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Exceptional Set for Sums of Unlike Powers of Primes

Min Zhang and Jinjiang Li*

Abstract. Let N be a sufficiently large integer. In this paper, it is proved that with at

most O(N13/16+ε) exceptions, all even positive integers up to N can be represented

in the form p21 + p22 + p33 + p34 + p45 + p46, where p1, p2, p3, p4, p5, p6 are prime numbers.

1. Introduction and main result

Let N, k1, k2, . . . , ks be natural numbers such that 2 ≤ k1 ≤ k2 ≤ · · · ≤ ks, N > s.

Waring’s problem of mixed powers concerns the representation of N as the form

N = xk11 + xk22 + · · ·+ xkss .

Not very much is known about results of this kind. For historical literature the reader

should consult section P12 of LeVeque’s Reviews in number theory and the bibliography

of Vaughan [15].

In 1970, Vaughan [14] obtained the asymptotic formula for the number of representa-

tions of a number as the sum of two squares, two cubes and two fourth powers. He proved

that, for any sufficiently large integer N , there holds

∑
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2+x

3
3+x

3
4+x

4
5+x

4
6=N

1 =
Γ2(3/2)Γ2(4/3)Γ2(5/4)

Γ(13/6)
S2,3,4(N)N7/6 +O(N7/6−1/96+ε),

where the singular series is

S2,3,4(N) =

∞∑
q=1

1

q6

q∑
a=1

(a,q)=1

3∏
i=1

(
q∑

xi=1

e

(
axi+1

i

q

))2

e

(
−aN

q

)
.

In view of Vaughan’s result, it is reasonable to conjecture that, for every sufficiently large

even integer N , the following Diophantine equation

(1.1) N = p21 + p22 + p33 + p34 + p45 + p46
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is solvable, where and below the letter p, with or without subscript, always stands for a

prime number. But this conjecture is perhaps out of reach at present. However, many

authors approach this conjecture in different ways. For instance, in 2015, Lü [9] proved

that, for every sufficiently large even integer N , the equation

N = x2 + p22 + p33 + p34 + p45 + p46

is solvable with x being an almost-prime P6 and the pj (j = 2, 3, 4, 5, 6) primes. On the

other hand, in 2017, Liu [8] proved that, every sufficiently large even integer N can be

represented as two squares of primes, two cubes of primes, two fourth powers of primes

and 41 powers of 2, i.e.,

N = p21 + p22 + p33 + p34 + p45 + p46 + 2v1 + 2v2 + · · ·+ 2v41 .

In this paper, we shall consider the exceptional set of the problem (1.1) and establish

the following result.

Theorem 1.1. Let E(N) denote the number of positive even integers n up to N , which

can not be represented as (1.1). Then, for any ε > 0, we have

E(N)� N1−3/16+ε.

We will establish Theorem 1.1 by the Hardy-Littlewood circle method. In the treat-

ment of the integrals over major arcs, we will apply the iterative method in Liu [7] and

the mean-value estimate for Dirichlet polynomials in Choi and Kumchev [1] to construct

the asymptotic formula for the number of solutions to the problem. For the treatment of

the integrals on the minor arcs, we will employ the methods which is developed by Zhao

in [17]. The full details will be explained in the following revelent sections.

Notations. Throughout this paper, let p, with or without subscripts, always denote

a prime number; ε and A always denote positive constants which are arbitrary small

and sufficiently large, respectively, which may not be the same at different occurrences;

r ∼ R means R < r ≤ 2R. As usual, we use ϕ(n), Λ(n) and d(n) to denote the Euler’s

function, von Mangoldt’s function and Dirichlet’s divisor function, respectively. Also,

we use χ mod q to denote a Dirichlet character modulo q, and χ0 mod q the principal

character. Especially, we use
∑∗ to denote sums over all primitive characters. e(x) =

e2πix; f(x) � g(x) means that f(x) = O(g(x)); f(x) � g(x) means that f(x) � g(x) �
f(x). N is a sufficiently large integer and n � N , and thus we use L to denote both

logN and log n. The letter c, with or without subscripts or superscripts, always denote a

positive constant.
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2. Outline of the proof of Theorem 1.1

Let N be a sufficiently large positive integer. For k = 2, 3, 4, we define

fk(α) =
∑

Xk<p≤2Xk

(log p)e(pkα),

where Xk = (N/16)1/k. Let

R(n) =
∑

n=p21+p
2
2+p

3
3+p

3
4+p

4
5+p

4
6

X2<p1,p2≤2X2
X3<p3,p4≤2X3
X4<p5,p6≤2X4

(log p1)(log p2) · · · (log p6).

Then for any Q > 0, we have

R(n) =

∫ 1

0

(
4∏

k=2

f2k (α)

)
e(−nα) dα =

∫ 1+1/Q

1/Q

(
4∏

k=2

f2k (α)

)
e(−nα) dα.

In order to apply the circle method, we set

(2.1) P = N9/80−2ε, Q = N71/80+ε.

By Dirichlet’s lemma on rational approximation (for instance, see Lemma 12 on page 104

of Pan and Pan [10]), each α ∈ [1/Q, 1 + 1/Q] can be written as the form

α =
a

q
+ λ, |λ| ≤ 1

qQ

for some integers a, q with 1 ≤ a ≤ q ≤ Q and (a, q) = 1. Then we define the major arcs

M and minor arcs m as follows:

(2.2) M =
⋃
q≤P

⋃
1≤a≤q
(a,q)=1

M(q, a), m = [1/Q, 1 + 1/Q] \M,

where

M(q, a) = [a/q − 1/(qQ), a/q + 1/(qQ)].

Then one has

R(n) =

{∫
M

+

∫
m

}( 4∏
k=2

f2k (α)

)
e(−nα) dα.

In order to proof Theorem 1.1, we need the two following propositions, whose proofs will

be given in Sections 3 and 6, respectively.
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Proposition 2.1. Let the major arcs M be defined as in (2.2) with P and Q defined in

(2.1). Then, for n ∈ [N/2, N ] and any A > 0, there holds∫
M

(
4∏

k=2

f2k (α)

)
e(−nα) dα =

1

576
S(n)J(n) +O(N7/6L−A),

where S(n) is the singular series defined in (3.1), which is absolutely convergent and

satisfies

(2.3) 0 < c∗ ≤ S(n)� d(n)

for any even integer n and some fixed constant c∗; while J(n) is defined by (3.9) and

satisfies

J(n) � N7/6.

For the properties (2.3) of singular series, we shall give the proof in Section 5.

Proposition 2.2. Let the minor arcs m be defined as in (2.2) with P and Q defined in

(2.1). Then we have ∫
m

∣∣f42 (α)f43 (α)f44 (α)
∣∣ dα� N7/3+1−3/16+ε.

The remaining part of this section is devoted to establishing Theorem 1.1 by using

Propositions 2.1 and 2.2.

Proof of Theorem 1.1. Let E (N) denote the set of positive integers n ∈ [N/2, N ] such

that ∣∣∣∣∫
m
f22 (α)f23 (α)f24 (α)e(−nα) dα

∣∣∣∣� N7/6L−A.

Then we have

N7/3L−2A|E (N)| �
∑

n∈E (N)

∣∣∣∣∫
m
f22 (α)f23 (α)f24 (α)e(−nα) dα

∣∣∣∣2

�
∑

N/2<n≤N

∣∣∣∣∫
m
f22 (α)f23 (α)f24 (α)e(−nα) dα

∣∣∣∣2 .
(2.4)

By Bessel’s inequality, we have

(2.5)
∑

N/2<n≤N

∣∣∣∣∫
m
f22 (α)f23 (α)f24 (α)e(−nα) dα

∣∣∣∣2 ≤ ∫
m

∣∣f42 (α)f43 (α)f44 (α)
∣∣ dα.

Combining (2.4), (2.5) and Proposition 2.2, we have

|E (N)| � N1−3/16+ε.
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Therefore, with at most O(N13/16+ε) exceptions, all even integers n ∈ [N/2, N ] satisfies∣∣∣∣∫
m
f22 (α)f23 (α)f24 (α)e(−nα) dα

∣∣∣∣� N7/6L−A,

from which and Proposition 2.1, we deduce that, with at most O(N13/16+ε) exceptions, all

even positive integers n ∈ [N/2, N ] can be represented in the form p21+p22+p33+p34+p45+p46,

where p1, p2, p3, p4, p5, p6 are prime numbers. By a splitting argument, we obtain

E(N)� N1−3/16+ε.

This completes the proof of Theorem 1.1.

