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Norm-attaining Composition Operators on Lipschitz Spaces

Antonio Jiménez-Vargas

Abstract. Every composition operator Cϕ on the Lipschitz space Lip0(X) attains its

norm. This fact is essentially known and we give in this paper a sequential characteri-

zation of the extremal functions for the norm of Cϕ on Lip0(X). We also characterize

the norm-attaining composition operators Cϕ on the little Lipschitz space lip0(X)

which separates points uniformly and identify the extremal functions for the norm

of Cϕ on lip0(X). We deduce that compact composition operators on lip0(X) are

norm-attaining whenever the sphere unit of lip0(X) separates points uniformly. In

particular, this condition is satisfied by spaces of little Lipschitz functions on Hölder

compact metric spaces (X, dα) with 0 < α < 1.

1. Introduction

Let (X, d) be a pointed metric space with a basepoint designated by e, let X̃ denote the

set

{(x, y) ∈ X ×X : x 6= y},

and let K be the field of real or complex numbers. The Lipschitz space Lip0(X) is the

Banach space of all Lipschitz functions f : X → K for which f(e) = 0, endowed with the

Lipschitz norm defined by

Lip(f) = sup

{
|f(x)− f(y)|

d(x, y)
: (x, y) ∈ X̃

}
,

and the little Lipschitz space lip0(X) is the closed subspace of Lip0(X) of all functions f

such that

lim
t→0

sup

{
|f(x)− f(y)|

d(x, y)
: (x, y) ∈ X̃, d(x, y) < t

}
= 0.

There exist metric spaces X for which lip0(X) = {0} as, for instance, X = [0, 1] with the

usual metric. In contrast, we can consider metric spaces X such that lip0(X) separates
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points uniformly in the sense that there exists a constant a > 1 such that, for every x, y ∈
X, some f ∈ lip0(X) satisfies Lip(f) ≤ a and |f(x) − f(y)| = d(x, y). For each compact

pointed metric space (X, d), the space lip0(Xα) enjoys this property being Xα = (X, dα)

and α ∈ (0, 1). We refer to the Weaver’s book [21] for a complete study on those Lipschitz

spaces.

Let X be a set and let F(X) be a linear space of functions from X into K. Given a

map ϕ : X → X, let us recall that a composition operator Cϕ on F(X) is a linear operator

from F(X) into itself defined by Cϕf = f ◦ϕ. The map ϕ is called the symbol of Cϕ. It is

said that Cϕ attains its norm on F(X) if there exists a function f ∈ F(X) with norm one

such that ‖Cϕ‖ = ‖Cϕf‖. Such a function f is called an extremal function for the norm

of Cϕ. It is an application of a James’ theorem (see [4, Chapter One, Theorem 6]) that

a Banach space E is reflexive if and only if any compact linear operator on E attains its

norm.

Norm-attaining composition operators have been studied for different function spaces

by several authors as, for example, the Hardy space and the Dirichlet space by Hammond

[8,9], Bloch spaces by Mart́ın [16] and Montes-Rodŕıguez [18], and weighted Bloch spaces

by Bonet, Lindström and Wolf [1].

We address the question as to when composition operators Cϕ acting on the Lipschitz

space Lip0(X) as well as on the little Lipschitz space lip0(X) satisfying the uniform sep-

aration property attain their norms and characterize the extremal functions for the norm

of Cϕ on such spaces.

Composition operators on Lipschitz spaces have been considered by different authors.

Assuming that X is a compact metric space and ϕ is a Lipschitz map of X into X,

Kamowitz and Scheinberg [15] proved that a composition operator Cϕ is compact on the

spaces of bounded Lipschitz functions Lip(X) and lip(Xα) with the norm ‖ · ‖∞ + Lip(·)
if and only if ϕ is supercontractive. This result was extended in [12] to composition

operators on Lip0(X) when X is a bounded pointed metric space. Chen, Li, R. Wang and

Y.-S. Wang [3] characterized compact weighted composition operators between spaces of

scalar-valued Lipschitz functions. Botelho and Jamison [2], Esmaeili and Mahyar [5], and

Golbaharan and Mahyar [6, 7] tackled weighted composition operators between spaces

of vector-valued Lipschitz functions. When ϕ is a Lipschitz map from X into X which

preserves basepoint (such a map is called a basepoint-preserving Lipschitz self-map of X),

the proof of Proposition 1.8.2 in [21] reveals that the composition operator Cϕ on Lip0(X)

attains its norm at an explicit extremal function. Apparently, this result of Weaver is

one of the few known results concerning norm-attaining composition operators on those

Lipschitz spaces.

We now describe the contents of this paper. In Section 2, we characterize the self-maps



Norm-attaining Composition Operators on Lipschitz Spaces 131

ϕ of X inducing a nonzero bounded composition operator Cϕ on the space Lip0(X) and

the space lip0(X) which satisfies the uniform separation property. Specifically, we show

that such maps are nonconstant basepoint-preserving Lipschitz.

