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Haar Adomian Method for the Solution of Fractional Nonlinear Lane-Emden

Type Equations Arising in Astrophysics

Umer Saeed

Abstract. In this paper, we propose a method for solving some well-known classes of

fractional Lane-Emden type equations which are nonlinear ordinary differential equa-

tions on the semi-infinite domain. The method is proposed by utilizing Haar wavelets

in conjunction with Adomian’s decomposition method. The operational matrices for

the Haar wavelets are derived and constructed. Procedure of implementation and con-

vergence analysis of the method are presented. The method is tested on the fractional

standard Lane-Emden equation and the fractional isothermal gas spheres equation.

We compare the results produce by present method with some well-known results to

show the accuracy and applicability of the method.

1. Introduction

In recent years, numerous applications of fractional order ordinary and partial differential

equations have appeared in many areas of physics and engineering. There have found a

number of works, especially in hereditary solid mechanics and in viscoelasticity theory,

where fractional order derivatives are used for a better description of material properties.

This is the main advantage of fractional derivatives in comparison with classical integer

order models in which such effects are neglected. The mathematical modeling and simu-

lation of systems and processes, based on the description of their properties in terms of

fractional derivatives, naturally lead to differential equations of fractional order and to the

necessity of solving such equations. For most of fractional order differential equations, ex-

act solutions are not known. Therefore different numerical methods have been applied for

providing approximate solutions. Some of these techniques include, the Adomian decom-

position method (ADM) [8,34,37], the homotopy perturbation method (HPM) [21,24], the

variational iteration method (VIM) [15,23], the generalized differential transform method

(DTM) [14,26], and collocation methods [4, 30,35].

Received June 15, 2016; Accepted January 19, 2017.

Communicated by Haomin Zhou.

2010 Mathematics Subject Classification. 65L60, 65M70, 65N35.

Key words and phrases. Haar wavelet, operational matrices, Adomian’s polynomials, Lane-Emden type

equations.

1175



1176 Umer Saeed

Many problems arising in the field of mathematical physics and astrophysics can be

modelled by Lane-Emden type initial value problems. The Caputo fractional order Lane-

Emden equation studied in this paper is

Dαy +
2

x
Dβy + f(y) = 0, x > 0, 1 < α ≤ 2, 0 < β ≤ 1,

subject to the initial conditions:

y(0) = A, y′(0) = B,

where A and B are constants, f(y) is the nonlinear function of y, x and y are the inde-

pendent and dependent variables respectively. For α = 2 and β = 1, we have classical

Lane-Emden type equations which are nonlinear ordinary differential equations on semi-

infinite domain and are categorized as singular initial value problems. These equations are

used to model the thermal behavior of a spherical cloud of gas acting under the mutual

attraction of its molecules and subject to the classical laws of thermodynamics. The poly-

tropic theory of stars essentially follows out of thermodynamic considerations, that deals

with the issue of energy transport, through the transfer of material between different levels

of the star. The equations are used to model the gravitational potential of a degenerate

white dwarf star. These equations are one of the basic equations in the theory of stellar

structure and has been the focus of many researchers [5, 6, 10,17,18,22,25].

Wavelet analysis is a new development in the area of applied mathematics. Wavelets

are a special kind of functions which exhibits oscillatory behavior for a short period of time

and then die out. In wavelets, we use a single function and its dilations and translations

to generate a set of orthonormal basis functions to represent a signal. We define wavelet

(mother wavelet) by [28]:

(1.1) ψa,b(x) =
1√
|a|
ψ

(
x− b
a

)
, a, b ∈ R, a 6= 0,

where a and b are called scaling and translation parameter respectively. If |a| < 1, the

wavelet (1.1) is the compressed version (smaller support in time-domain) of the mother

wavelet and corresponds to mainly higher frequencies. On the other hand, when |a| > 1,

the wavelet (1.1) has larger support in time-domain and corresponds to lower frequencies.

