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Reconsidering Hocking’s Edge Condition: Solution of the Problem of Forced

Capillary-Gravity Waves in a Finite Depth Setting

Nai-Sher Yeh

Abstract. The paper constructs the solution of a forced capillary-gravity waves prob-

lem outside a cylindrical wavemaker of finite depth under Hocking’s edge condition.

After introducing the setting of the problem, it obtains the solution and proves its

uniqueness. Possible applications of the result for future researches, including the

application of the model to earthquakes, are also discussed at the end.

1. Introduction

In 1924, a paper was published by Havelock [3] on the problem of forced surface waves

under gravity generated by a plane wavemaker. It was solved by using an expansion

method without considering surface tension or edge condition. Then Evans [1, 2] studied

the problem of a heaving circular cylinder in a fluid with the effect of surface tension

being taken into consideration and proposed an edge condition. Later another dynamic

edge condition was considered by Hocking [4]. He proposed that at a contact line the

time derivative of the free surface is proportional to the slope of the free surface. Of these

edge conditions, both of which have been widely studied for their contributions to the

solution of related problems, Hocking’s model [4] is generally considered more physically

plausible than that of Evans’s, because Hocking’s provided relations more than simply

sinusoidal condition. However, Miles [5] argued that Hocking’s settings was not practical

when considered in the case of a heaving cylinder with stick/slip edge condition.

Ting and Perlin [9] did a thorough study on edge condition using modern equipment

to record edge condition and confirmed Miles’s observation on the case of a stick/slip

condition. However, this result doesn’t influence the edge condition in capillary-gravity

waves generated by a wavemaker which oscillates horizontally without stick/slip condition.

Recently Yeh [11] pointed out that in fact both Ting and Perlin’s study and Hocking’s

edge condition agree on the point that the contact angle between free surface and oscilla-

tor/wavemaker is the key factor in determining edge condition, and this agreement further
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confirms the physical plausibility of Hocking’s edge condition in the study of capillary-

gravity waves.

On the other hand, Rhodes-Robinson [6] studied the problems of forced capillary-

gravity waves generated by a plane or cylindrical wavemaker under Evans’s edge condition.

Some very unconventional expansion theorems for arbitrary functions were introduced in

his solving process, and the wave motion was considered axisymmetrical in the case that

the waves are generated outside of the cylindrical wavemaker. Yeh [10] rigorously proved

the expansion theorems and offered further interpretation. Besides, Shen and Yeh [7, 8]

successfully obtained the unique solution of forced capillary-gravity waves inside a circular

basin under Hocking’s edge condition using Green’s function method. However, the solu-

tions exterior to the cylinder under Hocking’s edge condition and proper interpretation of

the theorems were not yet considered in either of these papers.

Hence this study incorporates one of the expansion theorems to find the desired solution

of asymmetrical finite depth problem under Hocking’s edge condition, and use the idea of

Green’s function to prove its uniqueness.

A rigorous process of solution-finding and the proof of its uniqueness will be given

in Section 2, and a model of earthquakes using modified formulation from the result

will be discussed in Section 3. This study will conclude with Section 4, summarizing

the theoretical significance of the solution and pointing out its applicability for future

researches. Original formulation and proof of the related expansion theorem are provided

in Sections 5 and 6 respectively for references.

2. Solution for the finite depth problem

The governing equations of the problem considered are as follows:

L2ϕ =

(
∂2

∂r2
+

1

r

∂

∂r
− m2

r2
+

∂2

∂z2

)
ϕ = 0 on V = (a,∞)× (−1, 0) for some a > 0,

(2.1)

−ω2ϕ+ ϕz = TL1ϕz = T

(
∂2

∂r2
+

1

r

∂

∂r
− m2

r2

)
ϕz on r > a, z = 0,(2.2)

ϕz = 0 on z = −1,(2.3)

ϕr = f(z) on r = a,(2.4)

ϕ→ C0 cosh(k0(1 + z))H(1)
m (k0r) as r →∞,(2.5)

and the edge condition

(2.6) ϕrz = iωδϕz at z = 0, r = a,
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where

L2 = L1 +
∂2

∂z2
=

1

r

∂

∂r

(
r
∂

∂r

)
− m2

r2
+

∂2

∂z2
.

