Norm-attaining Composition Operators on Lipschitz Spaces

Antonio Jiménez-Vargas

Abstract. Every composition operator C_{φ} on the Lipschitz space $\operatorname{Lip}_0(X)$ attains its norm. This fact is essentially known and we give in this paper a sequential characterization of the extremal functions for the norm of C_{φ} on $\operatorname{Lip}_0(X)$. We also characterize the norm-attaining composition operators C_{φ} on the little Lipschitz space $\operatorname{lip}_0(X)$ which separates points uniformly and identify the extremal functions for the norm of C_{φ} on $\operatorname{lip}_0(X)$. We deduce that compact composition operators on $\operatorname{lip}_0(X)$ are norm-attaining whenever the sphere unit of $\operatorname{lip}_0(X)$ separates points uniformly. In particular, this condition is satisfied by spaces of little Lipschitz functions on Hölder compact metric spaces (X, d^{α}) with $0 < \alpha < 1$.

1. Introduction

Let (X, d) be a pointed metric space with a basepoint designated by e, let \widetilde{X} denote the set

$$\{(x,y)\in X\times X: x\neq y\},\$$

and let \mathbb{K} be the field of real or complex numbers. The Lipschitz space $\operatorname{Lip}_0(X)$ is the Banach space of all Lipschitz functions $f: X \to \mathbb{K}$ for which f(e) = 0, endowed with the Lipschitz norm defined by

$$\operatorname{Lip}(f) = \sup\left\{\frac{|f(x) - f(y)|}{d(x, y)} : (x, y) \in \widetilde{X}\right\},\$$

and the *little Lipschitz space* $\lim_{x \to 0} (X)$ is the closed subspace of $\lim_{x \to 0} (X)$ of all functions f such that

$$\lim_{t \to 0} \sup \left\{ \frac{|f(x) - f(y)|}{d(x, y)} : (x, y) \in \widetilde{X}, d(x, y) < t \right\} = 0.$$

There exist metric spaces X for which $\lim_{x \to 0} (X) = \{0\}$ as, for instance, X = [0, 1] with the usual metric. In contrast, we can consider metric spaces X such that $\lim_{x \to 0} (X)$ separates

Communicated by Xiang Fang.

Received January 23, 2018; Accepted May 28, 2018.

²⁰¹⁰ Mathematics Subject Classification. 47B33, 47B38.

Key words and phrases. composition operator, compact operator, norm-attaining operator, Lipschitz function, little Lipschitz function.

This paper was partially supported by the Spanish Ministry of Economy and Competitiveness project no. MTM2014-58984-P and the European Regional Development Fund (ERDF), and Junta of Andalucía grant FQM-194.

points uniformly in the sense that there exists a constant a > 1 such that, for every $x, y \in X$, some $f \in \text{lip}_0(X)$ satisfies $\text{Lip}(f) \leq a$ and |f(x) - f(y)| = d(x, y). For each compact pointed metric space (X, d), the space $\text{lip}_0(X^{\alpha})$ enjoys this property being $X^{\alpha} = (X, d^{\alpha})$ and $\alpha \in (0, 1)$. We refer to the Weaver's book [21] for a complete study on those Lipschitz spaces.

Let X be a set and let $\mathcal{F}(X)$ be a linear space of functions from X into K. Given a map $\varphi \colon X \to X$, let us recall that a *composition operator* C_{φ} on $\mathcal{F}(X)$ is a linear operator from $\mathcal{F}(X)$ into itself defined by $C_{\varphi}f = f \circ \varphi$. The map φ is called the *symbol* of C_{φ} . It is said that C_{φ} attains its norm on $\mathcal{F}(X)$ if there exists a function $f \in \mathcal{F}(X)$ with norm one such that $\|C_{\varphi}\| = \|C_{\varphi}f\|$. Such a function f is called an *extremal function* for the norm of C_{φ} . It is an application of a James' theorem (see [4, Chapter One, Theorem 6]) that a Banach space E is reflexive if and only if any compact linear operator on E attains its norm.

Norm-attaining composition operators have been studied for different function spaces by several authors as, for example, the Hardy space and the Dirichlet space by Hammond [8,9], Bloch spaces by Martín [16] and Montes-Rodríguez [18], and weighted Bloch spaces by Bonet, Lindström and Wolf [1].

We address the question as to when composition operators C_{φ} acting on the Lipschitz space $\operatorname{Lip}_0(X)$ as well as on the little Lipschitz space $\operatorname{lip}_0(X)$ satisfying the uniform separation property attain their norms and characterize the extremal functions for the norm of C_{φ} on such spaces.

Composition operators on Lipschitz spaces have been considered by different authors. Assuming that X is a compact metric space and φ is a Lipschitz map of X into X, Kamowitz and Scheinberg [15] proved that a composition operator C_{φ} is compact on the spaces of bounded Lipschitz functions $\operatorname{Lip}(X)$ and $\operatorname{lip}(X^{\alpha})$ with the norm $\|\cdot\|_{\infty} + \operatorname{Lip}(\cdot)$ if and only if φ is supercontractive. This result was extended in [12] to composition operators on $\operatorname{Lip}_0(X)$ when X is a bounded pointed metric space. Chen, Li, R. Wang and Y.-S. Wang [3] characterized compact weighted composition operators between spaces of scalar-valued Lipschitz functions. Botelho and Jamison [2], Esmaeili and Mahyar [5], and Golbaharan and Mahyar [6, 7] tackled weighted composition operators between spaces of vector-valued Lipschitz functions. When φ is a Lipschitz map from X into X which preserves basepoint (such a map is called a *basepoint-preserving Lipschitz self-map of* X), the proof of Proposition 1.8.2 in [21] reveals that the composition operator C_{φ} on Lip₀(X) attains its norm at an explicit extremal function. Apparently, this result of Weaver is one of the few known results concerning norm-attaining composition operators on those Lipschitz spaces.

We now describe the contents of this paper. In Section 2, we characterize the self-maps

 φ of X inducing a nonzero bounded composition operator C_{φ} on the space $\operatorname{Lip}_0(X)$ and the space $\operatorname{lip}_0(X)$ which satisfies the uniform separation property. Specifically, we show that such maps are nonconstant basepoint-preserving Lipschitz.

We recall in Section 3 that every nonzero bounded composition operator C_{φ} on $\operatorname{Lip}_0(X)$ attains its norm and give a sequential characterization of the extremal functions for the norm $\|C_{\varphi}\|$.

When the space $\lim_{x \to 0} (X)$ separates points uniformly, we will give a complete description of norm-attaining composition operators C_{φ} on $\lim_{x \to 0} (X)$ in Theorem 4.2. This characterization involves the existence of a point (x_0, y_0) in \tilde{X} and an extremal function for $\|C_{\varphi}\|$ that separates the points x_0 and y_0 to their full distance. This fact motivates the following concept. It is said that the unit sphere of $\lim_{x \to 0} (X)$ separates points uniformly if for every $x, y \in X$, there exists a function $f \in \lim_{x \to 0} (X)$ with $\operatorname{Lip}(f) = 1$ such that |f(x) - f(y)| = d(x, y). We know two different kinds of metric spaces X enjoying this property: when X is uniformly discrete or when X is a Hölder compact metric space. Besides, we will introduce a more constructively defined class of compact metric spaces for which the unit sphere of $\lim_{x \to 0} (X)$ has the uniform separation property. For norm-attaining composition operators on such spaces, we will improve Theorem 4.2 with a sequential characterization which will be now free of extremal functions.