A wavelet is a function ψ which satisfies the condition, known as the wavelet admissi-

bility condition:

Cψ =

∫ ∞
−∞

∣∣∣ψ̂(ω)
∣∣∣2

|ω|
dω <∞,

where ψ̂(ω) is the Fourier transform of ψ(x). This condition ensures that ψ̂(ω) goes to

zero quickly as ω → 0, it is required that

ψ̂(0) =

∫ ∞
−∞

ψ(x) dx = 0.
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Another condition impose on wavelet function is finite energy, that is∫ ∞
−∞
|ψ(x)|2 dx <∞.

Discretizing the parameters via a = 2−k and b = n2−k, we get the discrete wavelets

transform as

ψk,n(x) = 2k/2ψ(2kx− n).

These wavelets for all integers k and n produce an orthogonal basis of L2(R).

The Haar wavelet [20, 31] is the most practical orthonormal wavelets with compact

support and was constructed by Haar in 1909. Haar wavelet operational matrix of in-

tegration was first derived by Chen et al. [7] to solve the differential equations. There

are several other wavelets which can be used to solve the differential equations. Some

of these include, Daubechies [11, 33], B-spline [12], Legendre [29, 36], Hermite [1, 32] and

Chebyshev [2,16]. Legendre, Hermite and Chebyshev wavelets use Legendre, Hermite and

Chebyshev polynomials as their basis functions, respectively.

In [35], author combined tau collocation method with linearization technique or Ado-

mian’s decomposition method for solving nonlinear partial differential equation of integer

order. The main purpose of this article is to propose a numerical method for solving the

fractional nonlinear Lane-Emden type equations by using Haar wavelets in conjunction

with Adomian’s decomposition method. First, the Adomian’s polynomial is use to expand

the nonlinear term of Lane-Emden type equation into a set of polynomials and then uti-

lize the properties of Haar wavelets method to convert the obtained Lane-Emden equation

into a system of algebraic equations. The solution of the obtained system provides the

values of Haar wavelets coefficients which lead to the solution of nonlinear Lane-Emden

type equation. No linearization process is required for this approach. This approach is a

new idea in the field of wavelets method and it is first time introduce for wavelets method

and implemented on nonlinear Lane-Emden equations.

The paper is arranged as follows: in Section 2 we describe the basic definitions of

fractional integration and differentiation. Function approximations, Haar wavelets and

construction of operational matrices are describe in Section 3. We present the procedure

of implementation for nonlinear Lane-Emden equation in Section 4. In Section 5 we discuss

the convergence analysis of the method and in Section 6 we apply the proposed method

to standard Lane-Emden equation and the isothermal gas spheres equation. Finally in

Section 7 we conclude our work.

2. Preliminaries

In this section we introduce some necessary definitions and mathematical preliminaries of

fractional calculus [13,19].
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Definition 2.1. Let α ∈ R+. The operator Iαa , defined on L1[a, b] by

Iαa u(x) =
1

Γ(α)

∫ x

a
(x− t)α−1u(t) dt,

is called the Reimann-Liouville fractional integral operator of order α.

Definition 2.2. Let α ∈ R+, n = dαe and u ∈ ACn[a, b]. The operator RLDα
a , defined by

RLDα
au(x) =

dn

dxn

∫ x

a

(x− t)n−α−1

Γ(n− α)
u(t) dt,

is called the Reimann-Liouville fractional derivative of order α. The notation AC[a, b]

is used to denote the space of functions f which are absolutely continuous on [a, b] and

ACn[a, b] is the space of functions f(x) which have continuous derivatives up to n− 1 on

[a, b] such that f (n−1)(x) ∈ AC[a, b].

Definition 2.3. Let α ∈ R+, n = dαe and u ∈ ACn[a, b]. Then the Caputo fractional

derivative of u(x) is defined by

Dα
au(x) =

∫ x

a

(x− t)n−α−1

Γ(n− α)
u(n)(t) dt.