The original process of deriving these equations is shown in Section 5, and the equa-

tion (2.6) is Hocking’s Edge Condition. Notice that ϕ is the potential function, T is the

surface tension coefficient, ω is the angular frequency, m is the azimuthal number, δ is

some real constant, f is an arbitrary smooth function, C0 is a constant, k0 is the positive

real root of α(Tα2 + 1) sinhα − ω2 coshα = 0, and H
(1)
m (·) is the Hankel’s function of

the first kind with order m. The following is an expansion theorem presented by Rhodes-

Robinson [5, p. 334] and proved by Yeh (see [7], quoted in Section 6) when f is an arbitrary

smooth function defined on (−1, 0):

Theorem 2.1. An arbitrary smooth function u(z) for −1 < z < 0 possesses a series

expansion in the following form

u(z) = −4π
k0A

∗
0(cosh k0)(cosh(k0(1 + z)))

2k0(1 + Tk2
0) + (1 + 3Tk2

0) sinh 2k0

− 4π
∞∑
n=1

knA
∗
n(cos kn)(cos(kn(1 + z)))

2kn(1− Tk2
n) + (1− 3Tk2

n) sin 2kn
,

where ±k0,±ik1,±ik2, . . . ,±ikn, . . . are zeros of

(2.7) ∆(α) = α(Tα2 + 1) sinhα− ω2 coshα = 0,

k0 > 0, 0 < k1 < k2 < · · · < kn < · · · ,

A∗0 = − 1 + Tk2
0

π(cosh k0)

∫ 0

−1
u(ξ) cosh(k0(1 + ξ)) dξ + Tµ,(2.8)

A∗n = − 1− Tk2
n

π(cos kn)

∫ 0

−1
u(ξ) cos(kn(1 + ξ)) dξ + Tµ, n = 1, 2, 3, . . .(2.9)

and µ is an arbitrary parameter.

For simplicity, let

β0 = 2k0(1 + Tk2
0) + (1 + 3Tk2

0) sinh 2k0,(2.10)

βn = 2kn(1− Tk2
n) + (1− 3Tk2

n) sin 2kn, n = 1, 2, 3, . . .(2.11)

and rewrite the expansion as

u(z) = 2

[
2k0(1 + Tk2

0)(cosh(k0(1 + z)))
∫ 0
−1 u cosh(k0(1 + ξ)) dξ

β0

+
∞∑
n=1

2kn(1− Tk2
n)(cos(kn(1 + z)))

∫ 0
−1 u cos(kn(1 + ξ)) dξ

βn

]

− 2πTµ

[
2k0(cosh k0)(cosh(k0(1 + z)))

β0
+

∞∑
n=1

2kn(cos kn)(cos(kn(1 + z)))

βn

]
.
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Then let

(2.12) u(z) = 2u1(z)− 2πTµu2(z),

where

u1(z) =
1

β0

[
2k0(1 + Tk2

0)(cosh(k0(1 + z)))

∫ 0

−1
u(ξ) cosh(k0(1 + ξ)) dξ

]
+ 2

∞∑
n=1

1

βn

[
kn(1− Tk2

n)(cos(kn(1 + z)))

∫ 0

−1
u(ξ) cos(kn(1 + ξ)) dξ

]
,

u2(z) =
1

β0
[2k0(cosh k0)(cosh(k0(1 + z)))] + 2

∞∑
n=1

[
kn
βn

(cos kn)(cos(kn(1 + z)))

]
.(2.13)

There is a zero term −2πTµu2(z) in (2.12). However, the presence of zero term and the

independent parameter µ have not been explained. It will become clear after the solution

being found. Simply note that µ will be determined by the edge condition.

The next theorem is the main result of this paper, which is to construct solution of the

governing equations by using Theorem 2.1. Uniqueness of the solution will be presented

in Theorem 2.6.

Theorem 2.2. The solution of the governing equations is

ϕ(r, z) = − 1 + Tk2
0

π(cosh k0)
(−4π)

∫ 0

−1
f(ξ) cosh(k0(1 + ξ)) dξ

× (cosh k0)(cosh(k0(1 + z)))

2k0(1 + Tk2
0) + (1 + 3Tk2

0)(sinh 2k0)
× H

(1)
m (k0r)

H
(1)′
m (k0a)

−
∞∑
n=1

1− Tk2
n

π(cos kn)
(−4π)

∫ 0

−1
f(ξ) cos(kn(1 + ξ)) dξ

× (cos kn)(cos(kn(1 + z)))

2kn(1− Tk2
n) + (1− 3Tk2

n)(sin 2kn)
× Km(knr)

K ′m(kna)

+ Tµ

[
(−4π)

(cosh k0)(cosh(k0(1 + z)))

2k0(1 + Tk2
0) + (1 + 3Tk2

0) sinh 2k0
× H

(1)
m (k0r)

H
(1)′
m (k0a)

+ (−4π)
∞∑
n=1

(cos kn)(cos(kn(1 + z)))

2kn(1− Tk2
n) + (1− 3Tk2

n) sin 2kn
× Km(knr)

K ′m(kna)

]
.

(2.14)

where

µ =
−iωδϕ̃1z(a

+, 0)

π + iTωδG0z(a+, 0)
,
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Km(·) are modified Bessel’s functions of the second kind of order m, and

ϕ̃1z(a
+, 0) = 4ω2

{
(cosh k0)H

(1)
m (k0a)

β0H
(1)′
m (k0a)

∫ 0

−1
f(ξ) cosh(k0(1 + ξ)) dξ

+

∞∑
n=1

(cos kn)Km(kna)

βnK ′m(kna)

∫ 0

−1
f(ξ) cos(kn(1 + ξ)) dξ

}
,

G0z(a
+, 0) = −4π

{
k0(cosh k0)(sinh k0)H

(1)
m (k0a)

β0H
(1)′
m (k0a)

−
∞∑
n=1

kn(cos kn)(sin kn)Km(kna)

βnK ′m(kna)

}
,

where β0 and βn are the same as in (2.10) and (2.11), respectively.

