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Powers of Two as Sums of Three Pell Numbers

Jhon J. Bravo, Bernadette Faye* and Florian Luca

Abstract. In this paper, we find all the solutions of the Diophantine equation P` +

Pm + Pn = 2a, in nonnegative integer variables (n,m, `, a) where Pk is the k-th term

of the Pell sequence {Pn}n≥0 given by P0 = 0, P1 = 1 and Pn+1 = 2Pn + Pn−1 for all

n ≥ 1.

1. Introduction

The Pell sequence {Pn}n≥0 is the binary recurrence sequence given by P0 = 0, P1 = 1 and

Pn+1 = 2Pn + Pn−1 for all n ≥ 0. There are many papers in the literature dealing with

Diophantine equations obtained by asking that members of some fixed binary recurrence

sequence be squares, factorials, triangular, or belonging to some other interesting sequence

of positive integers.

For example, in 1991, A. Pethő [18] found all the perfect powers (of exponent larger

than 1) in the Pell sequence. His result is the following.

Theorem 1.1. (A. Pethő, [18]) The only positive integer solutions (n, q, x) with q ≥ 2 of

the Diophantine equation

Pn = xq

are (n, q, x) = (1, q, 1) and (7, 2, 13). That is, the only perfect powers of exponent larger

than 1 in the Pell numbers are

P1 = 1 and P7 = 132.

The case q = 2 had been treated earlier by Ljunggren [13]. Pethő’s result was redis-

covered by J. H. E. Cohn [10].

In this paper, we study the following Diophantine equation: Find all nonnegative

solutions (`,m, n, a) to the equation

(1.1) P` + Pm + Pn = 2a.
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There is already a vast literature on equations similar to (1.1). For example, putting for

positive integers a ≥ 2 and n, sa(n) for the sum of the base a digits of n, Senge and Straus

[19] showed that for each fixed K and multiplicatively independent positive integers a and

b, the set {n : sa(n) < K and sb(n) < K} is finite. This was made effective by Stewart [20]

using Baker’s theory of lowers bounds for linear forms in logarithms of algebraic numbers

(see also [14]). More concretely, the analogous equation (1.1) when Pell numbers are

replaced by Fibonacci numbers was solved in [3] (the special case when only two Fibonacci

numbers are involved on the left had been solved earlier in [7]). Variants of this problem

with k-generalized Fibonacci numbers and Lucas numbers instead of Fibonacci numbers

were studied in [4] and [6], respectively. In [2], all Fibonacci numbers which are sums of

three factorials were found, while in [16], all factorials which are sums of three Fibonacci

numbers were found. Repdigits which are sums of three Fibonacci numbers were found

in [15], while Fibonacci numbers which are sums of at most two repdigits were found

in [11].

Our main result concerning (1.2) is the following.

Theorem 1.2. The only solutions (n,m, `, a) to the Diophantine equation

(1.2) Pn + Pm + P` = 2a

in integers n ≥ m ≥ ` ≥ 0 are in

{(2, 1, 1, 2), (3, 2, 1, 3), (5, 2, 1, 5), (6, 5, 5, 7), (1, 1, 0, 1), (2, 2, 0, 2), (2, 0, 0, 1), (1, 0, 0, 0)} .

We use the method from [15].

2. Preliminary results

Let (α, β) =
(
1 +
√

2, 1−
√

2
)

be the roots of the characteristic equation x2 − 2x− 1 = 0

of the Pell sequence {Pn}n≥0. The Binet formula for Pn is

(2.1) Pn =
αn − βn

α− β
for all n ≥ 0.

This implies easily that the inequalities

(2.2) αn−2 ≤ Pn ≤ αn−1

hold for all positive integers n.

Let {Qn}n≥0 be the companion Lucas sequence of the Pell sequence given by Q0 = 2,

Q1 = 2 and Qn+2 = 2Qn+1 +Qn for all n ≥ 0. For a prime p and a nonzero integer δ let

νp(δ) be the exponent with which p appears in the prime factorization of δ. The following

result is well-known and easy to prove.
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Lemma 2.1. The relations

(i) ν2(Qn) = 1,

(ii) ν2(Pn) = ν2(n)

hold for all positive integers n.

The following result is an immediate consequence of Carmichael’s primitive divisor

theorem for Lucas sequences with real roots (see [9]).

Lemma 2.2. If n ≥ 13, then Pn has a prime factor ≥ n− 1.

We also need a Baker type lower bound for a nonzero linear form in logarithm of

algebraic numbers. We choose to use the result of Matveev in [17]. Before proceeding

further, we recall some basics notions from algebraic number theory.

