators of multiplication

by eiλs. These results shows that F− and F+ are the incoming and respectively outgoing

spectral representations of the unitary group {X (s)}. From the explicit formulas for V−λj
and V+λj (j = 1, 2, . . . ,m), it follows that the passage from the F−-representation of a

vector f ∈ H to its F+-representation is accomplished as follows: f̃+(λ) = S−1K (λ)f̃−(λ).

According to [17], we have thus proved the following theorem.

Theorem 4.5. The matrix S−1K (λ) is the scattering matrix of the unitary group {X (s)}
(or of the self-adjoint operator LK).

Let S(λ) be an arbitrary non-constant inner matrix-valued function on the upper

half-plane (the analytic matrix-valued function S(λ) on the upper half-plane C+ is called

inner function on C+ if ‖S(λ)‖ ≤ 1 for λ ∈ C+ and S(λ) is a unitary matrix for almost all

λ ∈ R). Define M = H2
+	SH2

+. Then M 6= {0} is a subspace of the Hilbert space H2
+. We

consider the semigroup of the operators V(s) (s ≥ 0) acting in M according to the formula

V(s)φ = P[eiλsφ], φ := φ(λ) ∈M, where P is the orthogonal projection from H2
+ onto M.

The generator of the semigroup {V(s)} is denoted by B: Bφ = lims→+0(is)
−1(V(s)φ−φ).

B is a maximal dissipative operator acting in M and its domain D(B) consists of all vectors

φ ∈ M for which the above limit exists. The operator B is called a model dissipative

operator (we remark that this model dissipative operator, which is associated with the

names of Lax and Phillips [17], is a special case of a more general model dissipative

operator constructed by Sz.-Nagy and Foiaş [18]). We claim that S(λ) is the characteristic

function of the dissipative operator B.

We have proved that under the unitary transformation F− we get the following map-

pings:

H → L2(R;E), f → f̃−(λ) = (F−f)(λ), D− → H2
−(E),

D+ → SKH2
+(E), H	 (D− ⊕D+)→ H2

+(E)	 SKH2
+(E),

X (s)f → (F−X (s)F−1− f̃−)(λ) = eiλsf̃−(λ).

These formulas also imply that the operator L̃K (LR) is unitary equivalent to the model

dissipative operator with characteristic function SK(λ). Hence we have proved the follow-

ing theorem.

Theorem 4.6. The characteristic function of the maximal dissipative operator L̃K (LR)

coincides with the matrix-valued function SK(λ) determined by formula (4.2). The matrix-

valued function SK(λ) is meromorphic in the complex plane C and is an inner function

in the upper half-plane.



668 Bilender P. Allahverdiev

5. The spectral analysis of a dissipative operators

The complex number λ0 is called an eigenvalue of the operator T, which is the linear

operator acting in the Hilbert space H with the domain D(T), if there exists a nonzero

vector f0 ∈ D(T) such that Tf0 = λ0f0. This vector f0 is called the eigenvector of the

operator T corresponding to the eigenvalue λ0. The eigenvector for λ0 spans a subspace

of D(T), called the eigenspace for λ0 and the geometric multiplicity of λ0 is the dimension

of its eigenspace. If the vectors f1, f2, . . . , fk belong to D(T) and satisfy the equalities

Tfj = λ0fj + fj−1, j = 1, 2, . . . , k, then they are called the associated vectors of the

eigenvector f0. If all powers of T such that (T − λ0I)nf = 0 (for some integer n) are

defined on the vector f ∈ D(T), f 6= 0, then it is called a root vector of the operator T

corresponding to the eigenvalue λ0. The set of all root vectors of T corresponding to the

same eigenvalue λ0 with the vector f = 0 forms a linear set Nλ0 and is called the root

lineal. The dimension of the lineal Nλ0 is called the algebraic multiplicity of the eigenvalue

λ0. The root lineal Nλ0 coincides with the linear span of all eigenvectors and associated

vectors of T corresponding to the eigenvalue λ0. Consequently, the completeness of the

system of all eigenvectors and associated vectors of L is equivalent to the completeness of

the system of all root vectors of this operator.

Questions of the spectral analysis of the dissipative operator LR (L̃K) can be solved

in terms of characteristic function. Thus, for example, the absence of the singular factor

s(λ) in the factorization detSK(λ) = s(λ)B(λ) (B(λ) is the Blaschke product) ensures the

completeness of the system of eigenvectors and associated vectors (or root vectors) of the

operator LR (L̃K) in the space H (see [3, 4, 9, 16,18,20]).

We first use the following

Lemma 5.1. The characteristic function S̃R(λ) of the operator LR has the form

S̃R(λ) := SK(λ) = Y1(I −RR∗)−1(Θ(ξ)−R)(I −R∗Θ(ξ))−1(I −R∗R)1/2Y2,

where R is the Cayley transformation of the dissipative operator K and Θ(ξ) is the Cayley

transformation of the matrix-valued function M∞(λ), ξ = (λ − i)(λ + i)−1 and Y1 :=

(=K)−1/2(I−R)−1(I−RR∗)1/2, Y2 := (I−R∗R)−1/2(I−R∗)(=K)1/2, |detY1| = | detY2|
= 1.

Proof. Using Theorem 4.6, we get that

SK(λ) = (=K)−1/2(Φ(λ) +K)(Φ(λ) +K∗)−1(=K)1/2.

