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On Least Distance Eigenvalue of Uniform Hypergraphs

Hongying Lin and Bo Zhou*

Abstract. For k ≥ 2, we determine the connected k-uniform hypergraphs with least

distance eigenvalues in ((1−
√

33)/2, 0), the k-uniform hypertrees with least distance

eigenvalues in [−2k, 0), and the k-uniform unicyclic hypergraphs with least distance

eigenvalues in (−k+1−
√

(k − 1)(k − 2), 0), respectively, and determine the k-uniform

hypergraphs (hypertrees, respectively) with minimum distance spread.

1. Introduction

Let V be a nonempty finite set, and E a family of nonempty subsets of V . The pair

G = (V,E) is called a hypergraph with vertex set V (G) = V , and with edge set E(G) = E,

see [2, 3]. The order of G is the cardinality of V (G). If all edges of G have cardinality k,

then G is k-uniform. A 2-uniform hypergraph is an ordinary graph. For u, v ∈ V (G),

if they are contained in some edge of G, then we say that they are adjacent, or v is a

neighbor of u. Let NG(u) be the set of neighbors of u in G.

For u, v ∈ V (G), a walk from u to v in G is defined to be an alternating sequence of

vertices and edges (v0, e1, v1, . . . , vp−1, ep, vp) with v0 = u and vp = v such that edge ei

contains vertices vi−1 and vi, and vi−1 6= vi for i = 1, . . . , p. The value p is the length

of this walk. A path is a walk with all vi distinct and all ei distinct. A cycle is a walk

containing at least two edges, all ei are distinct and all vi are distinct except v0 = vp. A

vertex u ∈ V (G) is viewed as a path (from u to u) of length 0. If there is a path from u

to v for any u, v ∈ V (G), then we say that G is connected.

A hypertree is a connected hypergraph with no cycles. Note that a k-uniform hypertree

with m edges always has order 1 + (k − 1)m, see [2, p. 392]. A unicyclic hypergraph is a

connected hypergraph with exactly one cycle. Note that a k-uniform unicyclic hypergraph

with m edges always has order (k − 1)m, see [2, p. 393].

Let G be a connected hypergraph with V (G) = {v1, . . . , vn}. For u, v ∈ V (G), the

distance between u and v is the length of a shortest path from u to v in G, denoted

by dG(u, v). In particular, dG(u, u) = 0. The diameter of G is the maximum distance
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between all vertex pairs of G. The distance matrix of G is the n × n matrix D(G) =

(dG(u, v))u,v∈V (G). The eigenvalues of D(G) are called the distance eigenvalues of G.

Since D(G) is real and symmetric, the distance eigenvalues of G are real. Let ρ(G) and

λ(G) be the largest and least distance eigenvalues of G, respectively.

Interest in distance eigenvalues of 2-uniform hypergraphs (ordinary graphs) began

during the 1970’s with the appearance of the paper by Graham and Pollak [7], in which

a relationship was established between the number of negative distance eigenvalues and

the addressing problem in data communication systems. Edelberg et al. [4] and Graham

and Lovász [6] studied the characteristic polynomial of the distance matrix of graphs.

Though the distance eigenvalues of ordinary graphs have been studied to some extent (see

the recent survey of Aouchiche and Hansen [1] and referees therein), it is still of interest

to investigate the largest and the least distance eigenvalues of graphs with particular

structures. Sivasubramanian [15] gave a formula for the inverse of a few q-analogs of

the distance matrix of 3-uniform hypertrees. The largest distance eigenvalue of uniform

hypergraphs has also received attention [13]. Generally, apart from the largest eigenvalue,

the least eigenvalue of a symmetric matrix is of most importance, see, e.g., [14]. The

spread of a real symmetric matrix is the difference between its largest and least eigenvalues,

which has applications in combinatorial optimization problems [5]. This quantity has been

studied extensively, see, e.g., [16]. For a connected hypergraph G, the distance spread of

G is defined as s(G) = ρ(G) − λ(G). For some classes of ordinary graphs, it has been

studied, see, e.g., [9, 18].

In this paper, we determine the k-uniform hypergraphs with least distance eigenvalues

in ((1 −
√

33)/2, 0), the k-uniform hypertrees with least distance eigenvalues in [−2k, 0),

and the k-uniform unicyclic hypergraphs with least distance eigenvalues in (−k + 1 −√
(k − 1)(k − 2), 0), respectively. Moreover, we determine the k-uniform hypergraphs and

hypertrees respectively with minimum distance spread.

2. Preliminaries

For 2 ≤ k ≤ n, the complete k-uniform hypergraph, denoted by Kk
n, is a hypergraph G of

order n such that E(G) consists of all k-subsets of V (G).

A set S of vertices of a hypergraph G is a (strongly) independent set of G if any two

vertices in S are not adjacent. An independent set S of G is maximal if S ∪ {u} for any

u ∈ V (G) \ S is not an independent set. A hypergraph is s-partite if its vertex set can

be partitioned into s parts (called partite sets), each of which is an independent set. A

k-uniform hypergraph G is a complete s-partite hypergraph if each choice of k vertices

from distinct partite sets forms an edge. Let Kk
n1,...,ns

be the complete s-partite k-uniform

hypergraph with partite sets V1, . . . , Vs such that |Vi| = ni for i = 1, . . . , s. Obviously,
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Kk
n = Kk

1, . . . , 1︸ ︷︷ ︸
n

.

A k-uniform loose path of order n is a hypertree with vertex set {v1, . . . , vn} and with

the set of m edges ei = {vi(k−1)+1, . . . , vi(k−1)+k} for i = 0, . . . ,m − 1, denoted by Pn,k,

where m = (n− 1)/(k − 1).

For a k-uniform hypertree G of order n, if V (G) can be partitioned into m+ 1 subsets

{u}, V1, . . . , Vm such that |V1| = · · · = |Vm| = k − 1, and E(G) = {{u} ∪ Vi : 1 ≤ i ≤ m},
then we call G is a hyperstar (with center u), denoted by Sn,k.

A k-uniform loose cycle of order n is a unicyclic hypergraph with vertex set {v1, . . . , vn}
and with the set of m edges ei = {vi(k−1)+1, . . . , vi(k−1)+k} for i = 0, . . . ,m − 1, denoted

by Cn,k, where m = n/(k − 1), and v(m−1)(k−1)+k = v1.