Let η be an algebraic number of degree d over Q with minimal primitive polynomial

over the integers

f(X) = a0

d∏
i=1

(
X − η(i)

)
∈ Z[X],

where the leading coefficient a0 is positive and the η(i) are conjugates of η. The logarithmic

height of η is given by

h(η) =
1

d

(
log a0 +

d∑
i=1

log max
{∣∣∣η(i)

∣∣∣ , 1}) .
The following properties of the logarithms height, which will be used in the next section

without special reference, are also known:

• h(η ± γ) ≤ h(η) + h(γ) + log 2.

• h(ηγ±) ≤ h(η) + h(γ).

• h(ηs) = |s|h(η).

With these above notations, Matveev proved the following theorem (see also [8]).

Theorem 2.3. (Matveev [17], Theorem 9.4 [8]) Let K be a number field of degree D over

Q, η1, . . . , ηt be positive real numbers of K, and b1, . . . , bt rational integers. Put

Λ = ηb11 · · · η
bt
t − 1 and B ≥ max {|b1| , . . . , |bt|} .

Let Ai ≥ max {Dh(ηi), |log ηi| , 0.16} be real numbers for i = 1, 2, . . . , t. Then, assuming

that Λ 6= 0, we have

|Λ| > exp
(
−1.4× 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1, . . . , At

)
.
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In 1998, Dujella and Pethő in [12, Lemma 5(a)] gave a version of the reduction method

originally proved by Baker and Davenport [1]. We next present the following lemma

from [5] (see also [4]), which is an immediate variation of the result due to Dujella and

Pethő from [12], and is the key tool used to reduce the upper bound on the variable n.

For a real number x we put ‖x‖ = min {|x− n| : n ∈ Z} for the distance from x to the

nearest integer.

Lemma 2.4. Let M be a positive integer, let p/q be a convergent of the continued fraction

of the irrational γ such that q > 6M , and let A, B, µ be some real numbers with A > 0

and B > 1. Let ε := ‖µq‖ −M ‖γq‖. If ε > 0, then there is no solution to the inequality

0 < |uγ − v + µ| < AB−w,

in positive integers u, v and w with

u ≤M and w ≥ log(Aq/ε)

logB
.

3. Proof of Theorem 1.2

3.1. The case ` = 0

If ` = m = 0, we then get that Pn = 2a. This implies that n ≤ 12 by Lemma 2.2. If ` = 0

but m > 0, we then get

(3.1) Pn + Pm = 2a.

Since Pm and Pn are positive, we get that a > 0, so Pn and Pm have the same parity. The

left-hand side above factors as

Pn + Pm = P(n+δm)/2Q(n−δm)/2,

where δ ∈ {±1} is 1 if n ≡ m (mod 4) and −1 otherwise, a fact easily checked. Thus,

equation (3.1) becomes

P(n+δm)/2Q(n−δm)/2 = 2a.

Lemmas 2.1 and 2.2 show that (n − δm)/2 ∈ {0, 1} and Theorem 1.1 shows that (n +

δm)/2 ≤ 2, and all solutions can now be easily found. All in all, the case ` = 0 gives the

last four solutions listed in the statement of Theorem 1.2.
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3.2. Bounding n−m and n− ` in terms of n

From now on, we assume n ≥ m ≥ ` ≥ 1. First of all, if n = m = `, equation (1.2) become

3Pn = 2a which is impossible. Thus, we assume from now that either n > m or m > `. We

next perform a computation showing that there are no others solutions to equation (1.2)

than those listed in Theorem 1.2 in the range 1 ≤ ` ≤ m ≤ n ≤ 150. So, from now on we

work under the assumption that n > 150.

We find a relation between a and n. Using equation (1.2) and the right-hand side of

inequality (2.2), we get that

2a < αn−1 + αm−1 + α`−1 < 22n−2
(

1 + 22(m−n) + 22(`−n)
)
< 22n+1,

where in the middle inequality we used the fact that α < 22. Hence, we have that a ≤ 2n.

We rewrite equation (1.2) using (2.1) as

αn

2
√

2
− 2a =

βn

2
√

2
− (Pm + P`).

We take absolute values in both sides of the above relation with the right-hand side of

(2.2) obtaining ∣∣∣∣ αn2
√

2
− 2a

∣∣∣∣ ≤ |β|n2
√

2
+ Pm + P` <

1

2
+ (αm + α`).

Dividing both sides by αn/(2
√

2), we get

(3.2)
∣∣∣1− 2a+1 · α−n ·

√
2
∣∣∣ < 8

αn−m
.

