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A Modified Newton Method for Multilinear PageRank

Pei-Chang Guo*, Shi-Chen Gao and Xiao-Xia Guo

Abstract. When studying the multilinear PageRank problem, a system of polynomial

equations needs to be solved. In this paper, we propose a modified Newton method

and develop a monotone convergence theory for a third-order tensor when α < 1/2. In

this parameter regime, the sequence of vectors produced by the Newton-like method

is monotonically increasing and converges to the solution. When α > 1/2 we present

an always-stochastic modified Newton iteration. Numerical results illustrate the ef-

fectiveness of this method.

1. Introduction

When receiving a search query, Google’ search engine could find an immense set of web

pages that contained virtually the same words as the user entered. To determine the

importance of web pages, a system of scores called PageRank is devised and developed by

Google [1]. The methodology can be briefly described as follows. Let α be a probability

less than 1. A random web surfer, with probability α randomly transitions according

to a column stochastic matrix P , which represents the link structure of the web, and

with probability 1− α randomly transitions according to the fixed distribution, a column

stochastic vector v [2]. The PageRank vector x, which is the stationary distribution of the

PageRank Markov chain, is unique and solves the linear system

x = αPx+ (1− α)v.

Recently Gleich et al. extended PageRank to higher-order Markov chains and proposed

multilinear PageRank [3]. The limiting probability distribution vector of a transition

probability tensor discussed in [10] can be seen as a special case of multilinear PageRank.

We recall that an order-m Markov chain S is a stochastic process that satisfies

Pr(St = i1 | St−1 = i2, . . . , S1 = it) = Pr(St = i1 | St−1 = i2, . . . , St−m = im+1),
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where the future state only relies on the past m states. For a second-order n-state Markov

chain S, its transition probabilities are P ijk = Pr(St+1 = i | St = j, St−1 = k). Through

modelling a random surfer on a higher-order Markov chain, Higher-order PageRank is

introduced. With probability α, the surfer transitions according to the higher-order chain,

and with probability 1− α, the surfer teleports according to the distribution v.

Let P be an order-m tensor representing an (m − 1)th order Markov chain, α be a

probability less than 1, and v be a stochastic vector. Then the multilinear PageRank

vector is a nonnegative, stochastic solution of the following polynomial system:

(1.1) x = αPx(m−1) + (1− α)v.

Here Px(m−1) for a vector x ∈ Rn is a vector in Rn, whose ith component is

n∑
i2,...,im=1

P ii2...imxi2 · · ·xim .

Gleich et al. proved that when α < 1/(m−1), the multilinear PageRank equation (1.1)

has a unique solution. Five different methods are studied to compute the multilinear

PageRank vector [3]. They are a fixed-point iteration, a shifted fixed-point iteration, a

nonlinear inner-outer iteration, an inverse iteration and the Newton iteration. It’s proved

that the first four of them converge for an order-m tensor when α < 1/(m − 1) and

the Newton iteration converges for a third-order tensor when α < 1/2. The fixed point

iteration

xk+1 = αPx
(m−1)
k + (1− α)v

converges linearly to the unique solution of (1.1) and the convergence rate is α(m − 1).

The shifted fixed-point iteration

xk+1 =
α

1 + γ
Px

(m−1)
k +

1− α
1 + γ

v +
γ

1 + γ
xk

has a convergence rate α(m−1)+γ
1+γ . Let R be the n-by-nm−1 flattening of P along the first

index (see [4] for more on flattening of a tensor) and let R = αR+ (1− α)veT , where e is

nm−1-by-1. The inner-outer iteration is as follows

xk+1 =
α

m− 1
R(xk+1 ⊗ · · · ⊗ xk+1) +

(
1− α

m− 1

)
xk,

where at each iteration step a multilinear PageRank problem with R, α/(m−1) and xk is

solved. Although it is more expensive than (shifted) fixed-point iteration, the inner-outer

iteration can converge to a solution in some cases where the (shifted) fixed-point iteration

doesn’t converge. The inverse iteration is

xk+1 = αS(xk)xk+1 + (1− α)v,
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where S(x) denotes

S(x) =
1

m− 1
R(I ⊗ xk ⊗ · · · ⊗ xk + xk ⊗ I ⊗ xk ⊗ · · · ⊗ xk + xk ⊗ · · · ⊗ xk ⊗ I)

and at each iteration step a PageRank problem is solved. The inverse iteration and the

inner-outer iteration have similar convergence behaviors on some problems.

