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One Existence Theorem for non-CSC Extremal Kähler Metrics with Conical

Singularities on S2

Zhiqiang Wei and Yingyi Wu*

Abstract. We often call an extremal Kähler metric with finite singularities on a

compact Riemann surface an HCMU (the Hessian of the Curvature of the Metric

is Umbilical) metric. In this paper we consider the following question: if we give

N points p1, . . . , pN on S2 and N positive real numbers 2πα1, . . . , 2παN with αn 6=
1, n = 1, . . . , N , what condition can guarantee the existence of a non-CSC HCMU

metric which has conical singularities p1, . . . , pN with singular angles 2πα1, . . . , 2παN

respectively. We prove that if there are at least N − 2 integers in α1, . . . , αN then

there exists one non-CSC HCMU metric on S2 satisfying the condition stated above

no matter where the given points are.

1. Introduction

The extremal Kähler metric was defined in [1] by Calabi. The aim is to find the “best”

metric in a fixed Kähler class on a compact Kähler manifold M. In a fixed Kähler class,

an extremal Kähler metric is the critical point of the following Calabi energy functional

C(g) =

∫
M
R2 dg,

where R is the scalar curvature of the metric g in the Kähler class. The Euler-Lagrange

equations of C(g) are R,αβ = 0 for all α, β the indexes, where R,αβ is the second-order

(0, 2) covariant derivative of R. When M is a compact Riemann surface, Calabi in [1]

proves that an extremal Kähler metric is a CSC (constant scalar curvature) metric.

Therefore a natural question is if on a compact Riemann surface an extremal Kähler

metric has singularities whether or not it is still a CSC metric. X. Chen in [2] first gives

an example of a non-CSC extremal Kähler metric with singularities. We often call an

extremal Kähler metric with finite singularities on a compact Riemann surface an HCMU

(the Hessian of the Curvature of the Metric is Umbilical) metric. Besides X. Chen’s work

in [2], some work has been done to study non-CSC HCMU metrics such as [3–5] and so on.
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In [6], Q. Chen and the second author reduce the existence of a non-CSC HCMU metric

to the existence of a meromorphic 1-form on the underlying Riemann surface. However

the existence of the meromorphic 1-form is still complicated. On S2 the existence of the

meromorphic 1-form can be reduced to an algebraic problem. In this paper we study when

the algebraic problem has a solution. Our main theorem is

Theorem 1.1. Let p1, . . . , pN be N (N ≥ 3) points on S2 and 2πα1, . . . , 2παN be N

positive real numbers with αn 6= 1, n = 1, 2, . . . , N . If there are at least N − 2 inte-

gers in α1, . . . , αN , there exists a non-CSC HCMU metric which has conical singularities

p1, . . . , pN with singular angles 2πα1, . . . , 2παN respectively.

Remark 1.2. In general, the existence of a non-CSC HCMU metric is related to both the

position of the given points p1, . . . , pN and the given conical singular angles 2πα1, . . . , 2παN .

This theorem shows if the number of integers in α1, . . . , αN is large enough, there always

exists a non-CSC HCMU metric no matter where the given points are.

On the other hand for N = 4 an example in [5] shows if there is only one integer in

α1, . . . , α4 it is possible for some choice of 4 points given on S2 that there is no non-CSC

HCMU metric on S2 such that the metric has conical singularities at the given points with

the singular angles 2πα1, . . . , 2πα4. Therefore we conjecture that for each N ≥ 5, there

exists no HCMU metric for some examples of p1, . . . , pN with angles 2πα1, . . . , 2παN , if

one only assumes N − 3 integers in α1, . . . , αN .

2. Preliminaries

Definition 2.1. [9] Let M be a Riemann surface, p ∈ M. A conformal metric g on

M is said to have a conical singularity at p with the singular angle 2πα (α > 0) if in a

neighborhood of p

g = e2ϕ|dz|2,

where z is a local complex coordinate defined in the neighborhood of p with z(p) = 0 and

ϕ− (α− 1) ln |z|

is continuous at 0.