Proof. By the conjecture of Yeh [10, pp. 6–7] and by Theorem 2.1, assume that the solution

has the following form:

ϕ(r, z) =

∞∑
n=0

fn(z)ϕn(r),

where

f(z) =

∞∑
n=0

fn(z),

f0(z) = −4π
k0A

∗
0(cosh k0) cosh(k0(1 + z))

2k0(1 + Tk2
0) + (1 + 3Tk2

0)(sinh 2k0)
,(2.15)

fn(z) = −4π
knA

∗
n(cos kn) cos(kn(1 + z))

2kn(1− Tk2
n) + (1− 3Tk2

n)(sin 2kn)
, n = 1, 2, . . . ,(2.16)

A∗0 and A∗n, n = 1, 2, 3, . . ., are expressed as in (2.8) and (2.9), respectively. Here ϕn(r)

(n = 0, 1, 2, . . .) are radial functions of which forms will be solved later. Furthermore,

fn(z) = 2Pn(z)− 2πTµQn(z),

where

P0(z) =
1

β0

[
2k0(1 + Tk2

0)(cosh(k0(1 + z)))

∫ 0

−1
f(ξ) cosh(k0(1 + ξ)) dξ

]
,

Q0(z) =
1

β0
[2k0(cosh k0)(cosh(k0(1 + z)))] ,

Pn(z) =
1

βn

[
2kn(1− Tk2

n)(cos(kn(1 + z)))

∫ 0

−1
f(ξ) cos(kn(1 + ξ)) dξ

]
, n = 1, 2, 3, . . . ,

Qn(z) =
1

βn
[2kn(cos kn)(cos(kn(1 + z)))] , n = 1, 2, 3, . . . ,
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Tµ
[∑∞

n=0Qn(z)
]

= 0 in terms of this expression, and µ is a parameter to be determined.

Since L2ϕ = 0, let’s assume that L2 can be taken inside of
∑

to obtain

(2.17) L2(fn(z)ϕn(r)) = 0 for all n.

Notice that L2ϕ = 0 doesn’t necessarily imply (2.17) would hold. Plausibility of this

assumption will be verified in Lemma 2.3 after the solution is constructed through the

setting. Again, suppose that L2 may be taken into the series, then the following two cases

should hold:

Case 1: n = 0. (2.15) can be written as

f0(z) = F0 cosh(k0(1 + z)),(2.18)

L2[f0(z)ϕ0(r)] = f0(z)

(
∂2

∂r2
+

1

r

∂

∂r
−
(m
r

)2
)
ϕ0(r)

+ ϕ0(r)
∂2

∂z2
F0 cosh(k0(1 + z))

= f0(z)(L1 + k2
0I)ϕ0(r) = 0.

(2.19)

That is,

(L1 + k2
0I)ϕ0 = 0,

therefore

ϕ0(r) = C1
0H

(1)
m (k0r) + C2

0H
(2)
m (k0r),

where H
(1)
m (·) and H

(2)
m (·) are Hankel’s functions of the first kind and second kind of order

m, respectively.

Case 2: n ≥ 1.

fn(z) = Fn cos(kn(1 + z)),(2.20)

L2[fn(z)ϕn(r)] = fn(z)(L1 − k2
nI)ϕn(r) = 0.(2.21)

That is,

(L1 − k2
nI)ϕn = 0,

and therefore

ϕn(r) = C1
nKm(knr) + C2

nIm(knr),

where Km(·) and Im(·) are modified Bessel’s functions of the second kind and first kind

of order m, respectively.

By radiation condition (2.5) and the fact that the fluid domain extends to r →∞, it

is clear that

C2
0 = 0 = C2

n,
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and that

ϕ(r, z) =

∞∑
n=1

C1
nFn cos(kn(1 + z))Km(knr) + C1

0F0 cosh(k0(1 + z))H(1)
m (k0r).

From (2.4), f(z) can be found as

f(z) =

∞∑
n=1

C1
nFnknK

′
m(kna) cos(kn(1 + z))

+ C1
0F0k0H

(1)′
m (k0a) cosh(k0(1 + z))

=

∞∑
n=1

Fn cos(kn(1 + z)) + F0 cosh(k0(1 + z)),

(2.22)

which indicates that

C1
0 =

1

k0H
(1)′
m (k0a)

,

C1
n =

1

knK ′m(kna)
, n ≥ 1.