Let G be a k-uniform hypergraph with V (G) = {v1, . . . , vn}. A column vector x =

(xv1 , . . . , xvn)> ∈ Rn can be considered as a function defined on V (G) which maps vertex vi

to xvi , i.e., x(vi) = xvi for i = 1, . . . , n. Then λ is a distance eigenvalue with corresponding

eigenvector x if and only if x 6= 0 and for each u ∈ V (G), λxu =
∑

v∈V (G) dG(u, v)xv.

Obviously, the distance eigenvalues of G are the roots of det(λIn −D(G)) = 0, where In

is the identity matrix of order n.

For a connected k-uniform hypergraph G, if H is a connected k-uniform subhyper-

graph, and dH(u, v) = dG(u, v) for u, v ∈ V (H), then H is said to be a distance-preserving

k-uniform subhypergraph of G. If H is a distance-preserving k-uniform subhypergraph of

G with V (H) = V (G), then we say that H is a spanning distance-preserving subhyper-

graph of G.

For a connected k-uniform hypergraphG with V0 ⊆ V (G), letD(G)[V0] be the principal

submatrix of D(G) indexed by all the vertices of V0.

For an n× n real symmetric matrix M , let λ(M) be the least eigenvalue of M . From

the interlacing theorem [8, pp. 185–186], we have

Lemma 2.1. Let N be an n× n symmetric matrix and M a principal submatrix of N of

order m, where 2 ≤ m ≤ n. Then λ(N) ≤ λ(M).

Let Jn×m and 0n×m be the all-one and all-zero n × m matrices, respectively. Let

1n = Jn×1, Jn = Jn×n, and 0n = 0n×n.

3. Least distance eigenvalue

In this section, we study the least distance eigenvalue of a uniform hypergraph, and

especially for hypertrees and unicyclic hypergraphs.

Lemma 3.1. Let G be a connected k-uniform hypergraph with diameter d ≥ 1, where

k ≥ 2. Then λ(G) ≤ −d.



1292 Hongying Lin and Bo Zhou

Proof. Let u, v ∈ V (G) such that dG(u, v) = d. Then D(G)[{u, v}] =
(
0 d
d 0

)
. By

Lemma 2.1, we have λ(G) ≤ λ(D(G)[{u, v}]) = −d.

This is actually known [10].

Lemma 3.2. For 2 ≤ k ≤ s ≤ n−1, let G be a spanning distance-preserving subhypergraph

of a complete s-partite k-uniform hypergraph H of order n. Then λ(G) = −2.

Proof. Obviously, D(G) = D(H). Assume that H = Kk
n1,...,ns

. Then H has partite sets

V1, . . . , Vs such that |Vi| = ni for i = 1, . . . , s. Note that there is no edge of H containing

at least two vertices of Vi for i = 1, . . . , s, and E(H) contains all k-subsets that have their

vertices in some k different partite sets. With respect to the partition V (H) = V1∪· · ·∪Vs,
we have

D(H) =


2Jn1 − 2In1 Jn1×n2 · · · Jn1×ns

Jn2×n1 2Jn2 − 2In2 · · · Jn2×ns

...
...

. . .
...

Jns×n1 Jns×n2 · · · 2Jns − 2Ins

 .

Observe that the eigenvalues of D(H)+2In are n1, . . . , ns, and 0 (with multiplicity n−s).
Thus λ(D(H)) = −2.

Since D(H) is just the distance matrix of the complete s-partite graph with partite

sizes n1, . . . , ns, the previous lemma follows also from [11, Lemma 2.5] or [17, Lemma 3.1].

Note that Kk
n is a complete n-partite k-uniform hypergraph.

For an ordinary complete multipartite graphG (k = 2), its spanning distance-preserving

subgraph must be itself. But this is not true for k-uniform hypergraphs with k ≥ 3.

Consider a 5-uniform hypergraph G with V (G) = {1, . . . , 9} and E(G) = {e1, . . . , e6},
where e1 = {1, 3, 6, 7, 8}, e2 = {1, 4, 7, 8, 9}, e3 = {1, 5, 6, 7, 8}, e4 = {2, 3, 7, 8, 9}, e5 =

{2, 4, 6, 7, 8}, e6 = {2, 5, 6, 7, 9}. We partition V (G) into {1, 2} ∪ {3, 4, 5} ∪ {6} ∪ {7} ∪
{8} ∪ {9}. Obviously, D(G) = D(K5

2,3,1,1,1,1). Thus G is a spanning distance-preserving

subhypergraph of K5
2,3,1,1,1,1. Obviously, G 6∼= K5

2,3,1,1,1,1.

Theorem 3.3. Let G be a connected k-uniform hypergraph of order n, where 2 ≤ k ≤ n.
Then

(i) λ(G) ≤ −1 with equality if and only if G is a spanning distance-preserving subhy-

pergraph of Kk
n;

(ii) if G is not a spanning distance-preserving subhypergraph of Kk
n, then λ(G) ≤ −2

with equality if and only if G is a spanning distance-preserving subhypergraph of

some complete s-partite k-uniform hypergraph of order n with k ≤ s ≤ n− 1;
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(iii) if G is not a spanning distance-preserving subhypergraph of any complete s-partite

k-uniform hypergraph of order n with k ≤ s ≤ n, then λ(G) ≤ (1−
√

33)/2.

Proof. Let d be the diameter of G.

Obviously, if G is a spanning distance-preserving subhypergraph of Kk
n, then λ(G) =

λ(Jn − In) = −1. If G is not a spanning distance-preserving subhypergraph of Kk
n, then

d ≥ 2, and thus by Lemma 3.1, we have λ(G) ≤ −2. Therefore λ(G) = −1 or λ(G) ≤ −2.

Now (i) follows.

Suppose that G is not a spanning distance-preserving subhypergraph of Kk
n. Then

d ≥ 2.

If G is a spanning distance-preserving subhypergraph of a complete s-partite k-uniform

hypergraph with k ≤ s ≤ n− 1, then by Lemma 3.2, we have λ(G) = −2.

Suppose that λ(G) = −2. By Lemma 3.1, d ≤ 2, and then d = 2. Thus any two

nonadjacent vertices in G have at least one neighbor in common. Let u, v ∈ V (G) such

that dG(u, v) = 2. Suppose that w ∈ NG(v)\NG(u). Then dG(u,w) = 2 and dG(v, w) = 1.

