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Quantitative Recurrence Properties for Systems with Non-uniform Structure

Cao Zhao and Ercai Chen*

Abstract. Let X be a subshift with non-uniform structure, and σ : X → X be a shift

map. Further, define

R(ψ) := {x ∈ X : d(σnx, x) < ψ(n) for infinitely many n}

and

R(f) :=
{
x ∈ X : d(σnx, x) < e−Snf(x) for infinitely many n

}
,

where ψ : N → R+ is a nonincreasing and positive function and f : X → R+ is a

continuous positive function. In this paper, we give quantitative estimates of the

above sets, that is, dimH R(ψ) can be expressed by ψ and dimH R(f) is the solution

of the Bowen equation of topological pressure. These results can be applied to a large

class of symbolic systems, including β-shifts, S-gap shifts, and their factors.

1. Introduction

Let (X,T, d) be a topological dynamical system, where (X, d) is a compact metric space

and T : X → X is a continuous map. For the measure-preserving dynamical system

(X,T, µ, d), the Poincaré Recurrence Theorem states that the orbit of almost every point

in any positive measure set E returns to E an infinite number of times. These results are

qualitative in nature. There are fruitful results about the descriptions of the recurrence.

We refer the reader to [4] and the references therein. These results do not address either the

rate at which the orbit will return to the initial point or in what manner the neighborhood

of the initial point will shrink. In 1993, Boshernitzan [2] presented the following result for

general systems.

Theorem 1.1. [2] Let (X,T, µ, d) be a measure-preserving dynamical system. Assume

that, for some α > 0, the α-dimensional Hausdorff measure Hα of the space X is σ-finite.

Then for µ-almost all x ∈ X,

lim inf
n→∞

n1/αd(Tnx, x) <∞.
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If, moreover, Hα(X) = 0, then for µ-almost all x ∈ X,

lim inf
n→∞

n1/αd(Tnx, x) = 0.

Later, Barreira and Saussol [1] studied the shrinking rate which is tightly related to

the local pointwise dimension.

Theorem 1.2. [1] Let T : X → X be a Borel measurable transformation on a measurable

set X ⊂ Rm for some m ∈ N, and let µ be a T -invariant probability measure on X. Then

µ-almost surely,

lim
n→∞

n1/αd(Tnx, x) <∞

for any α > dµ(x), where dµ(x) is the lower pointwise dimension of x with respect to µ,

given by

dµ(x) = lim inf
r→0

logµ(B(x, r))

log r
.

Clearly, Boshernitzan showed almost all points have a low recurrence rate. And Bar-

reira and Saussol showed that the shrinking rate for the recurrence may relate to some

indicators of x. Another direction is the question of how large will the set of points be

when the shrinking rate for recurrence is related to other functions? In [5–7], Hill and Ve-

lani introduced a shrinking target problem originating from number theory and presented

quantitative studies of the recurrence. Let T : J → J be an expanding rational map of

the Riemann sphere acting on its Julia set J and f : J → R denote a Hölder continuous

function satisfying f(x) ≥ log |T ′(x)| for all x ∈ J. For any z0 ∈ J, Hill and Velani [5]

studied the set of ‘well approximable’ points

Dz0(f) :=
{
x ∈ J : d(y, x) < e−Snf(y) for infinitely many pairs (y, n) ∈ I

}
,

where I = I(z0) denotes the set of pairs (y, n) (n ∈ N) such that Tny = z0 and Snf(y) =∑n−1
i=0 f(T iy). In fact, they gave the following result.

Theorem 1.3. The set Dz0(f) has Hausdorff dimension s(f), where s(f) is the unique

solution to the pressure equation

P (−sf) = 0.

In [10], Tan and Wang investigated the metric properties as well as estimates of the

Hausdorff dimension of the recurrence set for β-transformation dynamical systems. More

precisely, the β-transformation Tβ : [0, 1] → [0, 1] is defined by Tβx = βx − bβxc for all

x ∈ [0, 1]. The spotlight is on the size of the set

{x ∈ [0, 1] : d(Tnβ x, x) < ψ(n) for infinitely many n},
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where ψ(n) is a positive function. In fact, this has evoked a rich subsequent literature

on the so-called Diophantine approximation. We refer the reader to [8,11] for the related

work about this set. It is worth mentioning that the study of recurrence for Diophantine

approximation is focused on the β-transformations. In other words, the question is whether

we can give a quantitative estimate of recurrence for more general dynamical systems.

In this paper, we consider a class of symbolic systems which were studied in [3]. That

is, (X,σ) is a symbolic system with non-uniform structure. The concept of a non-uniform

structure is basically defined in the following way: let L(X) be the language of X, there

exists a G ⊂ L(X) with (W )-specification and L(X) is edit approachable by G. The details

of the definitions will be given in the next section.

Now we state our main results. Fix a symbolic system (X,σ, d), where σ : X → X is

a shift map and d is the metric of X. Write M(X), Mσ(X) for the probability measure,

respectively, invariant measure, with the weak∗ topology. For a map ψ : N → R+, we

define

R(ψ) := {x ∈ X : d(σnx, x) < ψ(n) for infinitely many n ∈ N}.

