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Hecke Bound of Vector-valued Modular Forms and its Relationship with

Cuspidality

Seokho Jin, Jongryul Lim and Subong Lim*

Abstract. In this paper, we prove that if the Fourier coefficients of a vector-valued

modular form satisfy the Hecke bound, then it is cuspidal. Furthermore, we obtain

an analogous result with regard to Jacobi forms by applying an isomorphism between

vector-valued modular forms and Jacobi forms. As an application, we prove a result

on the growth of the number of representations of m by a positive definite quadratic

form Q.

1. Introduction

It is known that the Fourier coefficients of scalar-valued cusp forms satisfy the Hecke

bound, i.e., if f(z) =
∑

n>0 a(n)e2πinz is a cusp form of weight k, then it satisfies

a(n) = O(nk/2)

as n→∞. On the other hand, it is natural to ask a question whether the converse problem

is true, i.e., whether one can conclude that a given general modular form is cuspidal if its

Fourier coefficients satisfy the Hecke bound. This problem was initiated and investigated

by Kohnen for scalar-valued modular forms in [8]. Later on, Schmoll [13] solved this

problem for scalar-valued modular forms of even integral weight k > 2 on congruence

subgroups Γ0(N). Similar results has been also obtained for other modular forms such as

half-integral weight modular forms, Hilbert modular forms, Siegel modular forms, Jacobi

forms, etc. (for more details, see [1, 4, 9–12].)

In this paper, we study the converse problem for vector-valued modular forms. A

general method used before in proving the converse problems is dependent on the exact

formula of the Fourier coefficients of the Eisenstein series and the Hecke theory which are

complicated to describe for general modular forms on general groups. To overcome this

difficulty, we use meromorphic continuations of vector-valued L-functions associated with
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given vector-valued modular forms. Moreover, we also obtain an analogous result with

regard to Jacobi forms by applying an isomorphism between vector-valued modular forms

and Jacobi forms. As an application, we prove a result on the growth of the number of

representations of m by a positive definite quadratic form Q.

To describe in detail, we introduce the basic notation and terminology which will be

used throughout the paper. Let k ∈ 1
2Z and Γ be a finite index subgroup of SL(2,Z).

We denote by {Q0, . . . , Qt, V1, . . . , Vs} a fixed set of generators of Γ, where Q0, . . . , Qt

are parabolic generators and V1, . . . , Vs are non-parabolic generators. Let p be a positive

integer and ρ : Γ→ GLp(C) be a p-dimensional complex representation such that ρ(Qi) is

diagonal and of finite order for each i. Let χ be a multiplier system of weight k for the

group SL(2,Z), i.e., |χ(γ)| = 1, χ(−I) = eπik, and χ satisfies the consistency condition

χ(γ3)(c3τ + d3)
k = χ(γ1)χ(γ2)(c1γ2τ + d1)

k(c2τ + d2)
k,

where γ3 = γ1γ2 and γi = ( ∗ ∗ci di ), i = 1, 2, and 3. We denote the standard basis of Cp by

(ej)
p
j=1.

A vector-valued modular form of weight k, multiplier system χ, and type ρ on Γ is

the sum f =
∑p

j=1 fjej of holomorphic functions fj on the upper half-plane H such that

f |k,χγ = ρ(γ)f for any γ =
(
a b
c d

)
∈ Γ, where the operator |k,χ is defined by

(f |k,χγ)(τ) := χ−1(γ)(cτ + d)−kf(γτ).

Here, γτ := (aτ + b)/(cτ + d) and we take arg z to lie in the range −π ≤ arg z < π for any

complex number z 6= 0. For each γ ∈ SL(2,Z), the function f |k,χγ has a Fourier expansion

of the form

(1.1)

p∑
j=1

fj,γ(τ)ej =

p∑
j=1

∑
n+κj,γ≥0

aj,γ(n)e2πi(n+κj,γ)τ/λγej ,

where κj,γ is a real number with 0 ≤ κj,γ < 1 and λγ ∈ Z. For simplicity, let aj(n) =

aj,I(n), where I denotes the identity matrix. Furthermore, let Mk,χ,ρ(Γ) (resp. Sk,χ,ρ(Γ))

denote the space of all vector-valued modular (resp. cusp) forms of of weight k, multiplier

system χ, and type ρ on Γ (for additional details, see Section 2).