We have

D(G)[{u, v, w}] =


0 2 2

2 0 1

2 1 0

 .

By Lemma 2.1, λ(G) ≤ λ(D(G)[{u, v, w}]) = (1 −
√

33)/2 ≈ −2.3723 < −2, a contradic-

tion. Thus NG(v) ⊆ NG(u). Similarly, we have NG(u) ⊆ NG(v). Then NG(u) = NG(v).

Thus any two nonadjacent vertices in G have the same neighbors. Since d = 2, there

are nonadjacent vertices in G. Thus we may choose a maximal independent set V1 with

|V1| ≥ 2 such that NG(u) = V (G) \ V1 for any u ∈ V1. If there are nonadjacent vertices

in V (G) \ V1 and V (G) \ V1 is not an independent set, then we may choose a maxi-

mal independent V2 in V (G) \ V1 such that NG(u) = V (G) \ V2 for any u ∈ V2. It

is easily seen that this process can be continued until we reach a maximal independent

set Vr such that V (G) \ (V1 ∪ · · · ∪ Vr) is an independent set or any two vertices in

V (G) \ (V1 ∪ · · · ∪ Vr) are adjacent. In the former case, G is an (r + 1)-partite k-uniform

hypergraph with k ≤ r + 1 ≤ n − 1. In the latter case, let p = |V (G) \ (V1 ∪ · · · ∪ Vr)|.
Then V (G) \ (V1 ∪ · · · ∪ Vr) may be partitioned in to p parts each containing a single

vertex, and thus G is a (r + p)-partite k-uniform hypergraph with k ≤ r + p ≤ n− 1. In

either case, there is an integer s with k ≤ s ≤ n − 1 such that V (G) may be partitioned

into s partite sets V1, . . . , Vs, each partite set is a maximal independent set, and any two

vertices in different parts are adjacent. Let ni = |Vi| for i = 1, . . . , s. Then G is a subhy-

pergraph of Kk
n1,...,ns

and D(G) = D(Kk
n1,...,ns

). Thus G is a spanning distance-preserving

subhypergraph of Kk
n1,...,ns

. This proves (ii).
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Now suppose that G is not a spanning distance-preserving subhypergraph of any com-

plete s-partite k-uniform hypergraph with k ≤ s ≤ n. Then either d ≥ 3 or d = 2 and

there is a pair of nonadjacent vertices such that they do not have the same neighbors. By

the above argument, λ(G) ≤ (1−
√

33)/2. This proves (iii).

By Theorem 3.3, we have

Corollary 3.4. If G is a k-uniform hypergraph of order n, where 2 ≤ k ≤ n, then

λ(G) ∈ ((1−
√

33)/2, 0) if and only if G is a spanning distance-preserving subhypergraph

of some complete s-partite k-uniform hypergraph of order n with k ≤ s ≤ n.

Note that the above results may be stated using the language of ordinary graphs [17].

Lemma 3.5. For integers n, k with 2 ≤ k ≤ n, we have

(i) λ(P3k−2,k) = −k −
√
k2 − k;

(ii) λ(Sn,k) = −k if (n− 1)/(k − 1) ≥ 2.

Proof. For k = 2, the result in (i) follows from direct calculation, and the result in (ii)

follows from Lemma 3.2.

Suppose that k ≥ 3.

First we prove (i). Let E(P3k−2,k) = {e1, e2, e3} with e1 ∩ e2 = {u} and e2 ∩ e3 = {v}.
Let λ = λ(P3k−2,k). Let x be an eigenvector of D(P3k−2,k) corresponding to λ. For

w ∈ e1 \ {u}, we have

λxw =
∑

z∈e1\{w}

xz + 2
∑

z∈e2\{u}

xz + 3
∑

z∈e3\{v}

xz.

Thus for w,w′ ∈ e1 \ {u} with w 6= w′, we have (λ+ 1)(xw − xw′) = 0. By Lemma 3.1, we

have λ ≤ −3, and thus xw = xw′ . Therefore, the entry of x at each vertex of e1 \ {u} is

the same, which is denoted by a. Similarly, the entry of x at each vertex of e2 \ {u, v} is

the same, which is denoted by b, and the entry of x at each vertex of e3 \ {v} is the same,

which is denoted by c. Then

λa = (k − 2)a+ xu + 2(k − 2)b+ 2xv + 3(k − 1)c,

λxu = (k − 1)a+ (k − 2)b+ xv + 2(k − 1)c,

λb = 2(k − 1)a+ xu + (k − 3)b+ xv + 2(k − 1)c,

λxv = 2(k − 1)a+ xu + (k − 2)b+ (k − 1)c,

λc = 3(k − 1)a+ 2xu + 2(k − 2)b+ xv + (k − 2)c.
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We view these equations as a homogeneous linear system in the five variables a, xu, b,

xv, and c. Thus λ is the least root of g1(t) = 0, where g1(t) = (t2 + 2kt + k)f1(t) and

f1(t) = t3 − t2(5k − 7)− t(4k2 − k − 4)− 3k2 + 3k.

Let t1 and t2 be the roots of

f ′1(t) = 3t2 − 2(5k − 7)t− 4k2 + k + 4 = 0,

where t1 ≤ t2. Then −k −
√
k2 − k < t1,2 = (5k − 7±

√
37k2 − 73k + 37)/3. Noting that

f1(−k−
√
k2 − k) = −2(k−1)(5k2−4k+(5k−2)

√
k2 − k) < 0, f1(t1) > 0 and f1(t2) < 0,

the least root of f1(t) = 0 is more than −k −
√
k2 − k. Thus λ = −k −

√
k2 − k.

Now we prove (ii). Let m = (n−1)/(k−1). We partition V (Sn,k) into {u}∪V1∪· · ·∪Vm
such that |V1| = · · · = |Vm| = k − 1, and E(Sn,k) = {{u} ∪ Vi : 1 ≤ i ≤ m}. Then with

respect to this partition, we have

D(Sn,k) =



0 1>k−1 1>k−1 · · · 1>k−1

1k−1 Jk−1 − Ik−1 2Jk−1 · · · 2Jk−1

1k−1 2Jk−1 Jk−1 − Ik−1 · · · 2Jk−1
...

...
...

. . .
...

1k−1 2Jk−1 2Jk−1 · · · Jk−1 − Ik−1


.

Let bi = 2 + (i− 1)(k − 1) for 1 ≤ i ≤ m.