Theorem 1.4. Let X be a shift space with L = L(X). Suppose that G ⊂ L has a (W )-

specification and L is edit approachable by G. For a positive function ψ(n) : N→ R+,

(C1) if lim infn→∞ ψ(n) > 0, then

dimH R(ψ) = h.

(C2) if ψ is nonincreasing, then

dimH R(ψ) =
h

1 + b
with b = lim inf

n→∞

− logψ(n)

n
,

where dimH(·) denotes the Hausdorff dimension of a set and h := htop(X) denotes

the topological entropy of X.

Let f be a positive continuous function defined on X. In this paper, we set Snf(x) =∑n−1
i=0 f(σix). Define

R(f) =
{
x ∈ X : d(σnx, x) < e−Snf(x) for infinitely many n ∈ N

}
.

Theorem 1.5. Let X be a shift space with L = L(X). Let f be a positive continuous func-

tion defined on X. Suppose that G ⊂ L has a (W )-specification and L is edit approachable

by G. The Hasudorff dimension of R(f) is the unique solution s of the following pressure

equation

P (−s(f + 1)) = 0,

where P (·) denotes the topological pressure.



228 Cao Zhao and Ercai Chen

2. Preliminaries

2.1. Non-uniform structure

In this paper, we consider symbolic spaces. Let p ≥ 2 be an integer and A = {1, 2, . . . , p}.
Let

AN = {(wi)∞i=1 : wi ∈ A for i ≥ 1}.

Then AN is compact in the product discrete topology. We can define a metric for AN as

follows. For any u, v ∈ AN, define

d(u, v) := e−|u∧v|,

where |u ∧ v| is the maximal length n such that u1 = v1, u2 = v2, . . . , un = vn. We say

that (X,σ) is a subshift over A if X is a compact subset of AN and σ(X) ⊂ X, where σ

is the left shift map on AN

σ((wi)
∞
i=1) = (wi+1)∞i=1, ∀ (wi)

∞
i=1 ∈ AN.

In particular, (X,σ) is called a full shift over A if X = AN. For n ∈ N and w ∈ An, we

write

[w] =
{

(wi)
∞
i=1 ∈ AN : w1 · · ·wn = w

}
,

and call it an nth word in AN. The language of X, denoted by L = L(X), is the set of

finite words that appear in some x ∈ X. More precisely,

L(X) = {w ∈ A∗ : [w] ∩X 6= ∅},

where A∗ =
⋃
n≥0An. Given w ∈ L, let |w| denote the length of w. For any collection

D ⊂ L, let Dn denote {w ∈ D : |w| = n}. Thus, Ln is the set of all words of length n

that appear in sequences belonging to X. Given the words u, v, we use juxtaposition uv

to denote the word obtained by concatenation.

Definition 2.1. [3] Given a shift space X and its language L, consider a subset G ⊂ L.

Given τ ∈ N, we say that G has a (W )-specification with gap length τ if for every v, w ∈ G
there exists u ∈ L such that vuw ∈ G and |u| ≤ τ .

Definition 2.2. [3] Define an edit of a word w = w1 · · ·wn ∈ L to be a transformation

of w by one of the following actions, where uj ∈ L are arbitrary words and a, a′ ∈ A are

arbitrary symbols.

(1) Substitution: w = u1au2 7→ w′ = u1a′u2.

(2) Insertion: w = u1u2 7→ w′ = u1a′u2.
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(3) Deletion: w = u1au2 7→ w′ = u1u2.

Given v, w ∈ L, define the edit distance between v and w to be the minimum number

of edits required to transform the word v into the word w. We will denote this by d̂(v, w).

Now we introduce the key definition, which requires that any word in L can be transformed

into a word in G with a relatively small number of edits.

Definition 2.3. [3] We say that a non-decreasing function g : N→ N is a mistake function

if g(n)/n converges to 0. We say that L is edit approachable by G, where G ⊂ L, if there

is a mistake function g such that for every w ∈ L, there exists v ∈ G with d̂(v, w) ≤ g(|w|).

We can get the following proposition by applying Proposition 4.2 and Lemma 4.3 in [3].

Proposition 2.4. If L is edit approachable by G and G has a (W )-specification, then

there is an F ⊂ L that has the free concatenation property (i.e., for all u,w ∈ F , we have

uw ∈ F) and L is edit approachable by F .

Remark 2.5. We do not require Fn 6= ∅, for each n ∈ N.

To estimate the lower bound of the Hausdorff dimension of a set, we need the following

mass distribution principle.

Theorem 2.6. [9] Let E be a Borel measurable set in X and µ be a Borel measure with

µ(E) > 0. Assume that there exist two positive constants c, η such that, for any set U

with diameter diamU < η, µ(U) ≤ cdiam(U)s, then

dimH E ≥ s.