In [7], it is shown that for a given vector-valued cusp form f(τ) in Sk,χ,ρ(SL(2,Z)) there

is a constant α depending only on ρ such that aj,γ(n) = O(nk/2+α) for every 1 ≤ j ≤ p

and for every γ ∈ SL(2,Z), as n → ∞ (see also [14]). In particular, if ρ is a unitary

representation, then α = 0. The following theorem shows that the converse is also true.

Theorem 1.1. Suppose that k > 2+2α and f ∈Mk,χ,ρ(Γ) with an irreducible representa-

tion ρ has a Fourier expansion as in (1.1). If there exists at least one l such that the Fourier

coefficients al,γ(n) for each γ ∈ SL(2,Z) satisfy the growth condition al,γ(n) = O(nk/2+α)

as n→∞, then f is cuspidal.
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Remark 1.2. (1) Theorem 1.1 proves the vector-valued version of the conjecture of

Böcherer and Das [1] for SL(2,Z).

(2) We can remove the condition of irreducibility of ρ if we impose a stronger condition

to get a similar result as follows. Suppose that k > 2 + 2α and f ∈Mk,χ,ρ(Γ) has a

Fourier expansion as in (1.1). If for every 1 ≤ l ≤ p and γ ∈ SL(2,Z), the Fourier

coefficients al,γ(n) satisfy the growth condition al,γ(n) = O(nk/2+α) as n→∞, then

f is cuspidal. This result will be used later to prove a corresponding result on Jacobi

forms.

Next, we consider Jacobi forms. A Jacobi form is a holomorphic function of two

variables (τ ∈ H and z ∈ C) that satisfies modular and elliptic transformation properties

with holomorphicity conditions at cusps. Let Jk,m,χ(ΓJ) (resp. Sk,m,χ(ΓJ)) denote the

space of Jacobi forms (resp. Jacobi cusp forms) of weight k, index m, and multiplier

system χ on ΓJ , where ΓJ denotes a Jacobi group Γ n Z2. If F ∈ Jk,m,χ(ΓJ), then F has

a Fourier expansion of the form

(1.2)
∑
n,r∈Z
Dγ≥0

cγ(n, r)e2πi(n+κγ)τ/λγe2πirz

for each γ ∈ SL(2,Z), where Dγ = Dγ(n, r) := 4[(n+κγ)/λγ ]m−r2 (for additional details,

see Section 3). In the following theorem, we obtain a result about the cuspidality of a

Jacobi form.

Theorem 1.3. Let k > 5/2 and m ∈ Z. Suppose that the Fourier coefficients of F ∈
Jk,m,χ(ΓJ) satisfy

(1.3) cγ(n, r) = O(Dk/2−1/4
γ )

for every γ ∈ SL(2,Z), as Dγ →∞. Then, F is cuspidal.

To prove this, we use an isomorphism ϕ from the space of Jacobi forms of weight

k to the space of vector-valued modular forms of weight k − 1/2 with a unitary repre-

sentation ρ′. Then the bound in (1.3) implies that Fourier coefficients of ϕ(F ) satisfies

O
(
n

1
2

(
k− 1

2

))
. With this and Remark 1.2(2), one can prove Theorem 1.3. Note that since

the representation ρ′ is unitary, we take α = 0 when we apply Remark 1.2(2).

As an example of a vector-valued modular form, we consider a theta series associated

with a positive definite quadratic form. For a positive integer n, let Q(x) be a positive

definite quadratic form of rank n over R, and B(x, y) denote its associated bilinear form.

Let L be a lattice of rank n such that Q(x) ∈ Z for all x ∈ L, and L∗ denote its dual
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lattice defined by L∗ := {x ∈ Rn | B(x, y) ∈ Z for all y ∈ L}. We define a vector-valued

theta series

θQ,L(τ) :=
∑

h∈L∗/L

θQ,L(τ, h)eh,

where θQ,L(τ, h) =
∑

x∈L+h e
2πiQ(x)τ . Then θQ,L satisfies (for example, see [5, Corol-

lary 1.7])

θQ,L(τ + 1, h) = e2πiQ(h)θQ,L(τ, h)

and

θQ,L

(
−1

τ
, h

)
= τn/2

√
i
−n√
|L∗/L|

∑
k∈L∗/L

e−2πiB(k,h)θQ,L(τ, k).