Lemma 2.4. Let α > 0, β > −1 and f(x) = (x− a)β, then

Iαa f(x) =
Γ(β + 1)

Γ(β + α+ 1)
(x− a)α+β.

Lemma 2.5. Let α, β ∈ R+ and u ∈ L1[a, b] then Iαa I
β
a u(x) = Iα+βa u(x) holds almost

everywhere on [a, b].

Lemma 2.6. If α ∈ R+ and u ∈ C[a, b], then Dα
a I

α
a u(x) = u(x).

Lemma 2.7. Let α > 0, n = dαe and u ∈ ACn[a, b] then

IαaD
α
au = u(x)−

n−1∑
k=0

(x− a)k

k!
u(k)(a).

3. Function approximations and Haar matrices

The Haar functions contains just one wavelet during some subinterval of time, remains

zero elsewhere and are orthogonal. The uniform Haar wavelets are useful for the treatment

of solution of differential equations which has no abrupt behavior. The lth uniform Haar

wavelet hl(x), x ∈ [0, 1) is defined as [7]:

(3.1) hl(x) =


1 a(l) ≤ x < b(l),

−1 b(l) ≤ x < c(l);

0 otherwise,
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where a(l) = k/m, b(l) = (k+0.5)/m, c(l) = (k+1)/m and l = 2j+k+1, j = 0, 1, 2, . . . , J

is dilation parameter, where m = 2j and k = 0, 1, 2, . . . , 2j − 1 is translation parameter.

J is maximal level of resolution and the maximal value of i is 2M where M = 2J . In

particular h1(x) := χ[0,1](x), where χ[0,1](x) is the characteristic function on the interval

[0, 1], is the Haar scaling function. For the uniform Haar wavelet, the wavelet-collocation

method is applied. The collocation points for the uniform Haar wavelets are usually taken

as xj = (j − 0.5)/(2M), where j = 1, 2, . . . , 2M .

Any function y ∈ L2[0, 1] can be represented in term of the Haar series

(3.2) y(x) =
∞∑
l=1

blhl(x),

where bl are the Haar wavelet coefficients given as bl =
∫ 1
0 y(x)hl(x) dx. This function

(3.2) can be represented by the truncated Haar wavelet series

(3.3) y(x) ≈ yM (x) =

2M∑
l=1

blhl(x), l = 2j+k+1, j = 0, 1, 2, . . . , J, k = 0, 1, 2, . . . , 2j−1.

The wavelets coefficients bl are determined in such away that the integral square error E

given by

(3.4) E =

∫ 1

0

[
y(x)−

2M∑
l=1

blhl(x)

]2
dx

is minimized.

In order to find the numerical approximations of function, we put the Haar wavelets

into a discrete form. For this purpose, we utilized the collocation method. The collocation

points for the Haar wavelets are taken as xc(i) = (i+ 0.5)/(2M), where i = 1, 2, . . . , 2M .

In discrete form, equation (3.4) is written as

EM = ∆x
2M∑
i=1

[
y(xc(i))−

2M∑
l=1

blhl(xc(i))

]2
.

The discrete form of (3.3) is

(3.5) yM (xc(i)) =
2M∑
l=1

blhl(xc(i)).

We can represent the equation (3.5) in vector form as

y = bH,
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where b = [b1b2 · · · b2M ] and y = [y1y2 · · · y2M ] are 2M dimensional row vectors, yi =

yM (xc(i)), and

H2M×2M =


h1(xc(1)) h1(xc(2)) · · · h1(xc(2M))

h2(xc(1)) h2(xc(2)) · · · h2(xc(2M))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h2M (xc(1)) h2M (xc(2)) · · · h2M (xc(2M))


is a Haar matrix. In particular, for J = 2, we get 2M = 8 and the Haar matrix is given as

H8×8 =



1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 0 0 0 0

0 0 0 0 1 1 −1 −1

1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 −1



.

The Haar coefficients bl can be determine by matrix inversion

(3.6) b = yH−1,

where H−1 is the inverse of H. Equation (3.6) gives the Haar coefficients bl which are

used in (3.3) to get the solution y(x).