2.2. Topological pressure

Given a collection D ⊂ L, the entropy of D is

h(D) := lim sup
n→∞

1

n
log ]Dn,

where Dn = {w ∈ D : |w| = n}. We write htop(X) := h(L). Let C(X) denote all the

continuous functions from X to R. For a fixed potential function ϕ ∈ C(X), the pressure

of D ⊂ L is

P (D, ϕ) := lim sup
n→∞

1

n
log Λn(D, ϕ),

where Λn(D, ϕ) =
∑

w∈Dn
esupx∈[w] Snϕ(x) and Snϕ(x) =

∑n−1
k=0 ϕ(σkx). We write P (ϕ) :=

P (L, ϕ).

Proposition 2.7. [3] If L is edit approachable by G, then P (G, ϕ) = P (ϕ) for every

ϕ ∈ C(X).
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In the following, we set N (F) := {n ∈ N : Fn 6= ∅}.

Definition 2.8. Let g = −(f+1) ∈ C(X) with f > 0 and suppose L is edit approachable

by F .

(1) For any n ≥ 1 and n ∈ N (F), define sn(F) to be the unique solution of the equation∑
w∈Fn

(
esupx∈[w] Sng(x)

)s
= 1.

(2) For any n ≥ 1 and n ∈ N (F), define ŝn(F) to be the unique solution of the equation∑
w∈Fn

(
einfx∈[w] Sng(x)

)s
= 1.

Remark 2.9. Since f + 1 > 1 is a continuous function on X, the above definitions are well

defined.

Proposition 2.10. Assume s(F) to be the solution of the pressure equation

P (F ,−s(f + 1)) = 0.

For the increasing sequence {nj}j≥1 = N (F), we have

lim
j→∞

snj (F) = s(F) and lim
j→∞

ŝnj (F) = s(F).

Proof. By virtue of the definition of topological pressure, it is easy to see that the solution

of P (F ,−s(f + 1)) = 0 is unique and the pressure function f 7→ P (F , f) is continuous.

We claim that sn(F) is bounded for each n ∈ N (F). Since∑
Fn

e−nsn(F)‖f+1‖max ≤ 1 ≤
∑
Fn

e−nsn(F)‖f+1‖min ,

we have

0 <
1

‖f + 1‖max

log #Fn
n

≤ sn(F) ≤ 1

‖f + 1‖min

log #Fn
n

,

where #E denotes the cardinality of the set E.

Using the fact that lim supn→∞(log #Fn)/n ≤ limn→∞(log #Ln)/n = htop(X), we

see that sn(F) is bounded. Moreover, from the continuity of the pressure function f 7→
P (F , f) and L is edit approachable by F , one can readily verify that lim infj→∞ snj (F)

and lim supj→∞ snj (F) are the solutions of P (F ,−s(f + 1)) = 0. Hence,

lim
j→∞

snj (F) = s(F).
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On the other hand, it is obvious that we can give another equivalent definition of topo-

logical pressure for any D ⊂ L as follows. For a fixed potential function ϕ ∈ C(X) and

D ⊂ L, define

P̂ (D, ϕ) := lim sup
n→∞

1

n
log Λ̂n(D, ϕ),

where Λ̂n(D, ϕ) =
∑

w∈Dn
einfx∈[w] Snϕ(x). Note that∣∣∣∣∣ sup
x∈[w]

Sng(x)− inf
x∈[w]

Sng(x)

∣∣∣∣∣ = o(n),

by the continuity of g which leads to that P̂ (F ,−s(f+1)) = P (F ,−s(f+1)). Similar to the

above proof, we can see that limj→∞ ŝnj (F) is the solution of P̂ (F ,−s(f + 1)) = 0, which

is the same as the solution of P (F ,−s(f + 1)) = 0. Hence, limj→∞ ŝnj (F) = s(F).

From Proposition 2.7, we have the following corollary.

Corollary 2.11. Suppose L is edit approachable by F . Assume s(X) and s(F) to be,

respectively, the solution of the pressure equations P (−s(f+1)) = 0, P (F ,−s(f+1)) = 0.

Then

s(X) = s(F).

3. Proof of Theorem 1.4

First, we consider (C1). By lim infn→∞ ψ(n) > 0. Namely, there are ε0 > 0 and N > 0

such that for any n ≥ N , ψ(n) ≥ ε0. Clearly, we have b = lim infn→∞(− logψ(n))/n = 0.

It suffices to show that dimH R(ψ) ≥ h, module the upper bound given in (C2). By

the upper semi-continuity of the entropy map µ 7→ hµ(σ) and the variational principle

for (X,σ), we can choose an ergodic measure µ such that hµ(σ) = h. By the Poincaré

recurrence theorem, we have µ(R(ψ)) = 1. Hence,

dimH R(ψ) ≥ dimH µ.

It follows from the Shannon-McMillan-Breiman Theorem that for µ a.e. x ∈ X,

hµ(σ) = lim
n→∞

− logµ([x1x2 · · ·xn])

n
= dimH µ.

So dimH R(ψ) ≥ h.