We recall in Section 3 that every nonzero bounded composition operator Cϕ on Lip0(X)

attains its norm and give a sequential characterization of the extremal functions for the

norm ‖Cϕ‖.
When the space lip0(X) separates points uniformly, we will give a complete descrip-

tion of norm-attaining composition operators Cϕ on lip0(X) in Theorem 4.2. This char-

acterization involves the existence of a point (x0, y0) in X̃ and an extremal function for

‖Cϕ‖ that separates the points x0 and y0 to their full distance. This fact motivates the

following concept. It is said that the unit sphere of lip0(X) separates points uniformly

if for every x, y ∈ X, there exists a function f ∈ lip0(X) with Lip(f) = 1 such that

|f(x) − f(y)| = d(x, y). We know two different kinds of metric spaces X enjoying this

property: when X is uniformly discrete or when X is a Hölder compact metric space. Be-

sides, we will introduce a more constructively defined class of compact metric spaces for

which the unit sphere of lip0(X) has the uniform separation property. For norm-attaining

composition operators on such spaces, we will improve Theorem 4.2 with a sequential

characterization which will be now free of extremal functions.

The final part of the paper deals with compact composition operators on spaces lip0(X)

whose unit spheres separate points uniformly. We will state that every composition oper-

ator Cϕ on such spaces for which the essential norm of Cϕ multiplied by
√

2 is strictly less

than the norm of Cϕ attains its norm. To prove this fact, we will need a characterization of

the weak convergence of sequences in lip0(X) and a lower estimate for the essential norm

of Cϕ on lip0(X). As a consequence, we will deduce that compact composition operators

on lip0(X) are norm-attaining. It is worth noting that infinite dimensional spaces lip0(X)

and Lip0(X) are not reflexive (see [14, Theorem 6.6] and [21, Corollary 2.5.5]).

2. Nonzero bounded composition operators on Lipschitz spaces

In this section, we characterize the class of all functions ϕ mapping X into itself whose

induced composition operator Cϕ is a nonzero bounded operator on the Lipschitz space

Lip0(X) and the little Lipschitz space lip0(X) that satisfies the uniform separation prop-

erty.

Theorem 2.1. Let X be a pointed metric space and let ϕ be a self-map of X. Then the

composition operator Cϕ is a bounded operator from Lip0(X) into Lip0(X) if and only if

ϕ is Lipschitz and preserves basepoint. Besides, Cϕ : Lip0(X) → Lip0(X) is nonzero if

and only if ϕ is nonconstant.
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Proof. Assume that Cϕ : Lip0(X) → Lip0(X) is bounded. If ϕ : X → X were not Lips-

chitz, there would exist a sequence {(xn, yn)} in X̃ satisfying d(ϕ(xn), ϕ(yn))/d(xn, yn) ≥ n
for all n ∈ N. For each n ∈ N, define the functions gn, fn : X → R by

gn(x) =
d(x, ϕ(xn))− d(x, ϕ(yn))

2
,

fn(x) = gn(x)− gn(e).

Clearly, fn belongs to Lip0(X) with Lip(fn) = 1 and satisfies |fn(ϕ(xn)) − fn(ϕ(yn))| =

d(ϕ(xn), ϕ(yn)). Hence we have

Lip(fn ◦ ϕ) ≥ |fn(ϕ(xn))− fn(ϕ(yn))|
d(xn, yn)

=
d(ϕ(xn), ϕ(yn))

d(xn, yn)
≥ n

for all n ∈ N, and thus the sequence {Cϕfn} is not bounded in Lip0(X). This contradicts

that Cϕ : Lip0(X) → Lip0(X) is bounded, and proves that ϕ is Lipschitz. On the other

hand, since Cϕ maps Lip0(X) into itself, we have that Cϕf(e) = 0 for all f ∈ Lip0(X),

that is, f(ϕ(e)) = f(e) for all f ∈ Lip0(X) which implies that ϕ(e) = e because Lip0(X)

separates the points of X.

Conversely, suppose that ϕ is Lipschitz and ϕ(e) = e. For every f ∈ Lip0(X), we have

f(ϕ(e)) = f(e) = 0 and f ◦ ϕ is Lipschitz with Lip(f ◦ ϕ) ≤ Lip(f) Lip(ϕ). Hence Cϕ

maps Lip0(X) into Lip0(X). In order to see that Cϕ is bounded, we use the closed graph

theorem. Let {fn} be a sequence in Lip0(X) such that Lip(fn)→ 0 as n→∞, and assume

that Lip((fn ◦ ϕ) − g) → 0 as n → ∞ for some function g ∈ Lip0(X). Observe that, for

any function f ∈ Lip0(X), it holds that |f(x)| ≤ Lip(f)d(x, e) for all x ∈ X. Using this

inequality, we can deduce that, for each x ∈ X, the sequence {fn(ϕ(x))} converges to 0 and

also to g(x) as n→∞, and so g(x) = 0. This gives g = 0. Hence Cϕ : Lip0(X)→ Lip0(X)

is bounded.