3. Proof of Proposition 2.1

In this section, we shall concentrate on proving Proposition 2.1. We first introduce some

notations. For a Dirichlet character χ mod q and 2 ≤ k ≤ 4, we define

Ck(χ, a) =

q∑
h=1

χ(h)e

(
ahk

q

)
, Ck(q, a) = Ck(χ

0, a),

where χ0 is the principal character modulo q, and Ck(q, a) is the Ramanujan sum. Let

χ
(1)
2 , χ

(2)
2 , χ

(1)
3 , χ

(2)
3 , χ

(1)
4 , χ

(2)
4 be Dirichlet characters modulo q. Define

B
(
n, q, χ

(1)
2 , χ

(2)
2 , χ

(1)
3 , χ

(2)
3 , χ

(1)
4 , χ

(2)
4

)
=

q∑
a=1

(a,q)=1

4∏
k=2

2∏
i=1

Ck

(
χ
(i)
k , a

)
e

(
−an
q

)
,

B(n, q) = B
(
n, q, χ0, χ0, χ0, χ0, χ0, χ0

)
,

and write

(3.1) A(n, q) =
B(n, q)

ϕ6(q)
, S(n) =

∞∑
q=1

A(n, q).

Lemma 3.1. For (a, q) = 1 and any Dirichlet character χ mod q, there holds

|Ck(χ, a)| ≤ 2q1/2dβk(q)

with βk = (log k)/ log 2.

Proof. See the Problem 14 of Chapter VI of Vinogradov [16].

Lemma 3.2. The singular series S(n) satisfies (2.3).

The proof of Lemma 3.2 will be given in Section 5.
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Lemma 3.3. Let f(x) be a real differentiable function in the interval [a, b]. If f ′(x) is

monotonic and satisfies |f ′(x)| ≤ θ < 1. Then we have

∑
a<n≤b

e2πif(n) =

∫ b

a
e2πif(x) dx+O(1).

Proof. See Lemma 4.8 of Titchmarsh [13].

Lemma 3.4. Let χ
(i)
k mod r

(i)
k with k = 2, 3, 4 and i = 1, 2 be primitive characters, r0 =[

r
(1)
2 , r

(2)
2 , r

(1)
3 , r

(2)
3 , r

(1)
4 , r

(2)
4

]
, and χ0 the principal character modulo q. Then there holds

(3.2)
∑
q≤x
r0|q

1

ϕ6(q)

∣∣∣B (n, q, χ(1)
2 χ0, χ

(2)
2 χ0, χ

(1)
3 χ0, χ

(2)
3 χ0, χ

(1)
4 χ0, χ

(2)
4 χ0

)∣∣∣� r−2+ε0 logc x.

Proof. By Lemma 3.1, we have∣∣∣B (n, q, χ(1)
2 χ0, χ

(2)
2 χ0, χ

(1)
3 χ0, χ

(2)
3 χ0, χ

(1)
4 χ0, χ

(2)
4 χ0

)∣∣∣
�

q∑
a=1

(a,q)=1

4∏
k=2

2∏
i=1

∣∣∣Ck (χ(i)
k χ

0, a
)∣∣∣� q3ϕ(q)d10(q).

Therefore, the left-hand side of (3.2) is

�
∑
q≤x
r0|q

q3ϕ(q)d10(q)

ϕ6(q)
=
∑
t≤x/r0

r30t
3d10(r0t)

ϕ5(r0t)
� r−2+ε0 (log x)

∑
t≤x

d10(t)

t2
� r−2+ε0 logc x.

This completes the proof of Lemma 3.4.

Write

Vk(λ) =
∑

Xk<m≤2Xk

e(mkλ),

(3.3) Wk(χ, λ) =
∑

Xk<p≤2Xk

(log p)χ(p)e(pkλ)− δχ
∑

Xk<m≤2Xk

e(mkλ),

where δχ = 1 or 0 according to χ is principal or not. Then by the orthogonality of Dirichlet

characters, for (a, q) = 1, we have

fk

(
a

q
+ λ

)
=
Ck(q, a)

ϕ(q)
Vk(λ) +

1

ϕ(q)

∑
χ mod q

Ck(χ, a)Wk(χ, λ).
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For j = 1, 2, . . . , 27, we define the sets Sj as follows:

Sj =



{2, 2, 3, 3, 4, 4} if j = 1, {2, 2, 3, 3, 4} if j = 2, {2, 2, 3, 4, 4} if j = 3,

{2, 3, 3, 4, 4} if j = 4, {2, 2, 3, 3} if j = 5, {2, 2, 4, 4} if j = 6,

{3, 3, 4, 4} if j = 7, {2, 2, 3, 4} if j = 8, {2, 3, 3, 4} if j = 9,

{2, 3, 4, 4} if j = 10, {2, 2, 3} if j = 11, {2, 2, 4} if j = 12,

{2, 3, 3} if j = 13, {2, 4, 4} if j = 14, {3, 3, 4} if j = 15,

{3, 4, 4} if j = 16, {2, 3, 4} if j = 17, {2, 2} if j = 18,

{3, 3} if j = 19, {4, 4} if j = 20, {2, 3} if j = 21,

{2, 4} if j = 22, {3, 4} if j = 23, {2} if j = 24,

{3} if j = 25, {4} if j = 26, ∅ if j = 27.

Also, we write Sj = {2, 2, 3, 3, 4, 4} \Sj . Then we have

∫
M

(
4∏

k=2

f2k (α)

)
e(−nα) dα

= I1 + 2I2 + 2I3 + 2I4 + I5 + I6 + I7 + 4I8 + 4I9 + 4I10

+ 2I11 + 2I12 + 2I13 + 2I14 + 2I15 + 2I16 + 8I17 + I18 + I19 + I20

+ 4I21 + 4I22 + 4I23 + 2I24 + 2I25 + 2I26 + I27,

(3.4)

where

Ij =
∑
q≤P

1

ϕ6(q)

q∑
a=1

(a,q)=1

 ∏
k∈Sj

Ck(q, a)

 e

(
−an
q

)

×
∫ 1/(qQ)

−1/(qQ)

 ∏
k∈Sj

Vk(λ)

 ∏
k∈Sj

∑
χ mod q

Ck(χ, a)Wk(χ, λ)

 e(−nλ) dλ.

In the following content of this section, we shall prove that I1 produces the main term,

while the others contribute the error term.

For k = 2, 3, 4, applying Lemma 3.3 to Vk(λ), we have

Vk(λ) =

∫ 2Xk

Xk

e(ukλ) du+O(1) =
1

k

∫ (2Xk)
k

Xk
k

e(vλ)v1/k−1 dv +O(1)

=
1

k

∑
Xk

k<m≤(2Xk)k

m1/k−1e(mλ) +O(1).
(3.5)
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Putting (3.5) into I1, we see that

I1 =
1

576

∑
q≤P

B(n, q)

ϕ6(q)

∫ 1/(qQ)

−1/(qQ)

4∏
k=2

 ∑
Xk

k<m≤(2Xk)k

m1/k−1e(mλ)

2

e(−nλ) dλ

+O

∑
q≤P

|B(n, q)|
ϕ6(q)

∫ 1/(qQ)

−1/(qQ)

∣∣∣∣ ∑
Xk

k<m≤(2Xk)k

m−3/4e(mλ)

∣∣∣∣
×

3∏
k=2

∣∣∣∣ ∑
Xk

k<m≤(2Xk)k

m1/k−1e(mλ)

∣∣∣∣2 dλ

 .

(3.6)

By using the elementary estimate

(3.7)
∑

Xk
k<m≤(2Xk)k

m1/k−1e(mλ)� N1/k−1 min

(
N,

1

|λ|

)
,

and Lemma 3.4 with r0 = 1, the O-term in (3.6) can be estimated as

�
∑
q≤P

|B(n, q)|
ϕ6(q)

(∫ 1/N

0
N23/12 dλ+

∫ ∞
1/N

N−37/12 · 1

λ5
dλ

)
� N11/12Lc � N7/6L−A.

If we extend the interval of the integral in the main term of (3.6) to [−1/2, 1/2], then from

(2.1) we can see that the resulting error is

� Lc
∫ 1/2

1/(qQ)
N−23/6 · dλ

λ6
� N−23/6q5Q5Lc � N−23/6(PQ)5Lc � N7/6−$

for some $ > 0. Therefore, by Lemma 3.2, (3.6) becomes

(3.8) I1 =
1

576
S(n)J(n) +O(N7/6L−A),

where

(3.9) J(n) :=
∑

m1+m2+···+m6=n
X2

2<m1,m2≤(2X2)2

X3
3<m3,m4≤(2X3)3

X4
4<m5,m6≤(2X4)4

(m1m2)
−1/2(m3m4)

−2/3(m5m6)
−3/4 � N7/6.

In order to estimate the contribution of Ij for j = 2, 3, . . . , 27, we shall need the fol-

lowing three preliminary lemmas, i.e., Lemmas 3.5–3.7, which will be proved in Section 4.

In view of this, for k = 2, 3, 4, we recall the definition of Wk(χ, λ) in (3.3) and write

Jk(g) =
∑
r≤P

[g, r]−2+ε
∑∗

χ mod r

max
|λ|≤1/(rQ)

|Wk(χ, λ)|
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and

Kk(g) =
∑
r≤P

[g, r]−2+ε
∑∗

χ mod r

(∫ 1/(rQ)

−1/(rQ)
|Wk(χ, λ)|2 dλ

)1/2

.

Here and below,
∑∗ indicates that the summation is taken over all primitive characters.

Lemma 3.5. Let P , Q be defined as in (2.1). For k = 2, 3, we have

Jk(g)� g−2+εN1/kLc.