To calculate det(tIn −D(Sn,k)), first we subtract the bi-th row with 1 ≤ i ≤ m from

the (bi + 1)-th, . . ., (bi + k − 2)-th rows, respectively, to obtain

det(tIn −D(Sn,k)) = det



t −1>k−1 −1>k−1 · · · −1>k−1

B A C · · · C

B C A · · · C
...

...
...

. . .
...

B C C · · · A


,

where

A =

 t −1>k−2

−(1 + t) · 1k−2 (1 + t)Ik−2

 , B =

 −1

0(k−2)×1


and

C =

 −2 −2 · 1>k−2
0(k−2)×1 0k−2

 .
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Next for 1 ≤ i ≤ m, we add the (bi + 1)-th, . . ., (bi + k − 2)-th columns to the bi-th

column, to obtain

det(tIn −D(Sn,k)) = det



t P P · · · P

B A∗ C∗ · · · C∗

B C∗ A∗ · · · C∗

...
...

...
. . .

...

B C∗ C∗ · · · A∗


= (t+ 1)(k−2)m · det(M),

where P = (−k + 1 − 1>k−2),

A∗ =

t− k + 2 −1>k−2

0(k−2)×1 (1 + t)Ik−2

 , C∗ =

−2(k − 1) −2 · 1>k−2
0(k−2)×1 0k−2

 ,

and

M =


t −k + 1 −(k − 1) · 1>m−1
−1 t− k + 2 −2(k − 1) · 1>m−1
−1m−1 −2(k − 1) · 1m−1 −2(k − 1)Jm−1 + (k + t)Im−1

 .

To calculate det(M), by subtracting the 2nd row from the 3rd, . . ., (m+ 1)-th rows of

M , respectively, we have

det(M) = det


t −k + 1 −(k − 1) · 1>m−1
−1 t− k + 2 −2(k − 1) · 1>m−1

0(m−1)×1 (−k − t) · 1m−1 (k + t)Im−1

 ,

and then by adding each of last m− 1 columns to the 2nd column for above determinant,

we have

det(M) = det


t −m(k − 1) −(k − 1) · 1>m−1
−1 t− k + 2− 2(m− 1)(k − 1) −2(k − 1) · 1>m−1

0(m−1)×1 0(m−1)×1 (k + t)Im−1

 .

Therefore

det(tIn −D(Sn,k)) = (t+ 1)(k−2)m det(M)

= (t+ 1)(k−2)m · (t+ k)m−1

× det

 t −m(k − 1)

−1 t− k + 2− 2(m− 1)(k − 1)


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= (t+ 1)(k−2)m · (t+ k)m−1 · det

 t −(n− 1)

−1 t− 2n+ k + 2


= (t+ 1)(k−2)m · (t+ k)m−1 · (t2 − (2n− k − 2)t− n+ 1).

Then the distance eigenvalues of Sn,k are −1 (with multiplicity (k − 2)m), −k (with

multiplicity m − 1), and (2n + k − 2 ±
√

4n2 − 4nk + k2 + 4k − 4n)/2 (> −1). Thus

λ(Sn,k) = −k if m ≥ 2.

For integers k, n, a with 2 ≤ k ≤ n and 1 ≤ a ≤ b(n− k)/(2k − 2)c, let Dn,k,a be the

k-uniform hypergraph obtained from vertex-disjoint hyperstars Sa(k−1)+1,k with center u

and Sn−k−a(k−1)+1,k with center v by adding k − 2 new vertices w1, . . . , wk−2 and a new

edge {u, v, w1, . . . , wk−2}.
For integers k, n, a1, . . . , ak with 2 ≤ k ≤ n, a1 ≥ · · · ≥ ak ≥ 0 and

∑k
i=1 ai + 1 =

(n − 1)/(k − 1), let Dk(n; a1, . . . , ak) be the k-uniform hypergraph obtained from Sk,k

by attaching ai pendant edges at vi with V (Sk,k) = {v1, . . . , vk}. Obviously, D4,2,1 =

D2(4; 1, 1).

Lemma 3.6. For k ≥ 2, we have

(i) λ(P4k−3,k) < −2k;

(ii) λ(D4k−3,k,1) < −2k if k ≥ 3;

(iii) λ
(
Dk(k2; 1, . . . , 1︸ ︷︷ ︸

k

)
)

= −k −
√
k2 − k.

Proof. For k = 2, the results in (i) and (iii) follow from direct calculation.

Suppose that k ≥ 3.

First we prove (i). Let G1 = P4k−3,k, and E(G1) = {e1, e2, e3, e4} with e1 ∩ e2 = {u},
e2 ∩ e3 = {v} and e3 ∩ e4 = {w}. Let λ = λ(G1). Let x be an eigenvector of D(G1)

corresponding to λ. As in the proof of Lemma 3.5(i), the entry of x at each vertex of

e1 \ {u} is the same, which is denoted by x1, the entry of x at each vertex of e2 \ {u, v} is

the same, which is denoted by x2, the entry of x at each vertex of e3 \ {v, w} is the same,

which is denoted by x3, and the entry of x at each vertex of e4 \ {w} is the same, which

is denoted by x4. Then

λx1 = (k − 2)x1 + xu + 2(k − 2)x2 + 2xv + 3(k − 2)x3 + 3xw + 4(k − 1)x4,

λxu = (k − 1)x1 + (k − 2)x2 + xv + 2(k − 2)x3 + 2xw + 3(k − 1)x4,

λx2 = 2(k − 1)x1 + xu + (k − 3)x2 + xv + 2(k − 2)x3 + 2xw + 3(k − 1)x4,

λxv = 2(k − 1)x1 + xu + (k − 2)x2 + (k − 2)x3 + xw + 2(k − 1)x4,
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λx3 = 3(k − 1)x1 + 2xu + 2(k − 2)x2 + xv + (k − 3)x3 + xw + 2(k − 1)x4,

λxw = 3(k − 1)x1 + 2xu + 2(k − 2)x2 + xv + (k − 2)x3 + (k − 1)x4,

λx4 = 4(k − 1)x1 + 3xu + 3(k − 2)x2 + 2xv + 2(k − 2)x3 + xw + (k − 2)x4.

We view these equations as a homogeneous linear system in the seven variables x1, xu,

x2, xv, x3, xw and x4. Thus λ is the least root of g2(t) = 0, where

g2(t) = (t3 + t2(4k − 1) + t(2k2 + k) + k2)

× (t4 − t3(8k − 11)− t2(10k2 − 3k − 10)− t(13k2 − 12k − 2)− 4k2 + 4k).