For the case of a third-order tensor, P is a third-order stochastic tensor. Let R be the

n-by-n2 flattening of P along the first index:

R =


P 111 · · · P 1n1 P 112 · · · P 1n2 · · · P 11n · · · P 1nn

P 211 · · · P 2n1 P 212 · · · P 2n2 · · · P 21n · · · P 2nn

...
. . .

...
...

. . .
...

...
...

. . .
...

Pn11 · · · Pnn1 Pn12 · · · Pnn2 · · · Pn1n · · · Pnnn

 .

Here R is a matrix with column sums equal to 1. Then (1.1) is

(1.2) F(x) = x− αR(x⊗ x)− (1− α)v = 0.

The Newton iteration for (1.2) is

xk+1 = xk − [I − αR(xk ⊗ I + I ⊗ xk)]−1F(xk), x0 = 0.

When α > 1/2, the Newton iteration often converges to a solution that is not stochastic,

so an always-stochastic Newton iteration is proposed in [3]. The Newton iteration can

converge on some third-order problems where neither the inner-out iteration nor the inverse

iteration converges. That is to say, among the five methods, the Newton iteration performs

well on some tough problems. In [9], the authors proposed a bigger domain of α than

α < 1/(m−1) as the uniqueness condition for the multilinear PageRank vector. Moreover,

the new uniqueness condition in [9] also ensures convergence for some algorithms in [3]

such as the fixed point iteration.

In this paper, we give a modified Newton method for solving the multilinear PageRank

vector. We show that, for a third-order tensor when α < 1/2, starting with a suitable initial

guess, the sequence of the iterative vectors generated by the modified Newton method is

monotonically increasing and converges to the unique solution of equation (1.2). When α >

1/2 we present an always-stochastic modified Newton iteration. Numerical experiments

show that the modified Newton method can be faster than the Newton method.

We introduce some necessary notation for the paper. For any matrices B = [bij ] ∈
Rn×n, we write B ≥ 0 (B > 0) if bij ≥ 0 (bij > 0) holds for all i, j. For any matrices

A,B ∈ Rn×n, we write A ≥ B (A > B) if aij ≥ bij (aij > bij) for all i, j. For any vectors

x, y ∈ Rn, we write x ≥ y (x > y) if xi ≥ yi (xi > yi) holds for all i = 1, . . . , n. The vector

of all ones is denoted by e, i.e., e = (1, 1, . . . , 1)T . The identity matrix is denoted by I.
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The rest of the paper is organized as follows. In Section 2 we recall Newton’s method

and present a modified Newton iterative procedure. In Section 3 we prove the monotone

convergence for the modified Newton method. In Section 4 we present some numerical

results, which show that our new algorithm can be faster than the Newton method. In

Section 5, we give our conclusions.

2. A modified Newton method

The function F defined in (1.2) is a mapping from Rn into itself and the Fréchet derivative

of F at x is a linear map F ′x : Rn → Rn given by

F ′x : z 7→ [I − αR(x⊗ I + I ⊗ x)]z = z − αR(x⊗ z + z ⊗ x).

To suppress the technical details, later we will consider F ′x and the matrix [I − αR(x ⊗
I + I ⊗ x)] as equal. The second derivative of F at x, F ′′x : Rn × Rn → Rn, is given by

F ′′x (z1, z2) = −αR(z1 ⊗ z2 + z2 ⊗ z1).

For a given x0, the Newton sequence for the solution of F(x) = 0 is

xk+1 = xk − (F ′xk)−1F(xk)

= xk − [I − αR(xk ⊗ I + I ⊗ xk)]−1F(xk)
(2.1)

for k = 0, 1, . . ., provided that F ′xk is invertible for all k.