Lemma 3.6. Let P , Q be defined as in (2.1). For k = 2 and g = 1, Lemma 3.5 can be

improved to

J2(1)� N1/2L−A.

Lemma 3.7. Let P , Q be defined as in (2.1). For k = 4, we have

K4(g)� g−2+εN−1/4Lc.

Now, we concentrate on estimating the terms Ij for j = 2, 3, . . . , 27. We begin with

the term I27, which is the most complicated one. Reducing the Dirichlet characters in I27
into primitive characters, we have

|I27| =

∣∣∣∣∣∣∣
∑
q≤P

1

ϕ6(q)

q∑
a=1

(a,q)=1

e

(
−an
q

)∫ 1/(qQ)

−1/(qQ)

4∏
k=2

 ∑
χk mod q

Ck(χk, a)Wk(χk, λ)

2

e(−nλ) dλ

∣∣∣∣∣∣∣
=

∣∣∣∣∣∑
q≤P

∑
χ
(1)
2

∑
χ
(2)
2

∑
χ
(1)
3

∑
χ
(2)
3

∑
χ
(1)
4

∑
χ
(2)
4

1

ϕ6(q)
·B
(
n, q, χ

(1)
2 , χ

(2)
2 , χ

(1)
3 , χ

(2)
3 , χ

(1)
4 , χ

(2)
4

)

×
∫ 1/(qQ)

−1/(qQ)

W2(χ
(1)
2 , λ)W2(χ

(2)
2 , λ) · · ·W4(χ

(2)
4 , λ)e(−nλ) dλ

∣∣∣∣∣
≤

∑
r
(1)
2 ≤P

· · ·
∑

r
(2)
4 ≤P

∑∗

χ
(1)
2 mod r

(1)
2

· · ·
∑∗

χ
(2)
4 mod r

(2)
4

∑
q≤P
r0|q

∣∣∣B(n, q, χ
(1)
2 χ0, . . . , χ

(2)
4 χ0)

∣∣∣
ϕ6(q)

×
∫ 1/(qQ)

−1/(qQ)

∣∣∣W2(χ
(1)
2 χ0, λ)

∣∣∣ · · · ∣∣∣W4(χ
(2)
4 χ0, λ)

∣∣∣ dλ,

where χ0 is the principal character modulo q and r0 =
[
r
(1)
2 , r

(2)
2 , r

(1)
3 , r

(2)
3 , r

(1)
4 , r

(2)
4

]
. For

q ≤ P and Xk < p ≤ 2Xk with k = 2, 3, 4, we have (q, p) = 1. From this and the definition

of Wk(χ, λ), we obtain Wk(χ
(i)
k χ

0, λ) = Wk(χ
(i)
k , λ) for primitive characters χ

(i)
k above with
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k = 2, 3, 4 and i = 1, 2. Therefore, by Lemma 3.4, we obtain

|I27| ≤
∑

r
(1)
2 ≤P

· · ·
∑

r
(2)
4 ≤P

∑∗

χ
(1)
2 mod r

(1)
2

· · ·
∑∗

χ
(2)
4 mod r

(2)
4

∫ 1/(r0Q)

−1/(r0Q)

∣∣∣W2(χ
(1)
2 , λ)

∣∣∣ · · · ∣∣∣W4(χ
(2)
4 , λ)

∣∣∣ dλ

×
∑
q≤P
r0|q

∣∣∣B (n, q, χ(1)
2 χ0, χ

(2)
2 χ0, χ

(1)
3 χ0, χ

(2)
3 χ0, χ

(1)
4 χ0, χ

(2)
4 χ0

)∣∣∣
ϕ6(q)

� Lc ·
∑

r
(1)
2 ≤P

· · ·
∑

r
(2)
4 ≤P

r−2+ε0

∑∗

χ
(1)
2 mod r

(1)
2

· · ·
∑∗

χ
(2)
4 mod r

(2)
4

×
∫ 1/(r0Q)

−1/(r0Q)

∣∣∣W2(χ
(1)
2 , λ)

∣∣∣ · · · ∣∣∣W4(χ
(2)
4 , λ)

∣∣∣ dλ.

In the last integral, we pick out
∣∣W2(χ

(1)
2 , λ)

∣∣, ∣∣W2(χ
(2)
2 , λ)

∣∣, ∣∣W3(χ
(1)
3 , λ)

∣∣ and
∣∣W3(χ

(2)
3 , λ)

∣∣,
and then use Cauchy’s inequality to derive that

|I27| � Lc
3∏

k=2

2∏
i=1

 ∑
r
(i)
k ≤P

∑∗

χ
(i)
k mod r

(i)
k

max
|λ|≤1/(r(i)k Q)

∣∣∣Wk(χ
(i)
k , λ)

∣∣∣


×
∑

r
(1)
4 ≤P

∑∗

χ
(1)
4 mod r

(1)
4

(∫ 1/(r
(1)
4 Q)

−1/(r(1)4 Q)

∣∣∣W4(χ
(1)
4 , λ)

∣∣∣2 dλ

)1/2

×
∑

r
(2)
4 ≤P

r−2+ε0

∑∗

χ
(2)
4 mod r

(2)
4

(∫ 1/(r
(2)
4 Q)

−1/(r(2)4 Q)

∣∣∣W4(χ
(2)
4 , λ)

∣∣∣2 dλ

)1/2

.

(3.10)

Now we introduce the iterative procedure to bound the sums over r
(2)
4 , . . . , r

(1)
2 consec-

utively. We first estimate the above sum over r
(2)
4 in (3.10) via Lemma 3.7. Since

r0 =
[
r
(1)
2 , r

(2)
2 , r

(1)
3 , r

(2)
3 , r

(1)
4 , r

(2)
4

]
=
[[
r
(1)
2 , r

(2)
2 , r

(1)
3 , r

(2)
3 , r

(1)
4

]
, r

(2)
4

]
,

the sum over r
(2)
4 is

∑
r
(2)
4 ≤P

[[
r
(1)
2 , r

(2)
2 , r

(1)
3 , r

(2)
3 , r

(1)
4

]
, r

(2)
4

]−2+ε ∑∗

χ
(2)
4 mod r

(2)
4

(∫ 1/(r
(2)
4 Q)

−1/(r(2)4 Q)

∣∣∣W4(χ
(2)
4 , λ)

∣∣∣2 dλ

)1/2

= K4

([
r
(1)
2 , r

(2)
2 , r

(1)
3 , r

(2)
3 , r

(1)
4

])
�
[
r
(1)
2 , r

(2)
2 , r

(1)
3 , r

(2)
3 , r

(1)
4

]−2+ε
N−1/4Lc.

(3.11)

By Lemma 3.7 again, the contribution of the quantity on the right-hand side of (3.11) to
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the sum over r
(1)
4 in (3.10) is

� N−1/4Lc ·
∑

r
(1)
4 ≤P

[[
r
(1)
2 , r

(2)
2 , r

(1)
3 , r

(2)
3

]
, r

(1)
4

]−2+ε ∑∗

χ
(1)
4 mod r

(1)
4

(∫ 1/(r
(1)
4 Q)

−1/(r(1)4 Q)

∣∣∣W4(χ
(1)
4 , λ)

∣∣∣2 dλ

)1/2

= N−1/4Lc ·K4

([
r
(1)
2 , r

(2)
2 , r

(1)
3 , r

(2)
3

])
�
[
r
(1)
2 , r

(2)
2 , r

(1)
3 , r

(2)
3

]−2+ε
N−1/2Lc.

(3.12)

By Lemma 3.5, the contribution of the quantity on the right-hand side of (3.12) to the

sum over r
(2)
3 in (3.10) is

� N−1/2Lc ·
∑

r
(2)
3 ≤P

[[
r
(1)
2 , r

(2)
2 , r

(1)
3

]
, r

(2)
3

]−2+ε ∑∗

χ
(2)
3 mod r

(2)
3

max
|λ|≤1/(r(2)3 Q)

∣∣∣W3(χ
(2)
3 , λ)

∣∣∣
= N−1/2Lc · J3

([
r
(1)
2 , r

(2)
2 , r

(1)
3

])
�
[
r
(1)
2 , r

(2)
2 , r

(1)
3

]−2+ε
N−1/6Lc.

(3.13)

The contribution of the quantity on the right-hand side of (3.13) to the sum over r
(1)
3 in

(3.10) is

� N−1/6Lc ·
∑

r
(1)
3 ≤P

[[
r
(1)
2 , r

(2)
2

]
, r

(1)
3

]−2+ε ∑∗

χ
(1)
3 mod r

(1)
3

max
|λ|≤1/(r(1)3 Q)

∣∣∣W3(χ
(1)
3 , λ)

∣∣∣
= N−1/6Lc · J3

([
r
(1)
2 , r

(2)
2

])
�
[
r
(1)
2 , r

(2)
2

]−2+ε
N1/6Lc.