Note that g2(−2k) = 2k4(4k−5)(20k2−25k+6) > 0. Therefore the least root of g2(t) = 0

is less than −2k, i.e., λ < −2k.

Now we prove (ii). Let G2 = D4k−3,k,1, and E(G2) = {e1, e2, e3, e4} with e1∩ e2∩ e4 =

{u} and e2∩e3 = {v}. Let λ′ = λ(G2). Let x be an eigenvector of D(G2) corresponding to

λ′. As in the proof of Lemma 3.5(i), the entry of x at each vertex of e1 \ {u} is the same,

which is denoted by x1, the entry of x at each vertex of e2 \ {u, v} is the same, which is

denoted by x2, the entry of x at each vertex of e3 \ {v} is the same, which is denoted by

x3, and the entry of x at each vertex of e4 \{u} is the same, which is denoted by x4. Then

λ′x1 = (k − 2)x1 + xu + 2(k − 2)x2 + 2xv + 3(k − 1)x3 + 2(k − 1)x4,

λ′x4 = 2(k − 1)x1 + xu + 2(k − 2)x2 + 2xv + 3(k − 1)x3 + (k − 2)x4,

and thus (λ′ + k)(x1 − x4) = 0. Since P3k−2,k is a distance-preserving k-uniform subhy-

pergraph of G2, we have by Lemmas 2.1 and 3.5(i) that λ′ ≤ λ(P3k−2,k) = −k−
√
k2 − k.

Thus x1 = x4.

For G2, we have

λ′x1 = (3k − 4)x1 + xu + 2(k − 2)x2 + 2xv + 3(k − 1)x3,

λ′xu = (2k − 2)x1 + (k − 2)x2 + xv + 2(k − 1)x3,

λ′x2 = (4k − 4)x1 + xu + (k − 3)x2 + xv + 2(k − 1)x3,

λ′xv = (4k − 4)x1 + xu + (k − 2)x2 + (k − 1)x3,

λ′x3 = (6k − 6)x1 + 2xu + 2(k − 2)x2 + xv + (k − 2)x3.

We view these equations as a homogeneous linear system in the five variables x1, xu, x2,

xv and x3. Thus λ′ is the least root of g3(t) = 0, where

g3(t) = t5 − t4(5k − 9)− t3(23k2 − 27k − 2)− t2(13k3 + 7k2 − 26k + 2)

− t(15k3 − 12k2 − 4k)− 4k3 + 4k2.
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Note that g3(−2k) = 2k2(10k3−35k2 + 30k−6) > 0. Therefore the least root of g3(t) = 0

is less than −2k, i.e., λ′ < −2k.

Finally we prove (iii). Let G3 = Dk(k2; 1, . . . , 1︸ ︷︷ ︸
k

), and E(G3) = {e1, . . . , ek, e} with

e = {v1, . . . , vk} and ei ∩ e = {vi} for 1 ≤ i ≤ k. We partition V (G3) into (e1 \ {v1}) ∪
· · · ∪ (ek \ {vk}) ∪ e. Then with respect to this partition, we have

D(G3) =



Jk−1 − Ik−1 3Jk−1 · · · 3Jk−1 A1

3Jk−1 Jk−1 − Ik−1 · · · 3Jk−1 A2

...
...

. . .
...

...

3Jk−1 3Jk−1 · · · Jk−1 − Ik−1 Ak

A>1 A>2 · · · A>k Jk − Ik


,

where, for 1 ≤ i ≤ k, Ai is the matrix obtained from 2J(k−1)×k by subtracting 1 from each

entry of i-th column.

Let si = 1 + (i− 1)(k − 1) for 1 ≤ i ≤ k.

To calculate det(tIn−D(G3)), first we subtract the si-th row with 1 ≤ i ≤ k from the

(si + 1)-th, . . ., (si + k − 2)-th rows, respectively, to obtain

det(tIn −D(G3)) = det



B C · · · C A∗1

C B · · · C A∗2
...

...
. . .

...
...

C C · · · B A∗k

−A>1 −A>2 · · · −A>k (t+ 1)Ik − Jk


,

where

B =

 t −1>k−2

−(t+ 1) · 1k−2 (t+ 1)Ik−2

 , C =

 −3 · 1>k−1
0(k−2)×(k−1)

 , A∗j =

 Bj

0(k−2)×k

 ,

and Bj is the matrix obtained from −2×1>k by adding 1 from the j-th entry for 1 ≤ j ≤ k.

Next for 1 ≤ i ≤ k, we add the (si + 1)-th, . . ., (si + k − 2)-th columns to the si-th

column, to obtain

det(tIn −D(G3)) = det



B∗ C∗ · · · C∗ A∗1

C∗ B∗ · · · C∗ A∗2
...

...
. . .

...
...

C∗ C∗ · · · B∗ A∗k

P1 P2 · · · Pk (t+ 1)Ik − Jk


= (t+ 1)k(k−2) · det(M),
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where

B∗ =

t− k + 2 −1>k−2

0(k−2)×1 (t+ 1)Ik−2

 , C∗ =

−3(k − 1) −3 · 1>k−2
0(k−2)×1 0k−2

 ,

M =

(t+ 2k − 1)Ik − (3k − 3)Jk Ik − 2Jk

(k − 1)Ik − (2k − 2)Jk (t+ 1)Ik − Jk

 ,

and Pj is the matrix obtained from −A>j by adding 2nd, . . ., (k − 1)-th columns to the

first column for 1 ≤ j ≤ k.

To calculate det(M), by subtracting the first row from the 2nd, . . . , k-th rows, respec-

tively, and subtracting the (k+1)-th row from the (k+2)-th, . . ., (2k)-th rows, respectively,

to obtain

det(M) = det


t− k + 2 −(3k − 3) · 1>k−1 −1 −2 · 1>k−1

(−t− 2k + 1) · 1k−1 (t+ 2k − 1)Ik−1 −1k−1 Ik−1

−k + 1 −(2k − 2) · 1>k−1 t −1>k−1

−(k − 1) · 1k−1 (k − 1)Ik−1 −(t+ 1) · 1k−1 (t+ 1)Ik−1

 ,

and then by adding the 2nd, . . ., k-th columns to the first column, and adding the (k+2)-

th, . . ., (2k)-th columns to the (k + 1)-th column, we have

det(M) = det


t− 3k2 + 5k − 1 −(3k − 3) · 1>k−1 −2k + 1 −2 · 1>k−1

0(k−1)×1 (t+ 2k − 1)Ik−1 0(k−1)×1 Ik−1

−(k − 1)(2k − 1) −(2k − 2) · 1>k−1 t− k + 1 −1>k−1

0(k−1)×1 (k − 1)Ik−1 0(k−1)×1 (t+ 1)Ik−1

 .