We are in a situation to apply Matveev’s result Theorem 2.3 to the left-hand side of (3.2).

The expression on the left-hand side of (3.2) is nonzero, since this expression being zero

means that 2a+1 = αn/
√

2, so α2n ∈ Z for some positive integer n, which is false. Hence,

we take K := Q(
√

2) for which D = 2. We take

t := 3, η1 := 2, η2 := α, η3 :=
√

2, b1 := a+ 1, b2 := −n, b3 := 1.

So, we can take A1 := 1.4, A2 := 0.9 and A3 := 0.7. Finally we recall that a ≤ 2n and

deduce that max {|b1| , |b2| , |b3|} ≤ 2n + 1, so we take B := 2n + 1. Theorem 2.3 implies

that a lower bound on the left-hand side of (3.2) is

(3.3) exp
(
−1.4× 306 × 34.5 × 22 × (1 + log 2)(2 log n)× 1.4× 0.9× 0.7

)
.

In the above inequality, we used 1 + log(2n+ 1) < 2 log n, which holds in our range of n.

Taking logarithms in inequality (3.2) and comparing the resulting inequality with (3.3),

we get that

(3.4) (n−m) logα < 1.8× 1012 log n.
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We now consider the second linear form in logarithms by rewriting equation (1.2) in a

different way. Using the Binet formula (2.1), we get that

αn

2
√

2
+

αm

2
√

2
− 2a =

βn

2
√

2
+

βm

2
√

2
− P`,

which implies ∣∣∣∣ αn2
√

2
(1 + αm−n)− 2a

∣∣∣∣ ≤ |β|n + |β|m

2
√

2
+ P` <

1

2
+ α`.

Dividing both sides of the above inequality by the first term of the left-hand side, we

obtain

(3.5)
∣∣∣1− 2a+1 · α−n ·

√
2(1 + αm−n)−1

∣∣∣ < 5

αn−`
.

We apply again Matveev Theorem 2.3 with the same K as before. We take

t := 3, η1 := 2, η2 := α, η3 :=
√

2(1 + αm−n)−1, b1 := a+ 1, b2 := −n, b3 := 1.

So, we can take A1 := 1.4, A2 := 0.9 and B := 2n+ 1. We observe that the left-hand side

of (3.5) is not zero because otherwise we would get

(3.6) 2a+1
√

2 = αn(1 + αm−n) = αn + αm.

By conjugating the above in K we get that

(3.7) − 2a+1
√

2 = βn + βm.

Equations (3.6) and (3.7) lead to

αn < αn + αm = |βn + βm| ≤ |β|n + |β|m < 1,

which is impossible. Now, let us have a look on the logarithmic height of η3. Since,

η3 =
√

2(1 + αm−n)−1 <
√

2 and η−1
3 =

1 + αm−n√
2

<
2√
2
,

we get that |log η3| < 1. Furthermore, we notice that

h(η3) ≤ log
√

2 + |m− n|
(

logα

2

)
+ log 2 = log

(
2
√

2
)

+ (n−m)

(
logα

2

)
.

Thus, we can take A3 := 3 + (n − m) logα > max {2h(η3), |log η3| , 0.16}. As before,

Theorem 2.3 and (3.5) imply that

exp
(
−2.45× 1012 × log n× (3 + (n−m) logα)

)
<

5

αn−`

giving

(3.8) (n− `) logα < 2.5× 1012 × log n× (3 + (n−m) logα).

Inserting inequality (3.4) into (3.8), we obtain

(3.9) (n− `) logα < 5× 1024 log2 n.
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3.3. Bounding n

We now use the third linear form in logarithms by rewriting equation (1.2) in a different

way. Using the Binet formula (2.1), we get that

αn

2
√

2
+

αm

2
√

2
+

α`

2
√

2
− 2a =

βn

2
√

2
+

βm

2
√

2
+

β`

2
√

2
,

which implies ∣∣∣∣ αn2
√

2
(1 + αm−n + α`−n)− 2a

∣∣∣∣ ≤ |β|n + |β|m + |β|`

2
√

2
<

1

2

for all n > 150 and m ≥ ` ≥ 1. Dividing both sides of the above inequality by the first

term of the left-hand side, we obtain

(3.10)
∣∣∣1− 2a+1 · α−n ·

√
2(1 + αm−n + α`−n)−1

∣∣∣ < 2

αn
.

As before, we use Matveev Theorem 2.3 with the same K as before and with

t := 3, η1 := 2, η2 := α, η3 :=
√

2(1 + αm−n + α`−n)−1, b1 := a+ 1, b2 := −n, b3 := 1.