The final part of the paper deals with compact composition operators on spaces $\lim_{0}(X)$ whose unit spheres separate points uniformly. We will state that every composition operator C_{φ} on such spaces for which the essential norm of C_{φ} multiplied by $\sqrt{2}$ is strictly less than the norm of C_{φ} attains its norm. To prove this fact, we will need a characterization of the weak convergence of sequences in $\lim_{0}(X)$ and a lower estimate for the essential norm of C_{φ} on $\lim_{0}(X)$. As a consequence, we will deduce that compact composition operators on $\lim_{0}(X)$ are norm-attaining. It is worth noting that infinite dimensional spaces $\lim_{0}(X)$ and $\lim_{0}(X)$ are not reflexive (see [14, Theorem 6.6] and [21, Corollary 2.5.5]).

2. Nonzero bounded composition operators on Lipschitz spaces

In this section, we characterize the class of all functions φ mapping X into itself whose induced composition operator C_{φ} is a nonzero bounded operator on the Lipschitz space $\operatorname{Lip}_0(X)$ and the little Lipschitz space $\operatorname{lip}_0(X)$ that satisfies the uniform separation property.

Theorem 2.1. Let X be a pointed metric space and let φ be a self-map of X. Then the composition operator C_{φ} is a bounded operator from $\operatorname{Lip}_0(X)$ into $\operatorname{Lip}_0(X)$ if and only if φ is Lipschitz and preserves basepoint. Besides, C_{φ} : $\operatorname{Lip}_0(X) \to \operatorname{Lip}_0(X)$ is nonzero if and only if φ is nonconstant.

Proof. Assume that C_{φ} : $\operatorname{Lip}_{0}(X) \to \operatorname{Lip}_{0}(X)$ is bounded. If $\varphi \colon X \to X$ were not Lipschitz, there would exist a sequence $\{(x_{n}, y_{n})\}$ in \widetilde{X} satisfying $d(\varphi(x_{n}), \varphi(y_{n}))/d(x_{n}, y_{n}) \ge n$ for all $n \in \mathbb{N}$. For each $n \in \mathbb{N}$, define the functions $g_{n}, f_{n} \colon X \to \mathbb{R}$ by

$$g_n(x) = \frac{d(x,\varphi(x_n)) - d(x,\varphi(y_n))}{2}$$
$$f_n(x) = g_n(x) - g_n(e).$$

Clearly, f_n belongs to $\operatorname{Lip}_0(X)$ with $\operatorname{Lip}(f_n) = 1$ and satisfies $|f_n(\varphi(x_n)) - f_n(\varphi(y_n))| = d(\varphi(x_n), \varphi(y_n))$. Hence we have

$$\operatorname{Lip}(f_n \circ \varphi) \geq \frac{|f_n(\varphi(x_n)) - f_n(\varphi(y_n))|}{d(x_n, y_n)} = \frac{d(\varphi(x_n), \varphi(y_n))}{d(x_n, y_n)} \geq n$$

for all $n \in \mathbb{N}$, and thus the sequence $\{C_{\varphi}f_n\}$ is not bounded in $\operatorname{Lip}_0(X)$. This contradicts that $C_{\varphi} \colon \operatorname{Lip}_0(X) \to \operatorname{Lip}_0(X)$ is bounded, and proves that φ is Lipschitz. On the other hand, since C_{φ} maps $\operatorname{Lip}_0(X)$ into itself, we have that $C_{\varphi}f(e) = 0$ for all $f \in \operatorname{Lip}_0(X)$, that is, $f(\varphi(e)) = f(e)$ for all $f \in \operatorname{Lip}_0(X)$ which implies that $\varphi(e) = e$ because $\operatorname{Lip}_0(X)$ separates the points of X.

Conversely, suppose that φ is Lipschitz and $\varphi(e) = e$. For every $f \in \operatorname{Lip}_0(X)$, we have $f(\varphi(e)) = f(e) = 0$ and $f \circ \varphi$ is Lipschitz with $\operatorname{Lip}(f \circ \varphi) \leq \operatorname{Lip}(f) \operatorname{Lip}(\varphi)$. Hence C_{φ} maps $\operatorname{Lip}_0(X)$ into $\operatorname{Lip}_0(X)$. In order to see that C_{φ} is bounded, we use the closed graph theorem. Let $\{f_n\}$ be a sequence in $\operatorname{Lip}_0(X)$ such that $\operatorname{Lip}(f_n) \to 0$ as $n \to \infty$, and assume that $\operatorname{Lip}((f_n \circ \varphi) - g) \to 0$ as $n \to \infty$ for some function $g \in \operatorname{Lip}_0(X)$. Observe that, for any function $f \in \operatorname{Lip}_0(X)$, it holds that $|f(x)| \leq \operatorname{Lip}(f)d(x, e)$ for all $x \in X$. Using this inequality, we can deduce that, for each $x \in X$, the sequence $\{f_n(\varphi(x))\}$ converges to 0 and also to g(x) as $n \to \infty$, and so g(x) = 0. This gives g = 0. Hence C_{φ} : $\operatorname{Lip}_0(X) \to \operatorname{Lip}_0(X)$ is bounded.

We now prove the second assertion. Assume that φ is constant. Then $\varphi(x) = \varphi(e) = e$ for all $x \in X$. Hence $C_{\varphi}f(x) = f(\varphi(x)) = f(e) = 0$ for each $f \in \text{Lip}_0(X)$ and all $x \in X$, and therefore $C_{\varphi} = 0$. Conversely, suppose that φ is not constant. This implies that $X \setminus \{e\} \neq \emptyset$ and we can take a point $x \in X \setminus \{e\}$ such that $\varphi(x) \neq \varphi(e) = e$. Since $\text{Lip}_0(X)$ separates the points of X, some $f \in \text{Lip}_0(X)$ satisfies that $f(\varphi(x)) \neq f(e) = 0$ and thus C_{φ} is nonzero.

As we have commented above, $\lim_{x \to 0} (X)$ has especial interest when it separates points uniformly. So we avoid the cases in which $\lim_{x \to 0} (X)$ reduces to the zero function.

Theorem 2.2. Let X be a compact pointed metric space and let φ be a self-map of X. Assume that $\lim_{p \to \infty} (X)$ separates points uniformly. Then C_{φ} is a bounded operator from $\lim_{p \to \infty} (X)$ into $\lim_{p \to \infty} (X)$ if and only if φ is Lipschitz and preserves basepoint. Besides, $C_{\varphi} \colon \lim_{p \to \infty} (X) \to \lim_{p \to \infty} (X)$ is nonzero if and only if φ is nonconstant.