3.1. Fractional integral of the Haar wavelets

The Riemann-Liouville fractional integral, of order α, of the uniform Haar wavelets is

given as

(3.7) Iαa h1(x) =
(x− a)α

Γ(α+ 1)
,

and

pα,l(x) = Iαa hl(x) =
1

Γ(α)

∫ x

a
(x− s)α−1hl(s) ds

=
1

Γ(α+ 1)


(x− a(l))α a(l) ≤ x < b(l),

(x− a(l))α − 2(x− b(l))α b(l) ≤ x < c(l),

(x− a(l))α − 2(x− b(l))α + (x− c(l))α x ≥ c(l).

(3.8)
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3.2. Haar wavelet operational matrix of fractional integration

Haar matrix H is obtained by using the collocation points in (3.1), H(l, i) = hl(xc(i)).

Similarly, we can obtain the fractional order integration matrix P of Haar function by

substituting the collocation points in equations (3.7) and (3.8), P (l, i) = pα,l(xc(i)), as

P 2M×2M =


pα,1(xc(1)) pα,1(xc(2)) · · · pα,1(xc(2M))

pα,2(xc(1)) pα,2(xc(2)) · · · pα,2(xc(2M))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pα,2M (xc(1)) pα,2M (xc(2)) · · · pα,2M (xc(2M))

 .

In particular, we fix J = 2, α = 0.75, we get 2M = 8 and the Haar wavelet operational

matrix of fractional integration is

P 8×8 =



0.1360 0.3100 0.4548 0.5853 0.7067 0.8215 0.9312 1.0367

0.1360 0.3100 0.4548 0.5853 0.4347 0.2014 0.0216 −0.1340

0.1360 0.3100 0.1828 −0.0347 −0.0668 −0.0391 −0.0275 −0.0210

0 0 0 0 0.1360 0.3100 0.1828 −0.0347

0.1360 0.0380 −0.0293 −0.0142 −0.0091 −0.0066 −0.0051 −0.0042

0 0 0.1360 0.0380 −0.0293 −0.0142 −0.0091 −0.0066

0 0 0 0 0.1360 0.0380 −0.0293 −0.0142

0 0 0 0 0 0 0.1360 0.0380



.

4. Procedure of implementation

In the present method, Adomian’s polynomials is used to convert the nonlinear terms of

the nonlinear differential equation into a set of polynomials. No linearization process is

required for the suggested method. We describe the procedure of implementation in more

details, which enable the readers to understand the method more efficiently. Consider the

following form of Lane-Emden equation

Dαy +
2

x
Dβy + f(y) = g(x), x > 0, 1 < α ≤ 2, 0 < β ≤ 1,

y(0) = A, y′(0) = B,
(4.1)

where f(y) is the nonlinear term of the problem and, A and B are some constants. In the

Adomian decomposition method, we can express the solution of (4.1) in a series form as

(4.2) y(x) =

∞∑
i=0

yi(x).
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We approximate the solution (4.2) by the truncated Adomian series as

(4.3) y(x) ≈
N∑
i=0

yi(x), N ∈ N.

Moreover, the nonlinear term f(y) in equation (4.1) is decomposed in term of Adomian

polynomials as

(4.4) f(y) =
∞∑
i=0

Ai(y0, y1, . . . , yi) or f(y) ≈
N−1∑
i=0

Ai(y0, y1, . . . , yi),

where Ai = 1
i!
di

dλi

[
f
(∑i

n=0 λ
nyn(x)

)]∣∣
λ=0

, i = 0, 1, 2, . . ., are the Adomian polynomials.

Using equations (4.3) and (4.4) in (4.1), we get

Dα

(
N∑
i=0

yi(x)

)
+

2

x
Dβ

(
N∑
i=0

yi(x)

)
= g(x)−

N−1∑
i=0

Ai

or

Dα(y0(x) + y1(x) + · · ·+ yN (x)) +
2

x
Dβ(y0(x) + y1(x) + · · ·+ yN (x))

= g(x)− (A0 +A1 + · · ·+AN−1).