Definition 2.2. [3] Let M be a compact Riemann surface and p1, . . . , pN be N points

onM. DenoteM\{p1, . . . , pN} byM∗. Let g be a conformal metric onM∗. If g satisfies

(2.1) K,zz = 0,

where K is the Gauss curvature of g, we call g an HCMU metric on M.
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In this paper we always consider non-CSC HCMU metrics with conical singularities

which have finite area and finite Calabi energy, that is,∫
M∗

dg < +∞,
∫
M∗

K2 dg < +∞.

There are many results in studying this kind of metrics. First the equation (2.1) is

equivalent to

∇K ,
√
−1e−2ϕKz

∂

∂z
is a holomorphic vector field on M∗. In [3] X. Chen proves that the Gauss curvature K

can be continuously extended to M and there are finite smooth extremal points of K on

M∗. In [4] Q. Chen, X. Chen and the second author prove the following fact: each smooth

extremal point of K is either the maximum point of K or the minimum point of K, and

if we denote the maximum of K by K1 and the minimum of K by K2 then

K1 > 0, K1 > K2 > −(K1 +K2).

In [7] C. S. Lin and X. Zhu prove that ∇K is actually a meromorphic vector field on M.

In [6] Q. Chen and the second author define the dual 1-form of ∇K by ω(∇K) =
√
−1/4.

They call ω the character 1-form of the metric. DenoteM∗ \ { smooth extremal points of

K } by M′. Then on M′

dK

−1
3(K −K1)(K −K2)(K +K1 +K2)

= ω + ω,

g = −4

3
(K −K1)(K −K2)(K +K1 +K2)ωω.

(2.2)

By (2.2) some properties of ω are got in [6]:

• All of the zeros of ω are the conical singularities of g. For each zero of ω the

corresponding singular angle is of the form 2πα where α is an integer and the order

of ω at the zero is α − 1. K can be smoothly extended to the zeros of ω at which

dK = 0. At each zero of ω the value of K is between K1 and K2 so we call zeros of

ω saddle points of K.

• ω only has simple poles which consist of smooth extremal points of K and conical

singularities of g except the zeros of ω. Moreover these poles of ω are just all of the

maximum points and the minimum points of K. The residue of ω at each pole is a

real number. Denote − 3
(K1−K2)(K2+2K1)

by σ and −2K1+K2
2K2+K1

by λ. At a maximum

point of K the residue of ω is σα if at this point g has the conical singular angle

2πα or the residue of ω is σ if this maximum point of K is the smooth point of g.

At a minimum point of K the residue of ω is σλα if at this point g has the conical

singular angle 2πα or the residue of ω is σλ if this minimum point of K is the smooth

point of g.
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• ω + ω is exact on M\ {poles of ω}.

3. Proof of Theorem 1.1

3.1. Reduce the existence of non-CSC HCMU metrics to the existence of some kind of

meromorphic 1-forms

First by a theorem in [8] one can get the following theorem.

Theorem 3.1. [6] Let M be a Riemann surface, p1, . . . , pL be L (L ≥ 2) points on M
and d1, . . . , dL be L nonzero real numbers with d1 + · · · + dL = 0. Then there exists a

meromorphic 1-form ω on M such that

(1) ω only has L simple poles at p1, . . . , pL with Respl(ω) = dl, l = 1, 2, . . . , L,

(2) ω + ω is exact on M\ {p1, . . . , pL}.

Then in [6] Q. Chen and the second author prove the following theorem.

Theorem 3.2. [6] LetM be a compact Riemann surface and ω be a meromorphic 1-form

on M satisfying the conditions:

(1) ω only has simple poles,

(2) At each pole the residue of ω is a real number,

(3) ω + ω is exact on M\ {poles of ω}.

Then there exists a non-CSC HCMU metric such that ω is the character 1-form of the

metric.

Proof. First by Theorem 3.1 a meromorphic 1-form on M satisfying the conditions (1),

(2), (3) in Theorem 3.2 always exists. Suppose p1, . . . , pL are the poles of ω in which

p1, . . . , pJ are the poles where the residues of ω are negative and pJ+1, . . . , pL are the

poles where the residues of ω are positive. Let K1, K2 be two real numbers satisfying:

K1 > 0, K1 > K2 > −(K1 +K2).