Proof. Suppose that C_{φ} : $\lim_{0 \to \infty} (X) \to \lim_{0 \to \infty} (X)$ is bounded. Using that $\lim_{0 \to \infty} (X)$ separates points uniformly, similar arguments to those above in Theorem 2.1 show that φ is Lipschitz and preserves basepoint.

For the converse implication, assume that φ is Lipschitz and $\varphi(e) = e$. We first show that $f \circ \varphi \in \text{lip}_0(X)$ for all $f \in \text{lip}_0(X)$. Note that $f \circ \varphi \in \text{Lip}_0(X)$ as in the proof of Theorem 2.1. Besides, given $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$(x,y) \in \widetilde{X}, \ d(x,y) < \delta \implies \frac{|f(x) - f(y)|}{d(x,y)} < \frac{\varepsilon}{1 + \operatorname{Lip}(\varphi)}$$

Let $(x, y) \in \widetilde{X}$ be with $d(x, y) < \delta/(1 + \operatorname{Lip}(\varphi))$. If $\varphi(x) \neq \varphi(y)$, we have $0 < d(\varphi(x), \varphi(y)) < \delta$ and hence

$$\frac{|f(\varphi(x)) - f(\varphi(y))|}{d(x,y)} = \frac{|f(\varphi(x)) - f(\varphi(y))|}{d(\varphi(x),\varphi(y))} \frac{d(\varphi(x),\varphi(y))}{d(x,y)} < \frac{\varepsilon}{1 + \operatorname{Lip}(\varphi)}\operatorname{Lip}(\varphi) < \varepsilon.$$

Thus $f \circ \varphi \in \lim_{0 \to \infty} (X)$. Hence C_{φ} maps $\lim_{0 \to \infty} (X)$ into $\lim_{0 \to \infty} (X)$ and, using the closed graph theorem as in the proof of Theorem 2.1, we show that $C_{\varphi} \colon \lim_{0 \to \infty} (X) \to \lim_{0 \to \infty} (X)$ is bounded. The second equivalence is proved similarly as in Theorem 2.1.

3. Norm-attaining composition operators on $Lip_0(X)$

We recall in this section that every nonzero bounded composition operator C_{φ} on $\operatorname{Lip}_0(X)$ attains its norm and give a sequential characterization of the extremal functions for $||C_{\varphi}||$.

Theorem 3.1. [21, Proposition 1.8.2] Let X be a pointed metric space and let $\varphi \colon X \to X$ be a nonconstant basepoint-preserving Lipschitz map. Then the norm of the composition operator $C_{\varphi} \colon \operatorname{Lip}_0(X) \to \operatorname{Lip}_0(X)$ is given by the formula

$$|C_{\varphi}\| = \sup_{x \neq y} \frac{d(\varphi(x), \varphi(y))}{d(x, y)}$$

Furthermore, the operator C_{φ} on $\operatorname{Lip}_0(X)$ is norm-attaining and, for each $y \in X$, an extremal function for $||C_{\varphi}||$ is the function $f_y \colon X \to \mathbb{R}$, defined by $f_y(z) = d(z, \varphi(y)) - d(e, \varphi(y))$ for all $z \in X$.

Proof. For any $f \in \text{Lip}_0(X)$ with Lip(f) = 1, we have

$$\operatorname{Lip}(C_{\varphi}f) = \operatorname{Lip}(f \circ \varphi) \leq \operatorname{Lip}(f) \operatorname{Lip}(\varphi) = \operatorname{Lip}(\varphi),$$

and therefore $||C_{\varphi}|| \leq \operatorname{Lip}(\varphi)$. Now, for each point $y \in X$, define $f_y \colon X \to \mathbb{R}$ as in the statement. It is easy to see that $f_y \in \operatorname{Lip}_0(X)$ with $\operatorname{Lip}(f_y) = 1$. We obtain

$$\operatorname{Lip}(\varphi) = \sup_{x \neq y} \frac{d(\varphi(x), \varphi(y))}{d(x, y)} = \sup_{x \neq y} \frac{|f_y(\varphi(x)) - f_y(\varphi(y))|}{d(x, y)} = \operatorname{Lip}(C_\varphi f_y) \le \|C_\varphi\|,$$

and this completes the proof.

Theorem 3.2. Let X be a pointed metric space and let $\varphi \colon X \to X$ be a nonconstant basepoint-preserving Lipschitz map. Then a function f in $\operatorname{Lip}_0(X)$ with $\operatorname{Lip}(f) = 1$ is extremal for the norm of the operator C_{φ} on $\operatorname{Lip}_0(X)$ if and only if there exists a sequence $\{(\varphi(x_n), \varphi(y_n))\}$ in \widetilde{X} such that

$$\lim_{n \to \infty} \frac{d(\varphi(x_n), \varphi(y_n))}{d(x_n, y_n)} = \|C_{\varphi}\| \quad and \quad \lim_{n \to \infty} \frac{|f(\varphi(x_n)) - f(\varphi(y_n))|}{d(\varphi(x_n), \varphi(y_n))} = 1.$$

Proof. Suppose that $f \in \text{Lip}_0(X)$ with Lip(f) = 1 is extremal for $||C_{\varphi}||$. Then

$$\|C_{\varphi}\| = \operatorname{Lip}(f \circ \varphi) = \sup_{x \neq y} \frac{|f(\varphi(x)) - f(\varphi(y))|}{d(x, y)}$$

Hence, for each $n \in \mathbb{N}$, we can take a point $(x_n, y_n) \in \widetilde{X}$ such that

$$\left(1-\frac{1}{n}\right)\|C_{\varphi}\| < \frac{|f(\varphi(x_n)) - f(\varphi(y_n))|}{d(x_n, y_n)} \le \|C_{\varphi}\|.$$

By using Theorem 3.1, it follows that

$$\left(1-\frac{1}{n}\right)\frac{d(\varphi(x_n),\varphi(y_n))}{d(x_n,y_n)} < \frac{|f(\varphi(x_n)) - f(\varphi(y_n))|}{d(x_n,y_n)}$$

This implies that $\{(\varphi(x_n), \varphi(y_n))\}$ is a sequence in \widetilde{X} , and

$$1 - \frac{1}{n} < \frac{|f(\varphi(x_n)) - f(\varphi(y_n))|}{d(\varphi(x_n), \varphi(y_n))} \le \operatorname{Lip}(f) = 1$$

for all $n \in \mathbb{N}$, and therefore

$$\lim_{n \to \infty} \frac{|f(\varphi(x_n)) - f(\varphi(y_n))|}{d(\varphi(x_n), \varphi(y_n))} = 1,$$

as required. By the Bolzano-Weierstrass theorem, taking a subsequence if necessary, we can suppose that the sequence $\{d(\varphi(x_n), \varphi(y_n))/d(x_n, y_n)\}$ converges. By the inequality above for $\|C_{\varphi}\|$, we get that

$$||C_{\varphi}|| = \lim_{n \to \infty} \frac{|f(\varphi(x_n)) - f(\varphi(y_n))|}{d(x_n, y_n)},$$

and from this we conclude that

$$\|C_{\varphi}\| = \lim_{n \to \infty} \left[\frac{|f(\varphi(x_n)) - f(\varphi(y_n))|}{d(\varphi(x_n), \varphi(y_n))} \frac{d(\varphi(x_n), \varphi(y_n))}{d(x_n, y_n)} \right] = \lim_{n \to \infty} \frac{d(\varphi(x_n), \varphi(y_n))}{d(x_n, y_n)}.$$