Secondly, the proof of (C2) is divided into two parts.
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3.1. Upper bound

The upper bound can be obtained by considering the natural covering system. It is obvious

that

R(ψ) =
∞⋂
N=1

∞⋃
n=N

⋃
(w1,w2,...,wn)∈Ln

J(w1, w2, . . . , wn),

where

J(w1, w2, . . . , wn) := {x ∈ X : x ∈ [w1w2 · · ·wn], d(σnx, x) < ψ(n)}.

Obviously, we can estimate the diameter of J(w1, w2, . . . , wn) by

diam(J(w1, w2, . . . , wn)) ≤ e−nψ(n).

For any s > h/(1+b), and without loss of generality we can assume that s = h(1+δ)/(1+b)

for some δ > 0. For any ε > 0 satisfying (h(1 + δ)/(1 + b) + 1)ε < hδ/2, we have

#Ln(X) ≤ en(h+ε) and ψ(n) ≤ e−n(b−ε)

for n large enough by the definition of the topological entropy and the definition of b.

Hence,

Hs(R(ψ)) ≤ lim inf
N→∞

∞∑
n=N

∑
(w1w2···wn)∈Ln

diam(J(w1, w2, . . . , wn))s

≤ lim inf
N→∞

∞∑
n=N

en(h+ε)(e−nψ(n))s

≤ lim inf
N→∞

∞∑
n=N

e−nhδ/2.

Furthermore,

Hs(R(ψ)) <∞.

This implies

dimH(R(ψ)) ≤ h

1 + b
.

We remark that this argument on upper bound is valid for any positive function ψ instead

of merely monotonic ones.

3.2. Lower bound

Construction of the Moran set. Fix η > 0. By Propositions 2.4 and 2.7, we can choose

M large enough so that

log #FM ≥ (1− η)Mh.
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Choose a largely sparse subsequence {nk}k≥1 of N such that

(3.1) lim inf
n→∞

− logψ(n)

n
= lim

k→∞

− logψ(nk)

nk
,

nk
k
≥ max


k−1∑
j=1

nj ,− logψ(nk−1)


for any k ≥ 2.

For k = 1, define l1, i1 such that n1 = l1M + i1, 0 ≤ i1 < M . We define n̂1 = l1M ,

and an integer t̂1 satisfying

e−t̂1 < ψ(n̂1) ≤ e−t̂1+1.

Then we choose t1 by modifying t̂1 such that t̂1 + M ≥ t1 ≥ t̂1 and M | t1. As a

consequence, we obtain

e−t1 < ψ(n̂1) ≤ e−t1+M+1.

Since ψ is nonincreasing, we have

e−t1+M+1 ≥ ψ(n̂1) ≥ ψ(n1).

Define the rational number r1 by

n̂1r1 = n̂1 + t1.

For k ≥ 2, define lk, ik such that nk − (n̂k−1 + tk−1) = lkM + ik, 0 ≤ ik < M and then we

define n̂k := n̂k−1 + tk−1 + lkM . Define the integer t̂k by

e−t̂k < ψ(n̂k) ≤ e−t̂k+1,

and choose tk satisfying M | tk and t̂k +M ≥ tk ≥ t̂k. As a consequence, we have

e−tk < ψ(n̂k) ≤ e−tk+M+1.

Since ψ(n) is nonincreasing, we have

(3.2) e−tk+M+1 ≥ ψ(n̂k) ≥ ψ(nk).

Define the rational number rk by

n̂krk = n̂k + tk.

From these definitions, we can see that

(3.3) nk −M ≤ n̂k ≤ nk.

We are now in a position to construct a Moran subset of R(ψ) as follows. We realize the

events d(σnx, x) < ψ(n) infinitely many times along the subsequence {n̂k}k≥1.
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Level 1 of the Moran set. Employing the definitions of t1 and r1,

F(1) =
⋃

[(w1 · · ·wM︸ ︷︷ ︸
M

· · ·w(l1−1)M+1 · · ·wl1M︸ ︷︷ ︸
M

)r1 ],

where the union is taken over all blocks (wlM+1, . . . , w(l+1)M ) ∈ FM for each 0 ≤ l ≤
l1 − 1. Since F has the free concatenation property, the concatenation is admissible. By

construction, we have that for any word I ∈ F(1) and x ∈ I, the prefix of σn̂1x and x

coincide for the first t1 digits. So, d(σn̂1x, x) < e−t1 ≤ ψ(n̂1). This realizes that event

d(σnx, x) < ψ(n) for one time.

Level 2 of the Moran set. For each word J1 ∈ F(1), let

F(2) =
⋃

J1∈F(1)

F(2, J1),

where for a fixed J1 ∈ F(1), writing J1 = [(w1 · · ·wn̂1+t1)] and

F(2, J1)

=
⋃

[(w1 · · ·wn̂1+t1 wn̂1+t1+1 · · ·wn̂1+t1+M︸ ︷︷ ︸
M

· · ·wn̂1+t1+(l2−1)M+1 · · ·wn̂1+t1+l2M︸ ︷︷ ︸
M

)r2 ],

where the union is taken over all blocks (wn̂1+t1+lM+1, . . . , wn̂1+t1+(l+1)M ) ∈ FM for each

0 ≤ l ≤ l2−1. Since F has the free concatenation property, the concatenation is admissible.