As we see, for the nonlinear equation F(x) = 0, the sequence generated by the Newton

iteration will converge quadratically to the solution [3]. However, there is a disadvantage

with the Newton method. At every Newton iteration step, we need to compute the Fréchet

derivative and perform an LU factorization. See more about the Newton method for other

matrix equations in [5–8, 11]. In order to save the overall cost, we present a modified

Newton method for (1.2) as follows.

The modified Newton method for equation (1.2)

Given initial value x0,0, for i = 0, 1, . . .

xi,s = xi,s−1 − (F ′xi,0)−1F(xi,s−1)

= xi,s−1 − (I − αR(xi,0 ⊗ I + I ⊗ xi,0))−1F(xi,s−1), s = 1, 2, . . . , ni,
(2.2)

xi+1,0 = xi,ni(2.3)

From (2.2) we see that the method reduces to Newton’s method when ni = 1 for

i = 0, 1, . . ., and the chord method [8] when n0 = ∞. The chord method needs, in total,
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one LU factorization so the cost for each iteration step is low. But the convergence rate

of the chord method is very slow.

When α > 1/2, the Newton iteration in [3] and the modified Newton iteration (2.2),

(2.3) often converges to a solution that is not stochastic. For problems when α > 1/2, the

authors proposed a practical always-stochastic Newton iteration in [3]. At each iteration

step, a projection operator is introduced, which sets negative elements of a vector to zero

and normalizes the new vector to have sum one. Similarly, for problems when α > 1/2,

we present an always-stochastic modified Newton iteration as follows.

The always-stochastic modified Newton method for equation (1.2)

Given initial value x0,0 = (1− α)v, for i = 0, 1, . . .

xi,s = proj(xi,s−1 − (F ′xi,0)−1F(xi,s−1)), s = 1, 2, . . . , ni,

xi+1,0 = xi,ni ,

where proj(x) = max(x, 0)/eT max(x, 0) is a stochastic normalization after each iteration

step.

3. Convergence analysis

In this section, we prove a monotone convergence result for the modified Newton method

for equation (1.2) when α < 1/2.

3.1. Preliminaries

We first recall that a real square matrix A is called a Z-matrix if all its off-diagonal

elements are nonpositive. Note that any Z-matrix A can be written as sI−B with B ≥ 0.

A Z-matrix A is called an M -matrix if s ≥ ρ(B), where ρ(·) is the spectral radius; it is

a singular M -matrix if s = ρ(B) and a nonsingular M -matrix if s > ρ(B). We will make

use of the following result (see [12]).

Lemma 3.1. For a Z-matrix A, the following are equivalent:

(a) A is a nonsingular M -matrix.

(b) A−1 ≥ 0.

(c) Av > 0 for some vector v > 0.

(d) All eigenvalues of A have positive real parts.

The next result is also well known and also can be found in [12].

Lemma 3.2. Let A be a nonsingular M -matrix. If B ≥ A is a Z-matrix, then B is also

nonsingular M -matrix. Moreover, B−1 ≤ A−1.
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3.2. Monotone convergence

The next lemma displays the monotone convergence properties of the Newton itera-

tion (2.1).

Lemma 3.3. Let α < 1/2 and suppose that a vector x is such that

(i) F(x) ≤ 0,

(ii) 0 ≤ x, and eTx ≤ 1.

Then

(3.1) y = x− (F ′x)−1F(x)

satisfies

(a) F(y) ≤ 0,

(b) 0 ≤ x ≤ y, and eT y ≤ 1.

Proof. Note that R is with all column sums equal to 1, so both R(x ⊗ I) and R(I ⊗ x)

are nonnegative matrices whose column sums are eTx. If 0 ≤ x and eTx ≤ 1, then

F ′x = I − αR(x ⊗ I + I ⊗ x) is strictly diagonally dominant and thus a nonsingular

M -matrix. So from Lemma 3.1 and condition (i), y is well-defined and y − x ≥ 0.

From (3.1) and the Taylor formula, we have

F(y) = F(x) + F ′x(y − x) +
1

2
F ′′x (y − x, y − x)

=
1

2
F ′′x (y − x, y − x)

= −αR[(y − x)⊗ (y − x)] ≤ 0.