(3.14)

The contribution of the quantity on the right-hand side of (3.14) to the sum over r
(2)
2 in

(3.10) is

� N1/6Lc ·
∑

r
(2)
2 ≤P

[
r
(1)
2 , r

(2)
2

]−2+ε ∑∗

χ
(2)
2 mod r

(2)
2

max
|λ|≤1/(r(2)2 Q)

∣∣∣W2(χ
(2)
2 , λ)

∣∣∣
= N1/6Lc · J2

(
r
(1)
2

)
�
(
r
(1)
2

)−2+ε
N2/3Lc.

(3.15)

At last, from Lemma 3.6, inserting the bound on the right-hand side of (3.15) to the sum

over r
(1)
2 in (3.10), we get

|I27| � N2/3Lc ·
∑

r
(1)
2 ≤P

[
1, r

(1)
2

]−2+ε ∑∗

χ
(1)
2 mod r

(1)
2

max
|λ|≤1/(r(1)2 Q)

∣∣∣W2(χ
(1)
2 , λ)

∣∣∣
= N2/3Lc · J2(1)� N7/6L−A.

(3.16)

For the estimation of the terms I2, . . . , I26, by noting (3.5) and (3.7), we obtain(∫ 1/Q

−1/Q
|Vk(λ)|2 dλ

)1/2

�

(∫ 1/Q

−1/Q
N2/k−2 min

(
N,

1

|λ|

)2

dλ+
1

Q

)1/2

� N1/k−1

(∫ 1/N

0
N2 dλ+

∫ 1/Q

1/N

dλ

λ2

)1/2

+
1

Q1/2
� N1/k−1/2.
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Using this estimate and the upper bound of Vk(λ), which derives from (3.5) and (3.7),

that Vk(λ)� N1/k, we can argue similarly to the treatment of I27 and obtain

(3.17)

26∑
j=2

Ij � N7/6L−A.

Combining (3.4), (3.8), (3.16) and (3.17), we can get the conclusion of Proposition 2.1.

4. Estimation of Jk(g), Jk(1) and Kk(g)

In this section, we will establish Lemmas 3.5–3.7. We shall need the following lemmas.

Lemma 4.1. Let R ≥ 1, X ≥ 2, T ≥ 2. Then we have∑
r∼R
d|r

∑∗

χ mod r

∫ 2T

T

∣∣∣∣ ∑
X<n≤2X

Λ(n)χ(n)n−it
∣∣∣∣ dt� (

R2T

d
X 11/20 + X

)
logc(RTX ).

Proof. See Theorem 1.1 of Choi and Kumchev [1].

Lemma 4.2. Suppose that

S(t) =
∑
ν

c(ν)e(νt)

is an absolutely convergent exponential sum. Here the frequencies ν run over an arbitrary

sequence of real numbers and the coefficients are complex. Let δ = θ/T with 0 < θ < 1.

Then ∫ T

−T
|S(t)|2 dt�θ

∫ +∞

−∞

∣∣∣∣δ−1 ∑
x<ν≤x+δ

c(ν)

∣∣∣∣2 dx.

Proof. See Lemma 1 of Gallagher [3].

Lemma 4.3. Let G(x), F (x) be real functions and twice differentiable on [a, b], and

G(x)/F ′(x) be monotonic.

(i) If |F ′(x)/G(x)| ≥ V1 > 0 on [a, b], then∫ b

a
G(x)e(F (x)) dx� 1

V1
.

(ii) If |F ′′(x)| ≥ V2 > 0 on [a, b] and |G(x)| ≤M , then∫ b

a
G(x)e(F (x)) dx� M√

V2
.

Proof. For the proofs of (i) and (ii), one can see Lemmas 4.3 and 4.5 of Titchmarsh [13],

respectively.
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Lemma 4.4. Let χ(m) be a Dirichlet character modulo q, then we have the explicit formula

(4.1)
∑
m≤u

Λ(m)χ(m) = δχu−
∑
|γ|≤T

uρ

ρ
+O

(( u
T

+ 1
)

log2(quT )
)
,

where δχ = 1 or 0 according to χ is principal or not, ρ = β + iγ runs over non-trivial

zeros of the function L(s, χ), and 2 ≤ T ≤ u is a parameter.

Proof. See p. 109 and p. 120 of Davenport [2].

Lemma 4.5. For T ≥ 2, let N ∗(α, q, T ) denote the number of zeros of all the Dirichlet

L-functions L(s, χ) with primitive characters χ mod q in the region <s ≥ α, |=s| ≤ T .

Then we have ∑
q≤Z

N ∗(α, q, T )� (Z2T )
12
5
(1−α) logc1(ZT ),

where c1 is an absolute constant.

Proof. See p. 164 of Huxley [5] or pp. 75–76 of Pan and Pan [10].

Lemma 4.6. Let T ≥ 2. There exists an absolute constant c2 > 0, such that the product∏
χ mod q

L(s, χ) 6= 0

in the region

<s ≥ 1− c2

max
{

log q, log4/5 T
} , |=s| ≤ T,

except for the possible Siegel zero.

Proof. See Satz VIII.6.2 of Prachar [11].

4.1. Estimation of K4(g)

We approximate the W4(χ, λ) in (3.3) by

Ŵ4(χ, λ) =
∑

X4<m≤2X4

(Λ(m)χ(m)− δχ)e(m4λ).

Then the error is

(4.2) W4(χ, λ)− Ŵ4(χ, λ)�
∑

X4<pt≤2X4
t≥2

log p�
∑

p≤X1/2
4

log p� N1/8.
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Therefore, we have

∑
r≤P

[g, r]−2+ε
∑∗

χ mod r

(∫ 1/(rQ)

−1/(rQ)

∣∣∣W4(χ, λ)− Ŵ4(χ, λ)
∣∣∣2 dλ

)1/2

� N1/8
∑
r≤P

[g, r]−2+ε
(
r

Q

)1/2

= N1/8
∑
r≤P

(
gr

(g, r)

)−2+ε( r
Q

)1/2

= g−2+εN1/8Q−1/2
∑
d|g
d≤P

∑
r≤P
d|r

(r
d

)−2+ε
r1/2

� g−2+εN1/8Q−1/2P 1/2+ε � g−2+εN−1/4Lc.

Thus, it is sufficient to show that

(4.3)
∑
r∼R

[g, r]−2+ε
∑∗

χ mod r

(∫ 1/(rQ)

−1/(rQ)

∣∣∣Ŵ4(χ, λ)
∣∣∣2 dλ

)1/2

� g−2+εN−1/4Lc,

where R� P .

By Lemma 4.2, we have∫ 1/(rQ)

−1/(rQ)

∣∣∣Ŵ4(χ, λ)
∣∣∣2 dλ�

(
1

RQ

)2 ∫ +∞

−∞

∣∣∣∣∣ ∑
ν<m4≤ν+rQ
X4<m≤2X4

(Λ(m)χ(m)− δχ)

∣∣∣∣∣
2

dν

�
(

1

RQ

)2 ∫ (2X4)4

X4
4−rQ

∣∣∣∣∣ ∑
ν<m4≤ν+rQ
X4<m≤2X4

(Λ(m)χ(m)− δχ)

∣∣∣∣∣
2

dν.

(4.4)

Let x, y be two parameters, which satisfy

X4 ≤ y < x ≤ 2X4

and

x− y � (ν + rQ)1/4 − ν1/4 � ν1/4

((
1 +

rQ

ν

)1/4

− 1

)
� rQν−3/4 � rQN−3/4.

Then the last sum in (4.4) can be written as

(4.5)
∑

y<m≤x
(Λ(m)χ(m)− δχ).

If R < 1, the quantity in (4.4) is

� L(x− y)� LQN−3/4.
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The above contribution to (4.3) is

g−2+ε
(

1

Q2

(
(2X4)

4 −X4
4 +Q

)
L2Q2N−3/2

)1/2

� g−2+εN−1/4L,

which is acceptable. If R ≥ 1, we have χ 6= χ0 and hence δχ = 0. Applying Perron’s

formula, (4.5) can be written as

∑
y<m≤x

Λ(m)χ(m) =
1

2πi

∫ iT

−iT
F (s, χ) · x

s − ys

s
ds+O

(
N1/4L2

T

)
,

where T = N1/4 and

F (s, χ) =
∑

y<m≤x

Λ(m)χ(m)

ms
.

For the factor (xs − ys)/s, on one hand, we have∣∣∣∣xs − yss

∣∣∣∣ =

∣∣∣∣∫ x

y
us−1 du

∣∣∣∣ ≤ ∫ x

y
u−1 du

� N−1/4(x− y)� N−1/4RQN−3/4 � RQN−1 = T−10 ,

(4.6)

say. On the other hand, we get

(4.7)

∣∣∣∣xs − yss

∣∣∣∣� |xs|+ |ys||s|
� 1

|t|
.

Combining (4.6) and (4.7), we obtain

(4.8)

∣∣∣∣xs − yss

∣∣∣∣� min

(
1

T0
,

1

|t|

)
.

According to (4.8), we get

(4.9)
∑

y<m≤x
Λ(m)χ(m)� 1

T0

∫
|t|≤T0

|F (it, χ)|dt+

∫
T0<|t|≤T

|F (it, χ)|dt
|t|

+O(L2).