By construction, we obtain that for any word I ∈ F(2) and x ∈ I, the prefix of σn̂2x and

x coincide for the first t2 digits.

From level k to level k + 1. Provided that F(k) has been defined, we define F(k + 1) as

follows:

F(k + 1) =
⋃

Jk∈F(k)

F(k + 1, Jk),

where for any Jk = [(w1 · · ·wn̂k+tk)] ∈ F(k),

F(k + 1, Jk)

=
⋃

[(w1 · · ·wn̂k+tk wn̂k+tk+1 · · ·wn̂k+tk+M︸ ︷︷ ︸
M

· · ·wn̂k+tk+(lk+1−1)M+1 · · ·wn̂k+tk+lk+1M︸ ︷︷ ︸
M

)rk+1 ],

where the union is taken over all blocks (wn̂k+tk+lM+1, . . . , wn̂k+tk+(l+1)M ) ∈ FM for each

0 ≤ l ≤ lk+1 − 1. Since F has the free concatenation property, the concatenation is

admissible. By construction, we obtain that for any word I ∈ F(k + 1) and x ∈ I, the

prefix of σn̂k+1x and x coincide for the first tk+1 digits.
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The Moran set. We have constructed a nested sequence {F(k)}k≥1 composed of words.

The Moran set is obtained by

F∞ =
∞⋂
k=1

F(k).

From the above constructions, we get

F∞ ⊂ R(ψ).

Supporting measure. Now we construct a probability measure µ on F∞. For any Jk ∈
F(k), let Jk−1 ∈ F(k − 1) be its mother word, i.e., Jk ∈ F(k, Jk−1). The measure of Jk is

defined as

µ(Jk) :=
1

#F(k, Jk−1)
µ(Jk−1) =

k∏
j=1

1

(#FM )lj
.

This means that the measure of any mother word is evenly distributed among her offspring.

For any n ≥ 1, and n long word In = [w1 · · ·wn] with In ∩F∞ 6= ∅, let k ≥ 2 be an integer

satisfying n̂k−1 + tk−1 < n ≤ n̂k + tk. We just set

µ([w1 · · ·wn]) =
∑
Jk⊂In

µ(Jk),

where the summation is taken over all the words Jk ∈ F(k) contained in In. In fact, we

have the following expression for the measure of a word.

(1) If n̂k−1 ≤ n ≤ n̂k−1 + tk−1,

µ(In) = µ(In̂k−1+tk−1
).

(2) If n̂k−1 + tk−1 < n < n̂k, assume n = n̂k−1 + tk−1 + lM + i. For i = 0 and

0 ≤ l ≤ lk − 1,

µ(In) = µ(In̂k−1+tk−1
)

1

(#FM )l
.

For i 6= 0 and 0 ≤ l ≤ lk − 1,

µ(In) ≤ µ(In̂k−1+tk−1+lM ).

The Hölder exponent of the measure. By (3.2) and the fact that b = limk→∞
− logψ(nk)

nk
,

we obtain

lim
k→∞

tk
nk
≤ b.

Accordingly, from (3.3), we have

lim
k→∞

tk
n̂k
≤ b.
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Furthermore, by virtue of (3.1), (3.2) and (3.3), there exists k0 such that k ≥ k0 satisfying

n̂k − n̂k−1 − tk−1

n̂k + tk
≥ 1− η

1 + b
.

Since

− logµ(Jk)

n̂k + tk
=

∑k
j=1 lj log #FM
n̂k + tk

≥ n̂k − n̂k−1 − tk−1

n̂k + tk
× log #FM

M

≥ h(1− η)2

1 + b
:= s,

we have

µ(Jk) ≤ e−(n̂k+tk)s.

(1) If n̂k−1 ≤ n ≤ n̂k−1 + tk−1,

µ(In) = µ(In̂k−1+tk−1
).

Thus
− logµ(In)

n
≥
− logµ(In̂k−1+tk−1

)

n̂k−1 + tk−1
≥ s.

This implies that

µ(In) ≤ diam(In)s

for n large enough.

(2) If n̂k−1 + tk−1 < n < n̂k, set n = n̂k−1 + tk−1 + lM + i. For i = 0 and 0 ≤ l ≤ lk−1,

µ(In) = µ(In̂k−1+tk−1
)

1

(#FM )l
≤ µ(In̂k−1+tk−1

)e−l(1−η)Mh.

Then

− logµ(In)

n
≥
− logµ(In̂k−1+tk−1

) + l(1− η)Mh

n̂k−1 + tk−1 + lM

= min

{− logµ(In̂k−1+tk−1
)

n̂k−1 + tk−1
, (1− η)h

}
≥ s.