We now prove the second assertion. Assume that ϕ is constant. Then ϕ(x) = ϕ(e) = e

for all x ∈ X. Hence Cϕf(x) = f(ϕ(x)) = f(e) = 0 for each f ∈ Lip0(X) and all x ∈ X,

and therefore Cϕ = 0. Conversely, suppose that ϕ is not constant. This implies that

X \ {e} 6= ∅ and we can take a point x ∈ X \ {e} such that ϕ(x) 6= ϕ(e) = e. Since

Lip0(X) separates the points of X, some f ∈ Lip0(X) satisfies that f(ϕ(x)) 6= f(e) = 0

and thus Cϕ is nonzero.

As we have commented above, lip0(X) has especial interest when it separates points

uniformly. So we avoid the cases in which lip0(X) reduces to the zero function.

Theorem 2.2. Let X be a compact pointed metric space and let ϕ be a self-map of

X. Assume that lip0(X) separates points uniformly. Then Cϕ is a bounded operator

from lip0(X) into lip0(X) if and only if ϕ is Lipschitz and preserves basepoint. Besides,

Cϕ : lip0(X)→ lip0(X) is nonzero if and only if ϕ is nonconstant.
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Proof. Suppose that Cϕ : lip0(X) → lip0(X) is bounded. Using that lip0(X) separates

points uniformly, similar arguments to those above in Theorem 2.1 show that ϕ is Lipschitz

and preserves basepoint.

For the converse implication, assume that ϕ is Lipschitz and ϕ(e) = e. We first show

that f ◦ ϕ ∈ lip0(X) for all f ∈ lip0(X). Note that f ◦ ϕ ∈ Lip0(X) as in the proof of

Theorem 2.1. Besides, given ε > 0, there exists a δ > 0 such that

(x, y) ∈ X̃, d(x, y) < δ =⇒ |f(x)− f(y)|
d(x, y)

<
ε

1 + Lip(ϕ)
.

Let (x, y) ∈ X̃ be with d(x, y) < δ/(1+Lip(ϕ)). If ϕ(x) 6= ϕ(y), we have 0 < d(ϕ(x), ϕ(y))

< δ and hence

|f(ϕ(x))− f(ϕ(y))|
d(x, y)

=
|f(ϕ(x))− f(ϕ(y))|

d(ϕ(x), ϕ(y))

d(ϕ(x), ϕ(y))

d(x, y)
<

ε

1 + Lip(ϕ)
Lip(ϕ) < ε.

Thus f ◦ ϕ ∈ lip0(X). Hence Cϕ maps lip0(X) into lip0(X) and, using the closed graph

theorem as in the proof of Theorem 2.1, we show that Cϕ : lip0(X)→ lip0(X) is bounded.

The second equivalence is proved similarly as in Theorem 2.1.

3. Norm-attaining composition operators on Lip0(X)

We recall in this section that every nonzero bounded composition operator Cϕ on Lip0(X)

attains its norm and give a sequential characterization of the extremal functions for ‖Cϕ‖.

Theorem 3.1. [21, Proposition 1.8.2] Let X be a pointed metric space and let ϕ : X → X

be a nonconstant basepoint-preserving Lipschitz map. Then the norm of the composition

operator Cϕ : Lip0(X)→ Lip0(X) is given by the formula

‖Cϕ‖ = sup
x 6=y

d(ϕ(x), ϕ(y))

d(x, y)
.

Furthermore, the operator Cϕ on Lip0(X) is norm-attaining and, for each y ∈ X, an

extremal function for ‖Cϕ‖ is the function fy : X → R, defined by fy(z) = d(z, ϕ(y)) −
d(e, ϕ(y)) for all z ∈ X.

Proof. For any f ∈ Lip0(X) with Lip(f) = 1, we have

Lip(Cϕf) = Lip(f ◦ ϕ) ≤ Lip(f) Lip(ϕ) = Lip(ϕ),

and therefore ‖Cϕ‖ ≤ Lip(ϕ). Now, for each point y ∈ X, define fy : X → R as in the

statement. It is easy to see that fy ∈ Lip0(X) with Lip(fy) = 1. We obtain

Lip(ϕ) = sup
x 6=y

d(ϕ(x), ϕ(y))

d(x, y)
= sup

x 6=y

|fy(ϕ(x))− fy(ϕ(y))|
d(x, y)

= Lip(Cϕfy) ≤ ‖Cϕ‖,

and this completes the proof.



134 Antonio Jiménez-Vargas

Theorem 3.2. Let X be a pointed metric space and let ϕ : X → X be a nonconstant

basepoint-preserving Lipschitz map. Then a function f in Lip0(X) with Lip(f) = 1 is

extremal for the norm of the operator Cϕ on Lip0(X) if and only if there exists a sequence

{(ϕ(xn), ϕ(yn))} in X̃ such that

lim
n→∞

d(ϕ(xn), ϕ(yn))

d(xn, yn)
= ‖Cϕ‖ and lim

n→∞

|f(ϕ(xn))− f(ϕ(yn))|
d(ϕ(xn), ϕ(yn))

= 1.