Conversely, let f be a function in $\operatorname{Lip}_0(X)$ with $\operatorname{Lip}(f) = 1$ and suppose that there exists a sequence $\{(\varphi(x_n), \varphi(y_n))\}$ in \widetilde{X} such that both conditions

$$\lim_{n \to \infty} \frac{d(\varphi(x_n), \varphi(y_n))}{d(x_n, y_n)} = \|C_{\varphi}\| \quad \text{and} \quad \lim_{n \to \infty} \frac{|f(\varphi(x_n)) - f(\varphi(y_n))|}{d(\varphi(x_n), \varphi(y_n))} = 1$$

are satisfied. This last limit shows that $f(\varphi(x_n)) \neq f(\varphi(y_n))$ for all $n \geq m$ and some $m \in \mathbb{N}$, and thus

$$\lim_{n \to \infty} \frac{d(\varphi(x_n), \varphi(y_n))}{|f(\varphi(x_n)) - f(\varphi(y_n))|} = 1.$$

By the Bolzano-Weierstrass theorem, we can assume that the sequence

1

$$\left\{\frac{|f(\varphi(x_n)) - f(\varphi(y_n))|}{d(x_n, y_n)}\right\}$$

converges by taking a subsequence if necessary. We now can obtain

$$\begin{split} \|C_{\varphi}\| &= \lim_{n \to \infty} \frac{d(\varphi(x_n), \varphi(y_n))}{d(x_n, y_n)} \\ &= \lim_{n \to \infty} \left[\frac{d(\varphi(x_n), \varphi(y_n))}{|f(\varphi(x_n)) - f(\varphi(y_n))|} \frac{|f(\varphi(x_n)) - f(\varphi(y_n))|}{d(x_n, y_n)} \right] \\ &= \lim_{n \to \infty} \frac{|f(\varphi(x_n)) - f(\varphi(y_n))|}{d(x_n, y_n)} \\ &\leq \sup_{x \neq y} \frac{|f(\varphi(x)) - f(\varphi(y))|}{d(x, y)} = \operatorname{Lip}(f \circ \varphi) \leq \|C_{\varphi}\|, \end{split}$$

and this says us that f is an extremal function for $||C_{\varphi}||$, as desired.

4. Norm-attaining composition operators on $\lim_{n \to \infty} (X)$

Our first aim in this section is to characterize norm-attaining composition operators on $\lim_{t \to 0} (X)$ whenever these spaces separate points uniformly.

We will need a formula for the norm of the operator C_{φ} on $\lim_{p \to \infty} (X)$, similar to that of Theorem 3.1 when C_{φ} is defined on $\lim_{p \to \infty} (X)$.

Theorem 4.1. Let X be a compact pointed metric space and let $\varphi \colon X \to X$ be a nonconstant basepoint-preserving Lipschitz map. Assume $\lim_{0 \to \infty} (X)$ separates points uniformly. Then the norm of the composition operator $C_{\varphi} \colon \lim_{0 \to \infty} (X) \to \lim_{0 \to \infty} (X)$ is given by

$$\|C_{\varphi}\| = \sup_{x \neq y} \frac{d(\varphi(x), \varphi(y))}{d(x, y)}$$

Proof. We obtain that

$$\|C_{\varphi}\| \le \sup_{x \ne y} \frac{d(\varphi(x), \varphi(y))}{d(x, y)},$$

as in the proof of Theorem 3.1. Conversely, according to [21, Corollary 3.3.5], for every a > 1 and every $(x, y) \in \widetilde{X}$, some $f \in \lim_{0 \to 0} (X)$ satisfies $\operatorname{Lip}(f) \leq a$ and $|f(\varphi(x)) - f(\varphi(y))| = d(\varphi(x), \varphi(y))$. We have

$$\frac{d(\varphi(x),\varphi(y))}{d(x,y)} = \frac{|f(\varphi(x)) - f(\varphi(y))|}{d(x,y)} \le \operatorname{Lip}(C_{\varphi}f) \le ||C_{\varphi}|| \operatorname{Lip}(f) \le ||C_{\varphi}|| a.$$

Taking supremum over x and y, it follows that

$$\sup_{x \neq y} \frac{d(\varphi(x), \varphi(y))}{d(x, y)} \le \|C_{\varphi}\|a\|$$

Since a > 1 was arbitrary, we conclude that

$$\sup_{x \neq y} \frac{d(\varphi(x), \varphi(y))}{d(x, y)} \le \|C_{\varphi}\|.$$

We now characterize norm-attaining composition operators C_{φ} on $\lim_{t \to 0} (X)$.

Theorem 4.2. Let X be a compact pointed metric space and let $\varphi \colon X \to X$ be a nonconstant basepoint-preserving Lipschitz map. Assume that $\lim_{p \to \infty} (X)$ separates points uniformly. Then a composition operator $C_{\varphi} \colon \lim_{p \to \infty} (X) \to \lim_{p \to \infty} (X)$ is norm-attaining if and only if there exist a point $(x_0, y_0) \in \widetilde{X}$, a sequence $\{(\varphi(x_n), \varphi(y_n))\}$ in \widetilde{X} with $\lim_{n \to \infty} \varphi(x_n) = x_0$ and $\lim_{n \to \infty} \varphi(y_n) = y_0$ such that

$$\|C_{\varphi}\| = \lim_{n \to \infty} \frac{d(\varphi(x_n), \varphi(y_n))}{d(x_n, y_n)}$$

and a function f in $\lim_{y \to 0} (X)$ with $\lim_{y \to 0} (f) = 1$ such that $|f(x_0) - f(y_0)| = d(x_0, y_0)$. In this case, f is an extremal function for $||C_{\varphi}||$.