By using the expressions in (2.8), (2.9), (2.15), (2.16), (2.18) and (2.20), ϕ can be written

as

ϕ(r, z) = − 1 + Tk2
0

π(cosh k0)
(−4π)

∫ 0

−1
f(ξ) cosh(k0(1 + ξ)) dξ

× (cosh k0)(cosh(k0(1 + z)))

2k0(1 + Tk2
0) + (1 + 3Tk2

0)(sinh 2k0)
× H

(1)
m (k0r)

H
(1)′
m (k0a)

−
∞∑
n=1

1− Tk2
n

π(cos kn)
(−4π)

∫ 0

−1
f(ξ) cos(kn(1 + ξ)) dξ

× (cos kn)(cos(kn(1 + z)))

2kn(1− Tk2
n) + (1− 3Tk2

n)(sin 2kn)
× Km(knr)

K ′m(kna)

+ Tµ

[
(−4π)

(cosh k0)(cosh(k0(1 + z)))

2k0(1 + Tk2
0) + (1 + 3Tk2

0) sinh 2k0
× H

(1)
m (k0r)

H
(1)′
m (k0a)

+ (−4π)
∞∑
n=1

(cos kn)(cos(kn(1 + z)))

2kn(1− Tk2
n) + (1− 3Tk2

n) sin 2kn
× Km(knr)

K ′m(kna)

]
.

(2.23)

To determine µ, edge condition (2.6) and the expansion in (2.23) should be used. Set

(2.24) ϕ(r, z) ≡ ϕ̃1(r, z) + TµG0(r, z),
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where

ϕ̃1(r, z) = 4

{
(1 + Tk2

0)H
(1)
m (k0r)

β0H
(1)′
m (k0a)

cosh(k0(1 + z))

∫ 0

−1
f(ξ) cosh(k0(1 + ξ)) dξ

+

∞∑
n=1

(1− Tk2
n)Km(knr)

βnK ′m(kna)
cos(kn(1 + z))

×
∫ 0

−1
f(ξ) cos(kn(1 + ξ)) dξ

}
,

(2.25)

G0(r, z) = −4π

{
(cosh k0)H

(1)
m (k0r)

β0H
(1)′
m (k0a)

cosh(k0(1 + z))

+

∞∑
n=1

(cos kn)(Km(knr))

βnK ′m(kna)
cos(kn(1 + z))

}
,

(2.26)

and β0 and βn are the same as in (2.10) and (2.11), respectively. Note that part of the

series with independent parameter µ is in TµG0 and the other part of the series is without

µ in ϕ̃1(r, z).

Now the parameter µ shall be determined. Look at ϕ̃1rz(a
+, 0) first:

ϕ̃1rz(a
+, 0) = 4

{
k2

0

β0
(1 + Tk2

0)(sinh k0)

∫ 0

−1
f(ξ) cosh(k0(1 + ξ)) dξ

−
∞∑
n=1

k2
n

βn
(1− Tk2

n)(sin kn)

∫ 0

−1
f(ξ) cos(kn(1 + ξ)) dξ

}

= 4ω2

{
k0

β0
(cosh k0)

∫ 0

−1
f(ξ) cosh(k0(1 + ξ)) dξ

+

∞∑
n=1

kn
βn

(cos kn)

∫ 0

−1
f(ξ) cos(kn(1 + ξ)) dξ

}
,

as a result of applying the fact that ∆(±k0) = ∆(±ikn) = 0 in (2.7), n = 1, 2, 3, . . .. Also,

G0rz(a
+, 0) = 4π

{
−k

2
0

β0
(cosh k0)(sinh k0) +

∞∑
n=1

k2
n

βn
(cos kn)(sin kn)

}

= −4πω2

{
k0

β0

(
cosh2 k0

1 + Tk2
0

)
+
∞∑
n=1

kn
βn

(
cos2 kn
1− Tk2

n

)}
.

Then one may find that

(2.27) ϕ̃1rz(a
+, 0) = 2ω2

∫ 0

−1
f(ξ)

∫
C

α cosh(α(1 + ξ))

∆(α)
dαdξ = 0,

and that

G0rz(a
+, 0) = −2πω2

(
1

2πi

∫
C

α coshα

∆(α)(1 + Tα2)
dα− Res

α=i/
√

T

α coshα

∆(α)(1 + Tα2)

)
= −π

T
,

(2.28)
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where C is the contour from −∞ to ∞, which is indented above −k0 and below k0 (see,

Yeh [7].) Finally, edge condition (2.6), (2.24), (2.27) and (2.28) are used to obtain

ϕrz(a
+, 0) = iωδ

[
ϕ̃1z(a

+, 0) + TµG0z(a
+, 0)

]
= −πµ.

That is,

µ =
−iωδϕ̃1z(a

+, 0)

π + iTωδG0z(a+, 0)
,

which confirms the description of µ in Theorem 2. In addition, by applying ∆(±k0) =

∆(±ikn) = 0, ∀n ∈ N, ϕ̃1z(a
+, 0) is found and G0z(a

+, 0) are easily obtained by differen-

tiating them in terms of z in (2.25) and (2.26), respectively.