Proof. Suppose that f ∈ Lip0(X) with Lip(f) = 1 is extremal for ‖Cϕ‖. Then

‖Cϕ‖ = Lip(f ◦ ϕ) = sup
x 6=y

|f(ϕ(x))− f(ϕ(y))|
d(x, y)

.

Hence, for each n ∈ N, we can take a point (xn, yn) ∈ X̃ such that(
1− 1

n

)
‖Cϕ‖ <

|f(ϕ(xn))− f(ϕ(yn))|
d(xn, yn)

≤ ‖Cϕ‖.

By using Theorem 3.1, it follows that(
1− 1

n

)
d(ϕ(xn), ϕ(yn))

d(xn, yn)
<
|f(ϕ(xn))− f(ϕ(yn))|

d(xn, yn)
.

This implies that {(ϕ(xn), ϕ(yn))} is a sequence in X̃, and

1− 1

n
<
|f(ϕ(xn))− f(ϕ(yn))|

d(ϕ(xn), ϕ(yn))
≤ Lip(f) = 1

for all n ∈ N, and therefore

lim
n→∞

|f(ϕ(xn))− f(ϕ(yn))|
d(ϕ(xn), ϕ(yn))

= 1,

as required. By the Bolzano-Weierstrass theorem, taking a subsequence if necessary, we

can suppose that the sequence {d(ϕ(xn), ϕ(yn))/d(xn, yn)} converges. By the inequality

above for ‖Cϕ‖, we get that

‖Cϕ‖ = lim
n→∞

|f(ϕ(xn))− f(ϕ(yn))|
d(xn, yn)

,

and from this we conclude that

‖Cϕ‖ = lim
n→∞

[
|f(ϕ(xn))− f(ϕ(yn))|

d(ϕ(xn), ϕ(yn))

d(ϕ(xn), ϕ(yn))

d(xn, yn)

]
= lim

n→∞

d(ϕ(xn), ϕ(yn))

d(xn, yn)
.

Conversely, let f be a function in Lip0(X) with Lip(f) = 1 and suppose that there exists

a sequence {(ϕ(xn), ϕ(yn))} in X̃ such that both conditions

lim
n→∞

d(ϕ(xn), ϕ(yn))

d(xn, yn)
= ‖Cϕ‖ and lim

n→∞

|f(ϕ(xn))− f(ϕ(yn))|
d(ϕ(xn), ϕ(yn))

= 1
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are satisfied. This last limit shows that f(ϕ(xn)) 6= f(ϕ(yn)) for all n ≥ m and some

m ∈ N, and thus

lim
n to∞

d(ϕ(xn), ϕ(yn))

|f(ϕ(xn))− f(ϕ(yn))|
= 1.

By the Bolzano-Weierstrass theorem, we can assume that the sequence{
|f(ϕ(xn))− f(ϕ(yn))|

d(xn, yn)

}
converges by taking a subsequence if necessary. We now can obtain

‖Cϕ‖ = lim
n→∞

d(ϕ(xn), ϕ(yn))

d(xn, yn)

= lim
n→∞

[
d(ϕ(xn), ϕ(yn))

|f(ϕ(xn))− f(ϕ(yn))|
|f(ϕ(xn))− f(ϕ(yn))|

d(xn, yn)

]
= lim

n→∞

|f(ϕ(xn))− f(ϕ(yn))|
d(xn, yn)

≤ sup
x 6=y

|f(ϕ(x))− f(ϕ(y))|
d(x, y)

= Lip(f ◦ ϕ) ≤ ‖Cϕ‖,

and this says us that f is an extremal function for ‖Cϕ‖, as desired.

4. Norm-attaining composition operators on lip0(X)

Our first aim in this section is to characterize norm-attaining composition operators on

lip0(X) whenever these spaces separate points uniformly.

We will need a formula for the norm of the operator Cϕ on lip0(X), similar to that of

Theorem 3.1 when Cϕ is defined on Lip0(X).

Theorem 4.1. Let X be a compact pointed metric space and let ϕ : X → X be a non-

constant basepoint-preserving Lipschitz map. Assume lip0(X) separates points uniformly.

Then the norm of the composition operator Cϕ : lip0(X)→ lip0(X) is given by

‖Cϕ‖ = sup
x 6=y

d(ϕ(x), ϕ(y))

d(x, y)
.

Proof. We obtain that

‖Cϕ‖ ≤ sup
x 6=y

d(ϕ(x), ϕ(y))

d(x, y)
,

as in the proof of Theorem 3.1. Conversely, according to [21, Corollary 3.3.5], for every

a > 1 and every (x, y) ∈ X̃, some f ∈ lip0(X) satisfies Lip(f) ≤ a and |f(ϕ(x)) −
f(ϕ(y))| = d(ϕ(x), ϕ(y)). We have

d(ϕ(x), ϕ(y))

d(x, y)
=
|f(ϕ(x))− f(ϕ(y))|

d(x, y)
≤ Lip(Cϕf) ≤ ‖Cϕ‖Lip(f) ≤ ‖Cϕ‖a.
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Taking supremum over x and y, it follows that

sup
x 6=y

d(ϕ(x), ϕ(y))

d(x, y)
≤ ‖Cϕ‖a.