Now we add (−k + 1)/(t + 1) times of the (k + i)-th column with 2 ≤ i ≤ k to the i-th

column, to obtain

det(M) = (t+ 1)k−1
(
t+ 2k − 1 +

−k + 1

t+ 1

)k−1
 t− 3k2 + 5k − 1 −2k + 1

−(k − 1)(2k − 1) t− k + 1


= (t2 + 2kt+ k)k−1 · (t2 − (3k2 − 4k)t− k3 + k).

Thus

det(tIn −D(G3)) = (t+ 1)k(k−2) · (t2 + 2kt+ k)k−1 · (t2 − (3k2 − 4k)t− k3 + k).

Then distance eigenvalues of G3 are −1 (with multiplicity k(k − 2)), −k ±
√
k2 − k (with

multiplicity k− 1), and (3k2− 4k±
√

9k4 − 20k3 + 16k2 − 4k)/2 (> −k−
√
k2 − k). Thus

λ(G3) = −k −
√
k2 − k.
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Theorem 3.7. Let G be a k-uniform hypertree of order n with 2 ≤ k ≤ n. Then

λ(G) ∈ [−2k, 0) if and only if G ∼= Sn,2, D4,2,1, or D5,2,1 when k = 2, and G ∼= Sn,k

or Dk(n; 1, . . . , 1︸ ︷︷ ︸
n−1
k−1
−1

, 0, . . . , 0) when k ≥ 3.

Proof. By Lemma 3.5(ii), λ(Sn,k) = −k > −2k. By direct calculation, λ(D4,2,1) =

−2−
√

2 > −4 and λ(D5,2,1) ≈ −3.867 > −4. For k ≥ 3, note that P3k−2,k is a distance-

preserving k-uniform subhypergraph ofDk(n; 1, . . . , 1︸ ︷︷ ︸
n−1
k−1
−1

, 0, . . . , 0), andDk(n; 1, . . . , 1︸ ︷︷ ︸
n−1
k−1
−1

, 0, . . . , 0)

is a distance-preserving k-uniform subhypergraph of Dk(n; 1, . . . , 1︸ ︷︷ ︸
k

). By Lemmas 3.5(i),

3.6(iii) and 2.1, we have

−k −
√
k2 − 2 = λ(P3k−2,k) ≥ λ

(
Dk(n; 1, . . . , 1︸ ︷︷ ︸

n−1
k−1
−1

, 0, . . . , 0)
)

≥ λ
(
Dk(n; 1, . . . , 1︸ ︷︷ ︸

k

)
)

= −k −
√
k2 − 2.

Thus λ
(
Dk(n; 1, . . . , 1︸ ︷︷ ︸

n−1
k−1
−1

, 0, . . . , 0)
)

= −k −
√
k2 − 2 > −2k.

Suppose that λ(G) ≥ −2k. If the diameter of G is at least four, then since P4k−3,k is

a distance-preserving k-uniform subhypergraph of G, we have by Lemmas 2.1 and 3.6(i)

that λ(G) ≤ λ(P3k−2,k) < −2k, a contradiction. Thus the diameter of G is at most three.

If the diameter is at most two, then it is obvious that G ∼= Sn,k.

Suppose that the diameter ofG is three. Suppose that k = 2. ThenG ∼= Dn,2,a for some

1 ≤ a ≤ b(n − 2)/2c. By direct calculation, λ(D6,2,1) ≈ −4.1409 < −4 and λ(D6,2,2) ≈
−4.5616 < −4. By Lemma 2.1, G can contain neither D6,2,1 nor D6,2,2 as a subgraph.

Thus G ∼= D4,2,1, or D5,2,1. Now suppose that k ≥ 3. Then G ∼= Dk(n; a1, . . . , ak), where

a1 ≥ · · · ≥ ak ≥ 0, a2 ≥ 1 and
∑k

i=1 ai + 1 = (n − 1)/(k − 1). Suppose that a1 ≥ 2.

Then D4k−3,k,1 is a distance-preserving k-uniform subhypergraph of G. By Lemmas 2.1

and 3.6(ii), we have λ(G) ≤ λ(D4k−3,k,1) < −2k, a contradiction. Thus a1 = 1, implying

that G ∼= Dk(n; 1, . . . , 1︸ ︷︷ ︸
n−1
k−1
−1

, 0, . . . , 0).

By the proof of Theorem 3.7, and Lemmas 2.1, 3.5 and 3.6, we have

Corollary 3.8. (i) For k ≥ 2, there dose not exist a k-uniform hypertree G with λ(G) ∈
[−2k,−k −

√
k2 − k) ∪ (−k −

√
k2 − k,−k) ∪ (−k,−1) ∪ (−1, 0) except D5,2,1 when

k = 2;
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(ii) If G is a k-uniform hypertree of order n with 2 ≤ k ≤ n− 1, then λ(G) = −k if and

only if G ∼= Sn,k;

(iii) If G is a k-uniform hypertree of order n with 2 ≤ k ≤ n − 1, then λ(G) = −k −√
k2 − k if and only if G ∼= Dk(n; 1, . . . , 1︸ ︷︷ ︸

n−1
k−1

, 0, . . . , 0) with (n− 1)/(k − 1) ≥ 2.

Lemma 3.9. For k ≥ 2, λ(C3k−3,k) = (−k −
√
k2 − 4)/2.