Therefore, θQ,L is a vector-valued modular form of weight n/2 on SL(2,Z) associated

with the Weil representation ρQ,L (for the definition of the Weil representation, see [2,

Section 1]). The mth Fourier coefficient of θQ,L(τ, h) is

RQ,L(m,h) := |{x ∈ L+ h | Q(x) = m}|.

As an application of Theorem 1.1, we obtain a result on the growth of RQ,L(m,h) as

m→∞.

Theorem 1.4. If n ≥ 5, then for any M > 0, there are infinitely many m ∈ N such that

RQ,L(m,h) > Mmn/4.

The remainder of this paper is organized as follows. In Section 2, we present basics

about vector-valued modular forms and vector-valued L-functions. In Section 3, we review

the theory of Jacobi forms focusing on the theta expansion. Finally, in Section 4, we prove

the main results.

2. Vector-valued modular forms

In this section, we recall some basic facts about vector-valued modular forms and vector-

valued L-functions. We start with the precise definition of a vector-valued modular form.

Definition 2.1. A vector-valued modular form of weight k, multiplier system χ, and type

ρ on Γ is the sum f =
∑p

j=1 fjej of holomorphic functions in H which satisfies

(1) f |k,χγ = ρ(γ)f for all γ ∈ Γ,

(2) for each γ =
(
a b
c d

)
∈ SL(2,Z), the function f |k,χγ has a Fourier expansion as in

(1.1).
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Furthermore, if each aj,γ(n) is zero when n+κj,γ is nonpositive, then f is called a vector-

valued cusp form.

For each j, the constant term of fj,γ is defined by Cj,γ :=
∑

n+κj,γ=0 aj,γ(n). Further,

we define the constant term of f |k,χγ by

Cf,γ :=

p∑
j=1

Cj,γej =

p∑
j=1

∑
n+κj,γ=0

aj,γ(n)ej .

Now, we introduce vector-valued L-functions attached to given vector-valued modular

forms. Let f =
∑p

j=1 fjej ∈Mk,χ,ρ(Γ) with a Fourier expansion as in (1.1). The associated

L-function of f and γ is defined by

Lγ(f, s) :=

p∑
j=1

L(fj,γ , s)ej ,

where each component L(fj,γ , s) is given by the usual Dirichlet series of fj,γ , namely,

L(fj,γ , s) :=
∑

n+κj,γ>0

aj,γ(n)

((n+ κj,γ)/λγ)s
.

To use later, we also define Λ(fj,γ , s) := (2π)−sΓ(s)L(fj,γ , s) as usual. We consider an

analytic continuation and locations of poles of L(fj,γ , s). For this reason, we need the

following lemma.

Lemma 2.2. If f ∈ Mk,χ,ρ(Γ) \ Sk,χ,ρ(Γ) and ρ is irreducible, then for each 1 ≤ j ≤ p,

there exists at least one element γj ∈ Γ such that fj,γj has a non-zero constant term.

Proof. Suppose that there is no such γj ∈ Γ. Since we fix a standard basis, we can consider

ρ(γ) as a p× p matrix. Let Lj be the space spanned by the jth rows of matrices ρ(γ) for

γ ∈ Γ. Note that the constant term of fj,γ is zero if and only if (ρ(γ)Cf,I)j = 0. Therefore,

we see that dimC Lj < p.

Since ρ is irreducible, its dual representation ρ∗ is also irreducible. The space A

generated by

{ρ∗(γ)ej | γ ∈ Γ}

is nontrivial and invariant by the representation ρ∗. Therefore, A is a non-zero subrepre-

sentation of ρ∗. Since ρ∗ is irreducible, A must be Cp. Note that the dual representation

ρ∗ is defined by ρ∗(γ) = ρ(γ−1)t, where γt denotes the transpose of γ. We see that A is

the same as Lj . This is a contradiction since dimC Lj < p. Therefore, there is at least one

element γj ∈ Γ such that fj,γj has a non-zero constant term.
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Proposition 2.3. Assume that f ∈Mk,χ,ρ(Γ)\Sk,χ,ρ(Γ) and ρ is irreducible. Fix 1 ≤ l ≤ p
and let γ ∈ Γ such that fl,γ has a non-zero constant term Cl,γ. Then, L(fl,γS−1 , s) has a

meromorphic continuation on C with a simple pole at s = k, where S =
(
0 −1
1 0

)
.