Then denote − 3
(K1−K2)(K2+2K1)

by σ and −2K1+K2
2K2+K1

by λ. Consider the following equation:

(3.1)
dK

−1
3(K −K1)(K −K2)(K +K1 +K2)

= ω + ω and K(p0) = K0,

where K2 < K0 < K1 and p0 ∈ M \ {p1, . . . , pL}. One can prove there exists a unique

solution K of (3.1) onM which satisfies K is smooth onM\{p1, . . . , pL} and is continuous

on M. Then construct a metric

g = −4

3
(K −K1)(K −K2)(K +K1 +K2)ωω.
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One can prove g is a non-CSC HCMU metric, K is the Gauss curvature of g with K1, K2

being the maximum and the minimum of K and ω is the character 1-form of g. Therefore

g has the conical singularities at the zeros and the poles of ω. At the zeros of ω the singular

angles of g are of the form 2π(ordp(ω) + 1), and at the poles of ω the singular angles of g

are of the form 2π
Resp(ω)

σ or 2π
Resp(ω)
λσ depending on the sign of Resp(ω).

Resp(ω)
σ = 1 or

Resp(ω)
λσ = 1 means that p is a smooth point of g.

By Theorem 3.2, to get a prescribed non-CSC HCMU metric we only need to get a

suitable meromorphic 1-form which satisfies the conditions in Theorem 3.2. In general,

the existence of this kind of meromorphic 1-form is complicated since in the poles of the

meromorphic 1-form there are some unknown smooth points of the metric and one also

need to determine which points in the given points are the zeros of the meromorphic

1-form.

3.2. Proof of Theorem 1.1

First it can be proved that a meromorphic 1-form on S2 which satisfies the conditions (1)

and (2) in Theorem 3.2 satisfies the condition (3) in Theorem 3.2 automatically (cf. [6]).

Regard S2 as C ∪ {∞}. Without loss of generality, we assume p1 = b1, . . . , pN−2 =

bN−2, pN−1 = 0, pN =∞, where b1, . . . , bN−2 ∈ C, α1, . . . , αN−2 are integers and
∑N−2

i=1 (αi

−1) + αN−1 > αN . Let S =
∑N−2

i=1 (αi − 1). Then we have the following propositions.

Proposition 3.3. There are S numbers c1, . . . , cS ∈ C, not necessarily different from each

other, such that the following equation holds:

(3.2)
αN−1
z

+
S∑
j=1

1

z − cj
=

(αN−1 + S)
∏N−2
i=1 (z − bi)αi−1

z
∏S
j=1(z − cj)

on C \ {0, b1, . . . , bN−2, c1, . . . , cS}.

Proof. Suppose

N−2∏
i=1

(z − bi)αi−1 = zS + λ1z
S−1 + · · ·+ λS−1z + λS .

Let

σj =
(αN−1 + S)λj
αN−1 + S − j

, j = 1, 2, . . . , S

and

P (z) = zS + σ1z
S−1 + · · ·+ σS .
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Then one can prove that

(3.3) αN−1P (z) + zP ′(z) = (αN−1 + S)
N−2∏
i=1

(z − bi)αi−1.

Let c1, . . . , cS be the roots of P (z) = 0, that is, P (z) =
∏S
j=1(z − cj). Divide both sides

of the equation (3.3) by zP (z). Then we get the equation (3.2).

Proposition 3.4. Suppose c1, . . . , cS ∈ C satisfy the equation (3.2). Then there are two

cases:

(1) If ∀ bi, i = 1, 2, . . . , N−2 and ∀ cj, j = 1, 2, . . . , S, bi 6= cj then cj 6= 0, j = 1, 2, . . . , S

and c1, . . . , cS are different from each other.

(2) If ∃ bi, i = 1, 2, . . . , N − 2 and ∃ cj, j = 1, 2, . . . , S such that bi = cj then there are

just αi numbers in c1, . . . , cS taking the value bi.

Proof. (1) If ∃ j, j = 1, 2, . . . , S, cj = 0 or ∃ j, j′ ∈ {1, 2, . . . , S}, j 6= j′, cj = cj′ then we

multiply both sides of the equation (3.2) by z
∏S
j=1(z − cj) and take limits as z → cj on

both sides of the equation multiplied by z
∏S
j=1(z − cj). The limit of the left side is zero

but the limit of the right side is nonzero, a contradiction.