Proof. Assume that C_{φ} is a norm-attaining composition operator on $\lim_{0 \to \infty} (X)$. Then there exists a function $f \in \lim_{0 \to \infty} (X)$ with $\lim_{0 \to \infty} (f) = 1$ such that $\|C_{\varphi}\| = \lim_{0 \to \infty} (f \circ \varphi)$, that is, f is an extremal function for $\|C_{\varphi}\|$. Since $f \in \lim_{0 \to \infty} (X)$, there exists $\delta > 0$ such that

$$\frac{|f(x) - f(y)|}{d(x, y)} < \frac{1}{2}$$

whenever $0 < d(x, y) < \delta$. If $(x, y) \in X \times X$ with $0 < d(\varphi(x), \varphi(y)) < \delta$, then

$$\frac{|f(\varphi(x)) - f(\varphi(y))|}{d(x,y)} = \frac{|f(\varphi(x)) - f(\varphi(y))|}{d(\varphi(x),\varphi(y))} \frac{d(\varphi(x),\varphi(y))}{d(x,y)}$$
$$< \frac{1}{2} \frac{d(\varphi(x),\varphi(y))}{d(x,y)}$$
$$\leq \frac{1}{2} \operatorname{Lip}(\varphi) = \frac{1}{2} ||C_{\varphi}||,$$

where we have used Theorem 4.1. Let $\widetilde{X}_{\delta} = \{(x, y) \in X \times X : \delta \leq d(\varphi(x), \varphi(y))\}$. We have

$$\|C_{\varphi}\| = \operatorname{Lip}(f \circ \varphi) = \sup_{(x,y) \in \widetilde{X}_{\delta}} \frac{|f(\varphi(x)) - f(\varphi(y))|}{d(x,y)}$$

By that condition of supremum of $||C_{\varphi}||$, for each $n \in \mathbb{N}$ we can find a point $(x_n, y_n) \in X_{\delta}$ such that

$$\left(1-\frac{1}{n}\right)\|C_{\varphi}\| < \frac{|f(\varphi(x_n)) - f(\varphi(y_n))|}{d(x_n, y_n)}$$

Since X is compact, taking subsequences if necessary, we can suppose that $\{x_n\}$ and $\{y_n\}$ converge to points a and b in X, respectively. Put $x_0 = \varphi(a)$ and $y_0 = \varphi(b)$. Clearly, $(x_0, y_0) \in \widetilde{X}_{\delta}$ and thus $(x_0, y_0) \in \widetilde{X}$. Besides, $\{\varphi(x_n)\}$ and $\{\varphi(y_n)\}$ converge to x_0 and y_0 in X, respectively. Since

$$\left(1 - \frac{1}{n}\right) \|C_{\varphi}\| < \frac{|f(\varphi(x_n)) - f(\varphi(y_n))|}{d(x_n, y_n)}$$

$$= \frac{|f(\varphi(x_n)) - f(\varphi(y_n))|}{d(\varphi(x_n), \varphi(y_n))} \frac{d(\varphi(x_n), \varphi(y_n))}{d(x_n, y_n)}$$

$$\le \frac{d(\varphi(x_n), \varphi(y_n))}{d(x_n, y_n)} \le \|C_{\varphi}\|$$

for all $n \in \mathbb{N}$, taking limits as $n \to \infty$, it follows that

$$\lim_{n \to \infty} \frac{d(\varphi(x_n), \varphi(y_n))}{d(x_n, y_n)} = \|C_{\varphi}\|,$$

and since we can assume, taking a subsequence if necessary, that the sequence

$$\left\{\frac{|f(\varphi(x_n)) - f(\varphi(y_n))|}{d(\varphi(x_n),\varphi(y_n))}\right\}$$

converges by the Bolzano-Weierstrass theorem, we infer that

$$\frac{|f(x_0) - f(y_0)|}{d(x_0, y_0)} = \lim_{n \to \infty} \frac{|f(\varphi(x_n)) - f(\varphi(y_n))|}{d(\varphi(x_n), \varphi(y_n))} = 1.$$

This completes the proof of an implication.

Conversely, suppose that there exist a point (x_0, y_0) in \widetilde{X} , a sequence $\{(\varphi(x_n), \varphi(y_n))\}$ in \widetilde{X} and a function f in $\lim_{x \to 0} (X)$ satisfying the hypotheses of the theorem. By the Bolzano-Weierstrass theorem, we can assume that the sequence

$$\left\{\frac{|f(\varphi(x_n)) - f(\varphi(y_n))|}{d(x_n, y_n)}\right\}$$

converges by taking a subsequence if necessary. Note that

$$\lim_{n \to \infty} \frac{|f(\varphi(x_n)) - f(\varphi(y_n))|}{d(\varphi(x_n), \varphi(y_n))} = \frac{|f(x_0) - f(y_0)|}{d(x_0, y_0)} = 1$$

and therefore $f(\varphi(x_n)) \neq f(\varphi(y_n))$ for all $n \geq m$ and some $m \in \mathbb{N}$. We have

$$\begin{aligned} \|C_{\varphi}\| &= \lim_{n \to \infty} \frac{d(\varphi(x_n), \varphi(y_n))}{d(x_n, y_n)} \\ &= \lim_{n \to \infty} \left[\frac{d(\varphi(x_n), \varphi(y_n))}{d(x_0, y_0)} \frac{|f(\varphi(x_n)) - f(\varphi(y_n))|}{d(x_n, y_n)} \frac{|f(x_0) - f(y_0)|}{|f(\varphi(x_n)) - f(\varphi(y_n))|} \right] \\ &= \lim_{n \to \infty} \frac{|f(\varphi(x_n)) - f(\varphi(y_n))|}{d(x_n, y_n)} \\ &\leq \sup_{x \neq y} \frac{|f(\varphi(x)) - f(\varphi(y))|}{d(x, y)} = \operatorname{Lip}(f \circ \varphi) \leq \|C_{\varphi}\|. \end{aligned}$$

Hence f is an extremal function for $||C_{\varphi}||$ and this completes the proof.

A condition in Theorem 4.2 justifies the introduction of the following property.

Definition 4.3. Let X be a pointed metric space. It is said that the unit sphere of $\lim_{x \to 0} (X)$ separates points uniformly if for every $x, y \in X$, there exists a function $f \in \lim_{x \to 0} (X)$ with $\lim_{x \to 0} (f) = 1$ such that |f(x) - f(y)| = d(x, y).

We now discuss some examples of spaces $\lim_{x \to 0} (X)$ whose unit spheres separate points uniformly. Note that $\lim_{x \to 0} (X)$ enjoys that property when X is uniformly discrete meaning that $\inf\{d(x,y) : x \neq y\} > 0$ because, in this case, we have $\lim_{x \to 0} (X) = \lim_{x \to 0} (X)$ by [13, Lemma 2.5] and, for each $y \in X$, the function $z \mapsto d(z,y) - d(e,y)$ from X into \mathbb{R} satisfies the required conditions in Definition 4.3. On the other hand, if (X,d) is a compact pointed metric space and α is a scalar in (0,1), then $\lim_{x \to 0} (X^{\alpha})$ has the aforementioned property (see, for example, [17, p. 62]).

In order to provide more examples, we appeal to [10, Definition 2] and denote by Ω the set of increasing functions $\omega: [0, \infty) \to [0, \infty)$ such that $\omega(0) = 0$, $\lim_{t\to 0} \omega(t) = 0$, $\lim_{t\to 0} \omega(t)/t = +\infty$ and the function $\omega(t)/t$ is decreasing for t > 0. Some important elements of Ω are $\omega(t) = t^{\alpha}$ with $\alpha \in (0, 1)$. Each element in Ω permits to replace the metric d on X with a new metric $\omega \circ d$ and we can consider so the space $\operatorname{Lip}_0(X, \omega \circ d)$. In the case $\omega(t) = t^{\alpha}$, we would obtain the space $\operatorname{Lip}_0(X^{\alpha})$.