Proof. First, note that fγS−1 |k,χS = fγ . This implies that

χ(S)−1τ−kfγS−1

(
−1

τ

)
= fγ(τ).

Let

ψγ(v) := fγ(iv)− Cf,γ ,

where Cf,γ is the constant term of a vector-valued modular form fγ . Then, we have

ψγS−1(v) = χ(S)ikv−kψγ

(
1

v

)
+ χ(S)ikv−kCf,γ − Cf,γS−1 .

If we denote by ψj,γ the jth component function of ψγ , then one can see that

ψj,γ(v) = fj,γ(iv)− Cj,γ

and

(2.1) ψl,γS−1(v) = χ(S)ikv−kψl,γ

(
1

v

)
+ χ(S)ikv−kCl,γ − Cl,γS−1 .

Note that by assumption, Cl,γ 6= 0.

Now, we compute the Mellin transform of ψl,γS−1 . If we insert the Fourier coefficients

of fl,γS−1(τ), then we see that∫ ∞
0

ψl,γS−1(v)vs
dv

v
=

∑
n+κl,γS−1>0

al,γS−1(n)

∫ ∞
0

e−2π(n+κl,γS−1 )v/λγS−1vs
dv

v

= (2π)−sΓ(s)L(fl,γS−1 , s) = Λ(fl,γS−1 , s).

On the other hand, we can use the inversion formula in (2.1) to compute the Mellin

transform of ψl,γS−1 . First, we separate the integral into two parts

(2.2)

∫ ∞
0

ψl,γS−1(v)vs
dv

v
=

∫ 1

0
ψl,γS−1(v)vs

dv

v
+

∫ ∞
1

ψl,γS−1(v)vs
dv

v
.

Next, we compute the first integral in (2.2) using the inversion formula and change of

variables∫ 1

0
ψl,γS−1(v)vs

dv

v
=

∫ 1

0

(
χ(S)ikv−kψl,γ

(
1

v

)
+ χ(S)ikv−kCl,γ − Cl,γS−1

)
vs
dv

v

= χ(S)ik
∫ ∞
1

ψl,γ(v)vk−s
dv

v
+ χ(S)ikCl,γ

∫ 1

0
vs−k−1 dv

− Cl,γS−1

∫ 1

0
vs−1 dv.
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Therefore, we have

Λ(fl,γS−1 , s) =

∫ ∞
0

ψl,γS−1(v)vs
dv

v

=

∫ ∞
1

(ψl,γS−1(v)vs + χ(S)ikψl,γ(v)vk−s)
dv

v
+ χ(S)ikCl,γ

1

s− k
− Cl,γS−1

1

s
.

Note that

L(fl,γS−1 , s) = Γ(s)−1(2π)sΛ(fl,γS−1 , s).

It is well known that Γ(s)−1 is an entire function with simple zeros at s = 0,−1,−2, . . .,

and it does not vanish elsewhere (for instance, see [15]). Therefore, L(fl,γS−1 , s) has a

meromorphic continuation on C with a simple pole at s = k.

3. Jacobi forms

In this section, we review the theory of Jacobi forms, following the approach of Eichler

and Zagier [6]. First, we fix the notation. Let ΓJ = Γ nZ2 be a Jacobi group and F be a

function on H× C. For γ =
(
a b
c d

)
∈ SL(2,Z), X = (λ, µ) ∈ Z2, and m ∈ Z, we define

(F |k,m,χγ)(τ, z) := χ(γ)−1(cτ + d)−ke−2πim
cz2

cτ+dF (γ(τ, z))

and

(F |mX)(τ, z) := e2πim(λ2τ+2λz)F (τ, z + λτ + µ),

where γ(τ, z) = ((aτ + b)/(cτ + d), z/(cτ + d)). Then, ΓJ acts on the space of functions

on H× C by

(F |k,m,χ(γ,X))(τ, z) := (F |k,m,χγ|mX)(τ, z).

With this operator, we define a Jacobi form.