Proof. The case k = 2 is trivial. Suppose that k ≥ 3. Let E(C3k−3,k) = {e1, e2, e3} with

e1 ∩ e2 = {u}, e2 ∩ e3 = {v}, and e1 ∩ e3 = {w}. Let x be an eigenvector of D(C3k−3,k)

corresponding to λ(C3k−3,k). As in the proof of Lemma 3.5(i), the entry of x at each

vertex of e1 \ {u,w} is the same, which is denoted by x1, the entry of x at each vertex of

e2 \ {u, v} is the same, which is denoted by x2, the entry of x at each vertex of e3 \ {v, w}
is the same, which is denoted by x3. Then

λxu = xv + xw + (k − 2)x1 + (k − 2)x2 + 2(k − 2)x3,

λxv = xu + xw + 2(k − 2)x1 + (k − 2)x2 + (k − 2)x3,

λxw = xu + xv + (k − 2)x1 + 2(k − 2)x2 + (k − 2)x3,

λx1 = xu + 2xv + xw + (k − 3)x1 + 2(k − 2)x2 + 2(k − 2)x3,

λx2 = xu + xv + 2xw + 2(k − 2)x1 + (k − 3)x2 + 2(k − 2)x3,

λx3 = 2xu + xv + xw + 2(k − 2)x1 + 2(k − 2)x2 + (k − 3)x3.

We view these equations as a homogeneous linear system in the six variables xu, xv, xw,

x1, x2 and x3. Thus λ(C3k−3,k) is the least root of g(t) = 0, where

g(t) = (t2 − (5k − 9)t− 6k + 10)(t2 + kt+ 1)2.

Note that the roots of g(t) = 0 are (5k− 9±
√

25k2 − 66k + 41)/2 and (−k±
√
k2 − 4)/2

(with multiplicity 2). It follows that λ(C3k−3,k) = (−k −
√
k2 − 4)/2.

For k ≥ 3 and a = n/(k−1)−2, let E(C2k−2,k) = {e1, e2} with e1∩e2 = {u, v}, and let

Fn,k,a be the hypergraph obtained from C2k−2,k by adding ak−a new vertices u1, . . . , uak−a

and a new edges {u, ui(k−1)+1, . . . , ui(k−1)+k−1}, where i = 0, . . . , a−1. Obviously, if a = 0,

then Fn,k,a
∼= C2k−2,k.

Lemma 3.10. For integers n, k, a with 3 ≤ k ≤ n and a = n/(k − 1)− 2 ≥ 0, we have

(i) λ(Fn,k,0) = −k + 1;

(ii) λ(Fn,k,a) ∈ (−k + 1−
√

(k − 1)(k − 2),−k) if a ≥ 1.
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Proof. Let E(Fn,k,a) = {e1, . . . , ea+2} with e1 ∩ e2 = {u, v}. We partition V (Fn,k,a) into

{u} ∪ {v} ∪ (e1 \ {u, v}) ∪ (e2 \ {u, v}) ∪ (e3 \ {u}) ∪ · · · ∪ (ea+2 \ {u}). With respect to

this partition, we have

D(Fn,k,a)

=



0 1 1>k−2 1>k−2 1>k−1 · · · 1>k−1

1 0 1>k−2 1>k−2 2 · 1>(k−1) · · · 2 · 1>k−1
1k−2 1k−2 Jk−2 − Ik−2 2Jk−2 2J(k−2)×(k−1) · · · 2J(k−2)×(k−1)

1k−2 1k−2 2Jk−2 Jk−2 − Ik−2 2J(k−2)×(k−1) · · · 2J(k−2)×(k−1)

1k−1 2 · 1k−1 2J(k−1)×(k−2) 2J(k−1)×(k−2) Jk−1 − Ik−1 · · · 2Jk−1
...

...
...

...
...

. . .
...

1k−1 2 · 1k−1 2J(k−1)×(k−2) 2J(k−1)×(k−2) 2Jk−1 · · · Jk−1 − Ik−1


.

If a = 0, then as in the proof of Lemma 3.5(ii), we have

det(tIn −D(Fn,k,a)) = (t+ 1)2(k−3)+1 · det


t− 1 −(k − 2) −(k − 2)

−2 t− k + 3 −2(k − 2)

−2 −2(k − 2) t− k + 3


= (t+ 1)2(k−3)+1 · (t+ k − 1) · (t2 − (3k − 6)t− k + 1),

and thus the distance eigenvalues of Fn,k,a are −1 (with multiplicity 2(k− 3) + 1), −k+ 1

and (3k − 6±
√

9k2 − 32k + 32)/2 (> −k + 1). Thus λ(Fn,k,a) = −k + 1. This is (i).

Suppose that a ≥ 1. As in the proof of Lemma 3.5, we have

det(tIn −D(Fn,k,a)) = (t+ 1)2(k−3)+a(k−2) · (t+ k − 1) · (t+ k)a−1

× det


t −1 −2(k − 2) −(k − 1)a

−1 t −2(k − 2) −2(k − 1)a

−1 −1 t− 3k + 7 −2(k − 1)a

−1 −2 −4(k − 2) t− 2(k − 1)(a− 1)− k + 2


= (t+ 1)2(k−3)+a(k−2) · (t+ k − 1) · (t+ k)a−1h(t),

where

h(t) = t4 + t3(−2ak − 2k + 2a+ 7) + t2(−3k2 − 2ak2 − ak + 3k + 7 + 3a)

+ t(−4k2 − ak2 − 4ak + 6k + 5a+ 1)− k2 + k − 2ak + 2a.

Thus the distance eigenvalues of Fn,k,a are −1 (with multiplicity 2(k−3)+a(k−2)), −k+1,

−k (with multiplicity a − 1 for a ≥ 2), and the roots of h(t) = 0. Let λ = λ(Fn,k,a).
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Since h(−k) = −a(k − 1)(k − 2)(2k − 1) < 0, we have λ < −k, and thus λ is the

least root of h(t) = 0. Note also that ρ(D(Fn,k,a) is the largest root of h(t) = 0. Let

t1 ≤ t2 ≤ t3 ≤ t4 be the roots of h(t) = 0, where t1 = λ and t4 = ρ(Fn,k,a). Then

t1 + t2 + t3 + t4 = 2ak + 2k − 2a− 7.

Note that t4 ≤ 2ak + 3k − 2a− 5 (which is the maximum row sum of D(Fn,k,a)).

Let λ∗ = −k + 1−
√

(k − 1)(k − 2). Then

h(λ∗) = λ∗p(k)− 5k3 + 11ak2 − 2ak3 + 28k2 − 49k − 18ak + 26 + 9a,

where p(k) = −10k3 + 23ak2 − 4ak3 + 58k2 − 107k − 40ak + 62 + 21a. Note that p(k) is

decreasing for k ≥ 3. We have p(k) ≤ p(3) = −7 < 0. If k = 3, then h(λ∗) = 10+7
√

2 > 0.