From (4.4) and (4.9), we can see that the left-hand side of (4.3) is

� N−1/2
∑
r∼R

[g, r]−2+ε
∑∗

χ mod r

∫
|t|≤T0

|F (it, χ)|dt

+N1/2(RQ)−1
∑
r∼R

[g, r]−2+ε
∑∗

χ mod r

∫
T0<|t|≤T

|F (it, χ)|dt
|t|

+ g−2+εL2N1/2+εQ−1.

Trivially, the third term in the above estimate is acceptable. Therefore, it follows that

(4.3) is a consequence of the following two estimates:
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(i) For R� P and 0 < T1 � T0, we have

(4.10)
∑
r∼R

[g, r]−2+ε
∑∗

χ mod r

∫ 2T1

T1

|F (it, χ)|dt� g−2+εN1/4Lc.

(ii) For R� P and T0 � T2 � T , we have

(4.11)
∑
r∼R

[g, r]−2+ε
∑∗

χ mod r

∫ 2T2

T2

|F (it, χ)|dt� g−2+εRQN−3/4T2L
c.

In order to prove (4.10), we use the identity that [g, r](g, r) = gr. By Lemma 4.1, then

the left-hand side of (4.10) is

∑
r∼R

(
gr

(g, r)

)−2+ε ∑∗

χ mod r

∫ 2T1

T1

|F (it, χ)|dt

� g−2+ε
∑
d|g
d≤2R

(
R

d

)−2+ε∑
r∼R
d|r

∑∗

χ mod r

∫ 2T1

T1

|F (it, χ)| dt

� g−2+ε
∑
d|g
d≤2R

(
R

d

)−2+ε(R2T1
d

N11/80 +N1/4

)
Lc

� g−2+εLcRεQ−1N91/80 + g−2+εN1/4Lc � g−2+εN1/4Lc.

Similarly, the left-hand side of (4.11) is

∑
r∼R

(
gr

(g, r)

)−2+ε ∑∗

χ mod r

∫ 2T2

T2

|F (it, χ)|dt

� g−2+ε
∑
d|g
d≤2R

(
R

d

)−2+ε∑
r∼R
d|r

∑∗

χ mod r

∫ 2T2

T2

|F (it, χ)| dt

� g−2+ε
∑
d|g
d≤2R

(
R

d

)−2+ε(R2T2
d

N11/80 +N1/4

)
Lc

� g−2+εLcR1+εT2N
11/80 + g−2+εN1/4Lc � g−2+εRQN−3/4T2L

c.

This completes the proof of Lemma 3.7.
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4.2. Estimation of Jk(g) with k = 2, 3

As is shown in the estimation of K4(g), we approximate Wk(χ, λ) by Ŵk(χ, λ). Similar to

(4.2), we know that the error N1/(2k) contributes to Jk(g) is

� N1/(2k)
∑
r≤P

[g, r]−2+εr = g−2+εN1/(2k)
∑
r≤P

r−1+ε

(g, r)−2+ε
= g−2+εN1/(2k)

∑
d|g
d≤P

∑
r≤P
d|r

r−1+ε

d−2+ε

� g−2+εN1/(2k)
∑
d|g
d≤P

d ·
(
P

d

)ε
� g−2+εN1/(2k)P 1+ε � g−2+εN1/kLc.

Therefore, Lemma 3.5 is a consequence of the following estimate

(4.12)
∑
r∼R

[g, r]−2+ε
∑∗

χ mod r

max
|λ|≤1/(rQ)

∣∣∣Ŵk(χ, λ)
∣∣∣� g−2+εN1/kLc,

where R� P .

If R < 1, then we have∣∣∣Ŵk(χ, λ)
∣∣∣� ∑

Xk<m≤2Xk

(Λ(m) + 1)�
∑

Xk<m≤2Xk

logm� N1/kL.

The above contribution to (4.12) is � g−2+εN1/kL, which is acceptable. If R ≥ 1, we

have δχ = 0 for all χ mod r in the definition of
∣∣Ŵk(χ, λ)

∣∣, and thus

Ŵk(χ, λ) =
∑

Xk<m≤2Xk

Λ(m)χ(m)e(mkλ).

By partial summation, we obtain

(4.13) Ŵk(χ, λ) =

∫ 2Xk

Xk

e(ukλ) d

 ∑
Xk<m≤u

Λ(m)χ(m)

 .

For the inner sum in (4.13), from Perron’s formula, we deduce that

∑
Xk<m≤u

Λ(m)χ(m) =
1

2πi

∫ iT

−iT
H(s, χ) ·

us −Xs
k

s
ds+O

(
N1/kL2

T

)

=
1

2π

∫ T

−T
H(it, χ) ·

uit −Xit
k

it
dt+O(L2),

(4.14)

where T = N1/k and

H(s, χ) =
∑

Xk<m≤u

Λ(m)χ(m)

ms
.
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Putting (4.14) into (4.13) and changing the order of the integration, we derive that

(4.15) Ŵk(χ, λ) =
1

2π

∫ T

−T
H(it, χ)

∫ 2Xk

Xk

u−1+ite(ukλ) dudt+O
(
(1 + |λ|N)L2

)
.

For the inner integral in (4.15), we have the trivial estimate

(4.16)

∫ 2Xk

Xk

u−1+ite(ukλ) du�
∫ 2Xk

Xk

u−1 du� 1.

On the other hand, we change the variable by setting uk = v and obtain∫ 2Xk

Xk

u−1+ite(ukλ) du =

∫ 2Xk

Xk

u−1e

(
ukλ+

t log u

2π

)
du

=
1

k

∫ (2Xk)
k

Xk
k

v−1e

(
vλ+

t log v

2kπ

)
dv.

(4.17)

It is easy to check that

(4.18)
d

dv

(
t log v

2kπ
+ vλ

)
=

t

2kπv
+ λ

and

(4.19)
d2

dv

(
t log v2

2kπ
+ vλ

)
= − t

2kπv2
.

By (4.17), (4.18) and Lemma 4.3(i), we get

(4.20)

∫ 2Xk

Xk

u−1+ite(ukλ) du� 1

minXk
k≤v≤(2Xk)k

|t+ 2kπλv|
.

From (4.17), (4.19) and Lemma 4.3(ii), we obtain

(4.21)

∫ 2Xk

Xk

u−1+ite(ukλ) du� N√
|t|
·N−1 � 1√

|t|
.

Combining (4.16), (4.20) and (4.21), we deduce that∫ 2Xk

Xk

u−1+ite(ukλ) du� min

(
1,

1√
|t|
,

1

minXk
k≤v≤(2Xk)k

|t+ 2kπλv|

)

�


1√
|t|+1

if |t| ≤ T ∗,

1
|t| if T ∗ < |t| ≤ T ,

(4.22)

where

T ∗ =
4kπ(2Xk)

k

RQ
.
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Here we illustrate that the choice of T ∗ is to ensure |t + 2kπλv| > |t|/2 for |t| > T ∗.

Actually, there holds

|t+ 2kπλv| ≥ |t| − 2kπ|λv| ≥ |t| − 2kπ|v|
rQ

≥ |t| − 2kπ|v|
RQ

=
|t|
2

+
|t|
2
− 2kπ|v|

RQ
>
|t|
2

+
T ∗

2
− 2kπ|v|

RQ
≥ |t|

2
.

From (4.15) and (4.22), we obtain

Ŵk(χ, λ) =

∫
|t|≤T ∗

|H(it, χ)|√
|t|+ 1

dt+

∫
T ∗<|t|≤T

|H(it, χ)|
|t|

dt+O
(
(1 + |λ|N)L2

)
.

The contribution of (1 + |λ|N)L2 to the left-hand side of (4.12) is

� NL2

RQ

∑
r∼R

[g, r]−2+εr � g−2+εNL2

RQ

∑
r∼R

r−1+ε

(g, r)−2+ε

� g−2+εNL2

RQ

∑
d|g
d≤2R

d2−ε
∑
r∼R
d|r

r−1+ε � g−2+εNL2RεQ−1 � g−2+εN1/kLc.

Therefore, (4.12) is a consequence of the following two estimates:

(i) For R� P and 0 < T1 � T ∗, there holds

(4.23)
∑
r∼R

[g, r]−2+ε
∑∗

χ mod r

∫ 2T1

T1

|H(it, χ)| dt� g−2+εN1/k(T1 + 1)1/2Lc.

(ii) For R� P and T ∗ � T2 � T , there holds

(4.24)
∑
r∼R

[g, r]−2+ε
∑∗

χ mod r

∫ 2T2

T2

|H(it, χ)|dt� g−2+εN1/kT2L
c.

The estimates (4.23) and (4.24) follow from Lemma 4.1 via the arguments similar to

those of the estimates which lead to (4.10) and (4.11). So we omit the details. This

completes the proof of Lemma 3.5.

4.3. Estimation of J2(1)

Clearly, Lemma 3.6 is the same as that of Lemma 3.5 except for the saving L−A on its

right-hand side. Because of this saving, we have to distinguish two cases according as R

small or large.