Proposition 4.4. If (X, d) is a compact pointed metric space and $\omega \in \Omega$, then the unit sphere of $\lim_{n \to \infty} (X, \omega \circ d)$ separates points uniformly.

Proof. Fix two points $x, y \in X$ with $x \neq y$ and define the functions $h_{x,y}, g_{x,y}, f_{x,y} \colon X \to \mathbb{R}$ by

$$h_{x,y}(z) = \max\{d(x,y) - d(x,z), 0\},\$$

$$g_{x,y}(z) = \frac{\omega(d(x,y))}{d(x,y)}h_{x,y}(z),\$$

$$f_{x,y}(z) = g_{x,y}(z) - g_{x,y}(e)$$

for all $z \in X$. An easy computation gives

$$\frac{|f_{x,y}(z) - f_{x,y}(u)|}{\omega(d(z,u))} \le \frac{\omega(d(x,y))}{d(x,y)} \frac{\min\{d(z,u), d(x,y)\}}{\omega(d(z,u))}$$

for all $z, u \in X$ with $z \neq u$. Hence $f_{x,y} \in \text{Lip}_0(X)$ with $|f_{x,y}(x) - f_{x,y}(y)| = \omega(d(x,y))$. If $d(z,u) \leq d(x,y)$, we have

$$\frac{|f_{x,y}(z) - f_{x,y}(u)|}{\omega(d(z,u))} \le \frac{\omega(d(x,y))}{d(x,y)} \frac{d(z,u)}{\omega(d(z,u))} \le 1$$

because $t \mapsto \omega(t)/t$ (t > 0) is decreasing; and if d(z, u) > d(x, y), we also have

$$\frac{|f_{x,y}(z) - f_{x,y}(u)|}{\omega(d(z,u))} \le \frac{\omega(d(x,y))}{d(x,y)} \frac{d(x,y)}{\omega(d(z,u))} \le 1$$

because ω is increasing. So we have proved that $f_{x,y} \in \operatorname{Lip}_0(X, \omega \circ d)$ with

$$\operatorname{Lip}(f_{x,y}, \omega \circ d) = \frac{|f_{x,y}(x) - f_{x,y}(y)|}{\omega(d(x,y))} = 1.$$

We next show that $\operatorname{Lip}_0(X)$ is contained in $\operatorname{lip}_0(X, \omega \circ d)$. Indeed, let $f \in \operatorname{Lip}_0(X)$. Then $f \in \operatorname{Lip}_0(X, \omega \circ d)$ also because

$$\frac{|f(z) - f(u)|}{\omega(d(z, u))} = \frac{|f(z) - f(u)|}{d(z, u)} \frac{d(z, u)}{\omega(d(z, u))} \le \operatorname{Lip}(f) \frac{1 + \operatorname{diam}(X)}{\omega(1 + \operatorname{diam}(X))}$$

for all $z, u \in X$ with $z \neq u$. Moreover, given $\varepsilon > 0$, we can find $\delta > 0$ such that $t/\omega(t) < \varepsilon/(1 + \operatorname{Lip}(f))$ whenever $0 < t < \delta$. Then $0 < d(z, u) < \delta$ implies

$$\frac{|f(z) - f(u)|}{\omega(d(z, u))} \le \operatorname{Lip}(f) \frac{d(z, u)}{\omega(d(z, u))} < \varepsilon,$$

and thus $f \in \lim_{0} (X, \omega \circ d)$. Therefore $f_{x,y}$ satisfies the conditions of Definition 4.3 and this proves the proposition.

For spaces $\lim_{0}(X)$ whose unit spheres separate points uniformly, we next derive from Theorem 4.2 a characterization for norm-attaining composition operators on $\lim_{0}(X)$ which is now free of extremal functions.

Corollary 4.5. Let X be a compact pointed metric space and let $\varphi \colon X \to X$ be a nonconstant basepoint-preserving Lipschitz map. Assume that the unit sphere of $\operatorname{lip}_0(X)$ separates points uniformly. Then a composition operator $C_{\varphi} \colon \operatorname{lip}_0(X) \to \operatorname{lip}_0(X)$ is norm-attaining if and only if there exist a point $(x_0, y_0) \in \widetilde{X}$, a sequence $\{(\varphi(x_n), \varphi(y_n))\}$ in \widetilde{X} with $\operatorname{lim}_{n\to\infty} \varphi(x_n) = x_0$ and $\operatorname{lim}_{n\to\infty} \varphi(y_n) = y_0$ such that

$$\|C_{\varphi}\| = \lim_{n \to \infty} \frac{d(\varphi(x_n), \varphi(y_n))}{d(x_n, y_n)}.$$

Furthermore, if C_{φ} : $\lim_{p \to \infty} (X) \to \lim_{p \to \infty} (X)$ is norm-attaining, then any function f in $\lim_{p \to \infty} (X)$ with $\operatorname{Lip}(f) = 1$ satisfying that $|f(x_0) - f(y_0)| = d(x_0, y_0)$, is extremal for $||C_{\varphi}||$.

Our following goal is to show that compact composition operators on spaces $\lim_{v \to 0} (X)$ whose unit spheres separate points uniformly are norm-attaining. Really, we will deduce this fact from a much more general result that involves the concept of *essential norm* $||T||_e$ of a bounded operator $T: X \to Y$ between Banach spaces defined by

 $||T||_e = \inf\{||T - K|| : K \text{ is a compact operator from } X \text{ to } Y\}.$

We prepare its proof with two lemmas whose proofs use the same methods applied in the proofs of Lemma 3.2 and Theorem 3.1 in [11] for the special case of spaces $\lim_{n \to \infty} (X^{\alpha})$ with $0 < \alpha < 1$.

The first one is a characterization of the weak convergence of sequences in $\lim_{0}(X)$ which is an easy consequence of the uniform boundedness principle and Rainwater's theorem [19, p. 33]. For the application of this last theorem, we use [21, Corollary 3.3.6] which describes the extreme points of the unit ball of the dual space $\lim_{0}(X)^*$ when $\lim_{0}(X)$ separates points uniformly.

Lemma 4.6. Let X be a compact pointed metric space and let $\{f_n\}$ be a sequence in $\lim_{p \to 0} (X)$. Assume $\lim_{p \to 0} (X)$ separates points uniformly. Then $\{f_n\}$ converges to 0 weakly in $\lim_{p \to 0} (X)$ if and only if $\{f_n\}$ is bounded in $\lim_{p \to 0} (X)$ and converges to 0 pointwise on X.

We will follow the proof of [11, Theorem 3.1] to prove the next lemma, but we include it because that adaptation is not immediate.

