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Iterative Method for a New Class of Evolution Equations with

Non-instantaneous Impulses

Pengyu Chen*, Xuping Zhang and Yongxiang Li

Abstract. In this paper, we are concerned with the existence of mild solutions for

the initial value problem to a new class of abstract evolution equations with non-

instantaneous impulses on ordered Banach spaces. The existence and uniqueness theo-

rem of mild solution for the associated linear evolution equation with non-instantaneous

impulses is established. With the aid of this theorem, the existence of mild solutions

for nonlinear evolution equation with non-instantaneous impulses is obtained by using

perturbation technique and iterative method under the situation that the correspond-

ing solution semigroup T (·) and non-instantaneous impulsive function gk are compact,

T (·) is not compact and gk is compact, T (·) and gk are not compact, respectively. The

results obtained in this paper essentially improve and extend some related conclusions

on this topic. Two concrete examples to parabolic partial differential equations with

non-instantaneous impulses are given to illustrate that our results are valuable.

1. Introduction

In this paper, we use the perturbation technique and iterative method in the presence

of lower and upper solutions to study the existence of mild solutions for the initial value

problem (IVP) to a new class of semi-linear evolution equations with non-instantaneous

impulses in Banach space E

(1.1)


u′(t) +Au(t) = f(t, u(t)) t ∈

⋃p
k=0(sk, tk+1],

u(t) = gk(u(t)) t ∈
⋃p
k=1(tk, sk],

u(0) = u0,

where A : D(A) ⊂ E → E is a closed linear operator, −A is the infinitesimal generator of

a C0-semigroup T (t) (t ≥ 0) in E, 0 < t1 < t2 < · · · < tp < tp+1 := a, a > 0 is a constant,
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p ∈ Z+, J = [0, a], s0 := 0 and sk ∈ (tk, tk+1) for each k = 1, 2, . . . , p, f : [sk, tk+1]×E → E

is a continuous nonlinear function for k = 0, 1, . . . , p, gk ∈ C(E,E) is non-instantaneous

impulsive function for all k = 1, 2, . . . , p, and u0 ∈ E.

The theory of instantaneous impulsive differential equations is an important branch of

differential equation theory, which has extensive physical, chemical, biological, engineer-

ing background and realistic mathematical model, and hence has been emerging as an

important area of investigation in the last few decades. For more details on differential

equations with instantaneous impulses, one can see the monographs of Lakshmikantham,

Bainov and Simeonov [31], Benchohra, Henderson and Ntouyas [10] and the papers of

Ahmed [3], Abada, Benchohra and Hammouche [1], Barreira and Valls [9], Bonottoa et

al. [11], Qian, Chen and Sun [41], Guo and Liu [26], Chang and Li [12], Li and Liu [34],

Chen, Li and Zhang [17], Fan and Li [23], Liang, Liu and Xiao [35, 36], where numerous

properties of their solutions are studied and detailed bibliographies are given. Differential

equations with instantaneous impulses consider basically problems for which the impulses

are abrupt and instantaneous. The most important feature of instantaneous impulsive

differential equations in this class of equations is linked to their utility in simulating pro-

cesses and phenomena subject to short time perturbations during their evolution, and the

perturbations are performed discretely and their duration is negligible in comparison with

the total duration of the processes and phenomena when construct mathematical models.

However, one can see that the models with instantaneous impulses could not explain

the certain dynamics of evolution processes in pharmacotherapy. Just as pointed out by

Hernández and O’Regan in [30], when we consider the simplified situation concerning the

hemodynamic equilibrium of a person, the introduction of the drugs in the bloodstream

and the consequent absorption for the body are gradual and continuous process. Therefore,

one can interpret this situation as an impulsive action which starts abruptly and stays

active on a finite time interval. We call such phenomenon non-instantaneous impulses

during construct mathematical models. It is reported that many models arising from

realistic models can be described as partial differential equations with non-instantaneous

impulses.

In the past three years, nonlinear differential equations with non-instantaneous im-

pulses have been studied by several authors and some interesting results have been ob-

tained, see [2,18,24,30,40,43,45,46]. In 2013, Hernández and O’Regan [30] first studied the

initial value problem for a new class of abstract evolution equations with non-instantaneous

impulses in Banach spaces. In the same year, Pierri, O’Regan and Rolnik [40] obtained

the existence of mild solutions for a class of semi-linear abstract differential equations

with non-instantaneous impulses by using the theory of analytic semigroups. Gautam and

Dabas [24] studied the existence, uniqueness and continuous dependence results of mild
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solution for fractional functional integro-differential equations with non-instantaneous im-

pulses by using the theory of analytic α-resolvent family and fixed point theorems in 2014.

In 2015, Colao, Mugliam and Xu [18] obtained the existence of solutions for a second-order

differential equation with non-instantaneous impulses and delay on an unbounded interval

by establish a compactness criterion in a certain class of functions. Yu and Wang [46]

investigated the existence of solutions to periodic boundary value problems for nonlinear

evolution equations with non-instantaneous impulses on Banach spaces by using the theory

of semigroups and fixed point methods also in 2015. In 2014, Wang and Li [43] obtained

the existence of solutions for periodic boundary value problem of nonlinear ordinary dif-

ferential equations with non-instantaneous impulses. In addition, fractional ordinary and

partial differential equations with non-instantaneous impulses have also been studied by

Wang, Zhou and Lin [45] in 2014 and Abbas and Benchohra [2] in 2015, respectively.

But so far we have not seen relevant papers that study abstract evolution equations

with non-instantaneous impulses by applying the iterative method, perturbation technique

and the method of lower and upper solutions. The most advantage by using the iterative

method based on lower and upper solutions is that it not only provides a method to obtain

the existence of extremal mild solutions, but also yields iterative sequences of lower and

upper approximate solutions that converge to the minimal and maximal mild solutions

between the lower and upper solutions. The iterative sequences are very useful in numerical

calculation, which provide a computing rule in computer simulation. As early as 1976,

Amann [4] established the lower and upper solutions theorem for operator equation in

ordered Banach spaces. In 1982, Du and Lakshmikantham [21] investigated the existence

of extremal solutions to initial value problem of ordinary differential equation without

impulse by using the method of lower and upper solutions and the iterative method.

Later, Guo and Liu [26], Li and Liu [34], Chen, Li and Zhang [17] developed the iterative

method for ordinary differential equations with instantaneous impulses in Banach spaces.

Recently, the iterative method has been extended to evolution equations in ordered Banach

spaces, we refer to the papers by Li [32], Wang and Wang [44] and EI-Gebeily, O’Regan

and Nieto [22] for evolution equations with classical initial vlaue conditions, and to the

paper by Chen and Li [13], Chen, Li and Yang [16] and Chen and Li [15] for evolution

equations with instantaneous impulses in Banach spaces. In this paper, inspired by the

above-mentioned aspects, we use the positive operator semigroups theory, perturbation

technique and iterative method to study the existence of mild solutions for IVP (1.1). In

addition, by using a perturbation technique for nonlinear function f , we extend to the

situation that the nonlinear function f is not monotone increasing on the ordered interval

in this paper.

The theory of operator semigroups plays an important role in studying of abstract
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evolution equations. In a study of nonlinear evolution equations, if the corresponding

nonhomogeneous problem is well-posed, then one can define a strongly continuous linear

and bounded operator on R+, which is called solution semigroup, such that the solution

for the initial value problem of the corresponding nonhomogeneous problem and also the

nonlinear evolution equations can be uniquely expressed by this linear operator semigroup.

For more details, one can see the monographs by Pazy [38] and Vrabie [42]. The discus-

sion of this paper is just based on the theory of linear operator semigroups. By using the

theory of linear operator semigroups, we can transform the corresponding linear evolution

equation with non-instantaneous impulses into an equivalent integral equation (see The-

orem 3.1). With the aid of Theorem 3.1, we can define a solution operator of IVP (1.1)

and then applying perturbation technique and iterative method to discuss the existence

of mild solutions for IVP (1.1) under the situation that T (·) and gk are compact, T (·) is

not compact and gk is compact, T (·) and gk are not compact, respectively.