Also, we approximate W2(χ, λ) by Ŵ2(χ, λ). Similar to (4.2), we know that the error

N1/4 contributes to Jk(1) is

� N1/4
∑
r≤P

r−1+ε � P εN1/4 � N1/2L−A,



798 Min Zhang and Jinjiang Li

which is acceptable. Therefore, Lemma 3.6 is a consequence of the estimate

(4.25)
∑
r∼R

r−2+ε
∑∗

χ mod r

max
|λ|≤1/(rQ)

∣∣∣Ŵ2(χ, λ)
∣∣∣� N1/2L−A,

where R� P and A > 0 is arbitrary.

If LC � R� P , where C is a constant which depends on A, we follow the arguments

step by step in the proof of Lemma 3.5 to (4.23) and (4.24) with g = 1, and find that

(4.25) is a consequence of the following two estimates:

(i) For R� P and 0 < T1 � T ∗, there holds

(4.26)
∑
r∼R

r−2+ε
∑∗

χ mod r

∫ 2T1

T1

|H(it, χ)| dt� N1/2(T1 + 1)1/2L−A.

(ii) For R� P and T ∗ � T2 � T , there holds

(4.27)
∑
r∼R

r−2+ε
∑∗

χ mod r

∫ 2T2

T2

|H(it, χ)|dt� N1/2T2L
−A.

The estimates (4.26) and (4.27) follow from Lemma 4.1 via the arguments similar to those

of the estimates leading to (4.10) and (4.11). Especially, we use the condition R� LC to

obtain the saving factor L−A. So we omit the details.

Now, we concentrate on the case R � LC , where C > 0 is arbitrary. Taking T =

N5/24−ε in (4.1) of Lemma 4.4 and inserting (4.1) into Ŵ2(χ, λ), from partial summation,

we deduce that

Ŵ2(χ, λ) =

∫ 2X2

X2

e(u2λ) d

∑
m≤u

(Λ(m)χ(m)− δχ)


=

∫ 2X2

X2

e(u2λ) d

− ∑
|γ|≤T

uρ

ρ
+O

(( u
T

+ 1
)

log2(ruT )
)

= −
∫ 2X2

X2

e(u2λ)
∑
|γ|≤T

uρ−1 du+O

(
N1/2L2

T
(1 + |λ|N)

)

� N1/2
∑
|γ|≤T

N (β−1)/2 +
N1/2L2

T
(1 + |λ|N).

(4.28)

The contribution of the second term in (4.28) to the left-hand side of (4.25) is

� N1/2L2

T
· N
RQ

∑
r∼R

ϕ(r)� N1/2L2RN

TQ
� N3/2LC+2

TQ
� N1/2L−A.
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Let η(T ) = c3 log−4/5 T . By Lemma 4.6,
∏
χ mod r L(s, χ) is zero-free in the region

<s ≥ 1 − η(T ), |=s| ≤ T except for the possible Siegel zero. On the other hand, by

Siegel’s theorem (see, for instance, Lemma 9 on page 255 of Pan-Pan [10] or Chapter 21

of Davenport [2]), the Siegel zero does not exist in the present situation, since r ∼ R and

R� LC . Therefore, by partial summation and Lemma 4.5, we have∑
r∼R

∑∗

χ mod r

∑
|γ|≤T

N (β−1)/2 =

∫ 1−η(T )

0
N (α−1)/2 d

(∑
r∼R

∑∗

χ mod r

∑
0<β≤α
|γ|≤T

1

)

=

∫ 1−η(T )

0
N (α−1)/2 d

(∑
r∼R

N ∗(α, r, T )

)
� exp

(
− c4L1/5

)
.

Consequently, we deduce that, for any A > 0, there holds∑
r∼R

∑∗

χ mod r

max
|λ|≤1/(rQ)

∣∣∣Ŵ2(χ, λ)
∣∣∣� N1/2L−A,

which implies (4.25) in the second case. This completes the proof of Lemma 3.6.

5. The singular series

In this section, we shall investigate the properties of the singular series which appear in

Proposition 2.1.

Lemma 5.1. Let p be a prime and pα‖k. For (a, p) = 1, if ` ≥ γ(p), we have Ck(p
`, a) = 0,

where

γ(p) =

α+ 2 if p 6= 2 or p = 2, α = 0,

α+ 3 if p = 2, α > 0.

Proof. See Lemma 8.3 of Hua [4].

For k ≥ 1, we define

Sk(q, a) =

q∑
m=1

e

(
amk

q

)
.

Lemma 5.2. Suppose that (p, a) = 1. Then

Sk(p, a) =
∑
χ∈Ak

χ(a)τ(χ),

where Ak denotes the set of non-principal characters χ modulo p for which χk is principal,

and τ(χ) denotes the Gauss sum

p∑
m=1

χ(m)e

(
m

p

)
.
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Also, there hold |τ(χ)| = p1/2 and |Ak| = (k, p− 1)− 1.

Proof. See Lemma 4.3 of Vaughan [15].

Lemma 5.3. For (p, n) = 1, we have

(5.1)

∣∣∣∣∣
p−1∑
a=1

(
4∏

k=2

S2
k(p, a)

p2

)
e

(
−an
p

)∣∣∣∣∣ ≤ 36p−5/2.

Proof. We denote by S the left-hand side of (5.1). By Lemma 5.2, we have

S =
1

p6

p−1∑
a=1

 4∏
k=2

 ∑
χk∈Ak

χk(a)τ(χk)

2 e

(
−an
p

)
.

If |Ak| = 0 for some k ∈ {2, 3, 4}, then S = 0. If this is not the case, then

S =
1

p6

∑
χ
(1)
2 ∈A2

∑
χ
(2)
2 ∈A2

∑
χ
(1)
3 ∈A3

∑
χ
(2)
3 ∈A3

∑
χ
(1)
4 ∈A4

∑
χ
(2)
4 ∈A4

× τ(χ
(1)
2 )τ(χ

(2)
2 )τ(χ

(1)
3 )τ(χ

(2)
3 )τ(χ

(1)
4 )τ(χ

(2)
4 )

×
p−1∑
a=1

χ
(1)
2 (a)χ

(2)
2 (a)χ

(1)
3 (a)χ

(2)
3 (a)χ

(1)
4 (a)χ

(2)
4 (a)e

(
−an
p

)
.

From Lemma 5.2, the sextuple outer sums have not more than
∏4
k=2

(
(k, p − 1) − 1

)2 ≤
(3!)2 = 36 terms. In each of these terms, we have∣∣∣τ(χ

(1)
2 )τ(χ

(2)
2 )τ(χ

(1)
3 )τ(χ

(2)
3 )τ(χ

(1)
4 )τ(χ

(2)
4 )
∣∣∣ = p3.

Since in any one of these terms

χ
(1)
2 (a)χ

(2)
2 (a)χ

(1)
3 (a)χ

(2)
3 (a)χ

(1)
4 (a)χ

(2)
4 (a)

is a Dirichlet character χ (mod p), the inner sum is

p−1∑
a=1

χ(a)e

(
−an
p

)
= χ(−n)

p−1∑
a=1

χ(−an)e

(
−an
p

)
= χ(−n)τ(χ).

From the fact that τ(χ0) = −1 for principal character χ0 mod p, we have∣∣∣χ(−n)τ(χ)
∣∣∣ ≤ p1/2.

By the above arguments, we obtain

|S| ≤ 1

p6
· 36 · p3 · p1/2 = 36p−5/2.

This completes the proof of Lemma 5.3.
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Lemma 5.4. Let L(p, n) denote the number of solutions of the congruence

x21 + x22 + x33 + x34 + x45 + x46 ≡ n (mod p), 1 ≤ x1, x2, . . . , x6 ≤ p− 1.

Then, for n ≡ 0 (mod 2), we have L(p, n) > 0.

Proof. We have

p · L(p, n) =

p∑
a=1

C2
2 (p, a)C2

3 (p, a)C2
4 (p, a)e

(
−an
p

)
= (p− 1)6 + Ep,

where

Ep =

p−1∑
a=1

C2
2 (p, a)C2

3 (p, a)C2
4 (p, a)e

(
−an
p

)
.

By Lemma 5.2, we obtain

|Ep| ≤ (p− 1)(
√
p+ 1)2(2

√
p+ 1)2(3

√
p+ 1)2.

It is easy to check that |Ep| < (p − 1)6 for p ≥ 13. Therefore, we obtain L(p, n) > 0

for p ≥ 13. If p < 13, we can check L(p, n) > 0 directly. This completes the proof of

Lemma 5.4.

Lemma 5.5. A(n, q) is multiplicative in q.

Proof. By the definition of A(n, q) in (3.1), we only need to show that B(n, q) is multi-

plicative in q. Suppose q = q1q2 with (q1, q2) = 1. Then we have

B(n, q1q2) =

q1q2∑
a=1

(a,q1q2)=1

(
4∏

k=2

C2
k(q1q2, a)

)
e

(
− an

q1q2

)

=

q1∑
a1=1

(a1,q1)=1

q2∑
a2=1

(a2,q2)=1

(
4∏

k=2

C2
k(q1q2, a1q2 + a2q1)

)
e

(
−a1n
q1

)
e

(
−a2n
q2

)
.