The problem (4.1) can be decomposed into N + 1 subproblems by the principle of super-

position as

(4.5) Dαy0(x) +
2

x
Dβy0(x) = g(x), y0(0) = A, y′0(0) = B,

and

(4.6) Dαyi(x) +
2

x
Dβyi(x) = −Ai−1, yi(0) = 0, y′i(0) = 0,

where x > 0, 1 < α ≤ 2, 0 < β ≤ 1 and i = 1, 2, . . . , N .

Use Haar wavelet method on the N + 1 subproblems (4.5) and (4.6). We approximate

each component yi(x), i = 0, 1, . . . , N , of solution y(x), given in equation (4.3), by the

truncated Haar wavelet series (3.3) as

yi(x) ≈ yM,i(x) =
2M∑
l=1

bilhl(x).

Applying the Haar wavelet method on equation (4.5), we approximate the higher order

derivative term by Haar wavelet series as

(4.7) Dαy0(x) ≈ DαyM,0(x) =

2M∑
l=1

b0l hl(x).
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Lower order derivatives are obtained by integrating (4.7) and use of initial conditions, we

get

y0(x) ≈ yM,0(x) =

2M∑
l=1

b0l I
α
a hl(x) +Bx+A,

Dβy0(x) ≈ DβyM,0(x) =
2M∑
l=1

b0l I
α−β
a hl(x) +B

(
x1−β

Γ(2− β)

)
.

(4.8)

Using equations (4.7) and (4.8) in equation (4.5) to obtain

(4.9)
2M∑
l=1

b0l

(
hl(x) +

2

x
Iα−βa hl(x)

)
= g(x)− 2Bx−β

Γ(2− β)
.

Expand equation (4.9) at the collocation points, xj = (j + 0.5)/(2M), j = 1, 2, . . . , 2M ,

which enable us to represent equation (4.9) in vector form by using Section 3 that is

(4.10) (b0)T
[
H2M×2M + P α−β

2M×2MD
]

= R,

where

D =


2
x1

0 · · · 0

0 2
x2
· · · 0

. . . . . . . . . . . . . . . . .

0 0 · · · 2
x2M

 ,

R = [r(x1), r(x2), . . . , r(x2M )] and r(x) = g(x) − 2Bx−β/Γ(2 − β). Solution of equa-

tion (4.10) gives (b0)T , it is used in equation (4.8) to obtain yM,0(x) which is an ap-

proximation to y0(x). Similarly apply the Haar wavelet method on equation (4.6) by

approximating higher order derivative by Haar wavelet series

(4.11) Dαyi(x) ≈ DαyM,i(x) =
2M∑
l=1

bilhl(x).

Integrating (4.11) and use the initial conditions, we get

yi(x) ≈ yM,i(x) =
2M∑
l=1

bilI
α
a hl(x),

Dβyi(x) ≈ DβyM,i(x) =

2M∑
l=1

bilI
α−β
a hl(x).

(4.12)

Using equations (4.11) and (4.12) in equation (4.6) and expanding the obtained equation

at the collocation points to obtain

(4.13) (bi)T
[
H2M×2M + P α−β

2M×2MD
]

= U ,
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where U = −[Ai−1(x1), Ai−1(x2), . . . , Ai−1(x2M )].

Fix i = 1 and use the obtained approximation, yM,0(x), in the calculation of Adomian’s

polynomials A0. Now solve the equation (4.13) for (b1)T and use it in (4.12) to get yM,1(x)

which is an approximation of y1(x). Similarly, by considering i = 2, we obtain A1 by

using yM,0(x) and yM,1(x), and then obtain (b2)T from equation (4.13) which is used in

equation (4.12) to get approximate solution yM,2(x) of y2(x). This process is repeated by

using the approximate solutions yM,i(x), i = 0, 1, . . . , k, in the calculation of Adomian’s

polynomials Ak and use it in equation (4.13) to get (bk+1)T , which is used in (4.12) to

obtain approximate solution, yM,k+1(x), of yk+1(x). In this way, we obtain a sequence of

approximations {yM,i(x)}, i = 0, 1, . . . , N , where N ∈ N. Thus the approximate solution

of problem (4.1) is obtained as
∑N

i=0 yM,i(x).