The rest of this article is organized as follows. We provide in Section 2 some definitions,

notations and necessary preliminaries about cone, partial order, measure of noncompact-

ness and operator semigroups, which are used throughout this paper. The existence and

uniqueness theorem of mild solution for the associated linear evolution equation with non-

instantaneous impulses is established in Section 3. In Section 4, we obtained the existence

of extremal mild solutions as well as mild solutions for IVP (1.1) under the situation that

T (t) (t ≥ 0) is a compact and positive C0-semigroup and the non-instantaneous impulsive

function gk is compact in E for k = 1, 2, . . . , p. In Section 5, we discuss the existence of

extremal mild solutions for IVP (1.1) under the situation that −A only generate a posi-

tive C0-semigroup T (t) (t ≥ 0) in E and the non-instantaneous impulsive function gk is

compact in E for k = 1, 2, . . . , p, in which the Gronwall-Bellman type inequalities paly an

important role. The existence of extremal mild solutions for IVP (1.1) is obtained under

the situation that the semigroup T (t) (t ≥ 0) is a positive C0-semigroup in Banach space

E and the non-instantaneous impulsive function gk is only continuous for k = 1, 2, . . . , p,

or the positive C0-semigroup T (t) (t ≥ 0) generated by −A is equicontinuous in E and

the non-instantaneous impulsive function gk is Lipschitz continuous for k = 1, 2, . . . , p in

Section 6. In the last section, two concrete examples to parabolic partial differential equa-

tion with non-instantaneous impulses are given to illustrate the feasibility of our abstract

results.

2. Preliminaries

In this section, we recall some basic theories of the cone, partial order, measure of non-

compactness and operator semigroups. Let E be a Banach space with the norm ‖ · ‖ and

partial order “≤ ”, whose positive cone P = {x ∈ E | x ≥ θ} is normal with normal con-
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stant N , where θ is the zero element in E. We denote by C(J,E) the Banach space of all

continuous functions from J into E endowed with the sup-norm ‖u‖C = supt∈J ‖u(t)‖ for

every u ∈ C(J,E). Then C(J,E) is an ordered Banach space induced by the convex cone

PC = {u ∈ C(J,E) | u(t) ≥ θ, t ∈ J} ,

and PC is also a normal cone with the same normal constant N . Let

PC(J,E) = {u : J → E |u is continuous at t 6= tk, left continuous at t = tk

and u(t+k ) exists for all k = 1, 2, . . . , p}

be a piecewise continuous function space. It is easy to see that PC(J,E) is a Banach

space endowed with the norm

(2.1) ‖u‖PC = sup
t∈J
‖u(t)‖ , ∀u ∈ PC(J,E).

Evidently, PC(J,E) is also an ordered Banach space with the partial order “≤ ” induced

by the positive cone

KPC = {u ∈ PC(J,E) | u(t) ≥ θ, t ∈ J} .

KPC is also normal with the same normal constant N . For v, w ∈ PC(J,E) with v ≤ w,

we use [v, w] to denote the order interval

{u ∈ PC(J,E) | v ≤ u ≤ w}

in PC(J,E), and [v(t), w(t)] to denote the order interval

{u ∈ E | v(t) ≤ u(t) ≤ w(t), t ∈ J}

in E. For more definitions and details of the cone and partial order, we refer to the

monographs by Guo and Lakshmikantham [25] and Deimling [19]. We use E1 to denote

the Banach space D(A) with the graph norm

‖ · ‖1 = ‖ · ‖+ ‖A · ‖ .

Let J ′ = J\{t1, t2, . . . , tp}, J ′′ = J\{0, t1, t2, . . . , tp}. An abstract function u ∈ PC(J,E)∩
C1(J ′′, E) ∩ C(J ′, E1) is called a solution of IVP (1.1) if u(t) satisfies all the equalities of

(1.1).

Definition 2.1. If a function v0 ∈ PC(J,E) ∩ C1(J ′′, E) ∩ C(J ′, E1) satisfies that

(2.2)


v′0(t) +Av0(t) ≤ f(t, v0(t)) t ∈

⋃p
k=0(sk, tk+1],

v0(t) ≤ gk(v0(t)) t ∈
⋃p
k=1(tk, sk],

v0(0) ≤ u0,

we call it a lower solution of IVP (1.1); if all the inequalities in (2.2) are reversed, we call

it an upper solution of IVP (1.1).
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Let A : D(A) ⊂ E → E be a closed linear operator and let −A generate a C0-semigroup

T (t) (t ≥ 0) on E. Then there exist constants C1 ≥ 1 and δ ∈ R such that

(2.3) ‖T (t)‖ ≤ C1e
δt, t ≥ 0.

Denote by L(E) the Banach space of all linear and bounded operators on E. By (2.3) we

know that

(2.4) C := sup
t∈J
‖T (t)‖L(E) ≥ 1

is a finite number.

Definition 2.2. A C0-semigroup T (t) (t ≥ 0) in E is said to be positive, if order inequality

T (t)x ≥ θ holds for each x ≥ θ, x ∈ E and t ≥ 0.

Definition 2.3. A C0-semigroup T (t) (t ≥ 0) in E is said to be compact, if T (t) is a

compact operator in E for every t > 0.

Definition 2.4. A C0-semigroup T (t) (t ≥ 0) in E is said to be equicontinuous, if T (t) is

continuous in the operator norm for every t > 0.

It is easy to see that for any constant M ≥ 0, −(A + MI) also generates a C0-

semigroup S(t) = e−MtT (t) (t ≥ 0) in E. Therefore, S(t) (t ≥ 0) is a positive C0-

semigroup if T (t) (t ≥ 0) is a positive C0-semigroup, S(t) (t ≥ 0) is a compact semigroup

if T (t) (t ≥ 0) is a compact semigroup, S(t) (t ≥ 0) is an equicontinuous semigroup

if T (t) (t ≥ 0) is an equicontinuous semigroup. For more details about the properties

of the operator semigroups and positive C0-semigroups, we refer to the monographs by

Henry [29], Pazy [38], Banasiak and Arlotti [8], Vrabie [42] and the paper by Li [32].

Next, we recall some basic definitions and properties about Kuratowski measure of

noncompactness that will be used in the proof of our main results.

Definition 2.5. [7, 19] The Kuratowski measure of noncompactness α(·) defined on

bounded set S of Banach space E is

α(S) := inf

{
δ > 0

∣∣∣ S =

m⋃
i=1

Si and diam(Si) ≤ δ for i = 1, 2, . . . ,m

}
.

The following properties about the Kuratowski measure of noncompactness are well

known.

Lemma 2.6. [7,19] Let E be a Banach space and S,U ⊂ E be bounded. Then the following

properties are satisfied:

(i) α(S) = 0 if and only if S is compact, where S means the closure hull of S;
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(ii) α(S) = α(S) = α(convS), where convS means the convex hull of S;

(iii) α(λS) = |λ|α(S) for any λ ∈ R;

(iv) S ⊂ U implies α(S) ≤ α(U);

(v) α(S ∪ U) = max {α(S), α(U)};

(vi) α(S + U) ≤ α(S) + α(U), where S + U = {x | x = y + z, y ∈ S, z ∈ U};

(vii) If the map Q : D(Q) ⊂ E → X is Lipschitz continuous with constant k, then

α(Q(V )) ≤ kα(V ) for any bounded subset V ⊂ D(Q), where X is another Banach

space.

In this paper, we use α(·), αC(·) and αPC(·) to denote the Kuratowski measure of

noncompactness on the bounded set of E, C(J,E) and PC(J,E), respectively. For any

D ⊂ C(J,E) and t ∈ J , set D(t) = {u(t) | u ∈ D}, then D(t) ⊂ E. If D ⊂ C(J,E) is

bounded, then D(t) is bounded in E and α(D(t)) ≤ αC(D). For the details about the

definition and properties of the measure of noncompactness, we refer to the monographs by

Deimling [19], Banas and Goebel [7], Guo and Sun [27], Ayerbe, Domı́nguez and López [6].

The following lemmas about the measure of noncompactness are needed in our argu-

ment.

Lemma 2.7. [14, 33] Let E be a Banach space, and let D ⊂ E be bounded. Then there

exists a countable set D0 ⊂ D, such that

α(D) ≤ 2α(D0).

Lemma 2.8. [28] Let E be a Banach space, and let D = {un} ⊂ PC([b1, b2], E) be a

bounded and countable set for constants −∞ < b1 < b2 < +∞. Then α(D(t)) is Lebesgue

integrable on [b1, b2], and

α

({∫ b2

b1

un(t) dt
∣∣∣ n ∈ N

})
≤ 2

∫ b2

b1

α(D(t)) dt.

Lemma 2.9. [7, 27] Let E be a Banach space, and let D ⊂ C([b1, b2], E) be bounded and

equicontinuous for constants −∞ < b1 < b2 < +∞. Then α(D(t)) is continuous on

[b1, b2], and

αC(D) = max
t∈[b1,b2]

α(D(t)).

Definition 2.10. [39] Let E be a Banach space, and let S be a nonempty subset of E.

A continuous mapping Q : S → E is called to be strict α-set-contraction operator if there

exists a constant 0 ≤ β < 1, such that for every bounded set Ω ⊂ S

α(Q(Ω)) ≤ βα(Ω).