This implies that

µ(In) ≤ diam(In)s

for n large enough.

For i 6= 0 and 0 ≤ l ≤ lk − 1,

µ(In) ≤ µ(In̂k−1+tk−1+lM ).
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Since

diam(In) ≥ e−M diam(In̂k−1+tk−1+lM ),

we have

µ(In) ≤ eMs diam(In)s

for n large enough.

Finally, by Theorem 2.6 and letting η → 0, we complete the proof of (C2).

4. Proof of Theorem 1.5

Naturally, the proof is divided into two parts.

4.1. Upper bound

The proof is similar to the proof of the upper bound of Theorem 1.4. Clearly,

R(f) =

∞⋂
N=1

∞⋃
n=N

⋃
(w1w2···wn)∈Ln

J(w1, w2, . . . , wn),

where

J(w1, w2, . . . , wn) :=
{
x ∈ X : x ∈ [w1w2 · · ·wn], d(σnx, x) < e−Snf(x)

}
.

For each (w1w2 · · ·wn), we can choose y such that

Snf(y) = inf
x∈[w1w2···wn]

Snf(x).

By the continuity of f , for each δ > 0 and n large enough, we have

J(w1, w2, . . . , wn) ⊂
{
x ∈ X : x ∈ [w1w2 · · ·wn], d(σnx, x) < e−Snf(y)enδ

}
,

where Snf(y) = infx∈[x1···xn] Snf(x). Thus,

(4.1) diam(J(w1, w2, . . . , wn)) ≤ e−Snf(y)+nδ−n.

We define s(δ) to be the solution of P ((s(−1 − f + δ)) = 0. By the continuity of the

pressure function f 7→ P (f) and the boundedness of s(δ), we obtain limδ→0+ s(δ) = s(X).

At the same time, we put P := P ((s(δ) + δ)(−1− f + δ)) < 0. There exists ε(δ) > 0 such

that ∑
w∈Ln(X)

(
e− supx∈[w] Sn(f(x)+1−δ)

)s(δ)+δ
≤ e−nε(δ),
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for n large enough. Moreover, from (4.1), we have

Hs(δ)+δ(R(f)) ≤ lim inf
N→∞

∞∑
n=N

∑
(w1w2···wn)∈Ln

diam(J(w1, w2, . . . , wn))s(δ)+δ

≤ lim inf
N→∞

∞∑
n=N

e−nε(δ) <∞.

This implies that

dimR(f) ≤ s(δ) + δ.

Letting δ → 0, we have finished the proof.

4.2. Lower bound

By the continuity of f , we can choose a y ∈ [x1 · · ·xn] such that Snf(y) = supx∈[x1···xn]

Snf(x), i.e., y depends on n and [x1 · · ·xn]. It suffices to show that the result holds for

the set {
x ∈ X : d(x, σnx) < e−Snf(y) for infinitely many n ∈ N

}
.

Fix η > 0. By Proposition 2.10, we can choose M0 ∈ N and M ∈ N (F), M > M0 such

that

sup{|f(x)− f(y)| : x, y ∈ X, d(x, y) ≤ e−M0} ≤ η

4
,

M0‖f‖
M

<
η

4
and |ŝM (F)− s(X)| < η.

(4.2)

Construction of the Moran set. In the following, for any [w1 · · ·wn], we set y ∈ [w1 · · ·wn]

satisfying

Snf(y) := sup
x∈[w1···wn]

Snf(x).

For k = 1, choose m1 = 1 and define n1 := M . For any (w1 · · ·wn1) ∈ F , define

t̂1 = t̂(w1 · · ·wn1) to be the integer such that

e−t̂1 < e−Sn1f(y) ≤ e−t̂1+1.

Moreover, we choose t1 by modifying t̂1 in such a way that t̂1 +M ≥ t1 ≥ t̂1 and M | t1.

So

e−t1 < e−Sn1f(y) ≤ e−t1+M+1.

Define r1 by

n1r1 = n1 + t1.
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For k ≥ 2, we choose mk large enough such that

(4.3) (nk−1 + tk−1)‖f‖ ≤ mkMη

2
and

mk

k
≥ m1 + · · ·+mk−2 +mk−1,

and then define nk = mkM + nk−1 + tk−1. Define t̂k to be the integer such that

e−t̂k < e−Snk
f(y) ≤ e−t̂k+1,

and then we choose tk satisfying M | tk and t̂k +M ≥ tk ≥ t̂k. As a consequence, we have

(4.4) e−tk < e−Snk
f(y) ≤ e−tk+M+1.

Define rk by

nkrk = nk + tk.

We are now in a position to construct the Moran subset of R(f) as follows.

Level 1 of the Moran set. Employing the definitions of t1 and r1, let

F(1) =
⋃

[(w1
1)r1 ],

where the union is taken over all blocks (w1
1) ∈ FM with r1M = m1M + t1. Since F

has the free concatenation property, the concatenation is admissible. By construction, we

have that for any word I ∈ F(1) and x ∈ I, the prefix of σn1x and x coincide for the first

t1 digits.