Further obtains that

=K =
1

2i
(K −K∗) =

1

2
[(I −R)−1(I +R) + (I +R∗)(I −R∗)−1]
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=
1

2
[(I −R)−1 + (I −R)−1R+ (I −R∗)−1 +R∗(I −R∗)−1]

=
1

2
[(I −R)−1 + (I −R)−1 − I + (I −R∗)−1 + (I −R∗)−1 − I](5.1)

= (I −R)−1 + (I −R∗)−1 − I

= (I −R)−1[I −R∗ + I −R− (I −R)(I −R∗)](I −R∗)−1

= (I −R)−1(I −RR∗)(I −R∗)−1.

Similarly,

(5.2) =K = (I −R∗)−1(I −R∗R)(I −R)−1.

Let us denote the Cayley transformation of the accumulative operator Φ(λ) for =λ > 0

by Θ1(λ). Then we have Φ(λ) = −i(I −Θ1(λ))−1(I + Θ1(λ)). Hence we get that

Φ(λ) +K = −i[(I −Θ1(λ))−1(I + Θ1(λ))− (I −R)−1(I +R)]

= −i[−(I −Θ1(λ))−1(I −Θ1(λ))− 2I + (I −R)−1(I −R− 2I)]

= −i[−I + 2(I −Θ1(λ))−1 + I − 2(I −R)−1]

= −2i[(I −Θ1(λ))−1 − (I −R)−1]

= −2i(I −R)−1(Θ1(λ)−R)(I −Θ1(λ))−1.

(5.3)

Similarly, Φ(λ) +K∗ = −2i(I −R∗)−1(I −R∗Θ1(λ))(I −Θ1(λ))−1 and

(5.4) (Φ(λ) +K∗)−1 = − 1

2i
(I −Θ1(λ))(I −R∗Θ1(λ))−1(I −R∗).

Using (5.1), (5.2), (5.3) and (5.4), we have

S̃R(λ) = SK(λ) = Y1(I −RR∗)−1/2(Θ(ξ)−R)(I −R∗Θ(ξ))(I −R∗R)1/2Y2,

where Θ(ξ) = Θ1[−i(ξ + 1)(ξ − 1)−1], Y1 = (=K)−1/2(I − R)(I − RR∗)1/2, Y2 = (I −
R∗R)−1(I −R∗)(=K)1/2. It is evident that | detY1| = | detY2| = 1. Hence, Lemma 5.1 is

proved.

We shall remind that the inner matrix-valued function S̃R(λ) is a Blaschke-Potapov

product if and only if det S̃R(λ) is a Blaschke product [3, 4, 9, 16, 18, 20]. Hence one gets

from Lemma 5.1 that the characteristic function S̃R(λ) is a Blaschke-Potapov product if

and only if the matrix-valued function

YR(ξ) = (I −RR∗)−1/2(Θ(ξ)−R)(I −R∗Θ(ξ))−1(I −R∗R)1/2

is a Blaschke-Potapov product in a unit disk.
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In order to state the completeness theorem, we will first define a suitable form for the

Γ-capacity [9, 27].

Let E be an N -dimensional (N < +∞) Euclidean space. In E, we fix an orthonor-

mal basis ϕ1, ϕ2, . . . , ϕN and denote by Ek (k = 1, 2, . . . , N) the linear span vectors

ϕ1, ϕ2, . . . , ϕk. If M ⊂ Ek, then the set of v ∈ Ek−1 with the property Cap{µ : µ ∈
C, (v + µϕk) ∈ M} > 0 will be denoted by Γk−1M. (CapG is the inner logarithmic

capacity of the set G ⊂ C.) The Γ-capacity of the set M ⊂ E is a number

Γ− CapM := sup Cap{µ : µ ∈ C, µϕ1 ⊂ Γ1Γ2 · · ·ΓN−1M},

where the sup is taken with respect to all orthonormal bases in E. It is known [17, 30]

that every set M ⊂ E of zero Γ-capacity has zero 2N -dimensional Lebesgue measure (in

the decomplexified space E), however, the converse is false.

Denote by L(E) the set of all linear operators acting in E. To convert L(E) into an m2-

dimensional Hilbert space, we introduce the inner product 〈T, S〉 = trS∗T for T, S ∈ L(E)

(trS∗T is the trace of the operator S∗T ). Hence, we may introduce the Γ-capacity of a

set in L(E).

We will utilize the following important result of [9].

Lemma 5.2. Let Y (ξ) (|ξ| < 1) be a holomorphic function with the values to be contractive

operators in L(E) (‖Y (ξ)‖ ≤ 1). Then for Γ-quasi every strictly contractive operators

(i.e., for all strictly contractive R ∈ L(E) possible with the exception of a set of Γ of zero

capacity) the inner part of the contractive function

YR(ξ) := (I −RR∗)−1/2(Y (ξ)−R)(I −R∗Y (ξ))−1(I −R∗R)1/2

is a Blaschke-Potapov product.

Hence considering all the obtained results for the dissipative operator LR (L̃K), we

have proved the following theorem.

Theorem 5.3. For Γ-quasi-every strictly contractive R ∈ L(E) the characteristic function

S̃R(λ) of the maximal dissipative operator LR is a Blaschke-Potapov product, and spectrum

of LR is purely discrete and belongs to the open upper half-plane. For Γ-quasi-every strictly

contractive R ∈ L(E), the operator LR has a countable number of isolated eigenvalues

with finite multiplicity and limit points at infinity, and the system of all eigenvectors and

associated vectors (or all root vectors) of this operator is complete in `2A(N0;E ⊕ E).

It should be noted that all results obtained for maximal dissipative operators can be

immediately transferred to maximal accumulative operators, because a linear operator

S acting in a Hilbert space H is maximal accumulative if and only if −S is maximal

dissipative.
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