920 Pengyu Chen, Xuping Zhang and Yongxiang Li

Lemma 2.11. [25] Let P be a normal cone of the ordered Banach space E and v0, w0 ∈ E
with v0 ≤ w0. Suppose that Q : [v0, w0] → E is a nondecreasing strict α-set-contraction

operator such that v0 ≤ Qv0 and Qw0 ≤ w0. Then Q has a minimal fixed point u and a

maximal fixed point u in [v0, w0]; moreover,

vn → u and wn → u as n→∞,

where vn = Qvn−1 and wn = Qwn−1 (n = 1, 2, . . .) which satisfy

v0 ≤ v1 ≤ · · · ≤ vn ≤ · · · ≤ u ≤ u ≤ · · · ≤ wn ≤ · · · ≤ w1 ≤ w0.

3. Linear evolution equation with non-instantaneous impulses

In order to study the initial value problem of nonlinear evolution equations with non-

instantaneous impulses (1.1), in this section, we first consider the initial value problem of

linear evolution equation (LEE) with non-instantaneous impulses

(3.1)


u′(t) +Au(t) = h(t) t ∈

⋃p
k=0(sk, tk+1],

u(t) = ek(t) t ∈
⋃p
k=1(tk, sk],

u(0) = u0,

where h ∈ PC(J,E), ek : [tk, sk]→ E is continuous function for k = 1, 2, . . . , p, u0 ∈ E.

Theorem 3.1. Let E be a Banach space, A : D(A) ⊂ E → E be a closed linear operator

and −A generate a C0-semigroup T (t) (t ≥ 0) in E. Then for any h ∈ PC(J,E), ek ∈
C([tk, sk], E) for k = 1, 2, . . . , p and u0 ∈ E, LEE (3.1) has a unique mild solution u ∈
PC(J,E) given by

(3.2) u(t) =


T (t)u0 +

∫ t
0 T (t− s)h(s) ds t ∈ [0, t1],

ek(t) t ∈ (tk, sk], k = 1, 2, . . . , p,

T (t− sk)ek(sk) +
∫ t
sk
T (t− s)h(s) ds t ∈ (sk, tk+1], k = 1, 2, . . . , p.

Proof. Assume that u satisfies (3.1). If t ∈ [0, t1], by [38, Corollary 4.2.11] we know that

u can be uniquely expressed by

(3.3) u(t) = T (t)u(0) +

∫ t

0
T (t− s)h(s) ds.

If t ∈ (tk, sk], k = 1, 2, . . . , p, then it is easy to see that

(3.4) u(t) = ek(t).
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Especially,

(3.5) u(sk) = ek(sk), k = 1, 2, . . . , p.

If t ∈ (sk, tk+1], k = 1, 2, . . . , p, by again [38, Corollary 4.2.11] and (3.5) we know that

u(t) = T (t− sk)u(sk) +

∫ t

sk

T (t− s)h(s) ds

= T (t− sk)ek(sk) +

∫ t

sk

T (t− s)h(s) ds.

(3.6)

Now it is clear that (3.3), (3.4) and (3.6) imply (3.2).

Inversely, assume that u ∈ PC(J,E) satisfies (3.2), then we can verify directly that

the function u defined by (3.2) is a mild solution of LEE (3.1). This completes the proof

of Theorem 3.1.

By Theorem 3.1, we can easily obtain the following result.

Theorem 3.2. Let E be a Banach space, A : D(A) ⊂ E → E be a closed linear operator

and −A generate a C0-semigroup T (t) (t ≥ 0) in E. Then for any h ∈ PC(J,E) ∩
C1(J ′, E), u0 ∈ D(A), ek ∈ C([tk, sk], E) and ek(t) ∈ D(A) for every t ∈ (tk, sk], k =

1, 2, . . . , p, LEE (3.1) has a unique classical solution u ∈ PC(J,E)∩C1(J ′′, E)∩C(J ′, E1)

given by (3.2).

4. T (·) and gk are compact

In this section, we discuss the existence of mild solutions for IVP (1.1) under the situation

that T (t) (t ≥ 0) is a compact C0-semigroup and the non-instantaneous impulsive function

gk is compact in E for k = 1, 2, . . . , p.

Theorem 4.1. Let E be an ordered Banach space, whose positive cone P is normal,

A : D(A) ⊂ E → E be a closed linear operator and the positive C0-semigroup T (t) (t ≥ 0)

generated by −A be compact in E, gk ∈ C(E,E) be a compact operator for k = 1, 2, . . . , p,

f ∈ C([sk, tk+1] × E,E) for k = 0, 1, . . . , p. Assume that IVP (1.1) has a lower solution

v0 ∈ PC(J,E)∩C1(J ′′, E)∩C(J ′, E1) and an upper solution w0 ∈ PC(J,E)∩C1(J ′′, E)∩
C(J ′, E1) with v0 ≤ w0. Assume that

(Hf1) there exists a constant M > 0 such that

f(t, u2)− f(t, u1) ≥ −M(u2 − u1)

for any t ∈ [sk, tk+1] (k = 0, 1, . . . , p) and v0(t) ≤ u1 ≤ u2 ≤ w0(t);
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(Hg) the non-instantaneous impulsive function gk(u) is increasing on ordered interval

[v0, w0] for k = 1, 2, . . . , p.

Then IVP (1.1) has a minimal mild solution u and a maximal mild solution u between v0

and w0, which can be obtained by a monotone iterative procedure starting from v0 and w0,

respectively.

Proof. It is easy to see that IVP (1.1) is equivalent to the following initial value problem
u′(t) +Au(t) +Mu(t) = f(t, u(t)) +Mu(t) t ∈

⋃p
k=0(sk, tk+1],

u(t) = gk(u(t)) t ∈
⋃p
k=1(tk, sk],

u(0) = u0

for any constant M > 0. Therefore, define an operator F : [v0, w0]→ PC(J,E) by

(4.1)

(Fu)(t) =



S(t)u0 +
∫ t
0 S(t− s)[f(s, u(s)) +Mu(s)] ds t ∈ [0, t1],

gk(u(t)) t ∈ (tk, sk], k = 1, 2, . . . , p,

S(t− sk)gk(u(sk))

+
∫ t
sk
S(t− s)[f(s, u(s)) +Mu(s)] ds t ∈ (sk, tk+1], k = 1, 2, . . . , p,

where S(t) = e−MtT (t) (t ≥ 0) is the C0-semigroup generated by −(A + MI). Then it

is clear that F : [v0, w0]→ PC(J,E) is a continuous operator. By Theorem 3.1, the mild

solution of IVP (1.1) is equivalent to the fixed point of operator F defined by (4.1). Since

S(t) (t ≥ 0) is a positive C0-semigroup, combining this fact with the assumptions (Hf1)

and (Hg), it is easy to prove that F is an increasing operator in [v0, w0].

Next, we show that v0 ≤ Fv0 and Fw0 ≤ w0. Let h(t) = v′0(t) + Av0(t) + Mv0(t),

t ∈
⋃p
k=0(sk, tk+1]. From (2.2) we know that h ∈ PC(J,E) and h(t) ≤ f(t, v0(t))+Mv0(t)

for t ∈
⋃p
k=0(sk, tk+1]. Set ek(t) = v0(t) for t ∈ (tk, sk], k = 1, 2, . . . , p. Again from (2.2)

we know that ek(t) ≤ gk(v0(t)) for t ∈ (tk, sk], k = 1, 2, . . . , p. By the above facts,

Theorem 3.1 and Definition 2.1, we get that

v0(t) =



S(t)v0(0) +
∫ t
0 S(t− s)h(s) ds t ∈ [0, t1],

ek(t) t ∈ (tk, sk], k = 1, 2, . . . , p,

S(t− sk)ek(sk)

+
∫ t
sk
S(t− s)h(s) ds t ∈ (sk, tk+1], k = 1, 2, . . . , p

≤



S(t)u0 +
∫ t
0 S(t− s)[f(s, v0(s)) +Mv0(s)] ds t ∈ [0, t1],

gk(v0(t)) t ∈ (tk, sk], k = 1, 2, . . . , p,

S(t− sk)gk(v0(sk))

+
∫ t
sk
S(t− s)[f(s, v0(s)) +Mv0(s)] ds t ∈ (sk, tk+1], k = 1, 2, . . . , p

(4.2)



Iterative Method for a New Class of Evolution Equations with Non-instantaneous Impulses 923

= (Fv0)(t), t ∈ J.

(4.2) means that v0 ≤ Fv0. Similarly, it can be shown that Fw0 ≤ w0. Therefore,

F : [v0, w0]→ [v0, w0] is a continuously increasing operator.