5. Convergence analysis of modified Haar wavelet method

The convergence analysis of proposed method based on the convergence analysis of Ado-

mian decomposition method and Haar wavelet method. For convergence of Haar wavelet

method. Let yi(x), which is a component of truncated Adomian series (4.3), be a differ-

entiable function and assume that yi(x) have bounded first derivative on (0, 1), i.e., there

exist K > 0; for all x ∈ (0, 1) ∣∣y′i(x)
∣∣ ≤ K.

Haar wavelet approximation for the function yi(x) is given by

yM,i(x) =

2M∑
l=1

bilhl(x).

By following Babolian and Shahsavaran [3], we get the L2-error norm for present method

‖yi(x)− yM,i(x)‖2 ≤ K2

3
· 1

(2M)2
,

or

(5.1) ‖yi(x)− yM,i(x)‖ ≤ O(1/M).

As M = 2J and J is the maximal level of resolution. According to (5.1), we conclude

that error is inversely proportional to the level of resolution. Equation (5.1) ensures the

convergence of Haar wavelet approximation yM,i(x) for components of Adomian’s series

yi(x) at higher level of resolution i.e., when M = 2J approaches to infinity. According

to the convergence of Adomian’s method [9],
∑N

i=0 yi(x) converges to y(x) when N →
∞. According to the above analysis, we conclude that solution by the present method

converges to the exact solution of (4.1), when N and J approach to infinity.
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6. Applications

The method is tested on the fractional standard Lane-Emden equation and the fractional

isothermal gas spheres equation.

6.1. The fractional standard Lane-Emden equation

Consider the fractional standard Lane-Emden equation that is used to model the thermal

behavior of a spherical cloud of gas acting under the mutual attraction of its molecules

and subject to the classical laws of thermodynamics

(6.1) Dαy +
2

x
Dβy + yp(x) = 0, 1 < α ≤ 2, 0 < β ≤ 1,

subject to the initial conditions: y(0) = 1, y′(0) = 0.

The exact solutions, when α = 2, β = 1 and p = 0, 1, 5, are given in [27]. For other

values of α, β and p, exact solutions are not known. Therefore, we apply the proposed

method to solve the standard Lane-Emden equation for different values of α, β and p.

We implement the proposed method on equation (6.1) by considering p = 5, and

different values of α and β as shown in Figure 6.1. yE(x) and yH(x) represent exact

solution and solution by present method respectively. Figure 6.1 shows that solution by

the present method converges to the exact solution, when α and β approaches to 2 and 1

respectively.

0 0.2 0.4 0.6 0.8 1
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

x−axis

y(
x)

Solutions at J=5, N=16, p=5 and different values of α, β

y
E
(x) at α=2, β=1

y
H

(x) at α=2, β=1

y
H

(x) at α=1.9, β=0.9

y
H

(x) at α=1.8, β=0.8

y
H

(x) at α=1.7, β=0.7

y
H

(x) at α=1.6, β=0.6

y
H

(x) at α=1.5, β=0.5

Figure 6.1: Exact solution yE(x) at α = 2, β = 1 and approximate solutions yH(x) of the

standard Lane-Emden equation at different value of α and β.
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Figure 6.2 is used to plot the obtained solutions, yH(x), of equation (6.1) by present

method at J = 5, N = 16, α = 1.6125, β = 0.7653, and different values of p. We

compare our solution with solutions obtained from following methods: Homotopy pertur-

bation method [10], Optimal homotopy asymptotic method [18], Boubaker polynomials

expansion scheme [5] and squared remainder minimization method [6] as shown in Ta-

ble 6.1. EHPM , EOHAM , EBPES , ESRMM and EHaar represent the absolute errors by

homotopy perturbation method, Optimal homotopy asymptotic method, Boubaker poly-

nomials expansion scheme, squared remainder minimization method and present method

respectively. According to the Table 6.1, we conclude that results produced by present

method are better than the other methods [5, 6, 10,18].
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Figure 6.2: Approximate solutions of the standard Lane-Emden equation, at different p

and fix α = 1.6125, β = 0.7653.