It is natural to ask if the expansion method could be applied to the interior problem.

The answer is not affirmative. The expansion for f(z) leads to a singularity in series

expansion of the solution, which can be regularized as in the Green’s function method.

Yet the limiting solution does not satisfy the edge condition. The question whether a

new expansion for f(z) inside the cylinder should be constructed is left to a subsequent

study. However, the reason why (2.4) can be written as (2.22) and why (2.17), (2.19) and

(2.21) would hold remains unresolved. Assumptions in (2.4) and (2.5) are also related

to the same reason. Therefore demonstrating their plausibility in the following lemma is

necessary.

Lemma 2.3. The differential operators L1, L2, ∂/∂r, ∂/∂z, ∂2/∂r2, ∂2/∂z2 and ∂2/(∂z∂r)

can be taken into the sum over n, i.e., (2.14) indeed satisfies governing equations.

The lemma is a verified result [12]. Thus, ϕ(r, z) is indeed the solution of governing

equations.

Physical meaning of the zero term (2.13) and the independent parameter µ in Theo-

rem 2.1 is stated in the following two remarks.

Remark 2.4. The z-component of G0 is exactly the zero term in equation (2.13). Therefore

the zero term (2.13) in Theorem 2.1 is essential for obtaining the independent parameter

µ at contact line.

Remark 2.5. Theorem 2.1 is always valid (see Section 6); however, the expansion itself

is not unique because of its zero term, which suggests various possibilities for different

settings of edge conditions.

Finally, the uniqueness of the solution is shown below.

Theorem 2.6. The solution ϕ(r, z) of governing equations is unique.
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Proof. To show the uniqueness, all one has to do is just consider the solution of homoge-

neous equations. By Green’s identity, the solution ϕ for Hocking’s edge condition can be

expressed as ∫∫∫
V ′

(GL′2ϕ− ϕL′2G)γ dγdξdη = 2πϕ(r, z)

=

∫∫
γ=a

Gf dξdη +
T

ω2

∫∫
S′

(G′ξL1ϕξ − ϕ′ξL1Gξ)γ dγdη

= 2π

∫ 0

−1
G|γ=af dξ +

2πTa

ω2
(iωδ)(Gξϕξ)|Γ′

= 2π

[∫ 0

−1
G|γ=af dξ +

iTaδ

ω
(Gξϕξ)|Γ′

]
,

where V ′ = [a,∞) × [0,−1] × [0, 2π), S′ = {(γ, ξ) | γ ∈ [a,∞), ξ = 0}, and Γ′ = {(γ, ξ) |
γ = a, ξ = 0}. Note that G = G(r, z; γ, ξ) satisfies

L′2G =

[
∂2

∂γ2
+

1

γ

∂

∂γ
−
(m
r

)2
+

∂2

∂ξ2

]
G = −1

γ
δ(γ − r)δ(ξ − z) in V ′,(2.29)

−ω2G+Gξ − TL′1Gξ = 0 on S′,(2.30)

Gγ = 0 on M ′,(2.31)

Gξ = 0 on B′,(2.32)

G→ C1H
(1)
m (k0γ) cosh(k0(1 + ξ)) as γ →∞,(2.33)

Gγξ = 0 at Γ′,

where M ′ = {(γ, ξ) | γ = a, ξ ∈ [0,−1]}, B′ = {(γ, ξ) | γ ∈ [a,∞), ξ = −1}, and C1 is a

constant, η ∈ [0, 2π). Note that G could be constructed by the image method. In fact a

solution may be obtained in a different way by comparing different forms of the solution.

Since

(2.34) ϕ(r, z) =

∫ 0

−1
G|γ=af dξ +

iTaδ

ω
(Gξϕξ)|Γ′ ,

by comparing with the result in (2.23) to (2.26), one can see that

ϕ̃1 =

∫ 0

−1
G|γ=af dξ,(2.35)

TµG0 =
iTaδ

ω
ϕξ|Γ′Gξ|Γ′ .(2.36)

Again, it is easy to see that by splitting terms with and without the independent parameter

µ, the above two equations are valid. By comparing (2.35) and (2.25), G|γ=a becomes

obvious. Also because

ϕξ|Γ′ =

∫ 0
−1Gξ|γ=a,Γf dξ

1− iTaδ
ω Gξz|Γ′Γ

,
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and (2.36) suggests

TµG0 =
−iωδTϕ1z(a

+, 0)

π + iωδTG0z(a+, 0)
G0(r, z) =

iTaδ
ω

∫ 0
−1Gz|γ=a,Γf dξ

1− iTaδ
ω Gzξ|ΓΓ′

Gξ|Γ′

=
− iωδT

π

(∫ 0
−1Gz|γ=a,Γf dξ

)
1 + iωδT

π G0z(a+, 0)
G0(r, z),

the result

(2.37) − ω2

πa
G0(r, z) = Gξ|Γ′

is obtained. Since G0(r, z) is given by (2.26), Gξ|Γ′ is thus determined by (2.37). It follows

from (2.34) that the solution ϕ appears to be

ϕ(r, z) =

∫ 0

−1
G|γ=af dξ +

− iωδT
π

(∫ 0
−1Gz|γ=a,Γf dξ

)
1 + iωδT

π G0z(a+, 0)
G0(r, z)