Now, we define two sequences {vn} and {wn} in [v0, w0] by the iterative scheme

(4.3) vn = Fvn−1, wn = Fwn−1, n = 1, 2, . . . .

Then from the monotonicity of F it follows that

(4.4) v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ · · · ≤ wn ≤ · · · ≤ w2 ≤ w1 ≤ w0.

Next, we prove that {vn} and {wn} are convergent on J . For convenience, let B =

{vn | n ∈ N} and B0 = {vn−1 | n ∈ N}. Then B = F(B0). For any vn−1 ∈ B0, by the

assumption (Hf1), we get that for every t ∈
⋃p
k=0[sk, tk+1],

(4.5) f(t, v0(t)) +Mv0(t) ≤ f(t, vn−1(t)) +Mvn−1(t) ≤ f(t, w0(t)) +Mw0(t).

By the normality of the cone P and (4.5), we know that there exists a constant M1 > 0

such that

(4.6) ‖f(t, vn−1(t)) +Mvn−1(t)‖ ≤M1, t ∈
p⋃

k=0

[sk, tk+1], vn−1 ∈ B0.

For t ∈ (0, t1] and 0 < ε < t, the operator

(Fεvn−1)(t) = S(t)u0 +

∫ t−ε

0
S(t− s)[f(s, vn−1(s)) +Mvn−1(s)] ds

= S(ε)

{
S(t− ε)u0 +

∫ t−ε

0
S(t− s− ε)[f(s, vn−1(s)) +Mvn−1(s)] ds

}(4.7)

is precompact in E since S(t) is compact for t > 0. By (2.4), (4.1), (4.6) and (4.7), we get

that

‖(Fvn−1)(t)−Fεvn−1(t)‖ =

∫ t

t−ε
‖S(t− s)‖ · ‖f(s, vn−1(s)) +Mvn−1(s)‖ ds

≤ CM1ε.

(4.8)

(4.8) means that there exists precompact set {(Fεvn−1)(t) | vn−1 ∈ B0} sufficiently close to

the set {(Fvn−1)(t) | vn−1 ∈ B0} for every t ∈ (0, t1]. Above discussion combined with the

fact that {(Fvn−1)(0) = u0 | vn−1 ∈ B0} is precompact in E, we know that for t ∈ [0, t1],

{(Fvn−1)(t) | vn−1 ∈ B0} is precompact in E.

For t ∈
⋃p
k=1(tk, sk], the set {(Fvn−1)(t) | vn−1 ∈ B0} is precompact in E due to the

compactness of gk for k = 1, 2, . . . , p.
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For t ∈
⋃p
k=1(sk, tk+1] and 0 < ε < t− sk, k = 1, 2, . . . , p, the operator

(F εvn−1)(t)

= S(t− sk)gk(vn−1(sk)) +

∫ t−ε

sk

S(t− s)[f(s, vn−1(s)) +Mvn−1(s)] ds

= S(t− sk)gk(vn−1(sk)) + S(ε)

∫ t−ε

sk

S(t− s− ε)[f(s, vn−1(s)) +Mvn−1(s)] ds

is precompact in E since S(t) is compact for t > 0 and gk is compact for k = 1, 2, . . . , p.

Choose ε is small enough such that t, t − ε ∈ (sk, tk+1] for k = 1, 2, . . . , p, then we know

that

‖(Fvn−1)(t)−F εvn−1(t)‖ =

∫ t

t−ε
‖S(t− s)‖ · ‖f(s, vn−1(s)) +Mvn−1(s)‖ ds

≤ CM1ε.

(4.9)

(4.9) means that there exists precompact set {(F εvn−1)(t) | vn−1 ∈ B0} sufficiently close

to the set {(Fvn−1)(t) | vn−1 ∈ B0} for every t ∈ (sk, tk+1], k = 1, 2, . . . , p. Therefore,

we know that for all t ∈ (sk, tk+1], k = 1, 2, . . . , p, the set {(Fvn−1)(t) | vn−1 ∈ B0} is

precompact in E. Hence vn(t) is precompact in E for any t ∈ J , and therefore {vn(t)} has

a convergent subsequence. Combining this with the monotonicity (4.4), we can easily to

prove that {vn(t)} itself is convergent, i.e., limn→∞ vn(t) = u(t), t ∈ J . Similarly, we can

prove that limn→∞wn(t) = u(t), t ∈ J .

Obviously, {vn(t)} ⊂ PC(J,E), and u(t) is bounded integrable when t belongs to

[0, t1], (tk, sk] and (sk, tk+1] respectively for k = 1, 2, . . . , p. For any t ∈ J , we know from

(4.1) that

vn(t) = (Fvn−1)(t)

=


S(t)u0 +

∫ t

0
S(t− s)[f(s, vn−1(s)) +Mvn−1(s)] ds t ∈ [0, t1],

gk(vn−1(t)) t ∈ (tk, sk], k = 1, 2, . . . , p,

S(t− sk)gk(vn−1(sk))

+
∫ t

sk
S(t− s)[f(s, vn−1(s)) +Mvn−1(s)] ds t ∈ (sk, tk+1], k = 1, 2, . . . , p.

Letting n → ∞ in the above equality, by the Lebesgue dominated convergence theorem,

we know that u(t) = (Fu)(t) and u(t) ∈ PC(J,E). Similarly, we know that u(t) = (Fu)(t)

and u(t) ∈ PC(J,E). Combining this fact with monotonicity (4.4), we see that v0(t) ≤
u(t) ≤ u(t) ≤ w0(t), t ∈ J .

Next, we show that u and u are the minimal and maximal fixed points of the operator

F in [v0, w0], respectively. In fact, for any u ∈ [v0, w0] and Fu = u, we have v0 ≤ u ≤ w0,

and

v1 = Fv0 ≤ Fu = u ≤ Fw0 = w1.
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Continuing such a progress, we know vn ≤ u ≤ wn. Letting n→∞, we get that u ≤ u ≤ u.

Therefore, u and u are minimal and maximal mild solutions of IVP (1.1) in [v0, w0], and u

and u can be obtained by the iterative scheme (4.3) starting from v0 and w0, respectively.

This completes the proof of Theorem 4.1.

By the proof of Theorem 4.1, we can easily obtain the following result.

Corollary 4.2. Let E be an ordered Banach space, whose positive cone P is normal,

A : D(A) ⊂ E → E be a closed linear operator and the positive C0-semigroup T (t) (t ≥ 0)

generated by −A be compact in E, f ∈ C([sk, tk+1]×E,E) for k = 0, 1, . . . , p, gk ∈ C(E,E)

map a monotonic set into a precompact set for k = 1, 2, . . . , p. Assume that IVP (1.1)

has a lower solution v0 ∈ PC(J,E) ∩ C1(J ′′, E) ∩ C(J ′, E1) and an upper solution w0 ∈
PC(J,E)∩C1(J ′′, E)∩C(J ′, E1) with v0 ≤ w0, and the assumptions (Hf1) and (Hg) hold,

then IVP (1.1) has a minimal mild solution u and a maximal mild solution u between v0

and w0, which can be obtained by a monotone iterative procedure starting from v0 and w0,

respectively.

We can also prove the following existence result.

Theorem 4.3. Let E be an ordered Banach space, whose positive cone P is normal,

A : D(A) ⊂ E → E be a closed linear operator and the positive C0-semigroup T (t) (t ≥ 0)

generated by −A be compact in E, gk ∈ C(E,E) be a compact operator for k = 1, 2, . . . , p,

f ∈ C([sk, tk+1] × E,E) for k = 0, 1, . . . , p. Assume that IVP (1.1) has a lower solution

v0 ∈ PC(J,E)∩C1(J ′′, E)∩C(J ′, E1) and an upper solution w0 ∈ PC(J,E)∩C1(J ′′, E)∩
C(J ′, E1) with v0 ≤ w0, and the assumptions (Hf1) and (Hg) hold, then IVP (1.1) has at

least one mild solution in ordered interval [v0, w0].

Proof. By the proof of Theorem 4.1, we know that F defined by (4.1) is a continuous

mapping from [v0, w0] to [v0, w0]. Therefore, to be able to apply Schauder’s fixed point

theorem to obtain a fixed point and hence a mild solution, we need to prove that F is a

completely continuous operator.

For this purpose, let

Π1 = {(Fu)(·) | · ∈ [0, t1], u ∈ [v0, w0]} .