Definition 3.1. A Jacobi form of weight k, index m, and multiplier system χ on ΓJ is a

holomorphic function F on H× C satisfying

(1) F |k,m,χ(γ,X) = F for every (γ,X) ∈ ΓJ ,

(2) for each γ =
(
a b
c d

)
∈ SL(2,Z), the function F |k,m,χγ has a Fourier expansion as in

(1.2).

Furthermore, if cγ(n, r) 6= 0 only if Dγ > 0 for all γ ∈ SL(2,Z), then it is called a Jacobi

cusp form.

Theorem 3.2. [6, Section 5] Let F be a holomorphic function that satisfies F |mX = F

for every X ∈ Z2. Then,

(3.1) F (τ, z) =
∑
µ∈N

fµ(τ)θm,µ(τ, z)

with uniquely determined holomorphic functions fµ(τ) on H, where N = Z/2mZ.
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The expansion in Theorem 3.2 is called the theta expansion. The theta expansion

gives an isomorphism between the space of Jacobi forms and the space of vector-valued

modular forms. More precisely, let F be a Jacobi form in Jk,m,χ(ΓJ). By Theorem 3.2, a

Jacobi form F has the theta expansion

F (τ, z) =
∑
µ∈N

fµ(τ)θm,µ(τ, z).

Then, one can check that a vector-valued function∑
µ∈N

fµeµ

is a vector-valued modular form in Mk−1/2,χ′,ρ′(Γ) for some χ′ and ρ′ (for example, see [3,

Section 2]). Here, ρ′ is essentially the Weil representation.

Theorem 3.3. [6, Section 5] The theta expansion gives an isomorphism between Jk,m,χ(ΓJ)

and Mk−1/2,χ′,ρ′(Γ). Furthermore, it sends Jacobi cusp forms to vector-valued cusp forms.

4. Proofs of the main theorems

For the proof of Theorem 1.1, we observe the following fact. Let f be a vector-valued

modular form in Mk,χ,ρ(Γ). For each γ ∈ SL(2,Z), a vector-valued function f |k,χγ is a

vector-valued modular form in Mk,χ,ργ (Γγ), where Γγ = γ−1Γγ and ργ is a representation

on Γγ defined by

ργ(γ−1Aγ) := ρ(A)

for A ∈ Γ. For simplicity, let fγ denote f |k,χγ. Note that (fγ)j = fj,γ for every 1 ≤ j ≤ p
and γ ∈ SL(2,Z).

Proof of Theorem 1.1. Let f be a vector-valued modular form contained in Mk,χ,ρ(Γ). For

each γ ∈ Γ, the function f |k,χγ has a Fourier expansion of the form

p∑
j=1

∑
n+κj,γ≥0

aj,γ(n)e2πi(n+κj,γ)τ/λγej .

Suppose that for such γ, the Fourier coefficients ai,γ(n) satisfy the growth condition

(4.1) ai,γ(n) = O(nk/2+α),

as n→∞. Here, α is a non-negative constant depending only on ρ.

Suppose that f is not cuspidal. By Lemma 2.2, we have an element γ ∈ Γ such that fi,γ

has the non-zero constant term Ci,γ . Then, L(fi,γS−1 , s) has a meromorphic continuation
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on C with a simple pole at s = k by Proposition 2.3. On the other hand, by the growth

condition of the Fourier coefficients in (4.1), the series

L(fi,γS−1 , s) =
∑

n+κi,γS−1>0

ai,γS−1(n)(
(n+ κi,γS−1)/λγS−1

)s
converges absolutely if Re(s) > k/2 + α + 1. By the assumption, we have k > 2α + 2.

This implies that k > k/2 + α + 1. Therefore, L(fi,γS−1 , k) converges absolutely, and

hence, L(fi,γS−1 , s) cannot have a pole at s = k. This is a contradiction. Hence, f is a

vector-valued cusp form.

Proof of Theorem 1.3. Let F ∈ Jk,m,χ(ΓJ) with the given growth condition on its Fourier

coefficients, that is, the function F |k,m,χγ has a Fourier expansion∑
n,r∈Z
Dγ≥0

cγ(n, r)e2πi(n+κγ)τ/λγe2πirz

with the growth condition cγ(n, r) = O(D
k/2−1/4
γ ) for every γ ∈ SL(2,Z), as Dγ → ∞.