(5.2)

For (q1, q2) = 1, there holds

Ck(q1q2, a1q2 + a2q1) =

q1q2∑
m=1

(m,q1q2)=1

e

(
(a1q2 + a2q1)m

k

q1q2

)

=

q1∑
m1=1

(m1,q1)=1

q2∑
m2=1

(m2,q2)=1

e

(
(a1q2 + a2q1)(m1q2 +m2q1)

k

q1q2

)

=

q1∑
m1=1

(m1,q1)=1

e

(
a1(m1q2)

k

q1

) q2∑
m2=1

(m2,q2)=1

e

(
a2(m2q1)

k

q2

)

= Ck(q1, a1)Ck(q2, a2).

(5.3)



802 Min Zhang and Jinjiang Li

Putting (5.3) into (5.2), we deduce that

B(n, q1q2) =

q1∑
a1=1

(a1,q1)=1

(
4∏

k=2

C2
k(q1, a1)

)
e

(
−a1n
q1

) q2∑
a2=1

(a2,q2)=1

(
4∏

k=2

C2
k(q2, a2)

)
e

(
−a2n
q2

)

= B(n, q1)B(n, q2).

This completes the proof of Lemma 5.5.

Lemma 5.6. Let A(n, q) be as defined in (3.1). Then

(i) We have ∑
q>Z

|A(n, q)| � Z−3/2+εd(n).

Hence
∑∞

q=1A(n, q) is absolutely convergent and satisfies S(n)� d(n).

(ii) There exists an absolute positive constant c∗ > 0, such that, for n ≡ 0 (mod 2),

S(n) ≥ c∗ > 0.

Proof. From Lemma 5.5, we know that B(n, q) is multiplicative in q. Therefore, there

holds

(5.4) B(n, q) =
∏
pt‖q

B(n, pt) =
∏
pt‖q

pt∑
a=1

(a,p)=1

(
4∏

k=2

C2
k(pt, a)

)
e

(
−an
pt

)
.

From (5.4) and Lemma 5.1, we deduce that B(n, q) =
∏
p‖q B(n, p) and q is square-free.

Thus, one has

(5.5)

∞∑
q=1

A(n, q) =

∞∑
q=1

q square-free

A(n, q).

Write

R(p, a) :=
4∏

k=2

C2
k(p, a)−

4∏
k=2

S2
k(p, a).

Then

(5.6) A(n, p) =
1

(p− 1)6

p−1∑
a=1

(
4∏

k=2

S2
k(p, a)

)
e

(
−an
p

)
+

1

(p− 1)6

p−1∑
a=1

R(p, a)e

(
−an
p

)
.

Applying Lemma 3.1 and noticing that Sk(p, a) = Ck(p, a)+1, we get Sk(p, a)� p1/2, and

thus R(p, a)� p5/2. Therefore, the second term in (5.6) is ≤ c5p−5/2. On the other hand,



Exceptional Set for Sums of Unlike Powers of Primes 803

from Lemma 5.3, we can see that the first term in (5.6) is ≤ 26 · 36p−5/2 = 2304p−5/2. Let

c6 = max(c5, 2304). Then we have proved that, for p - n, there holds

(5.7) |A(n, p)| ≤ c6p−5/2.

Moreover, if we use Lemma 3.1 directly, it follows that

|B(n, p)| =

∣∣∣∣∣
p−1∑
a=1

(
4∏

k=2

C2
k(p, a)

)
e

(
−an
p

)∣∣∣∣∣ ≤
p−1∑
a=1

4∏
k=2

|Ck(p, a)|2

≤ (p− 1) · 26 · p3 · 576 = 36864p3(p− 1),

and therefore

(5.8) |A(n, p)| = |B(n, p)|
ϕ6(p)

≤ 36864p3

(p− 1)5
≤ 25 · 36864p3

p5
=

1179648

p2
.

Let c7 = max(c6, 1179648). Then, for square-free q, we have

|A(n, q)| =

(∏
p|q
p-n

|A(n, p)|

)(∏
p|q
p|n

|A(n, p)|

)
≤

(∏
p|q
p-n

(c7p
−5/2)

)(∏
p|q
p|n

(c7p
−2)

)

= c
ω(q)
7

∏
p|q

p−5/2

 ∏
p|(n,q)

p1/2

� q−5/2+ε(n, q)1/2.

Hence, by (5.5), we obtain∑
q>Z

|A(n, q)| �
∑
q>Z

q−5/2+ε(n, q)1/2 =
∑
d|n

∑
q>Z/d

(dq)−5/2+εd1/2 =
∑
d|n

d−2+ε
∑
q>Z/d

q−5/2+ε

�
∑
d|n

d−2+ε
(
Z

d

)−3/2+ε
= Z−3/2+ε

∑
d|n

d−
1
2
+ε � Z−3/2+εd(n).

This proves (i) of Lemma 5.6.

To prove (ii) of Lemma 5.6, by Lemma 5.5, we first note that

S(n) =
∏
p

(
1 +

∞∑
t=1

A(n, pt)

)
=
∏
p

(1 +A(n, p))

=

(∏
p≤c7

(1 +A(n, p))

) ∏
p>c7
p-n

(1 +A(n, p))

)(∏
p>c7
p|n

(1 +A(n, p))

)
.

(5.9)

From (5.7), we have

(5.10)
∏
p>c7
p-n

(1 +A(n, p)) ≥
∏
p>c7

(
1− c7

p5/2

)
≥ c8 > 0.
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By (5.8), we obtain

(5.11)
∏
p>c7
p|n

(1 +A(n, p)) ≥
∏
p>c7

(
1− c7

p2

)
≥ c9 > 0.

On the other hand, it is easy to see that

1 +A(n, p) =
p · L(p, n)

ϕ6(p)
.

By Lemma 5.4, we know that L(p, n) > 0 for all p with n ≡ 0 (mod 2), and thus 1 +

A(n, p) > 0. Therefore, there holds

(5.12)
∏
p≤c7

(1 +A(n, p)) ≥ c10 > 0.

Combining the estimates (5.9)–(5.11) and (5.12), and taking c∗ = c8c9c10 > 0, we derive

that

S(n) ≥ c∗ > 0.

This completes the proof Lemma 5.6.

6. Proof of Proposition 2.2

We shall present some lemmas that will be used to prove Proposition 2.2. Define the

multiplicative function w3(q) by

w3(p
3u+v) =

3p−u−1/2 u ≥ 0, v = 1,

p−u−1 u ≥ 0, 2 ≤ v ≤ 3.

Lemma 6.1. Let c be a constant. For x ≥ 2, one has∑
q≤x

dc(q)w2
3(q)� logC x,

where C is an absolute constant.

Proof. See Lemma 2.1 of Zhao [17].

Lemma 6.2. For γ ∈ R, we define

L(γ) =
∑
q≤X4

q∑
a=1

(a,q)=1

∫
|α−a/q|≤X3

w2
3(q)dc(q)

∣∣∣∑X4<p≤2X4
e(p4(α+ γ))

∣∣∣2
1 +X3

3 |α− a/q|
dα.

Then one has uniformly for γ ∈ R that

L(γ)� X2
4N
−1+ε.
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Proof. We have

L(γ) ≤
∑
q≤X4

∫
|α−a/q|≤X3

w2
3(q)dc(q)

∑q
a=1

∣∣∣∑X4<p≤2X4
e(p4(α+ γ))

∣∣∣2
1 +X3

3 |α− a/q|
dα.

For the sum in the above integral, there holds

q∑
a=1

∣∣∣∣∣∣
∑

X4<p≤2X4

e

(
p4
a

q
+ p4(β + γ)

)∣∣∣∣∣∣
2

=

q∑
a=1

∑
X4<p1,p2≤2X4

e

(
(p41 − p42)

a

q
+ (p41 − p42)(β + γ)

)

=
∑

X4<p1,p2≤2X4

e
(
(p41 − p42)(β + γ)

) q∑
a=1

e

(
(p41 − p42)a

q

)
= q

∑
X4<p1,p2≤2X4

p41≡p42 (mod q)

e
(
(p41 − p42)(β + γ)

)
.

Since q ≤ X4 and X4 < p ≤ 2X4, we have (p, q) = 1. Then we obtain

q∑
a=1

∣∣∣∣∣∣
∑

X4<p≤2X4

e

(
p4
a

q
+ p4(β + γ)

)∣∣∣∣∣∣
2

� X2
4

q

∑
1≤n1,n2<q

n4
1≡n4

2 (mod q)
(n1n2,q)=1

1� X2
4

q

∑
1≤n1<q

∑
1≤n2<q

n4
1≡n4

2 (mod q)

1� X2
4d

c(q).

Therefore, from Lemma 6.1, we deduce that

L(γ)� X2
4

∑
q≤X4

w2
3(q)dc(q)

∫
|β|≤X3

1

1 + |β|X3
3

dβ � X2
4N
−1+ε.

This completes the proof of Lemma 6.2.

Lemma 6.3. Suppose that α is a real number, and that |α − a/q| ≤ q−2 with (a, q) = 1.