Since a > 1 was arbitrary, we conclude that

sup
x6=y

d(ϕ(x), ϕ(y))

d(x, y)
≤ ‖Cϕ‖.

We now characterize norm-attaining composition operators Cϕ on lip0(X).

Theorem 4.2. Let X be a compact pointed metric space and let ϕ : X → X be a noncon-

stant basepoint-preserving Lipschitz map. Assume that lip0(X) separates points uniformly.

Then a composition operator Cϕ : lip0(X)→ lip0(X) is norm-attaining if and only if there

exist a point (x0, y0) ∈ X̃, a sequence {(ϕ(xn), ϕ(yn))} in X̃ with limn→∞ ϕ(xn) = x0 and

limn→∞ ϕ(yn) = y0 such that

‖Cϕ‖ = lim
n→∞

d(ϕ(xn), ϕ(yn))

d(xn, yn)
,

and a function f in lip0(X) with Lip(f) = 1 such that |f(x0)− f(y0)| = d(x0, y0). In this

case, f is an extremal function for ‖Cϕ‖.

Proof. Assume that Cϕ is a norm-attaining composition operator on lip0(X). Then there

exists a function f ∈ lip0(X) with Lip(f) = 1 such that ‖Cϕ‖ = Lip(f ◦ ϕ), that is, f is

an extremal function for ‖Cϕ‖. Since f ∈ lip0(X), there exists δ > 0 such that

|f(x)− f(y)|
d(x, y)

<
1

2

whenever 0 < d(x, y) < δ. If (x, y) ∈ X ×X with 0 < d(ϕ(x), ϕ(y)) < δ, then

|f(ϕ(x))− f(ϕ(y))|
d(x, y)

=
|f(ϕ(x))− f(ϕ(y))|

d(ϕ(x), ϕ(y))

d(ϕ(x), ϕ(y))

d(x, y)

<
1

2

d(ϕ(x), ϕ(y))

d(x, y)

≤ 1

2
Lip(ϕ) =

1

2
‖Cϕ‖,

where we have used Theorem 4.1. Let X̃δ = {(x, y) ∈ X × X : δ ≤ d(ϕ(x), ϕ(y))}. We

have

‖Cϕ‖ = Lip(f ◦ ϕ) = sup
(x,y)∈X̃δ

|f(ϕ(x))− f(ϕ(y))|
d(x, y)

.

By that condition of supremum of ‖Cϕ‖, for each n ∈ N we can find a point (xn, yn) ∈ X̃δ

such that (
1− 1

n

)
‖Cϕ‖ <

|f(ϕ(xn))− f(ϕ(yn))|
d(xn, yn)

.
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Since X is compact, taking subsequences if necessary, we can suppose that {xn} and {yn}
converge to points a and b in X, respectively. Put x0 = ϕ(a) and y0 = ϕ(b). Clearly,

(x0, y0) ∈ X̃δ and thus (x0, y0) ∈ X̃. Besides, {ϕ(xn)} and {ϕ(yn)} converge to x0 and y0

in X, respectively. Since(
1− 1

n

)
‖Cϕ‖ <

|f(ϕ(xn))− f(ϕ(yn))|
d(xn, yn)

=
|f(ϕ(xn))− f(ϕ(yn))|

d(ϕ(xn), ϕ(yn))

d(ϕ(xn), ϕ(yn))

d(xn, yn)

≤ d(ϕ(xn), ϕ(yn))

d(xn, yn)
≤ ‖Cϕ‖

for all n ∈ N, taking limits as n→∞, it follows that

lim
n→∞

d(ϕ(xn), ϕ(yn))

d(xn, yn)
= ‖Cϕ‖,

and since we can assume, taking a subsequence if necessary, that the sequence{
|f(ϕ(xn))− f(ϕ(yn))|

d(ϕ(xn), ϕ(yn))

}
converges by the Bolzano-Weierstrass theorem, we infer that

|f(x0)− f(y0)|
d(x0, y0)

= lim
n→∞

|f(ϕ(xn))− f(ϕ(yn))|
d(ϕ(xn), ϕ(yn))

= 1.

This completes the proof of an implication.

Conversely, suppose that there exist a point (x0, y0) in X̃, a sequence {(ϕ(xn), ϕ(yn))}
in X̃ and a function f in lip0(X) satisfying the hypotheses of the theorem. By the Bolzano-

Weierstrass theorem, we can assume that the sequence{
|f(ϕ(xn))− f(ϕ(yn))|

d(xn, yn)

}
converges by taking a subsequence if necessary. Note that

lim
n→∞

|f(ϕ(xn))− f(ϕ(yn))|
d(ϕ(xn), ϕ(yn))

=
|f(x0)− f(y0)|

d(x0, y0)
= 1

and therefore f(ϕ(xn)) 6= f(ϕ(yn)) for all n ≥ m and some m ∈ N. We have

‖Cϕ‖ = lim
n→∞

d(ϕ(xn), ϕ(yn))

d(xn, yn)

= lim
n→∞

[
d(ϕ(xn), ϕ(yn))

d(x0, y0)

|f(ϕ(xn))− f(ϕ(yn))|
d(xn, yn)

|f(x0)− f(y0)|
|f(ϕ(xn))− f(ϕ(yn))|

]
= lim

n→∞

|f(ϕ(xn))− f(ϕ(yn))|
d(xn, yn)

≤ sup
x 6=y

|f(ϕ(x))− f(ϕ(y))|
d(x, y)

= Lip(f ◦ ϕ) ≤ ‖Cϕ‖.