Level 2 of the Moran set. The second level sets are composed of the collection of the

words of each word J1 ∈ F(1):

F(2) =
⋃

J1∈F(1)

F(2, J1),

where for a fixed J1 ∈ F(1), we write J1 = [(w1 · · ·wm1M+t1)], and put

F(2, J1) =
⋃

[(w1 · · ·wm1M+t1w
2
1 · · ·w2

m2
)r2 ]

where the union is taken over all blocks w2
j ∈ FM for all 1 ≤ j ≤ m2, with r2n2 =

n1 + t1 + m2M + t2. Since F has the free concatenation property, the concatenation is

admissible.



240 Cao Zhao and Ercai Chen

From level k to level k + 1. Provided that F(k) has been defined, we define F(k + 1)

as follows:

F(k + 1) =
⋃

Jk∈F(k)

F(k + 1, Jk),

where for any Jk = [(w1 · · ·wtk+nk
)] ∈ F(k),

F(k + 1, Jk) =
⋃

[(w1 · · ·wtk+nk
wk+1

1 · · ·wk+1
mk+1

)rk+1 ],

where the union is taken over all blocks wk+1
j ∈ FM for each 1 ≤ j ≤ mk+1, with

r2nk+1 = nk + tk + mk+1M + tk+1. Since F has the free concatenation property, the

concatenation is admissible.

The Moran set. We have obtained a nested sequence {F(k)}k≥1 composed of words.

The Moran set is obtained as

F∞ =

∞⋂
k=1

F(k).

From the above constructions, we get

F∞ ⊂
{
x ∈ X : d(x, σnx) < e−Snf(y) for infinitely many n ∈ N

}
⊂ R(f).

4.2.1. Supporting measure

Now we construct a probability measure µ on F∞. For any Jk ∈ F(k), let Jk−1 ∈ F(k− 1)

be its mother word, i.e., Jk ∈ F(k, Jk−1). The measure of Jk is defined by

µ(Jk) :=

mk∏
i=1

e−sMM−sMSMf(yki )µ(Jk−1)

=

k∏
j=1

mj∏
i=1

e−sMM−sMSMf(yji )

where sM := ŝM (F) and SMf(yji ) = sup
x∈[wj

i ]
SMf(x) with yji ∈ [wji ], 1 ≤ i ≤ mk. This

means that the measure of any mother word is evenly distributed among her offspring.

For any n ≥ 1, and n long word In = [w1 · · ·wn] with In ∩ F∞ 6= ∅, nk and tk depend on

the digits. More precisely, given a block [w1 · · ·wn] of length n, it determines t1 if n ≥ n1.

If tk−1 can be determined, we then compare n with nk = nk−1 + tk−1 + mk. If n ≥ nk,

it determines tk; otherwise, we have nk−1 ≤ n < nk + tk−1 + mk = nk, and the block

[w1 · · ·wn] determines n1 up to nk−1.

Now we consider any word with length nk−1 ≤ n < nk. We just set

µ([w1 · · ·wn]) =
∑
Jk⊂In

µ(Jk),
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where the summation is taken over all words Jk ⊂ F(k) contained in In. In fact, we have

the following expression for the measure of a word.

(1) When nk−1 ≤ n ≤ nk−1 + tk−1,

µ(In) = µ(Ink−1+tk−1
) =

k−1∏
j=1

mj∏
i=1

e−sMM−sMSMf(yji ).

(2) When nk−1 + tk−1 < n < nk,

µ(In) =
∑
Jk⊂In

µ(Jk) =
∑

(wn+1···wnk
)∈Ξ

µ(Ink+tk(w1 · · ·wnwn+1 · · ·wnk
)),

where Ξ denotes the sets of (wn+1 · · ·wnk
) such that (wnk−mk+1 · · ·wnwn+1 · · ·wnk

) ∈
(FM )mk .

Hölder exponent of the measure. First, we consider the Jk. By (4.2), for k large enough,

µ(Jk) ≤
k∏
j=1

(mj∏
i=1

e−M−SMf(yji )

)s(X)−η

.

From (4.2) and (4.3), for any Jk = [w1 · · ·wnk+tk ],

k∑
j=1

∣∣∣∣∣
mj∑
i=1

SMf(yji )− Snj
f(y)

∣∣∣∣∣
≤

k∑
j=1

(∣∣∣∣∣
mj∑
i=1

SMf(yji )− SMmjf(σnj−1+tj−1yj0)

∣∣∣∣∣+
∣∣∣SMmjf(σnj−1+tj−1yj0)− Snjf(y)

∣∣∣)

≤
k∑

j=1

(
mjMη

4
+
mjMη

4
+
mjMη

2

)
≤ 2mkMη,

(4.5)

where y ∈ Jk and yj0 ∈ [w1 · · ·wnj ] with 1 ≤ j ≤ k. Furthermore,

µ(Jk) ≤
k∏
j=1

(mj∏
i=1

e−M−SMf(yji )