Let β = α− a/q. Then we have

fk(α)� dδk(q)(log x)c

(
X

1/2
k

√
q(1 +N |β|) +X

4/5
k +

Xk√
q(1 +N |β|)

)
,

where δk = 1/2 + (log k)/ log 2 and c is a constant.

Proof. See Theorem 1.1 of Ren [12].
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Lemma 6.4. Suppose that α is a real number, and that there exist integers a ∈ Z and

q ∈ N satisfying

(a, q) = 1, 1 ≤ q ≤ N1/2, and |qα− a| ≤ N−1/2.

Then for k ∈ {2, 3, 4}, we have

fk(α)� X1−ηk+ε
k +

X1+ε
k√

q(1 +N |α− a/q|)
,

where η2 = 1/8, η3 = 1/14 and η4 = 1/24.

Proof. See Theorem 3 of Kumchev [6].

For A ⊆ (X3, 2X3] ∩ N, we define

g(α) = gA (α) =
∑
n∈A

(log n)e(n3α).

Then we have the following lemma.

Lemma 6.5. Let M be the union of the intervals M (q, a) for 1 ≤ a ≤ q ≤ X
3/4
3 and

(a, q) = 1, where

M (q, a) =
{
α : |qα− a| ≤ X−9/43

}
.

Suppose that G(α) and h(α) are integrable functions of period one. Then for any measur-

able set m ⊆ [0, 1], we have∫
m
g(α)G(α)h(α) dα� N1/3J 1/4

0

(∫
m
|G(α)|2 dα

)1/4

J 1/2(m) +N7/24+εJ (m),

where

J (m) =

∫
m
|G(α)h(α)|dα, J0 = sup

β∈[0,1]

∫
M

w2
3(q)|h(α+ β)|2(

1 +X3
3 |α− a/q|

)2 dα.

Proof. See Lemma 3.1 of Zhao [17].

Define

N(q, a) =

[
a

q
− 1

qN5/6
,
a

q
+

1

qN5/6

]
, N =

⋃
q≤N1/6

⋃
1≤a≤q
(a,q)=1

N(q, a).

We write m1 = m ∩N and m2 = m \N.

Lemma 6.6. Suppose that α ∈ m1. Then we have

f2(α)� N71/160+ε and f3(α)� N133/480+ε.
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Proof. For α ∈ m1, there exist integers a ∈ Z and q ∈ N such that

1 ≤ a ≤ q ≤ N1/6, |qα− a| ≤ N−5/6, (a, q) = 1.

Since α /∈ M, we have either q > P or |qα − a| > Q−1. Therefore, from Lemma 6.3, we

deduce that

f2(α)� N71/160+ε and f3(α)� N133/480+ε.

This completes the proof of Lemma 6.6.

Lemma 6.7. Suppose that α ∈ m2. Then we have

f2(α)� X
1−1/8+ε
2 , f3(α)� X

1−1/14+ε
3 , f4(α)� X

1−1/24+ε
4 .

Proof. By Dirichlet’s approximation theorem, there exist a ∈ Z and q ∈ N satisfying

1 ≤ q ≤ N1/2, |qα− a| ≤ N−1/2, (a, q) = 1.

Since α ∈ m2 = m \ N, we get either q > N1/6 or N |qα − a| > N1/6. Therefore, the

conclusions follow from Lemma 6.4.

Lemma 6.8. Let fk(α) be defined as above. Then we have

(i)
∫ 1
0

∣∣f22 (α)f43 (α)
∣∣ dα� N4/3+ε;

(ii)
∫ 1
0

∣∣f22 (α)f63 (α)
∣∣ dα� N2+ε;

(iii)
∫ 1
0

∣∣f22 (α)f84 (α)
∣∣ dα� N2+ε.

Proof. We only give the details of the proof of (iii), since the proofs of (i) and (ii) are similar

to that of (iii). The conclusion can be deduced by counting the number of solutions of the

underlying Diophantine equation:

x21 − x22 = y41 + y42 + y43 + y44 − y45 − y46 − y47 − y48

with X2 < x1, x2 ≤ 2X2 and X4 < yi ≤ 2X4 for i = 1, 2, . . . , 8. If x1 6= x2, the contribution

is bounded by X8+ε
4 . If x1 = x2, the contribution is bounded by

� X2 ·
∫ 1

0
|f4(α)|8 dα.

By Lemma 2.5 of Vaughan [15], we have∫ 1

0
|f4(α)|8 dα� X5+ε

4 ,
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and thus the contribution with x1 = x2 is � X2 ·X5+ε
4 � N7/4+ε. Combining above two

cases, we deduce that∫ 1

0

∣∣f22 (α)f84 (α)
∣∣ dα� X8+ε

4 +X2 ·X5+ε
4 � N2+ε.

This completes the proof of Lemma 6.8.

Proof of Proposition 2.2. Define

I(t) =

∫
m2

∣∣f42 (α)f t3(α)f44 (α)
∣∣ dα, t ≥ 1.

Taking

g(α) = f3(α), h(α) = f4(α), G(α) = |f2(α)|4|f3(α)|2f3(−α)f4(−α)|f4(α)|2

in Lemma 6.5, we obtain

(6.1) I(4)� N1/3J 1/4
0

(∫
m2

|f2(α)|8|f3(α)|6|f4(α)|6 dα

)1/4

(I(3))1/2 +N7/24+ε · I(3),

where

J0 = sup
β∈[0,1]

∑
q≤X3/4

3

q∑
a=1

(a,q)=1

∫
M (q,a)

w2
3(q)|h(α+ β)|2(

1 +X3
3 |α− a/q|

)2 dα

with

M (q, a) =
{
α : |qα− a| ≤ X−9/43

}
.

By Lemma 6.2, we get

(6.2) J0 � L(γ)� N−1/2+ε.

From Lemma 6.7, we obtain∫
m2

∣∣f82 (α)f63 (α)f64 (α)
∣∣ dα

�
(

sup
α∈m2

|f2(α)|4
)(

sup
α∈m2

|f3(α)|2
)(

sup
α∈m2

|f4(α)|2
)
· I(4)

� (X
7/8+ε
2 )4(X

13/14+ε
3 )2(X

23/24+ε
4 )2 · I(4)� N319/112+ε · I(4).

(6.3)

Putting (6.2) and (6.3) into (6.1), we derive that

(6.4) I(4)� N1237/1344+ε(I(4))1/4(I(3))1/2 +N7/24+εI(3).
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It follows from Hölder’s inequality that

I(3)�
(∫

m2

∣∣f4/32 (α)f
4/3
3 (α)f

4/3
4 (α)

∣∣3 dα

)1/3(∫
m2

∣∣f8/32 (α)f
5/3
3 (α)f

8/3
4 (α)

∣∣3/2 dα

)2/3

= (I(4))1/3 ·
(
I
(

5

2

))2/3

.

(6.5)

According to Lemmas 6.7, 6.8 and Hölder’s inequality, we obtain

I
(

5

2

)
� sup

α∈m2

|f2(α)|2 ×
∫
m2

∣∣∣(f1/22 (α)f
3/2
3 (α)

)
·
(
f
1/2
2 (α)f3(α)

)
·
(
f2(α)f44 (α)

)∣∣∣ dα

�
(

sup
α∈m2

|f2(α)|2
)(∫ 1

0

∣∣f22 (α)f63 (α)
∣∣ dα)1/4(∫ 1

0

∣∣f22 (α)f43 (α)
∣∣ dα)1/4

×
(∫ 1

0

∣∣f22 (α)f84 (α)
∣∣ dα)1/2

� N7/8+ε · (N2+ε)1/4(N4/3+ε)1/4(N2+ε)1/2 � N65/24+ε.

(6.6)

Putting (6.6) into (6.5), we derive that

(6.7) I(3)� N65/36+ε · (I(4))1/3.

Inserting (6.7) into (6.4), we have

I(4)� N7351/4032+ε(I(4))5/12 +N151/72+ε(I(4))1/3,

which implies

(6.8) I(4)� N7351/2352+ε +N151/48+ε � N151/48+ε = N7/3+1−3/16+ε.

For the contribution from m1, by Lemmas 6.6 and 6.8, we deduce that

∫
m1

∣∣f42 (α)f43 (α)f44 (α)
∣∣dα

�
(

sup
α∈m1

|f2(α)|2
)(

sup
α∈m1

|f3(α)|3/2
)∫

m1

∣∣f22 (α)f
5/2
3 (α)f44 (α)

∣∣ dα
� N71/80+ε ·N133/320+ε ·

(∫ 1

0

∣∣f22 f63 ∣∣dα)1/4(∫ 1

0

∣∣f22 f43 ∣∣ dα)1/4(∫ 1

0

∣∣f22 f84 ∣∣ dα)1/2

� N71/80+ε ·N133/320+ε · (N2+ε)1/4 · (N4/3+ε)1/4 · (N2+ε)1/2

� N3011/960+ε � N7/3+1−3/16+ε.

(6.9)

Combining (6.8) and (6.9), we obtain the conclusion of Proposition 2.2. This completes

the proof of Proposition 2.2.
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