=

∫ 0

−1

{
G|γ=a −

iωδTG0(r, z)Gz|γ=a,Γ

π + iωδTG0z(a+, 0)

}
f dξ

=

∫ 0

−1
GH(r, z; a, ξ)f(ξ) dξ,

(2.38)

where GH(r, z; γ, ξ) satisfies (2.29) to (2.33) but GHγξ = GHξ at Γ′, and that GH(r, z; a, ξ)

can be easily obtained from (2.38). Then the homogeneous solution ϕh becomes 0 because

when f = 0,

ϕh(r, z) =

∫ 0

−1
GH(r, z; a, ξ)× 0 dξ ≡ 0.

Therefore, a solution of the problem is unique has been proved.

3. Discussion

The possibility mentioned here was proposed in the earlier paper (see, Yeh [11]). This fluid

model could be applied to earthquakes with certain modifications. Assume the amplitude

of pressure (vertical) waves on land being far less than its wave length, and think of the

pressure waves caused by earthquakes on land satisfying potential function

Φ + η,

where Φ is the potential described in Section 5, η is the damping effect,

η = ρ(Φr)
2,

ρ is the factor to be determined by actual data, and r > a is the proper distance away

from the center of earthquakes. Therefore, the pressure waves of earthquakes on land
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are considered being gauge invariant or equivalent to this model. However, a different

boundary condition should be posed when r →∞:

Φ + η → C1H
(1)
m (k0r)e

(−r/Λ+k0z)+i(ωt±mθ),

the number Λ should be determined by data fitting. In reality, finite radial length and

depth should be considered, therefore

Φ + η = 0 on z = −l

for some depth l. As for the “edge condition” under such a formulation, it can either be

taken off or become an additional factor for adjustment. Further research on the model

and related problems shall be conducted in different papers.

4. Conclusion

This study has constructed the solution and proved its uniqueness by using expansion

theorem and a special assumption. It also considers the asymmetric case, which has

not been studied in the past. Although the problem is based on cylindrical wavemaker

under Hocking’s edge condition, technique used in this paper is not restricted to a specific

edge condition or cylindrical wavemaker, and can be applied to any other linearized edge

condition as well as plane wavemaker. Furthermore, it is reported that liquid Helium,

an important medium used in high temperature superconductivity experiment in case of

neutral superfluid below transition in the absence of topological defects, manifests such

properties even though ideal fluid is rarely seen in nature. Thus, application of the model

in the study to this field of liquid Helium may be possible.

From the view of asymptotic expansion, this solution can be considered as the first

term of an asymptotic expansion of the “complete” solution when all non-linear conditions

are included. Besides, from series form of the solution, it may be interpreted that the

finite depth problem has discrete eigenvalues or spectrums, which is different from infinite

depth problem. Furthermore, in the problem of capillary-gravity waves generated inside

cylindrical wavemaker of finite depth, complex eigenvalues may be found, as indicated by

the exact solution derived by Shen and Yeh [7, 8]. Thus eigenvalues of interior problem

require further study. Finally, possible simulation model on earthquakes could be derived

as indicated in the previous section.

5. Appendix A: Formulations

We shall consider capillary-gravity waves generated by a cylindrical wavemaker in an

incompressible, inviscid fluid, and assume that the fluid motion is irrotational. Use a
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cylindrical coordinate system in which the z-axis is pointing vertically upwards, so that

z = 0, r > a is the undisturbed state of the fluid. The fluid region is exterior (r > a)

to the wave maker. At equilibrium it is of uniform depth h. We may describe the fluid

motion by a velocity potential Φ(r, θ, z, t). The linearized equations governing the fluid

motion are:

∇2
3Φ = 0 in the fluid region (V ),

Φz = Zt,(5.1)

Φt + gZ = T∇2
2Z on z = 0, r > a (S),

where ∇2
3, ∇2

2 denote three-dimensional and two-dimensional cylindrical Laplacians re-

spectively, g is the gravitational constant, ρT is the surface tension constant, ρ is the fluid

density, and Z represents free surface of the fluid.

Φr = f(z)ei(ωt±mθ) on r = a (M),

where ω is the angular frequency, m is the azimuthal number (i.e., the waves are generated

asymmetrically), and f is an arbitrary smooth function. The bottom condition is given

by

Φz = 0 on z = −h (B).

A radiation condition is prescribed as follows:

Φ→ C0 cosh(k0(h+ z))H(1)
m (k0r)e

i(ωt±mθ) as r →∞,

where α = k0 is the unique positive zero of equation

∆(α) = α(Tα2 + 1) sinhαh− ω2 coshαh = 0,

H
(1)
m (·) is the Hankel’s function of the first kind with order m, and C0 is an unknown

constant.