We first prove that Π1 is precompact in C([0, t1], E). For t ∈ [0, t1], the set {S(t)u0 | u0 ∈
E} is precompact in E since the semigroup T (t) (t ≥ 0) is compact and therefore S(t)

(t ≥ 0) is also compact for every t > 0. For t ∈ (0, t1] and 0 < ε < t, the set{∫ t−ε

0
S(t− s)[f(s, u(s)) +Mu(s)] ds

∣∣∣ u ∈ [v0, w0]

}
=

{
S(ε)

∫ t−ε

0
S(t− s− ε)[f(s, u(s)) +Mu(s)] ds

∣∣∣ u ∈ [v0, w0]

}(4.10)
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is precompact in E since S(t) is compact for t > 0. Furthermore, by the continuity of the

nonlinear function f , we know that for every u ∈ [v0, w0],∫ t−ε

0
S(t− s)[f(s, u(s)) +Mu(s)] ds

→
∫ t

0
S(t− s)[f(s, u(s)) +Mu(s)] ds as ε→ 0.

(4.11)

By (4.10), (4.11) and total boundedness, we get that the set{∫ t

0
S(t− s)[f(s, u(s)) +Mu(s)] ds

∣∣∣ u ∈ [v0, w0]

}
is precompact in E. Therefore, for each t ∈ [0, t1], Π1(t) is precompact in E.

Next, we show the equicontinuity of Π1. For any u ∈ [v0, w0] and t ∈ [0, t1], by the

assumption (Hf1), we know that

f(t, v0(t)) +Mv0(t) ≤ f(t, u(t)) +Mu(t) ≤ f(t, w0(t)) +Mw0(t).

By the normality of the cone P , there exists M2 > 0 such that

‖f(t, u(t)) +Mu(t)‖ ≤M2, t ∈ [0, t1], u ∈ [v0, w0].

For 0 ≤ t′ < t′′ ≤ t1 and any u ∈ [v0, w0], we have∥∥(Fu)(t′′)− (Fu)(t′)
∥∥

=

∥∥∥∥∥S(t′′)u0 − S(t′)u0 +

∫ t′

0
[S(t′′ − s)− S(t′ − s)] · [f(s, u(s)) +Mu(s)] ds

+

∫ t′′

t′
S(t′′ − s)[f(s, u(s)) +Mu(s)] ds

∥∥∥∥∥
≤ C

∥∥S(t′′ − t′)u0 − u0
∥∥+M2

∫ t′

0

∥∥S(t′′ − s)− S(t′ − s)
∥∥ ds+ CM2(t

′′ − t′)

≤ C
∥∥S(t′′ − t′)u0 − u0

∥∥+M2

∫ t′

0

∥∥S(t′′ − t′ + s)− S(s)
∥∥ ds+ CM2(t

′′ − t′).

Since the semigroup S(t) (t ≥ 0) is strongly continuous for t ≥ 0 and is continuous in the

uniform operator topology for t > 0, then it is easy to see that ‖(Fu)(t′′)− (Fu)(t′)‖ tends

to zero independently of u ∈ [v0, w0] as t′′ − t′ → 0, which means that the functions in Π1

are equicontinuous. Therefore, by the Arzela-Ascoli theorem one can easily to justify that

Π1 is precompact in C([0, t1], E).

Secondly, we prove that

Π2 = {(Fu)(·) | · ∈ [s1, t2], u ∈ [v0, w0]}
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is precompact in C([s1, t2], E). By the assumptions we know that the semigroup S(t)

(t ≥ 0) is compact for every t > 0 and gk is compact for k = 1, 2, . . . , p. Therefore, for

each t ∈ [s1, t2], the set

{S(t− s1)g1(u(s1)) | u ∈ [v0, w0]}

is precompact in E. Using a completely similar method to the one we used to prove the

precompactness of the set{∫ t

0
S(t− s)[f(s, u(s)) +Mu(s)] ds

∣∣∣ u ∈ [v0, w0]

}
in E for t ∈ (0, t1], we can prove for each t ∈ (s1, t2], the set{∫ t

s1

S(t− s)[f(s, u(s)) +Mu(s)] ds
∣∣∣ u ∈ [v0, w0]

}
is precompact in E. Therefore, for each t ∈ [s1, t2], Π2(t) is precompact in E.

In the following, we prove the equicontinuity of Π2. For s1 ≤ t′ < t′′ ≤ t2 and any

u ∈ [v0, w0], we get that ∥∥S(t′′ − s1)g1(u(s1))− S(t′ − s1)g1(u(s1))
∥∥

=
∥∥S(t′ − s1)[S(t′′ − t′)− S(0)]g1(u(s1))

∥∥
≤ C

∥∥[S(t′′ − t′)− S(0)]g1(u(s1))
∥∥ .(4.12)

By the compactness of g1, the strong continuity of the operator S(t) for t > 0 and (4.12),

we know that the functions in

{S( · − s1)g1(u(s1)) | · ∈ [s1, t2], u ∈ [v0, w0]}

are equicontinuous. Using a completely similar method to the one we used to prove the

equicontinuity of the functions in the set{∫ ·
0
S( · − s)[f(s, u(s)) +Mu(s)] ds

∣∣∣ · ∈ [0, t1], u ∈ [v0, w0]

}
one can easily to prove that the functions in{∫ ·

s1

S( · − s)[f(s, u(s)) +Mu(s)] ds
∣∣∣ · ∈ [s1, t2], u ∈ [v0, w0]

}
are equicontinuous. Thus we have proved that the functions in Π2 are equicontinuous.

Therefore, by the Arzela-Ascoli theorem one can easily to justify that Π2 is precompact in

C([s1, t2], E). As the cases for interval [sk, tk+1], k = 2, 3, . . . , p, the proofs are the same.

For interval [tk, sk], k = 1, 2, . . . , p, by the compactness of gk for k = 1, 2, . . . , p, we

know that

{gk(u(·)) | · ∈ [tk, sk], u ∈ [v0, w0], k = 1, 2, . . . , p}
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is precompact in C([tk, sk], E) for k = 1, 2, . . . , p. Hence, we have proved that F is a

compact operator, and therefore a completely continuous operator. Hence, the famous

Schauder’s fixed point theorem implies that F has at least one fixed point, which gives

rise to a mild solution of IVP (1.1). This completes the proof of Theorem 4.3.

Remark 4.4. In Theorem 4.1, we obtained the existence of two mild solutions (minimal

mild solution and a maximal mild solution) by using the iterative method. In Theorem 4.3,

we obtained the existence of at least one mild solution by utilizing Schauder’s fixed point

theorem. The results as well as the proof method in these two theorems are all different.

5. T (·) is not compact, gk is compact

In this section, we discuss the existence of minimal and maximal mild solutions for

IVP (1.1) under the situation that −A only generate a positive C0-semigroup T (t) (t ≥ 0)

in E and the non-instantaneous impulsive function gk is compact in E for k = 1, 2, . . . , p.

Theorem 5.1. Let E be an ordered Banach space, whose positive cone P is normal,

A : D(A) ⊂ E → E be a closed linear operator and −A generate a positive C0-semigroup

T (t) (t ≥ 0) in E, gk ∈ C(E,E) be a compact operator for k = 1, 2, . . . , p, f ∈ C([sk, tk+1]×
E,E) for k = 0, 1, . . . , p. Assume that IVP (1.1) has a lower solution v0 ∈ PC(J,E) ∩
C1(J ′′, E)∩C(J ′, E1) and an upper solution w0 ∈ PC(J,E)∩C1(J ′′, E)∩C(J ′, E1) with

v0 ≤ w0. If the assumptions (Hf1), (Hg) and the following assumption

(Hf2) there exists a constant L > 0 such that

α({f(t, un)}) ≤ Lα({un}), ∀ t ∈
p⋃

k=0

(sk, tk+1],

where {un} ⊂ [v0(t), w0(t)] is countable and increasing or decreasing monotonic set,

hold, then IVP (1.1) has a minimal mild solution u and a maximal mild solution u between

v0 and w0, which can be obtained by a monotone iterative procedure starting from v0 and

w0, respectively.

Proof. By the proof of Theorem 4.1, we know that F defined by (4.1) maps [v0, w0] to

[v0, w0] is continuous and monotone increasing. Moreover, the sequences {vn} and {wn}
defined by (4.3) satisfying (4.4). Next, we use a different method with which used in

Theorem 4.1 to prove that {vn} and {wn} are convergent on J . For convenience, let

B = {vn | n ∈ N} and B0 = {vn−1 | n ∈ N}. Then B = F(B0). From B0 = B ∪ {v0} it

follows that α(B0(t)) = α(B(t)) for t ∈ J . Let ϕ(t) = α(B(t)), here we prove interval by

interval that ϕ(t) ≡ 0 on J .
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For t ∈ [0, t1], by (4.1), (4.3) and Lemma 2.8, we get that

ϕ(t) = α(B(t)) = α(F(B0)(t))

= α

({
S(t)u0 +

∫ t

0
S(t− s)[f(s, vn−1(s)) +Mvn−1(s)] ds

})
≤ 2C

∫ t

0
α({f(s, vn−1(s)) +Mvn−1(s)}) ds

≤ 2C

∫ t

0
[L(α(B0(s)) +Mα(B0(s))] ds

≤ 2C(L+M)

∫ t

0
ϕ(s) ds.