(2) Fix bi. If the number of the numbers in c1, . . . , cS taking bi is less than αi then

we take limits as z → bi on both sides of the equation (3.2) and get that the limit of the

left side is ∞ but the limit of the right side is finite, a contradiction. If the number of the

numbers in c1, . . . , cS taking bi is more than αi then we first reduce the right side of the

equation (3.2) and then multiply both sides of the reduced equation by the denominator

of the reduced right side. Take limits as z → bi on both sides of the equation and get that

the limit of the left side is zero but the limit of the right side is nonzero. This leads to a

contradiction.

We now construct ω using Propositions 3.3 and 3.4.

In case 1, let λ = −(αN−1 + S)/αN and

ω = −
(αN−1 + S)

∏N−2
i=1 (z − bi)αi−1

z
∏S
j=1(z − cj)

dz.

By (3.2) ω is a meromorphic 1-form on S2 satisfying the conditions (1) and (2) in Theo-

rem 3.2 (∞ is also a simple pole of ω). Then consider the equations

(3.4) (K1 −K2)(2K1 +K2) = 3 and
2K1 +K2

2K2 +K1
= −λ.
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We get one solution of (3.4)

K1 = −
2λ+ 1

√
3
√
λ(λ+ 1)

and K2 =
2 + λ

√
3
√
λ(λ+ 1)

.

Note λ < −1 so we have K1 > 0 and K1 > K2 > −(K1 + K2). By (3.4), σ ,
−3

(K1−K2)(2K1+K2)
= −1. Then by the proof of Theorem 3.2 there exists a non-CSC HCMU

metric g with conical singularities b1, . . . , bN−2, 0,∞. Moreover b1, . . . , bN−2 are the saddle

points of the Gauss curvature K with the singular angles 2πα1, . . . , 2παN−2 respectively,

0 is the maximum point of K with the singular angle 2παN−1 and ∞ is the minimum

point of K with the singular angle 2παN .

In case 2, without loss of generality, we assume b1, . . . , bT (T < N − 2) satisfy the hy-

pothesis in Proposition 3.4(2) and b1 = c1 = · · · = cα1 , b2 = cα1+1 = · · · = cα1+α2 , . . . , bT =

cα1+···+αT−1+1 = · · · = cα1+···+αT . Then the equation (3.2) can be reduced to be

(3.5)
αN−1
z

+

T∑
t=1

αt
z − bt

+

S∑
k=(

∑T
t=1 αt)+1

1

z − ck
=

(αN−1 + S)
∏N−2
h=T+1(z − bh)αh−1

z
∏T
t=1(z − bt)

∏S
k=(

∑T
t=1 αt)+1

(z − ck)
,

where ck, k =
(∑T

t=1 αt
)

+ 1, . . . , S, are different from each other. Let λ = −(αN−1 +

S)/αN and

ω = −
(αN−1 + S)

∏N−2
h=T+1(z − bh)αh−1

z
∏T
t=1(z − bt)

∏S
k=(

∑T
t=1 αt)+1

(z − ck)
dz.

By the equation (3.5) ω is a meromorphic 1-form on S2 satisfying the conditions (1) and

(2) in Theorem 3.2. Also let

K1 = − 2λ+ 1√
3
√
λ(λ+ 1)

and K2 =
2 + λ√

3
√
λ(λ+ 1)

.

Then σ , −3
(K1−K2)(2K1+K2)

= −1 and K1 > 0, K1 > K2 > −(K1 + K2). Also by the

proof of Theorem 3.2 there exists a non-CSC HCMU metric g with conical singularities

b1, . . . , bN−2, 0,∞. Moreover b1, . . . , bT are the maximum points of the Gauss curvature K

with the singular angles 2πα1, . . . , 2παT respectively, bT+1, . . . , bN−2 are the saddle points

of K with the singular angles 2παT+1, . . . , 2παN−2 respectively, 0 is the maximum point

of K with the singular angle 2παN−1 and∞ is the minimum point of K with the singular

angle 2παN . Therefore we finish the proof of Theorem 1.1.
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