The edge condition prescribed for our problem here is the Hocking’s edge condition,

and is given by

(5.2) Zt = λZr,

(
λ ≡ 1

δ

)
at r = a, z = 0 (Γ).

Since the above equations are all linear, we may time-reduce and θ-reduce the problem

and assume that

Φ(r, θ, z, t) = ϕ(r, z)ei(ωt±mθ),(5.3)

Z(r, θ, t) = ζ̂(r)ei(ωt±mθ).(5.4)
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Let’s measure r, z, Z and ζ̂ in units of h, t in units of (h/g)1/2, Φ and ϕ in units of gh3/2,

ω in units of (g/h)1/2, T in units of gh2, f in units of (gh)1/2 and λ in units of (g/h)1/2.

After writing down the equations for the linearized and time- and θ-reduced problem, the

governing equations from (2.1) to (2.5) and (2.7) are obtained. As for the derivation of

edge condition (2.6), since by (5.2) to (5.4),

Zt = iωζ̂(r)ei(ωt±mθ) = λζ̂r(r)e
i(ωt±mθ) = λZr,

or

(5.5) ζ̂r = iωδζ̂ at r = a, λ ≡ 1

δ
.

Also (5.1) shows that Φz = Zt on S, then it is clear that ζ̂ = ϕz/(iω) on S by (5.3) and

(5.4). Hence (5.5) becomes

ϕrz
iω

= iωδ
ϕz
iω

⇐⇒ ϕrz = iωδϕz

at r = a, z = 0, which is (2.6) exactly.

6. Appendix B: Proof of Expansion Theorem

This part is the proof of Theorem 2.1 and is quoted from Yeh [10, pp. 7–11].

Proof. First of all, set

(6.1) u(y) = 2u1(y)− 2πµu2(y),

where

u1(y) =
1

β0

[
2k0(1 + Tk2

0)(cosh(k0(1 + y)))

∫ 0

−1
u · (cosh(k0(1 + η))) dη

]
+ 2

∞∑
n=1

[
1

βn
kn(1− Tk2

n)(cos kn(1 + y))

∫ 0

−1
u(cos kn(1 + η)) dη

]
,

u2(y) =
1

β0
[2k0(cosh k0)(cosh(k0(1 + y)))] + 2

∞∑
n=1

[
kn
βn

(cos kn)(cos kn(1 + y))

]
.

Consider the integral

I =
1

2πi

∫
C

α

∆(α)
(cosh(α(1 + y))) dα,

where C is the contour from −∞ to∞, indented above −k0 and below k0. This integral is

identically 0, since the integrand is an odd function. By residue theorem, I can be written

as

I = 2πi · 1

2πi

{ ∞∑
n=1

lim
α→ikn

α(α− ikn)

∆(α)

[
cosh(α(1 + y)) + lim

α→k0

α(α− k0)

∆(α)
cosh(α(1 + y))

]}
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=
k0(cosh k0)(cosh(k0(1 + y)))

k0(1 + Tk2
0)(cosh2 k0) + (1 + 3Tk2

0)(sinh k0)(cosh k0)− ω2(sinh k0)(cosh k0)

+
∞∑
n=1

kn(cos kn)(cos(kn(1 + y)))

kn(1− Tk2
n) cos2 kn + (1− 3Tk2

n)(sin kn)(cos kn)− ω2(sin kn)(cos kn)

=
2k0(cosh k0)(cosh(k0(1 + y)))

2k0(1 + Tk2
0) + (1 + 3Tk2

0) sinh 2k0
+

∞∑
n=1

2kn(cos kn)(cos(kn(1 + y)))

2kn(1− Tk2
n) + (1− 3Tk2

n) sin 2kn

= u2(y),

i.e.,

I = u2(y) = 0.

It follows that

u(y) = 2u1(y).

By making use of the relations described above,

u1(y) = 2ω2

{
1

β0

[
(cosh(k0(1 + y)))(coth k0)

∫ 0

−1
u cosh(k0(1 + η)) dη

]

+
∞∑
n=1

1

βn

[
(cos(kn(1 + y)))(cot kn)

∫ 0

−1
u cos(kn(1 + η)) dη

]}

= 2ω2

{
(cosh(k0(1 + y)))(cosh k0)

∫ 0
−1 u cosh(k0(1 + η)) dη

2k0(1 + Tk2
0) sinh k0 + (1 + 3Tk2

0) · 2 cosh k0

+

∞∑
n=1

(cos(kn(1 + y)))(cos kn)
∫ 0
−1 u cos(kn(1 + η)) dη

2kn(1− Tk2
n) sin kn + (1− 3Tk2

n) · 2 cos kn

}
.