(5.1)

(5.1) and Bellman-Gronwall’s inequality implies that ϕ(t) ≡ 0 on [0, t1]. For t ∈ (t1, s1],

from the compactness of g1 one can easily to get that ϕ(t) = α({g1(vn−1(t))}) ≡ 0 on

(t1, s1]. For t ∈ (s1, t2], by (4.1), (4.3), Lemma 2.8 and compactness of the function g1,

we know that

ϕ(t) = α(B(t)) = α(F(B0)(t))

= α

({
S(t− s1)g1(vn−1(s1)) +

∫ t

s1

S(t− s)[f(s, vn−1(s)) +Mvn−1(s)] ds

})
≤ 2C

∫ t

0
α({f(s, vn−1(s)) +Mvn−1(s)}) ds

≤ 2C

∫ t

0
[L(α(B0(s)) +Mα(B0(s))] ds

≤ 2C(L+M)

∫ t

0
ϕ(s) ds.

(5.2)

(5.2) and Bellman-Gronwall’s inequality implies that ϕ(t) ≡ 0 on (s1, t2]. Continuing such

a process interval by interval for k = 2, 3, . . . , p, we can prove that ϕ(t) ≡ 0 for every

t ∈ J . Therefore, vn(t) is precompact in E for each t ∈ J , and therefore {vn(t)} has a

convergent subsequence. Combining this with the monotonicity (4.4), we can easily to

prove that {vn(t)} itself is convergent, i.e., limn→∞ vn(t) = u(t), t ∈ J . Similarly, we can

prove that limn→∞wn(t) = u(t), t ∈ J . Using a completely similar method to the one we

used to prove Theorem 4.1 we can easily to prove that u and u are minimal and maximal

mild solutions of IVP (1.1) in [v0, w0], and u and u can be obtained by the iterative scheme

(4.3) starting from v0 and w0, respectively. This completes the proof of Theorem 5.1.

By the proof of Theorem 5.1, we can easily obtain the following result.

Corollary 5.2. Let E be an ordered Banach space, whose positive cone P is normal,

A : D(A) ⊂ E → E be a closed linear operator and −A generate a positive C0-semigroup

T (t) (t ≥ 0) in E, f ∈ C([sk, tk+1] × E,E) for k = 0, 1, . . . , p, gk ∈ C(E,E) map a
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monotonic set into a precompact set for k = 1, 2, . . . , p. Assume that IVP (1.1) has

a lower solution v0 ∈ PC(J,E) ∩ C1(J ′′, E) ∩ C(J ′, E1) and an upper solution w0 ∈
PC(J,E) ∩ C1(J ′′, E) ∩ C(J ′, E1) with v0 ≤ w0, and the assumptions (Hf1), (Hf2) and

(Hg) hold, then IVP (1.1) has a minimal mild solution u and a maximal mild solution u

between v0 and w0, which can be obtained by a monotone iterative procedure starting from

v0 and w0, respectively.

6. T (·) and gk are not compact

In this section, we first discuss the existence of extremal mild solutions for IVP (1.1) under

the situation that the semigroup T (t) (t ≥ 0) generated by −A is a positive C0-semigroup

in Banach space E and the non-instantaneous impulsive function gk is only continuous for

k = 1, 2, . . . , p.

Theorem 6.1. Let E be an ordered and weakly sequentially complete Banach space, whose

positive cone P is normal, A : D(A) ⊂ E → E be a closed linear operator and −A generate

a positive C0-semigroup T (t) (t ≥ 0) in E, gk ∈ C(E,E) for k = 1, 2, . . . , p and f ∈
C([sk, tk+1] × E,E) for k = 0, 1, . . . , p. Assume that IVP (1.1) has a lower solution

v0 ∈ PC(J,E)∩C1(J ′′, E)∩C(J ′, E1) and an upper solution w0 ∈ PC(J,E)∩C1(J ′′, E)∩
C(J ′, E1) with v0 ≤ w0, and the assumptions (Hf1) and (Hg) hold, then IVP (1.1) has a

minimal mild solution u and a maximal mild solution u between v0 and w0, which can be

obtained by a monotone iterative procedure starting from v0 and w0, respectively.

Proof. From the proof of Theorem 4.1, we know that the operator F defined by (4.1) maps

[v0, w0] to [v0, w0] is continuous and monotone increasing. Furthermore, if the conditions

(Hf1) and (Hg) are satisfied, then the sequences {vn} and {wn} defined by (4.3) satisfying

(4.4). Therefore, for any t ∈ J , {vn(t)} and {wn(t)} are monotone and order-bounded

sequences in E. Noticing that E is a weakly sequentially complete Banach space, by

Theorem 2.2 in [20], we know that {vn(t)} and {wn(t)} are precompact in E. Combining

this fact with the monotonicity (4.4), it follows that {vn(t)} and {wn(t)} are convergent

in E. Similar with the proof of Theorem 4.1, we know that IVP (1.1) has a minimal mild

solution u and a maximal mild solution u between v0 and w0, which can be obtained by

the iterative scheme (4.3) starting from v0 and w0, respectively. This completes the proof

of Theorem 6.1.

Remark 6.2. In the application of differential equations, such as the Hilbert space, reflexive

space and L1 space, these spaces are all weakly sequentially complete spaces. Therefore,

it is interesting to discuss the existence of solutions for differential equations in weakly

sequentially complete space.
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Similarly, in a general ordered Banach space, whose positive cone is regular, we have

the following result.

Theorem 6.3. Let E be an ordered Banach space, whose positive cone P is regular,

A : D(A) ⊂ E → E be a closed linear operator and −A generate a positive C0-semigroup

T (t) (t ≥ 0) in E, gk ∈ C(E,E) for k = 1, 2, . . . , p and f ∈ C([sk, tk+1] × E,E) for

k = 0, 1, . . . , p. Assume that IVP (1.1) has a lower solution v0 ∈ PC(J,E) ∩C1(J ′′, E) ∩
C(J ′, E1) and an upper solution w0 ∈ PC(J,E) ∩ C1(J ′′, E) ∩ C(J ′, E1) with v0 ≤ w0,

and the assumptions (Hf1) and (Hg) hold, then IVP (1.1) has a minimal mild solution u

and a maximal mild solution u between v0 and w0, which can be obtained by a monotone

iterative procedure starting from v0 and w0, respectively.

Next, we discuss the existence of extremal mild solutions for IVP (1.1) under the

situation that the positive C0-semigroup T (t) (t ≥ 0) generated by −A is equicontinuous

and the non-instantaneous impulsive function gk is Lipschitz continuous in E for k =

1, 2, . . . , p.

Theorem 6.4. Let E be an ordered Banach space, whose positive cone P is normal,

A : D(A) ⊂ E → E be a closed linear operator and −A generate a positive and equicon-

tinuous C0-semigroup T (t) (t ≥ 0) in E, gk ∈ C(E,E) for k = 1, 2, . . . , p and f ∈
C([sk, tk+1] × E,E) for k = 0, 1, . . . , p. Assume that IVP (1.1) has a lower solution

v0 ∈ PC(J,E)∩C1(J ′′, E)∩C(J ′, E1) and an upper solution w0 ∈ PC(J,E)∩C1(J ′′, E)

∩ C(J ′, E1) with v0 ≤ w0. If the assumptions (Hf1), (Hg) and the following assumption

(Hfg) there exist positive constants L and Lk (k = 1, 2, . . . , p) satisfying 4aC(L + M) +

C
∑p

k=1 Lk < 1 such that

‖gk(u(t))− gk(v(t))‖ ≤ Lk ‖u(t)− v(t)‖ , t ∈
p⋃

k=1

(tk, sk], u(t), v(t) ∈ E

and

α({f(t, un)}) ≤ Lα({un}), ∀ t ∈
p⋃

k=0

(sk, tk+1],

where {un} ⊂ [v0(t), w0(t)] is countable and increasing or decreasing monotonic set,

hold, then IVP (1.1) has a minimal mild solution u and a maximal mild solution u in

[v0, w0]; moreover,

vn(t)→ u(t), wn(t)→ u(t), (n→ +∞) uniformly for t ∈ J,

where vn(t) = (Fvn−1)(t) and wn(t) = (Fwn−1)(t), which satisfy

v0(t) ≤ v1(t) ≤ · · · ≤ vn(t) ≤ · · · ≤ u(t) ≤ u(t) ≤ · · ·

≤ wn(t) ≤ · · · ≤ w1(t) ≤ w0(t), ∀ t ∈ J.
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Proof. From the proof of Theorem 4.1, we know that F defined by (4.1) maps [v0, w0]

to [v0, w0] is continuous and monotone increasing. Next, we prove that the operator

F : [v0, w0]→ [v0, w0] is strict α-set-contraction. For this purpose, we denote by

(6.1) (F1u)(t) =

gk(u(t)) t ∈ (tk, sk], k = 1, 2, . . . , p,

S(t− sk)gk(u(sk)) t ∈ (sk, tk+1], k = 1, 2, . . . , p

and

(F2u)(t) =

S(t)u0 +
∫ t
0 S(t− s)[f(s, u(s)) +Mu(s)] ds t ∈ [0, t1],∫ t

sk
S(t− s)[f(s, u(s)) +Mu(s)] ds t ∈ (sk, tk+1], k = 1, 2, . . . , p.