Hence f is an extremal function for ‖Cϕ‖ and this completes the proof.
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A condition in Theorem 4.2 justifies the introduction of the following property.

Definition 4.3. Let X be a pointed metric space. It is said that the unit sphere of lip0(X)

separates points uniformly if for every x, y ∈ X, there exists a function f ∈ lip0(X) with

Lip(f) = 1 such that |f(x)− f(y)| = d(x, y).

We now discuss some examples of spaces lip0(X) whose unit spheres separate points

uniformly. Note that lip0(X) enjoys that property when X is uniformly discrete meaning

that inf{d(x, y) : x 6= y} > 0 because, in this case, we have lip0(X) = Lip0(X) by [13,

Lemma 2.5] and, for each y ∈ X, the function z 7→ d(z, y)−d(e, y) from X into R satisfies

the required conditions in Definition 4.3. On the other hand, if (X, d) is a compact pointed

metric space and α is a scalar in (0, 1), then lip0(Xα) has the aforementioned property

(see, for example, [17, p. 62]).

In order to provide more examples, we appeal to [10, Definition 2] and denote by Ω

the set of increasing functions ω : [0,∞) → [0,∞) such that ω(0) = 0, limt→0 ω(t) = 0,

limt→0 ω(t)/t = +∞ and the function ω(t)/t is decreasing for t > 0. Some important

elements of Ω are ω(t) = tα with α ∈ (0, 1). Each element in Ω permits to replace the

metric d on X with a new metric ω ◦ d and we can consider so the space Lip0(X,ω ◦ d).

In the case ω(t) = tα, we would obtain the space Lip0(Xα).

Proposition 4.4. If (X, d) is a compact pointed metric space and ω ∈ Ω, then the unit

sphere of lip0(X,ω ◦ d) separates points uniformly.

Proof. Fix two points x, y ∈ X with x 6= y and define the functions hx,y, gx,y, fx,y : X → R
by

hx,y(z) = max{d(x, y)− d(x, z), 0},

gx,y(z) =
ω(d(x, y))

d(x, y)
hx,y(z),

fx,y(z) = gx,y(z)− gx,y(e)

for all z ∈ X. An easy computation gives

|fx,y(z)− fx,y(u)|
ω(d(z, u))

≤ ω(d(x, y))

d(x, y)

min{d(z, u), d(x, y)}
ω(d(z, u))

for all z, u ∈ X with z 6= u. Hence fx,y ∈ Lip0(X) with |fx,y(x)− fx,y(y)| = ω(d(x, y)). If

d(z, u) ≤ d(x, y), we have

|fx,y(z)− fx,y(u)|
ω(d(z, u))

≤ ω(d(x, y))

d(x, y)

d(z, u)

ω(d(z, u))
≤ 1

because t 7→ ω(t)/t (t > 0) is decreasing; and if d(z, u) > d(x, y), we also have

|fx,y(z)− fx,y(u)|
ω(d(z, u))

≤ ω(d(x, y))

d(x, y)

d(x, y)

ω(d(z, u))
≤ 1
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because ω is increasing. So we have proved that fx,y ∈ Lip0(X,ω ◦ d) with

Lip(fx,y, ω ◦ d) =
|fx,y(x)− fx,y(y)|

ω(d(x, y))
= 1.

We next show that Lip0(X) is contained in lip0(X,ω ◦ d). Indeed, let f ∈ Lip0(X). Then

f ∈ Lip0(X,ω ◦ d) also because

|f(z)− f(u)|
ω(d(z, u))

=
|f(z)− f(u)|

d(z, u)

d(z, u)

ω(d(z, u))
≤ Lip(f)

1 + diam(X)

ω(1 + diam(X))

for all z, u ∈ X with z 6= u. Moreover, given ε > 0, we can find δ > 0 such that

t/ω(t) < ε/(1 + Lip(f)) whenever 0 < t < δ. Then 0 < d(z, u) < δ implies

|f(z)− f(u)|
ω(d(z, u))

≤ Lip(f)
d(z, u)

ω(d(z, u))
< ε,

and thus f ∈ lip0(X,ω ◦ d). Therefore fx,y satisfies the conditions of Definition 4.3 and

this proves the proposition.

For spaces lip0(X) whose unit spheres separate points uniformly, we next derive from

Theorem 4.2 a characterization for norm-attaining composition operators on lip0(X) which

is now free of extremal functions.