If k ≥ 4, then λ∗p(k) > (−k)p(k), and thus

h(λ∗) > (−k) · p(k)− 5k3 + 11ak2 − 2ak3 + 28k2 − 49k − 18ak + 26 + 9a

= (10k2 + 4ak2 − 25ak − 63k + 38a+ 98)k2

+ (37k + 13ak − 111− 39a)k + 26 + 9a

> 0.

It follows that h(λ∗) > 0 for k ≥ 3. Thus either λ∗ < t1 or t2 < λ∗ < t3. Suppose that

t2 < λ∗ < t3. Since λ∗ < −k and h(−k) < 0, we have t1 ≤ t2 < λ∗ < t3 < −k < t4. Thus

t4 = 2ak + 2k − 2a− 7− t1 − t2 − t3
> 2ak + 2k − 2a− 7− 2λ∗ − (−k)

= 2ak + 5k − 2a+ 2
√

(k − 1)(k − 2)− 9

> 2ak + 3k − 2a− 5,

a contradiction. Thus λ∗ < t1 = λ. Therefore λ ∈ (−k + 1−
√

(k − 1)(k − 2),−k). This

proves (ii).

If G is an ordinary unicyclic graph of order n ≥ 3, then by Theorem 3.3, λ(G) ≤ −1

with equality if and only if G ∼= C3,2, see [12]. By Corollary 3.4, there is no k-uniform

hypergraph G with λ(G) ∈ (−1, 0) for k ≥ 2.

Theorem 3.11. Let G be a k-uniform unicyclic hypergraph of order n, where 3 ≤ k ≤ n.
Then λ(G) ∈ (−k + 1 −

√
(k − 1)(k − 2), 0) if and only if G ∼= C3k−3,k, or Fn,k,a with

a = n/(k − 1)− 2 ≥ 0.

Proof. Suppose that λ(G) > −k+ 1−
√

(k − 1)(k − 2). By Lemma 3.5(i), λ(P3k−5,k−1) =

−k + 1 −
√

(k − 1)(k − 2). Suppose that the diameter of G is at least three. Then

D(P3k−5,k−1) is a principal matrix of D(G). By Lemma 2.1, λ(G) ≤ λ(D(P3k−5,k−1)), a
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contradiction. Thus the diameter of G is two, which implies that the cycle length of G is

at most three.

If the length of the cycle in G is three, then since the diameter of G is two, there is

no vertex lying outside the unique cycle, and thus G ∼= C3k−3,k. Suppose that the cycle

length of G is two. If there is no vertex lying outside the unique cycle, then G ∼= Fn,k,a

with a = n/(k − 1)− 2 = 0. Otherwise, since the diameter of G is two, all those vertices

lying outside the unique cycle are adjacent to a common vertex of degree two of the unique

cycle, and thus G ∼= Fn,k,a with a = n/(k − 1)− 2 ≥ 1.

If G ∼= C3k−3,k or Fn,k,a with a = n/(k− 1)− 2 ≥ 0, then by Lemmas 3.9 and 3.10, we

have λ(G) > −k + 1−
√

(k − 1)(k − 2).

By the proofs of Theorem 3.11 and Lemmas 3.9 and 3.10, we have

Corollary 3.12. For k ≥ 3, there does not exist a k-uniform unicyclic hypergraph G with

λ(G) ∈ (−k+ 1−
√

(k − 1)(k − 2),−k)∪ (−k, (−k−
√
k2 − 4)/2)∪ ((−k−

√
k2 − 4)/2, 0).

4. Distance spread

The following lemma is an immediate consequence of Perron-Frobenius Theorem.

Lemma 4.1. Let G be a connected k-uniform hypergraph with u, v ∈ V (G), and u is not

adjacent with v. Let e ⊆ V (G) with u, v ∈ e and |e| = k. Then ρ(G) > ρ(G+ e).

Lemma 4.2. Let G be a connected k-uniform hypergraph of order n, where 2 ≤ k ≤
n. Then ρ(G) ≥ n − 1 with equality if and only if G is a spanning distance-preserving

subhypergraph of Kk
n.

Proof. Let G be a k-uniform hypergraph with minimum distance spectral radius among

connected hypergraphs of order n. Suppose that the diameter of G is at least 2. Then

there are u, v ∈ V (G) such that u is not adjacent to v. Let e be a k-subset of V (G)

containing u and v. Obviously, e /∈ E(G). By Lemma 4.1, we have ρ(G) > ρ(G + e), a

contradiction. Thus the diameter of G is one. Therefore, D(G) = Jn − In, implying that

G is a spanning distance-preserving subhypergraph of Kk
n with distance spectral radius

n− 1 (the greatest eigenvalue of Jn − In).

Theorem 4.3. Let G be a connected k-uniform hypergraph on n vertices, where 2 ≤
k ≤ n. Then s(G) ≥ n with equality if and only if G is a spanning distance-preserving

subhypergraph of Kk
n.

Proof. By Lemma 4.2 and Theorem 3.3(i), it is easily seen that s(G) ≥ n− 1.
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Suppose that G is not a spanning distance-preserving subhypergraph of Kk
n. By

Lemma 4.2, ρ(G) > n− 1. By Theorem 3.3(i), λ(G) < −1. Thus s(G) = ρ(G)− λ(G) >

n = ρ(H)−λ(H) = s(H) for a spanning distance-preserving subhypergraph H of Kk
n.

Recall that we proved the following result in [13].

Lemma 4.4. Let T be a k-uniform hypertree on n vertices, where 2 ≤ k ≤ n. Then

ρ(T ) ≥ ρ(Sn,k) with equality if and only if T ∼= Sn,k.

Theorem 4.5. Let T be a k-uniform hypertree on n vertices, where 2 ≤ k ≤ n. Then

s(T ) ≥ s(Sn,k) with equality if and only if T ∼= Sn,k.

Proof. Suppose that T 6∼= Sn,k. Then (n− 1)/(k− 1) ≥ 2. By Lemma 4.2, ρ(T ) > ρ(Sn,k).

By Lemmas 2.1 and 3.5, λ(T ) ≤ λ(P3k−2,k) = −k −
√
k2 − k < −k = λ(Sn,k). Thus

s(T ) = ρ(T )− λ(T ) > ρ(Sn,k)− λ(Sn,k).
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