Then it is easy to see that

(Fu)(t) = (F1u)(t) + (F2u)(t).

In what follows, we prove that the operator F1 : [v0, w0]→ [v0, w0] is Lipschitz continu-

ous. For t ∈ (tk, sk], k = 1, 2, . . . , p, and u, v ∈ [v0, w0], by (6.1) and the assumption (Hfg),

we get that

(6.2) ‖(F1u)(t)− (F1v)(t)‖ ≤ Lk ‖u(t)− v(t)‖ ≤ Lk ‖u− v‖PC .

For t ∈ (sk, tk+1], k = 1, 2, . . . , p and u, v ∈ [v0, w0], by (6.1), (2.4) and the assump-

tion (Hfg), we know that

(6.3) ‖(F1u)(t)− (F1v)(t)‖ ≤ CLk ‖u(sk)− v(sk)‖ ≤ CLk ‖u− v‖PC .

From (6.2), (6.3), (2.1) and (2.4), we get that

(6.4) ‖F1u−F1v‖PC ≤ C
p∑

k=1

Lk ‖u− v‖PC .

Therefore, by Lemma 2.6(vii) and (6.4) we know that for any bounded set D ⊂ [v0, w0],

(6.5) α(F1(D))PC ≤ C
p∑

k=1

Lkα(D)PC .

Next, we make estimate for the measure of noncompactness to operator F2. By the

proof of Theorem 4.3, one can easily to prove that the operator F2 : [v0, w0] → [v0, w0]

is equicontinuous. Therefore, for any bounded set D ⊂ [v0, w0], F2(D) is bounded and

equicontinuous. Hence, by Lemma 2.7, there exists a countable set D0 = {un} ⊂ D, such

that

(6.6) αPC(F2(D)) ≤ 2αPC(F2(D0)).
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For every t ∈ [0, t1], by assumption (Hfg) and Lemma 2.8, we get that

α(F2(D0)(t)) = α

(
S(t)u0 +

∫ t

0
S(t− s)[f(s, un(s)) +Mun(s)] ds

)
≤ 2

∫ t

0
‖S(t− s)‖α(f(s,D0(s)) +MD0(s)) ds

≤ 2C

∫ t

0
(L+M)α(D0(s)) ds

≤ 2aC(L+M)αPC(D).

(6.7)

For every t ∈ (sk, tk+1], k = 1, 2, . . . , p, by the assumption (Hfg) and Lemma 2.8, we know

that

α(F2(D0)(t)) = α

(∫ t

sk

S(t− s)[f(s, un(s)) +Mun(s)] ds

)
≤ 2C

∫ t

sk

α(f(s,D0(s)) +MD0(s)) ds

≤ 2C

∫ t

sk

(L+M)α(D0(s)) ds

≤ 2aC(L+M)αPC(D).

(6.8)

Therefore, from (6.7) and (6.8) we know that for every t ∈
⋃p
k=0(sk, tk+1],

(6.9) α(F2(D0)(t)) ≤ 2aC(L+M)αPC(D).

We modify the value of un at tk via un(tk) = un(t+k ) for k = 1, 2, . . . , p and n ∈ N, thus the

set {un} is continuous on interval [sk, tk+1] for k = 0, 1, . . . , p and n ∈ N. Since F2(D0) is

equicontinuous, by Lemma 2.9, we know that

(6.10) αPC(F2(D0)) = max
t∈[sk,tk+1]
k=0,1,...,p

α(F2(D0)(t)).

Combining (6.10) with (6.9) and (6.6) we get that

(6.11) αPC(F2(D)) ≤ 4aC(L+M)α(D)PC .

Therefore, from (6.5), (6.11), Lemma 2.6(vi) and the assumption (Hfg) we get that

α(F(D))PC ≤ α(F1(D))PC + α(F2(D))PC ≤ γα(D)PC ,

where

γ = 4aC(L+M) + C

p∑
k=1

Lk < 1.

Hence, by Definition 2.10 we know that F : [v0, w0]→ [v0, w0] is a strict α-set-contraction

operator. Therefore, our conclusion follows from Lemma 2.11. This completes the proof

of Theorem 6.4.
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Remark 6.5. Analytic semigroup and differentiable semigroup are equicontinuous semi-

group [38, 42]. In the application of partial differential equations, such as parabolic and

strongly damped wave equations, the corresponding solution semigroups are analytic semi-

groups. Therefore, Theorem 6.4 in this paper are convenient to applications.

7. Applications

In this section, we will give two examples to indicate how our abstract results can be

applied to concrete problems.

Example 7.1. Let N ≥ 1 be a integer, Ω ⊂ RN be a bounded domain with a sufficiently

smooth boundary ∂Ω. Consider the following initial boundary value problem of parabolic

partial differential equation with non-instantaneous impulses

(7.1)



∂
∂tu(x, t)−∆u(x, t) = f(x, t, u(x, t)) x ∈ Ω, t ∈ (0, 1] ∪ (2, 3],

u(x, t) =
∫ t
1 K(s) ln(1 + |u(x, s)|) ds x ∈ Ω, t ∈ (1, 2],

u(x, t) = 0 x ∈ ∂Ω, t ∈ [0, 3],

u(x, 0) = ϕ(x) x ∈ Ω,

where ∆ is the Laplace operator, f : Ω × (0, 1] ∪ (2, 3] × R → R is continuous, K(·) ∈
L((1, 2],R+), ϕ ∈ C(Ω,R).

Let E = C(Ω,R), P =
{
u ∈ C(Ω,R) | u(x) ≥ 0,∀x ∈ Ω

}
. Then E is a Banach space

and P is a normal cone of E. Consider the operator A : D(A) ⊂ E → E defined by

Au = −∆u

with the domain

D(A) =

u ∈ ⋂
q≥1

W 2,q(Ω)
∣∣∣ u,∆u ∈ E, ∂u

∂n
= 0

 ,

where n is the outer unit normal on ∂Ω. By [37, Corollary 3.1.24] we know that −A gener-

ates a positive and compact C0-semigroup T (t) (t ≥ 0) in E. Let a = t2 = 3, s0 = 0, t1 = 1,

s1 = 2, u(t) = u(· , t), f(t, u(t)) = f(· , t, u(· , t)), g1(u(t)) =
∫ t
1 K(s) ln(1 + |u(· , s)|) ds,

u0 = ϕ(·), then the parabolic partial differential equation with non-instantaneous im-

pulses (7.1) can be rewritten into the abstract form of IVP (1.1) in C(Ω,R)
u′(t) +Au(t) = f(t, u(t)) t ∈ (0, 1] ∪ (2, 3],

u(t) = g1(u(t)) t ∈ (1, 2],

u(0) = u0.

From [35] we know that g1 : E → E is a compact operator.
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Theorem 7.2. Let λ1 be the first eigenvalue of operator −∆ under zero boundary condi-

tions and ϕ1(x) be the corresponding positive eigenvector. If f(x, t, 0) ≥ 0, f(x, t, ϕ1(x)) ≤
λ1ϕ1(x) and the partial derivative of f(x, t, u) on u is continuous on any bounded domain,

then the parabolic partial differential equation with non-instantaneous impulses (7.1) has

minimal and maximal mild solutions between 0 and ϕ1, which can be obtained by a mono-

tone iterative procedure starting from 0 and ϕ1, respectively.

Proof. It is easy to see that v0(t) ≡ 0 and w0(t) = ϕ1(x) are lower and upper solu-

tions of the parabolic partial differential equation with non-instantaneous impulses (7.1),

respectively. From the above assumptions on nonlinear term f and the definitions of non-

instantaneous impulsive function g1, we can easily verify that the assumptions (Hf1) and

(Hg) are satisfied. Therefore, our conclusion follows from Theorem 4.1. This completes

the proof of Theorem 7.2.