Since (F |k,m,χ|γ)|mX = F |k,m,χγ for any X ∈ Z2 and for any γ ∈ SL(2,Z), by (3.1) we

have

(F |k,m,χγ)(τ, z) =
∑
µ∈N

fγ,µ(τ)θm,µ(τ, z).

As in [6, Section 5], nth Fourier coefficient of fγ,µ is the same with the cγ
(
(n+ µ2)/(4m), r

)
.

Moreover, by Theorem 3.3, the vector-valued function

f =
∑
µ∈N

fI,µeµ

is a vector-valued modular form in Mk−1/2,χ′,ρ′(Γ). Let γ ∈ SL(2,Z). We write a Fourier

expansion of f |k−1/2,χ′γ as

2m∑
j=1

fj(τ)ej =

2m∑
j=1

∑
n+κj,γ≥0

aj,γ(n)e2πi(n+κj,γ)τ/λγej .

Note that ∑
µ∈N

fγ,µeµ = ρ(γ)(f |k−1/2,χ′γ).

This gives a relationship between the Fourier coefficients cγ(n, r) and aj,γ(n), which de-

termines the asymptotic behavior of aj,γ(n)

aj,γ(n) = O
(
n

1
2

(
k− 1

2

))
as n → ∞. Since ρ′ is unitary, we use Remark 1.2(2) for α = 0 to see that f is cuspidal.

This implies that F ∈ Sk,m,χ(ΓJ) by Theorem 3.3.
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Proof of Theorem 1.4. Suppose that n ≥ 5. Then, the weight of θQ,L is strictly larger than

2. Since Q(0) = 0, θQ,L(τ, 0) has a constant term at its Fourier expansion. Therefore,

θQ,L is not a vector-valued cusp form. By Theorem 1.1, for each h ∈ L∗/L, RQ,L(m,h)

does not satisfy

RQ,L(m,h) = O(mn/4),

as m→∞. This implies that for any M > 0 there are infinitely many m ∈ N such that

RQ,L(m,h) > Mmn/4.
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Birkhäuser Boston, Boston, MA, 1985.

[7] M. Knopp and G. Mason, On vector-valued modular forms and their Fourier coeffi-

cients, Acta Arith. 110 (2003), no. 2, 117–124.

[8] W. Kohnen, On certain generalized modular forms, Funct. Approx. Comment. Math.

43 (2010), part 1, 23–29.

[9] W. Kohnen and J. Lim, A note on the characterizations of Jacobi cusp forms and

cusp forms of Maass Spezialschar, Ramanujan J. 37 (2015), no. 3, 535–539.

[10] W. Kohnen and Y. Martin, A characterization of degree two Siegel cusp forms by the

growth of their Fourier coefficients, Forum Math. 26 (2014), no. 5, 1323–1331.

[11] J. Lim, A characterization of Jacobi cusp forms of certain types, J. Number Theory

141 (2014), 278–287.



Hecke Bound of Vector-valued Modular Forms and its Relationship with Cuspidality 311

[12] B. Linowitz, Characterizing adelic Hilbert modular cusp forms by coefficient size,

Kyushu J. Math. 68 (2014), no. 1, 105–111.

[13] S. D. Schmoll, Eine Charakterisierung von Spitzenformen, Diploma Thesis, unpub-

lished, Universität Heidelberg, 2011.

[14] A. Selberg, On the estimation of Fourier coefficients of modular forms, 1965 Proc.

Sympos. Pure Math., Vol. VIII, pp. 1–15, Amer. Math. Soc., Providence, R.I.

[15] E. M. Stein and R. Shakarchi, Complex Analysis, Princeton Lectures in Analysis 2,

Princeton University Press, Princeton, NJ, 2003.

Seokho Jin

Department of Mathematics, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul

06974, Korea

E-mail address: archimed@cau.ac.kr

Jongryul Lim

Department of Mathematics and Information Science, Korea Science Academy of

KAIST, 105-47, Baegyanggwanmoon-ro, Busanjin-gu, Busan, 47162, Korea

E-mail address: jaylim1128@kaist.ac.kr

Subong Lim

Department of Mathematics Education, Sungkyunkwan University, Jongno-gu, Seoul

110-745, Korea

E-mail address: subong@skku.edu


	Introduction
	Vector-valued modular forms
	Jacobi forms
	Proofs of the main theorems