Corollary 4.5. Let X be a compact pointed metric space and let ϕ : X → X be a noncon-

stant basepoint-preserving Lipschitz map. Assume that the unit sphere of lip0(X) separates

points uniformly. Then a composition operator Cϕ : lip0(X)→ lip0(X) is norm-attaining

if and only if there exist a point (x0, y0) ∈ X̃, a sequence {(ϕ(xn), ϕ(yn))} in X̃ with

limn→∞ ϕ(xn) = x0 and limn→∞ ϕ(yn) = y0 such that

‖Cϕ‖ = lim
n→∞

d(ϕ(xn), ϕ(yn))

d(xn, yn)
.

Furthermore, if Cϕ : lip0(X)→ lip0(X) is norm-attaining, then any function f in lip0(X)

with Lip(f) = 1 satisfying that |f(x0)− f(y0)| = d(x0, y0), is extremal for ‖Cϕ‖.

Our following goal is to show that compact composition operators on spaces lip0(X)

whose unit spheres separate points uniformly are norm-attaining. Really, we will deduce

this fact from a much more general result that involves the concept of essential norm ‖T‖e
of a bounded operator T : X → Y between Banach spaces defined by

‖T‖e = inf{‖T −K‖ : K is a compact operator from X to Y }.

We prepare its proof with two lemmas whose proofs use the same methods applied in the

proofs of Lemma 3.2 and Theorem 3.1 in [11] for the special case of spaces lip0(Xα) with

0 < α < 1.
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The first one is a characterization of the weak convergence of sequences in lip0(X) which

is an easy consequence of the uniform boundedness principle and Rainwater’s theorem [19,

p. 33]. For the application of this last theorem, we use [21, Corollary 3.3.6] which describes

the extreme points of the unit ball of the dual space lip0(X)∗ when lip0(X) separates points

uniformly.

Lemma 4.6. Let X be a compact pointed metric space and let {fn} be a sequence in

lip0(X). Assume lip0(X) separates points uniformly. Then {fn} converges to 0 weakly in

lip0(X) if and only if {fn} is bounded in lip0(X) and converges to 0 pointwise on X.

We will follow the proof of [11, Theorem 3.1] to prove the next lemma, but we include

it because that adaptation is not immediate.

Lemma 4.7. Let X be a compact pointed metric space and let ϕ : X → X be a nonzero

basepoint-preserving Lipschitz map. Assume that lip0(X) separates points uniformly.

Then the essential norm of the operator Cϕ : lip0(X) → lip0(X) satisfies the lower es-

timate

lim
t→0

sup
0<d(x,y)<t

d(ϕ(x), ϕ(y))

d(x, y)
≤
√

2‖Cϕ‖e.

Proof. According to the proof of [11, Theorem 3.1], we first note that

(4.1) lim
t→0

sup
0<d(x,y)<t

d(ϕ(x), ϕ(y))

d(x, y)
= inf

t>0
sup

0<d(x,y)<t

d(ϕ(x), ϕ(y))

d(x, y)

and obtain two sequences {xn} and {yn} in X satisfying that

(4.2) 0 < d(xn, yn) <
1

n(1 + Lip(ϕ))

for all n ∈ N, and

(4.3) inf
t>0

sup
0<d(x,y)<t

d(ϕ(x), ϕ(y))

d(x, y)
= lim

n→∞

d(ϕ(xn), ϕ(yn))

d(xn, yn)
.

Passing to a subsequence if necessary, we can assume that {xn} and {yn} converge respec-

tively to points x0 and y0 in X. By (4.2), note that x0 = y0. Consider the closed subset

of X given by

X0 = {ϕ(xn) : n ∈ N0} ∪ {ϕ(yn) : n ∈ N0} ∪ {e}.

Since lip0(X) separates points uniformly, for every a > 1 and every n ∈ N0, we have

gn(ϕ(yn)) = 0 and gn(ϕ(xn)) = d(ϕ(xn), ϕ(yn)) for some gn ∈ lip0(X0) with Lip(gn) ≤ a

(see [21, Corollary 3.3.5] and [20, Theorem 1]). Since [n/(a(n + 1))]gn ∈ lip0(X0) with

Lip([n/(a(n + 1))]gn) < 1, applying [21, Theorem 3.2.6], for every n ∈ N0 there exists
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fn ∈ lip0(X) with fn(x) = [n/(a(n+ 1))]gn(x) for all x ∈ X0, Lip(fn) <
√

2 and ‖fn‖∞ =

‖[n/(a(n+ 1))]gn‖∞. Since

d(ϕ(xn), ϕ(yn))

d(xn, yn)
=
|gn(ϕ(xn))− gn(ϕ(yn))|

d(xn, yn)

= a

(
n+ 1

n

)
|fn(ϕ(xn))− fn(ϕ(yn))|

d(xn, yn)

≤ a
(
n+ 1

n

)
Lip(Cϕfn)

for all n ∈ N, we have

(4.4) lim
n→∞

d(ϕ(xn), ϕ(yn))

d(xn, yn)
≤ a lim sup

n→∞
Lip(Cϕfn).