Remark 7.3. Theorem 7.2 give a new method, which called eigenvalue method, to seeking

the lower and upper solutions for the concrete parabolic partial differential equations.

Example 7.4. Consider the following parabolic partial differential equation with non-

instantaneous impulses of the form

(7.2)



∂
∂tu(x, t) +Au(x, t) = f(x, t, u(x, t)) x ∈ Ω, t ∈

⋃p
k=0(sk, tk+1],

u(x, t) = gk(u(x, t)) x ∈ Ω, t ∈
⋃p
k=1(tk, sk],

Bu(x, t) = 0 x ∈ ∂Ω, t ∈ J,

u(x, 0) = φ(x) x ∈ Ω,

where J = [0, a], a > 0 is a constant, p ∈ Z+, 0 < t1 < t2 < · · · < tp < tp+1 := a, s0 := 0

and sk ∈ (tk, tk+1) for each k = 1, 2, . . . , p, J ′ = J \{t1, t2, . . . , tp}, integer N ≥ 1, Ω ⊂ RN

is a bounded domain, whose boundary ∂Ω is an (N − 1)-dimensional C2+µ-manifold for

some 0 < µ < 1,

Au := −
N∑
i=1

N∑
j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+ a0(x)u

is a uniformly elliptic differential operator on Ω with the coefficients aij ∈ C1+µ(Ω) (i, j =

1, 2, . . . , N) and a0 ∈ Cµ(Ω) for some µ ∈ (0, 1), a0(x) ≥ 0 on Ω. That is, [aij(x)]N×N is

a positive definite symmetric matrix for every x ∈ Ω and there exists a constant µ0 > 0

such that

N∑
i=1

N∑
j=1

aij(x)ηiηj ≥ µ0 |η|2 , ∀ η = (η1, η2, . . . , ηN ) ∈ RN , x ∈ Ω;

Bu := δ
N∑
i=1

N∑
j=1

aij(x) cos(ν, xi)
∂u

∂xj
+ (1− δ)u
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is a boundary operator on ∂Ω, where ν is an outer unit normal on ∂Ω, δ = 0 or 1;

φ ∈ Lκ(Ω) with κ > N + 2.

Let E = Lκ(Ω) with κ > N + 2, P = {u ∈ Lκ(Ω) | u(x) ≥ 0 a.e. x ∈ Ω}. Then E is a

Banach space equipped with the Lκ-norm ‖ · ‖κ and P is a regular cone of E. Consider

the operator A : D(A) ⊂ E → E defined by

D(A) =
{
u ∈W 2,κ(Ω) | Bu = 0

}
, Au = Au.

It is well known from [5] that −A generates a positive and analytic C0-semigroup T (t)

(t ≥ 0) in E.

Set u(t) = u(· , t), f(t, u(t)) = f(· , t, u(· , t)), gk(u(t)) = gk(u(· , t)) for k = 1, 2, . . . , p,

u0 = φ(·). Then the parabolic partial differential equation with non-instantaneous im-

pulses (7.2) can be rewritten into the abstract form of IVP 1.1 in Lκ(Ω) as follows:

(7.3)


u′(t) +Au(t) = f(t, u(t)) t ∈

⋃p
k=0(sk, tk+1],

u(t) = gk(u(t)) t ∈
⋃p
k=1(tk, sk],

u(0) = u0.

In order to obtain the existence of solutions for the parabolic partial differential

equation with non-instantaneous impulses (7.2), we should suppose that f and gk (k =

1, 2, . . . , p) satisfy the following assumptions:

(A1) There exist M > 0, h ∈ PC(Ω×J)∩C0,1(Ω×J ′), h(x, t) ≥ 0, φ ∈W 2,κ(Ω), Bφ = 0,

φ(x) ≥ 0, ek(t) ∈ W 2,κ(Ω), Bek(t) = 0 and ek(x, t) ≥ 0 for every t ∈
⋃p
k=1(tk, sk],

such that for any u ∈ PC(Ω× J) satisfying u(x, t) ≥ 0,

f(x, t,−u) ≥ −Mu− h(x, t), f(x, t, u) ≤Mu+ h(x, t), x ∈ Ω, t ∈
p⋃

k=0

(sk, tk+1],

−ek(x, t) ≤ gk(−u(x, t)), gk(u(x, t)) ≤ ek(x, t), x ∈ Ω, t ∈
p⋃

k=1

(tk, sk];

(A2) The partial derivative f ′u(x, t, u) is continuous on any bounded domain;

(A3) For u1(x, t) and u2(x, t) in any bounded and ordered interval of PC(Ω × J) with

u1(x, t) ≤ u2(x, t), such that for any x ∈ Ω and t ∈
⋃p
k=1(tk, sk],

gk(u1(x, t)) ≤ gk(u2(x, t)), k = 1, 2, . . . , p.

Theorem 7.5. If the assumptions (A1)–(A3) are satisfied, then the parabolic partial dif-

ferential equation with non-instantaneous impulses (7.2) has minimal and maximal mild

solutions, which can be obtained by a monotone iterative procedure.
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Proof. We first consider the following linear parabolic partial differential equation with

non-instantaneous impulses

(7.4)



∂
∂tu(x, t) +Au(x, t)−Mu(x, t) = h(x, t) x ∈ Ω, t ∈

⋃p
k=0(sk, tk+1],

u(x, t) = ek(x, t) x ∈ Ω, t ∈
⋃p
k=1(tk, sk],

Bu(x, t) = 0 x ∈ ∂Ω, t ∈ J,

u(x, 0) = φ(x) x ∈ Ω,

where M > 0 is a constant will be given later. From the above discussion, linear parabolic

partial differential equation with non-instantaneous impulses (7.4) can be transformed

into the following linear initial value problem (LIVP) of evolution equation with non-

instantaneous impulses of the form

(7.5)


u′(t) +Au(t)−Mu(t) = h(t) t ∈

⋃p
k=0(sk, tk+1],

u(t) = ek(t) t ∈
⋃p
k=1(tk, sk],

u(0) = u0

in the space Lκ(Ω), where h(t) = h(· , t), ek(t) = ek(· , t) for k = 1, 2, . . . , p. Since −(A −
MI) generates a positive C0-semigroup S(t) = eMtT (t) (t ≥ 0) on E, by Theorem 3.2 we

know that LIVP (7.5) has a unique positive classical solution u ∈ PC(J,E)∩C1(J ′′, E)∩
C(J ′, E1). Denote by v0 = −u and w0 = u, then from the assumption (A1) we know that

v′0(t) +Av0(t) = Mv0(t)− h(t) ≤ f(t, v0(t)) t ∈
⋃p
k=0(sk, tk+1],

v0(t) = −ek(t) ≤ gk(v0(t)) t ∈
⋃p
k=1(tk, sk],

v0(0) = −u0 ≤ u0

and 
w′0(t) +Aw0(t) = Mw0(t) + h(t) ≥ f(t, w0(t)) t ∈

⋃p
k=0(sk, tk+1],

w0(t) = ek(t) ≥ gk(w0(t)) t ∈
⋃p
k=1(tk, sk],

w0(0) = u0 ≥ u0,

which means that v0 and w0 are lower solution and upper solution of IVP (7.3) respectively,

and v0 ≤ w0. From the assumption (A2), we know that there exists a constant M > 0,

such that for any u(x, t) ∈ [−u(x, t), u(x, t)],

(7.6)
∣∣f ′u(x, t, u(x, t))

∣∣ ≤M, x ∈ Ω, t ∈
p⋃

k=0

(sk, tk+1].

From (7.6) we get that for any −u(x, t) ≤ u1(x, t) ≤ u2(x, t) ≤ u(x, t) there exists ξ(x, t) ∈
(u1(x, t), u2(x, t)) such that

|f(x, t, u2(x, t))− f(x, t, u1(x, t))| =
∣∣f ′u(x, t, ξ(x, t))(u2(x, t)− u1(x, t))

∣∣
≤M(u2(x, t)− u1(x, t)).

(7.7)
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(7.7) implies that the assumption (Hf1) is satisfied. From the assumption (A3) it is easy

to verify that the assumption (Hg) is satisfied. Therefore, our conclusion follows from

Theorem 6.3. This completes the proof of Theorem 7.5.

Remark 7.6. In the applications, we only need to verify the nonlinear term f and the non-

instantaneous impulsive function gk (k = 1, 2, . . . , p) satisfy some monotonicity condition,

which are more weak and easy to be verified than the growth condition which assumed

in [18,30,40,46].

Remark 7.7. Theorem 7.5 give another method to seeking the lower and upper solutions

for the concrete parabolic partial differential equations.
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