Lemma 4.7. Let X be a compact pointed metric space and let $\varphi \colon X \to X$ be a nonzero basepoint-preserving Lipschitz map. Assume that $\lim_{p \to 0} (X)$ separates points uniformly. Then the essential norm of the operator $C_{\varphi} \colon \lim_{p \to 0} (X) \to \lim_{p \to 0} (X)$ satisfies the lower estimate

$$\lim_{t \to 0} \sup_{0 < d(x,y) < t} \frac{d(\varphi(x), \varphi(y))}{d(x,y)} \le \sqrt{2} \|C_{\varphi}\|_e.$$

Proof. According to the proof of [11, Theorem 3.1], we first note that

(4.1)
$$\lim_{t \to 0} \sup_{0 < d(x,y) < t} \frac{d(\varphi(x), \varphi(y))}{d(x,y)} = \inf_{t > 0} \sup_{0 < d(x,y) < t} \frac{d(\varphi(x), \varphi(y))}{d(x,y)}$$

and obtain two sequences $\{x_n\}$ and $\{y_n\}$ in X satisfying that

(4.2)
$$0 < d(x_n, y_n) < \frac{1}{n(1 + \operatorname{Lip}(\varphi))}$$

for all $n \in \mathbb{N}$, and

(4.3)
$$\inf_{t>0} \sup_{0 < d(x,y) < t} \frac{d(\varphi(x), \varphi(y))}{d(x,y)} = \lim_{n \to \infty} \frac{d(\varphi(x_n), \varphi(y_n))}{d(x_n, y_n)}.$$

Passing to a subsequence if necessary, we can assume that $\{x_n\}$ and $\{y_n\}$ converge respectively to points x_0 and y_0 in X. By (4.2), note that $x_0 = y_0$. Consider the closed subset of X given by

$$X_0 = \{\varphi(x_n) : n \in \mathbb{N}_0\} \cup \{\varphi(y_n) : n \in \mathbb{N}_0\} \cup \{e\}.$$

Since $\lim_{0}(X)$ separates points uniformly, for every a > 1 and every $n \in \mathbb{N}_{0}$, we have $g_{n}(\varphi(y_{n})) = 0$ and $g_{n}(\varphi(x_{n})) = d(\varphi(x_{n}), \varphi(y_{n}))$ for some $g_{n} \in \lim_{0}(X_{0})$ with $\lim_{n \to \infty} (g_{n}) \leq a$ (see [21, Corollary 3.3.5] and [20, Theorem 1]). Since $[n/(a(n+1))]g_{n} \in \lim_{0}(X_{0})$ with $\lim_{n \to \infty} ([n/(a(n+1))]g_{n}) < 1$, applying [21, Theorem 3.2.6], for every $n \in \mathbb{N}_{0}$ there exists

 $f_n \in \lim_{n \to \infty} (X)$ with $f_n(x) = [n/(a(n+1))]g_n(x)$ for all $x \in X_0$, $\operatorname{Lip}(f_n) < \sqrt{2}$ and $||f_n||_{\infty} = ||[n/(a(n+1))]g_n||_{\infty}$. Since

$$\frac{d(\varphi(x_n),\varphi(y_n))}{d(x_n,y_n)} = \frac{|g_n(\varphi(x_n)) - g_n(\varphi(y_n))|}{d(x_n,y_n)}$$
$$= a\left(\frac{n+1}{n}\right)\frac{|f_n(\varphi(x_n)) - f_n(\varphi(y_n))|}{d(x_n,y_n)}$$
$$\leq a\left(\frac{n+1}{n}\right)\operatorname{Lip}(C_{\varphi}f_n)$$

for all $n \in \mathbb{N}$, we have

(4.4)
$$\lim_{n \to \infty} \frac{d(\varphi(x_n), \varphi(y_n))}{d(x_n, y_n)} \le a \limsup_{n \to \infty} \operatorname{Lip}(C_{\varphi} f_n).$$

Note that $\{f_n\}$ is bounded in $\lim_{n \to \infty} (X)$ and $||f_n||_{\infty} \leq 1/a(n+1)$ for all $n \in \mathbb{N}$. Thus it converges weakly to zero in $\lim_{n \to \infty} (X)$ by Lemma 4.6. Now, if K is any compact operator from $\lim_{n \to \infty} (X)$ into $\lim_{n \to \infty} (X)$, we have $\lim_{n \to \infty} \lim_{n \to \infty} (Kf_n) = 0$ because compact operators are completely continuous. Hence

(4.5)
$$\limsup_{n \to \infty} \operatorname{Lip}(C_{\varphi} f_n) = \limsup_{n \to \infty} \operatorname{Lip}(C_{\varphi} f_n) - \operatorname{Lip}(K f_n))$$
$$\leq \limsup_{n \to \infty} \operatorname{Lip}((C_{\varphi} - K) f_n)$$
$$\leq \sqrt{2} \|C_{\varphi} - K\|.$$

Connecting (4.1), (4.3), (4.4) and (4.5), we deduce that

$$\lim_{t \to 0} \sup_{0 < d(x,y) < t} \frac{d(\varphi(x), \varphi(y))}{d(x,y)} \le a\sqrt{2} \|C_{\varphi} - K\|.$$

Taking infimum over all compact operators K on $\lim_{x \to 0} (X)$, we obtain

$$\lim_{t \to 0} \sup_{0 < d(x,y) < t} \frac{d(\varphi(x), \varphi(y))}{d(x,y)} \le a\sqrt{2} \|C_{\varphi}\|_e.$$

Since a > 1 was arbitrary, we derive the lower estimate

$$\lim_{t \to 0} \sup_{0 < d(x,y) < t} \frac{d(\varphi(x), \varphi(y))}{d(x,y)} \le \sqrt{2} \|C_{\varphi}\|_{e}.$$

We now are ready to establish one of our announced results.

Corollary 4.8. Let X be a compact pointed metric space and let $\varphi \colon X \to X$ be a nonconstant basepoint-preserving Lipschitz map. Assume that the unit sphere of $\lim_{0 \to \infty} (X)$ separates points uniformly. If the composition operator $C_{\varphi} \colon \lim_{0 \to \infty} (X) \to \lim_{0 \to \infty} (X)$ satisfies that $\sqrt{2} \|C_{\varphi}\|_{e} < \|C_{\varphi}\|$, then C_{φ} is norm-attaining. *Proof.* As $\sqrt{2} \|C_{\varphi}\|_{e} < \|C_{\varphi}\|$, by Lemma 4.7 and Theorem 4.1 we have

(4.6)
$$\lim_{d(x,y)\to 0} \frac{d(\varphi(x),\varphi(y))}{d(x,y)} < \sup_{x\neq y} \frac{d(\varphi(x),\varphi(y))}{d(x,y)} = \|C_{\varphi}\|.$$

We can take a sequence $\{(x_n, y_n)\}$ in \widetilde{X} such that

(4.7)
$$\lim_{n \to \infty} \frac{d(\varphi(x_n), \varphi(y_n))}{d(x_n, y_n)} = \sup_{x \neq y} \frac{d(\varphi(x), \varphi(y))}{d(x, y)}$$

By the compactness of X, taking subsequences if necessary, we can suppose that $\{x_n\}$ and $\{y_n\}$ converge to a and b in X, respectively. Put $\varphi(a) = x_0$ and $\varphi(b) = y_0$. By the continuity of φ , $\{\varphi(x_n)\}$ and $\{\varphi(y_n)\}$ converge to x_0 and y_0 , respectively. By (4.7) and (4.6), we have $a \neq b$ and $x_0 \neq y_0$. It follows that

$$\lim_{n \to \infty} \frac{d(\varphi(x_n), \varphi(y_n))}{d(x_n, y_n)} = \frac{d(x_0, y_0)}{d(a, b)} > 0,$$

and thus we can take a subsequence of $\{(\varphi(x_n), \varphi(y_n))\}$ in \widetilde{X} which satisfies the hypotheses of Corollary 4.5. Therefore C_{φ} attains its norm.