)s(X)−η

≤
k∏
j=1

(
e−Mmj−Snj f(y)

)s(X)−η
e2mkMη(s(X)−η)

≤
k∏
j=1

(
e−Mmj−tj+M+1

)s(X)−η
e2mkMη(s(X)−η)

≤ e−(nk+tk)(s(X)−η)+2mkMη(s(X)−η)+2M(s(X)−η)

≤ e−(nk+tk)(s(X)−η−2η(s(X)−η))+2M(s(X)−η)

= C(η)e−(nk+tk)(s(X)−∆(η)),



242 Cao Zhao and Ercai Chen

where C(η) := e2M(s(X)−η) is bounded, and ∆(η) := η+ 2η(s(X)− η) satisfying ∆(η)→ 0

as η → 0. The second inequality follows from (4.5) and the third inequality follows from

(4.4). Now, we can make the following estimates.

(1) If nk−1 ≤ n ≤ nk−1 + tk−1, then

µ(In) = µ(Ink−1+tk−1
) ≤ C(η) diam(Jk−1)(s(X)−∆(η))

= C(η)e−n(s(X)−∆(η))e−(nk−1+tk−1−n)(s(X)−∆(η))

≤ C(η) diam(In)(s(X)−∆(η)).

(2) If nk−1 + tk−1 < n < nk, let n = nk−1 + tk−1 + l. Then

(4.6) µ(In) = µ(Jk−1)
∑

wn+1···wnk
∈Ξ

mk∏
i=1

e−sMM−sMSMf(yki ),

where Ξ denotes the set of (wn+1 · · ·wnk
) such that (wnk−Mmk+1 · · ·wnwn+1 · · ·wnk

) ∈
(FM )mk . Next we assume l = M(q − 1) + p, with 1 ≤ q ≤ mk, 1 < p < M . We estimate

the following summation,∑
wn+1···wnk

∈Ξ

mk∏
i=1

e−sMM−sMSMf(yki )

≤
q−1∏
i=1

e−sMM−sMSMf(ykq )
mk∏
i=q

∑
y∈[w],w∈FM

e−sMM−sMSMf(y).

By the definition of sM , we have∑
y∈[w],w∈FM

e−sMM−sMSMf(y) = 1.

Hence, we have

∑
wn+1···wnk

∈Ξ

mk∏
i=1

e−sMM−sMSMf(yki ) ≤
q−1∏
i=1

e−sMM−sMSMf(ykq )

≤
q−1∏
i=1

e−sMM

≤ e−M(q−1)(s(X)−η).

(4.7)

From (4.6) and (4.7), we have

µ(In) ≤ C(η)e−(nk−1+tk−1)(s(X)−∆(η))−M(q−1)(s(X)−η)

= C(η)e−(nk−1+tk−1+M(q−1))(s(X)−η)

≤ C(η)eM(s(X)−∆(η)) diam(In)s(X)−∆(η).

By Theorem 2.6 and letting η → 0, we finish the proof of Theorem 1.5.
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Remark 4.1. At the end, we pose a question about Theorem 1.4. Does this result remain

valid for ψ(n) without monotonicity?

5. Applications

S-gap shifts. An S-gap shift ΣS is a subshift of {0, 1}Z defined by the rule that for a

fixed S ⊂ {0, 1, 2, . . .}, the number of 0s between consecutive 1s is an integer in S. That

is, the language is

{0n10n110n210n31 · · · 10nk10m : 1 ≤ i ≤ k and ni ∈ S, n,m ∈ N},

together with {0n : n ∈ N}, where we assume that S is infinite.

β-shifts. Fix β > 1, write b = dβe and let wβ ∈ {0, 1, . . . , b − 1}N be the greedy β-

expansion of 1. Then wβ satisfies
∑∞

j=1w
β
j β
−j = 1, and has the property that σj(wβ) ≺

wβ for all j ≥ 1, where ≺ denotes the lexicographic ordering. The β-shift is defined by

Σβ =
{
x ∈ {0, 1, . . . , b− 1}N : σj(x) ≺ wβ for all j ≥ 1

}
.

In [3], the authors showed that S-gap shifts, β shifts, and their factors have a non-uniform

structure, i.e., for X := ΣS or Σβ, there exists G ⊂ L(X) that has a (W )-specification

and L(X) is edit approachable by G. Now suppose given a positive function ψ(n) : N→ R
satisfying (C1) lim infn→∞ ψ(n) > 0, or (C2) ψ is nonincreasing. Set

R(ψ) := {x ∈ X : d(σnx, x) < ψ(n) for infinitely many n ∈ N}.

Then we have

dimH R(ψ) =
h

1 + b
, with b = lim inf

n→∞

− logψ(n)

n
.

Let f be a positive continuous function defined on X. Set

R(f) =
{
x ∈ X : d(σnx, x) ≤ e−Snf(x) for infinitely many n ∈ N

}
.

The Hasudorff dimension of the set R(f) is the unique solution s of the following pressure

equation

P (−s(f + 1)) = 0.
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