J = 9, N = 23

x EHPM [10] EOHAM [18] EBPES [5] ESRMM [6] EHaar

0.0 0.00000 0.00000 0.00000 0.00000 0.00000

0.1 3.36569e-11 4.01135e-5 5.22512e-4 1.46725e-7 6.63284e-11

0.5 1.22677e-5 3.56912e-4 1.30811e-2 3.56494e-6 1.68772e-9

1.0 2.59948e-3 4.49742e-4 8.26346e-2 5.07745e-7 6.22345e-9

Table 6.1: Comparison of absolute errors of the approximate solutions for the standard

Lane-Emden equation, when p = 5, α = 2 and β = 1.
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6.2. The fractional isothermal gas spheres equation

The fractional Lane-Emden equation for a self-gravitating isothermal gas sphere can be

written as

(6.2) Dαy +
2

x
Dβy − e−y = 0, 1 < α ≤ 2, 0 < β ≤ 1,

subject to the initial conditions: y(0) = 0, y′(0) = 0, where y(x) is the Newtonian

gravitational potential function and x is the dimensionless radius.

Figure 6.3 is used to plot the solutions, yH(x), obtained from present method at

different values of α and β. In [22], B. M. Mirza discussed the fractional approximation

technique for the solution of isothermal gas sphere equation (6.2). A power series solution

method is used by M. I. Nouh in [25] for the solution of (6.2). Euler-transformed series is

used to approximate the solution of isothermal gas sphere equation by C. Hunter [17].
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Figure 6.3: Approximate solutions yH(x) of the isothermal gas spheres equation at different

value of α and β.

In Table 6.2, exact solution represents the solution obtained from Runge Kutta method

of order 4 and Haar represents the obtained solution by present method at J = 8 and

N = 23. Our results for isothermal gas sphere equation (6.2), when α = 2 and β = 1, are

better than those obtained in [17,22,25].
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J = 8, N = 23

x Exact solution Haar Mirza [22] Nouh [25] Hunter [17]

0.1 0.001666 0.0016658 0.0016 0.0166 0.0016

0.2 0.006653 0.0066534 0.0066 0.0333 0.0065

0.3 0.014933 0.0149329 0.0149 0.0500 0.0145

0.4 0.026455 0.0264555 0.0266 0.0666 0.0253

0.5 0.041154 0.0411540 0.0416 0.0833 0.0385

0.6 0.058944 0.0589441 0.0598 0.1000 0.0536

0.7 0.079726 0.0797260 0.0813 0.1166 0.0700

0.8 0.103386 0.1033861 0.1060 0.1333 0.0870

0.9 0.129799 0.1297985 0.1338 0.1500 0.1038

1.0 0.158828 0.1588277 0.1646 0.1666 0.1198

Table 6.2: Comparison of the approximate solutions for the isothermal gas sphere equation

when α = 2 and β = 1.

7. Conclusion

We have derived and constructed the Haar wavelets matrix, H2M×2M , and the Haar

wavelets operational matrix of fractional order integration, P 2M×2M . These matrices are

successfully utilized to solve the fractional nonlinear Lane-Emden type equations.

According to Tables 6.1 and 6.2, our results are more accurate as compared to Ho-

motopy perturbation method [10], Optimal homotopy asymptotic method [18], Boubaker

polynomials expansion scheme [5], fractional approximation technique [22], power series

solution method [25], Euler-transformed series method [17] and squared remainder mini-

mization method [6].