Remark 4.9. Taking into account Theorem 3.2.6 in [21], note that the proof of Lemma 4.7 shows that if C_{φ} is a nonzero bounded composition operator from $\lim_{t \to \infty} (X, \mathbb{R})$ into $\lim_{t \to \infty} (X, \mathbb{R})$, then

$$\lim_{t \to 0} \sup_{0 < d(x,y) < t} \frac{d(\varphi(x), \varphi(y))}{d(x,y)} \le \|C_{\varphi}\|_e.$$

Unfortunately, we have not been able to prove this estimate for operators C_{φ} from $\operatorname{lip}_0(X,\mathbb{C})$ into $\operatorname{lip}_0(X,\mathbb{C})$. The reason is that the complex version of Theorem 3.2.6 in [21] follows from the real version separating into real and imaginary parts, and this introduces a factor of $\sqrt{2}$ in the extension of a complex-valued little Lipschitz function. Therefore, we obtain the same conclusion in Corollary 4.8 when C_{φ} : $\operatorname{lip}_0(X,\mathbb{R}) \to \operatorname{lip}_0(X,\mathbb{R})$ satisfies $\|C_{\varphi}\|_e < \|C_{\varphi}\|_e$.

Since a bounded operator is compact if and only if its essential norm equals 0, an application of Corollary 4.8 yields the desired result:

Corollary 4.10. Let X be a compact pointed metric space and let $\varphi \colon X \to X$ be a nonconstant basepoint-preserving Lipschitz map. Assume that the unit sphere of $\lim_{p \to \infty} (X)$ separates points uniformly. Then every compact composition operator C_{φ} on $\lim_{p \to \infty} (X)$ is norm-attaining.

It is known (see [12, 15]) that if X is a compact pointed metric space and $\varphi \colon X \to X$ is a basepoint-preserving Lipschitz map, then a composition operator C_{φ} on $\lim_{0 \to \infty} (X)$ is compact if and only if φ is supercontractive, that is,

$$\lim_{d(x,y)\to 0} \frac{d(\varphi(x),\varphi(y))}{d(x,y)} = 0.$$

As a consequence of Corollary 4.10, we obtain the following.

Corollary 4.11. Let X be a compact pointed metric space and let $\varphi \colon X \to X$ be a nonconstant basepoint-preserving supercontractive Lipschitz map. Assume that the unit sphere of $\lim_{0}(X)$ separates points uniformly. Then every composition operator C_{φ} on $\lim_{0}(X)$ is norm-attaining.

References

- J. Bonet, M. Lindström and E. Wolf, Norm-attaining weighted composition operators on weighted Banach spaces of analytic functions, Arch. Math. (Basel) 99 (2012), no. 6, 537–546.
- F. Botelho and J. Jamison, Composition operators on spaces of Lipschitz functions, Acta Sci. Math. (Szeged) 77 (2011), no. 3-4, 621–632.
- [3] D. Chen, L. Li, R. Wang and Y.-S. Wang, Nonvanishing preservers and compact weighted composition operators between spaces of Lipschitz functions, Abstr. Appl. Anal. 2013, Art. ID 741050, 8 pp.
- [4] J. Diestel, Geometry of Banach Spaces-Selected topics, Lecture Notes in Mathematics 485, Springer-Verlag, Berlin-New York, 1975
- [5] K. Esmaeili and H. Mahyar, Weighted composition operators between vector-valued Lipschitz function spaces, Banach J. Math. Anal. 7 (2013), no. 1, 59–72.
- [6] A. Golbaharan and H. Mahyar, Linear operators of Banach spaces with range in Lipschitz algebras, Bull. Iranian Math. Soc. 42 (2016), no. 1, 69–78.
- [7] _____, Weighted composition operators on Lipschitz algebras, Houston J. Math. 42 (2016), no. 3, 905–917.
- [8] C. Hammond, On the norm of a composition operator with linear fractional symbol, Acta Sci. Math. (Szeged) 69 (2003), no. 3-4, 813–829.
- [9] _____, The norm of a composition operator with linear symbol acting on the Dirichlet space, J. Math. Anal. Appl. **303** (2005), no. 2, 499–508.
- [10] L. G. Hanin, Kantorovich-Rubinstein norm and its application in the theory of Lipschitz spaces, Proc. Amer. Math. Soc. 115 (1992), no. 2, 345–352.
- [11] A. Jiménez-Vargas, M. Lacruz and M. Villegas-Vallecillos, Essential norm of composition operators on Banach spaces of Hölder functions, Abstr. Appl. Anal. 2011, Article ID 590853, 13 pp.

- [12] A. Jiménez-Vargas and M. Villegas-Vallecillos, Compact composition operators on noncompact Lipschitz spaces, J. Math. Anal. Appl. 398 (2013), no. 1, 221–229.
- [13] J. A. Johnson, Banach spaces of Lipschitz functions and vector-valued Lipschitz functions, Trans. Amer. Math. Soc. 148 (1970), 147–169.
- [14] N. J. Kalton, Spaces of Lipschitz and Hölder functions and their applications, Collect. Math. 55 (2004), no. 2, 171–217.
- [15] H. Kamowitz and S. Scheinberg, Some properties of endomorphisms of Lipschitz algebras, Studia Math. 96 (1990), no. 3, 255–261.
- [16] M. J. Martín, Norm-attaining composition operators on the Bloch spaces, J. Math. Anal. Appl. 369 (2010), no. 1, 15–21.
- [17] E. Mayer-Wolf, Isometries between Banach spaces of Lipschitz functions, Israel J. Math. 38 (1981), no. 1-3, 58–74.
- [18] A. Montes-Rodríguez, The Pick-Schwarz lemma and composition operators on Bloch spaces, International Workshop on Operator Theory (Cefalù, 1997), Rend. Circ. Mat. Palermo (2) Suppl. 1998 (1998), no. 56, 167–170.
- [19] R. R. Phelps, Lectures on Choquet's Theorem, D. Van Nostrand, Princeton, N.J.-Toronto, 1966.
- [20] N. Weaver, Quotients of little Lipschitz algebras, Proc. Amer. Math. Soc. 125 (1997), no. 9, 2643–2648.
- [21] _____, Lipschitz algebras, World Scientific, River Edge, NJ, 1999.

Antonio Jiménez-Vargas

Departamento de Matemáticas, Universidad de Almería, 04120 Almería, Spain *E-mail address*: ajimenez@ual.es