Note that {fn} is bounded in lip0(X) and ‖fn‖∞ ≤ 1/a(n + 1) for all n ∈ N. Thus it

converges weakly to zero in lip0(X) by Lemma 4.6. Now, if K is any compact operator

from lip0(X) into lip0(X), we have limn→∞ Lip(Kfn) = 0 because compact operators are

completely continuous. Hence

lim sup
n→∞

Lip(Cϕfn) = lim sup
n→∞

(Lip(Cϕfn)− Lip(Kfn))

≤ lim sup
n→∞

Lip((Cϕ −K)fn)

≤
√

2‖Cϕ −K‖.

(4.5)

Connecting (4.1), (4.3), (4.4) and (4.5), we deduce that

lim
t→0

sup
0<d(x,y)<t

d(ϕ(x), ϕ(y))

d(x, y)
≤ a
√

2‖Cϕ −K‖.

Taking infimum over all compact operators K on lip0(X), we obtain

lim
t→0

sup
0<d(x,y)<t

d(ϕ(x), ϕ(y))

d(x, y)
≤ a
√

2‖Cϕ‖e.

Since a > 1 was arbitrary, we derive the lower estimate

lim
t→0

sup
0<d(x,y)<t

d(ϕ(x), ϕ(y))

d(x, y)
≤
√

2‖Cϕ‖e.

We now are ready to establish one of our announced results.

Corollary 4.8. Let X be a compact pointed metric space and let ϕ : X → X be a non-

constant basepoint-preserving Lipschitz map. Assume that the unit sphere of lip0(X) sep-

arates points uniformly. If the composition operator Cϕ : lip0(X)→ lip0(X) satisfies that√
2‖Cϕ‖e < ‖Cϕ‖, then Cϕ is norm-attaining.
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Proof. As
√

2‖Cϕ‖e < ‖Cϕ‖, by Lemma 4.7 and Theorem 4.1 we have

(4.6) lim
d(x,y)→0

d(ϕ(x), ϕ(y))

d(x, y)
< sup

x 6=y

d(ϕ(x), ϕ(y))

d(x, y)
= ‖Cϕ‖.

We can take a sequence {(xn, yn)} in X̃ such that

(4.7) lim
n→∞

d(ϕ(xn), ϕ(yn))

d(xn, yn)
= sup

x 6=y

d(ϕ(x), ϕ(y))

d(x, y)
.

By the compactness of X, taking subsequences if necessary, we can suppose that {xn}
and {yn} converge to a and b in X, respectively. Put ϕ(a) = x0 and ϕ(b) = y0. By the

continuity of ϕ, {ϕ(xn)} and {ϕ(yn)} converge to x0 and y0, respectively. By (4.7) and

(4.6), we have a 6= b and x0 6= y0. It follows that

lim
n→∞

d(ϕ(xn), ϕ(yn))

d(xn, yn)
=
d(x0, y0)

d(a, b)
> 0,

and thus we can take a subsequence of {(ϕ(xn), ϕ(yn))} in X̃ which satisfies the hypotheses

of Corollary 4.5. Therefore Cϕ attains its norm.

Remark 4.9. Taking into account Theorem 3.2.6 in [21], note that the proof of Lemma 4.7

shows that if Cϕ is a nonzero bounded composition operator from lip0(X,R) into lip0(X,R),

then

lim
t→0

sup
0<d(x,y)<t

d(ϕ(x), ϕ(y))

d(x, y)
≤ ‖Cϕ‖e.

Unfortunately, we have not been able to prove this estimate for operators Cϕ from

lip0(X,C) into lip0(X,C). The reason is that the complex version of Theorem 3.2.6 in [21]

follows from the real version separating into real and imaginary parts, and this introduces

a factor of
√

2 in the extension of a complex-valued little Lipschitz function. Therefore,

we obtain the same conclusion in Corollary 4.8 when Cϕ : lip0(X,R)→ lip0(X,R) satisfies

‖Cϕ‖e < ‖Cϕ‖.

Since a bounded operator is compact if and only if its essential norm equals 0, an

application of Corollary 4.8 yields the desired result:

Corollary 4.10. Let X be a compact pointed metric space and let ϕ : X → X be a

nonconstant basepoint-preserving Lipschitz map. Assume that the unit sphere of lip0(X)

separates points uniformly. Then every compact composition operator Cϕ on lip0(X) is

norm-attaining.

It is known (see [12, 15]) that if X is a compact pointed metric space and ϕ : X → X

is a basepoint-preserving Lipschitz map, then a composition operator Cϕ on lip0(X) is

compact if and only if ϕ is supercontractive, that is,

lim
d(x,y)→0

d(ϕ(x), ϕ(y))

d(x, y)
= 0.
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As a consequence of Corollary 4.10, we obtain the following.

Corollary 4.11. Let X be a compact pointed metric space and let ϕ : X → X be a

nonconstant basepoint-preserving supercontractive Lipschitz map. Assume that the unit

sphere of lip0(X) separates points uniformly. Then every composition operator Cϕ on

lip0(X) is norm-attaining.
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