We now prove the second term of (b). A mathematically equivalent form of (3.1) is

(3.2) [I − αR(x⊗ I + I ⊗ x)](y − x) = αR(x⊗ x) + (1− α)v − x.

Taking summations on both sides of equation (3.2), we get

[1− 2α(eTx)](eT y − eTx) = α(eTx)2 + (1− α)− (eTx),

which yields

(3.3) eT y =
1− α− α(eTx)2

1− 2α(eTx)
.

Combining (3.3) and eTx ≤ 1, we know eT y > 1 doesn’t hold, and thus eT y ≤ 1.
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The next lemma is an extension of Lemma 3.3, which will be the theoretical basis of

our monotone convergence result of the Newton-like method for (1.2).

Lemma 3.4. Let α < 1/2 and suppose there is a vector x such that

(i) F(x) ≤ 0,

(ii) 0 ≤ x, and eTx ≤ 1.

Then for any vector z with 0 ≤ z ≤ x,

y = x− (F ′z)−1F(x)

satisfies

(a) F(y) ≤ 0,

(b) 0 ≤ x ≤ y, and eT y ≤ 1.

Proof. Here let

ŷ = x− (F ′x)−1F(x).

First, from Lemma 3.3, we know that F ′x is a nonsingular M -matrix. Because 0 ≤ z ≤ x

and Lemma 3.2, we know that F ′z is also a nonsingular M -matrix and

0 ≤ [F ′z]−1 ≤ [F ′x]−1.

So the vector y is well defined and 0 ≤ x ≤ y ≤ ŷ. From Lemma 3.3, we know eT ŷ ≤ 1,

so eT y ≤ 1. So (b) is true. We have

F(y) = F(x) + F ′x(y − x) +
1

2
F ′′x (y − x, y − x)

= F(x) + F ′z(y − x) + (F ′x −F ′z)(y − x) +
1

2
F ′′x (y − x, y − x)

= F ′′x (x− z, y − x) +
1

2
F ′′x (y − x, y − x)

≤ 0,

where the last inequality holds because x− z ≥ 0 and y − x ≥ 0. So (a) is true.

Using Lemma 3.4, we can get the following monotone convergence result of the Newton-

like method for (1.2). For i = 0, 1, . . ., we will use xi to denote xi,0 in the Newton-like

method (2.3), thus xi = xi,0 = xi−1,ni−1 .

Theorem 3.5. Let α < 1/2 and assume that a vector x0,0 is such that

(i) F(x0,0) ≤ 0,
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(ii) 0 ≤ x0,0, and eTx0,0 ≤ 1.

Then the Newton-like method (2.2), (2.3) generates a sequence {xk} such that xk ≤ xk+1

for all k ≥ 0, and limk→∞F(xk) = 0.

Proof. We prove the theorem by mathematical induction. From Lemma 3.4, we have

x0,0 ≤ · · · ≤ x0,n0 = x1, F(x1) ≤ 0, and eTx1 ≤ 1.

Assume eTxi ≤ 1, F(xi) ≤ 0, and

x0,0 ≤ · · · ≤ x0,n0 = x1 ≤ · · · ≤ xi−1,ni−1 = xi.

Again by Lemma 3.4 we have

F(xi+1) ≤ 0, xi,0 ≤ · · · ≤ xi,ni = xi+1,

and eTxi+1 ≤ 1. Therefore we have proved inductively the sequence {xk} is monotonically

increasing and bounded above. So it has a limit x∗. Next we show that F(x∗) = 0. Since

x0 ≤ xk, from Lemma 3.2 we have

0 ≤ (F ′x0)−1 ≤ (F ′xk)−1.

Letting i→∞ in xi+1 ≥ xi,1 = xi − (F ′xi)
−1F(xi) ≥ xi − (F ′x0)−1F(xi) ≥ 0, we get

lim
i→∞

(F ′x0)−1F(xi) = 0.

F(x) is continuous at x∗, so (F ′x0)−1F(x∗) = 0, and thus we get F(x∗) = 0.