Also, fractional order lane emden equation converge to the integer order Lane-Emden

equation when α and β approaches to integer values as shown in Figures 6.1 and 6.3.

It is shown that present method gives excellent results when applied to fractional

nonlinear Lane-Emden type equations. The different type of non-linearities in Lane-Emden

type equations can easily be handled by the present method.
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[28] D. P. Radunović, Wavelets from Math to Practice, Springer-Verlag, Berlin, 2009.

https://doi.org/10.1007/978-3-642-00614-2

[29] M. Razzaghi and S. Yousefi, Legendre wavelets method for constrained optimal control

problems, Math. Methods Appl. Sci. 25 (2002), no. 7, 529–539.

https://doi.org/10.1002/mma.299.abs

[30] A. Saadatmandi and M. Dehghan, A new operational matrix for solving fractional-

order differential equations, Comput. Math. Appl. 59 (2010), no. 3, 1326–1336.

https://doi.org/10.1016/j.camwa.2009.07.006

[31] U. Saeed and M. ur Rehman, Haar wavelet-quasilinearization technique for fractional

nonlinear differential equations, Appl. Math. Comput. 220 (2013), 630–648.

https://doi.org/10.1016/j.amc.2013.07.018

[32] , Hermite wavelet method for fractional delay differential equations, J. Differ-

ence Equ. 2014 (2014), Art. ID 359093, 8 pp. https://doi.org/10.1155/2014/359093

[33] , Wavelet-Galerkin quasilinearization method for nonlinear boundary value

problems, Abstr. Appl. Anal. 2014 (2014), Art. ID 868934, 10 pp.

https://doi.org/10.1155/2014/868934

[34] S. Saha Ray and R. K. Bera, An approximate solution of a nonlinear fractional differ-

ential equation by Adomian decomposition method, Appl. Math. Comput. 167 (2005),

no. 1, 561–571. https://doi.org/10.1016/j.amc.2004.07.020

https://doi.org/10.1016/j.physleta.2007.01.046
https://doi.org/10.1016/j.newast.2004.02.003
https://doi.org/10.1016/j.amc.2007.07.068
https://doi.org/10.1016/j.cpc.2010.02.018
https://doi.org/10.1007/978-3-642-00614-2
https://doi.org/10.1002/mma.299.abs
https://doi.org/10.1016/j.camwa.2009.07.006
https://doi.org/10.1016/j.amc.2013.07.018
https://doi.org/10.1155/2014/359093
https://doi.org/10.1155/2014/868934
https://doi.org/10.1016/j.amc.2004.07.020


1192 Umer Saeed

[35] C. N. Sam, Numerical Solution of Partial Differential Equations with the Tau-

collocation Method, Thesis (M.Phil.), City University of Hong Kong, 2004.

[36] S. G. Venkatesh, S. K. Ayyaswamy and S. Raja Balachandar, The Legendre wavelet

method for solving initial value problems of Bratu-type, Comput. Math. Appl. 63

(2012), no. 8, 1287–1295. https://doi.org/10.1016/j.camwa.2011.12.069

[37] A.-M. Wazwaz, Partial Differential Equations and Solitary Waves Theory, Springer,

Berlin, 2009. https://doi.org/10.1007/978-3-642-00251-9

Umer Saeed

NUST Institute of Civil Engineering, School of Civil and Environmental Engineering,

National University of Sciences and Technology, Sector H-12, Islamabad, Pakistan

E-mail address: umer.math@gmail.com

https://doi.org/10.1016/j.camwa.2011.12.069
https://doi.org/10.1007/978-3-642-00251-9

	Introduction
	Preliminaries
	Function approximations and Haar matrices
	Fractional integral of the Haar wavelets
	Haar wavelet operational matrix of fractional integration

	Procedure of implementation
	Convergence analysis of modified Haar wavelet method
	Applications
	The fractional standard Lane-Emden equation
	The fractional isothermal gas spheres equation

	Conclusion