Notice that for sufficiently large n,

1

2

∣∣∣∣(cos(kn(1 + y)))(cos(kn(1 + η))) cos kn
kn(1− Tk2

n) sin kn + (1− 3Tk2
n) cos kn

∣∣∣∣ ≤ 1

6Tk2
n

,

and the series
1

2

∞∑
n=1

(cos(kn(1 + y)))(cos(kn(1 + η))) cos kn
kn(1− Tk2

n) sin kn + (1− 3Tk2
n) cos kn

,

converges uniformly, according to Weierstrass M -test. Hence u1(y) can be written as

u1(y) =

∫ 0

−1
u(η)

{
1

β0

[
2k0(1 + Tk2

0)(cosh(k0(1 + y)))(cosh(k0(1 + η)))
]

+
∞∑
n=1

1

βn

[
2kn(1− Tk2

n)(cos(kn(1 + y)))(cos(kn(1 + η)))
]}

dη

=

∫ 0

1
u(η)U(y, η) dη,
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where

U(y, η) =
1

β0

[
2k0(1 + Tk2

0)(cosh(k0(1 + y)))(cosh(k0(1 + η)))
]

+
∞∑
n=1

1

βn

[
2kn(1− Tk2

n)(cos(kn(1 + y)))(cos(kn(1 + η)))
]
.

Note that when y 6= 0, U can be written as the following:

U =
1

2πi

∫
C

α(Tα2 + 1)(cosh(α(1 + y)))(cosh(α(1 + η)))

∆(α)(coshα)
dα

−
∑

{α|coshα=0}

Res[P(α)],

where C is the contour described above,

P ≡ α(Tα2 + 1)(cosh(α(1 + y)))(cosh(α(1 + η)))

∆(α)(coshα)

is an odd function, and the zeros of coshα are

α = (n− 1/2)πi, n = 1, 2, 3, . . . .

For a fixed n,

Res [P (α = (n− 1/2)πi)]

= lim
α→(n−1/2)πi

α− (n− 1/2)πi

∆(α)(coshα)
×
[
α(Tα2 + 1)(cosh(α(1 + y)))(cosh(α(1 + η)))

]
=

cos [(n− 1/2)π(1 + y)]

i sin(n− 1/2)π
· cos [(n− 1/2)π(1 + η)]

i sin(n− 1/2)π

= (−1)2n+1 {cos [(n− 1/2)π(1 + y)]} {cos [(n− 1/2)π(1 + η)]}

= −(−1)n+1 [sin ((n− 1/2)πy)] (−1)n+1 [sin ((n− 1/2)πη)]

= − [sin ((n− 1/2)πy)] [sin ((n− 1/2)πη)] .

Again, the integral part of U is zero due to an odd integrand, we find

U = −
∞∑
n=1

Res [P (α = (n− 1/2)πi)]

=

∞∑
n=1

[sin ((n− 1/2)πy)] [sin ((n− 1/2)πη)] ,

(6.2)
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which implies that

u(y) = 2u1(y) = 2

∫ 0

−1
u(η)U(y, η) dη

= 2

∫ 0

−1

∞∑
n=1

u(η) [sin ((n− 1/2)πy)] [sin ((n− 1/2)πη)] dη

= 2

∞∑
n=1

[∫ 0

−1
u(η) sin ((n− 1/2)πη) dη

]
sin ((n− 1/2)πy) .

Let us write

(6.3) u(y) =
∞∑
n=1

an
√

2 sin ((n− 1/2)πy) ,

where

an ≡
√

2

∫ 0

−1
u(η) sin ((n− 1/2)πη) dη.

Since
{√

2 sin((n − 1/2)πy)
}∞
n=1

is an infinite set of eigenfunctions of a Sturm-Liouville

problem, the set then forms a complete and othonormal basis for L2[−1, 0) (see, Codding-

ton and Levinson [1955]). Thus we conclude that for all u ∈ L2[−1, 0), the series (6.3) for

u is always valid, which is equivalent to the expansion (6.1).

Note that when y = 0, U becomes

U =
1

2πi

∫
C

α(Tα2 + 1)(cosh(α(1 + η)))

∆(α)
dα,

which is zero, since the integrand is an odd function. The series representing U when

y 6= 0 is (6.2), which is also zero for y = 0. Hence we may use (6.2) to represent U for all

y. For all u ∈ L2[−1, 0], (6.1) is equivalent to (6.3).

However, as one may observe, this does not explain the presence of zero term−2πTµu2(y)

in (6.1) and the parameter µ. It will become clear after we find the solution in the next

section. We only note that µ will be determined by the edge condition.

Consider the solution of the finite depth plane wavemaker problem can be written as

ψ(x, y) =
∞∑
n=1

χn(x)ũn(y),

where

u(y) =
∞∑
n=1

ũn(y)

is the expansion described as in (6.1), and the solution of the finite depth fluid outside a

cylindrical wavemaker problem has the form

ϕ(r, z) =
∞∑
n=1

χn(r)ũn(z),
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where

u(z) =

∞∑
n=1

ũn(z)

is the series expansion in (6.1). This concludes the proof of Rhodes-Robinson’s expansion

theorem for finite depth.
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