4. Numerical experiments

We remark that the modified Newton method differs from Newton’s method in that the

evaluation and factorization of the Fréchet derivative are not done at every iteration

step. So, while more iterations will be needed than Newton’s method, the overall cost of

the modified Newton method can be much less. Our numerical experiments confirm the

efficiency of the modified Newton method for equation (1.2).

About how to choose the optimal scalars ni in the Newton-like method (2.2), we have

no theoretical results for the moment. This is a goal for our future research. In our

extensive numerical experiments, we update the Fréchet derivative every four iteration

steps. That is, for i = 0, 1, . . . we choose ni = 4 in the Newton-like method (2.2).

We define the number of the factorization of the Fréchet derivative in the algorithm

as the outer iteration steps, which is i+ 1 when s > 0 or i when s = 0 for an approximate

solution xi,s in the modified Newton algorithm.



A Modified Newton Method for Multilinear PageRank 1169

The outer iteration steps (denoted as “iter”), the elapsed CPU time in seconds (denoted

as “time”), and the normalized residual (denoted as “NRes”) are used to measure the

effectiveness of our new method, where “NRes” is defined as

NRes =
‖x̃− αR(x̃⊗ x̃)− (1− α)v‖1

(1− α)‖v‖1 + α‖R(x̃⊗ x̃)‖1 + ‖x̃‖1
,

where ‖ · ‖1 denotes the vector 1-norm and x̃ is an approximate solution to (1.2). We

use x = (1 − α)v as the initial iteration value of the Newton-like method. If we choose

x0,0 = 0, which satisfies the assumptions of Theorem 3.5, then we have x0,1 = (1 − α)v

according to the modified Newton algorithm. According to Lemma 3.4, x0,1 = (1 − α)v

satisfies the assumptions of Theorem 3.5. So in numerical experiments we choose the

vector (1 − α)v as the initial vector. The numerical tests were performed on a laptop

(2.4 Ghz and 2G Memory) with Matlab R2013b. Numerical experiments show that the

the modified Newton method can be more efficient than the Newton iteration in [3]. We

present the numerical results for a random-generated problem in Table 4.1. The Matlab

code used for its generation is reported here. The problem size is n = 300 in Table 4.1.

function [R, v] = page(n)

v = ones(n, 1);

N = n ∗ n;
rand(’state’,0);

R = rand(n, n ∗ n);
s = v′ ∗R;
for i = 1 : N

R(:, i) = R(:, i)/s(i);

end

v = v/n;

α Method Time NRes Iter

0.490
Newton 24.648 5.19e-13 9

modified Newton 18.580 8.79e-13 5

0.495
Newton 28.782 1.29e-13 10

modified Newton 19.656 3.11e-12 5

0.499
Newton 32.745 3.07e-13 12

modified Newton 23.275 9.63e-12 6

Table 4.1: Comparison of the numerical results.
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For this random-generated problem, we let α ≥ 1/2 and compare the elapsed CPU

time of the always-stochastic Newton iteration in [3] and the always-stochastic modified

Newton iteration in this paper. The following condition

‖x̃− αR(x̃⊗ x̃)− (1− α)v‖∞ < 1e− 12

is chosen as the stopping criterion for the two algorithms, where ‖ ·‖∞ denotes the infinity

norm. For the random-generated problem just now, we vary α and plot the CPU time of

the two algorithms in seconds for different parameters α in Figure 4.1. Here the parameter

in the always-stochastic modified Newton algorithm is also chosen to be ni = 4. From this

figure we can see that the always-stochastic modified Newton iteration is effective and can

outperform the always-stochastic Newton iteration.

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
3

4

5

6

7

8

9

α

comparisons about CPU time

 

 
Newton
modified Newton

Figure 4.1: CPU time versus α.

5. Conclusions

In this paper, we consider the modified Newton method for the polynomial system of

equations arising from the multilinear PageRank problem. The convergence analysis shows

that this modified Newton method is feasible in the regime when α < 1/2. We also present

the always-stochastic modified Newton iteration when α > 1/2. Numerical experiments

show that the modified Newton method is effective and can outperform Newton’s method.

In the future, we will refer to the work of Li et al. [9] and try to improve the convergence

regime of α for the modified Newton method.
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