As before we take A1 := 1.4, A2 := 0.9 and B := 2n+ 1. It remains us to prove that the

left-hand side of (3.10) is not zero. Assuming the contrary, we would get

(3.11) 2a+1
√

2 = αn(1 + αm−n + α`−n) = αn + αm + α`.

Conjugating the above relation in K we get that

(3.12) − 2a+1
√

2 = βn + βm + β`.

Equations (3.11) and (3.12), lead to

αn < αn + αm + α` =
∣∣∣βn + βm + β`

∣∣∣ ≤ |β|n + |β|m + |β|` < 1

which is impossible since α > 2. It remains to estimate the logarithmic height of η3. Since,

η3 =
√

2(1 + αm−n + α`−n)−1 <
√

2 and η−1
3 =

1 + αm−n + α`−n√
2

<
3√
2
,

it follows that |log η3| < 1. Furthermore, we notice that

h(η3) ≤ log
√

2 + |m− n|
(

logα

2

)
+ |`− n|

(
logα

2

)
+ 2 log 2

= log
(

4
√

2
)

+ (n−m)

(
logα

2

)
+ (n− `)

(
logα

2

)
.
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Thus, we can take

A3 := 4 + (n−m) logα+ (n− `) logα > max {2h(η3), |log η3| , 0.16} .

As before, Theorem 2.3 and (3.10) imply that

exp
(
−2.45× 1012 × log n× (4 + (n−m) logα+ (n− `) logα)

)
<

2

αn

which leads to

(3.13) n logα < 2.5× 1012 × log n× (4 + (n−m) logα+ (n− `) logα).

Inserting inequalities (3.4) and (3.9) into (3.13) and performing the required computations,

we obtain

n < 1.7× 1037 log3 n,

giving n < 1.7× 1043. We summarize the conclusion of this section as follows.

Lemma 3.1. If (n,m, `, a) is a solution in positive integers to equation (1.2), with n ≥
m ≥ `, then

a < 2n+ 1 < 4× 1043.

3.4. Reducing the bound on n

We use several times Lemma 2.4 to reduce the bound for n. We return to (3.2). Put

Λ1 := (a+ 1) log 2− n logα+ log
√

2.

Then (3.2) implies that ∣∣1− eΛ1
∣∣ < 8

αn−m
.

Note that Λ1 > 0 since

αn

2
√

2
< Pn + 1 ≤ Pn + Pm + P` = 2a.

Hence, using the fact that 1 + x < ex holds for all positive real numbers x, we get that

0 < Λ1 ≤ eΛ1 − 1 <
8

αn−m
.

Dividing across by logα we get

(3.14) 0 < (2a+ 3)

(
log 2

logα

)
− 2n <

20

αn−m
.

We see that the expression in the left-hand side of (3.14) has the shape |xγ − y| <
20/αn−m with γ being an irrational number and x, y ∈ Z. So, we can use the known
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properties of the convergents of the continued fraction to γ to obtain a nontrivial lower

bound for |xγ − y|. This gives us an upper bound for n−m.

Let [a0, a1, a2, . . .] = [0, 1, 3, 1, 2, . . .] be the continued fraction expression of the above

γ and let pk/qk be its kth convergent. Recall that a+1 < 4×1043. Thus, 2a+3 < 9×1043.

A quick computation with Mathematica shows that

q87 < 9× 1043 < q88.

Furthermore aM := max {ai : i = 1, 2, . . . , 88} = 100. Then, from the properties of the

continued fractions, inequality (3.14) becomes

1

(aM + 2)(2a+ 3)
< (2a+ 3)γ − 2n <

20

αn−m

which yields

αn−m < 20 · 102 · 9× 1043.

Thus, n − m < 124. We get that if (n,m, `, a) is a solution to equation (1.2), then

n−m ∈ [0, 124]. We now work with inequality (3.5) to obtain an upper bound on n− `.
We put

Λ2 := (a+ 1) log 2− n logα+ log g(n−m),

where g(x) :=
√

2(1 + α−x)−1. Then (3.5) implies that

(3.15)
∣∣1− eΛ2

∣∣ < 5

αn−`
.

Using the Binet formula of the Pell sequence with (1.2), one can show that Λ2 > 0 since

αn

2
√

2
+

αm

2
√

2
< Pn + Pm + 1 ≤ Pn + Pm + P` = 2a.

From this and (3.15) we get

0 < Λ2 <
5

αn−`
.

Replacing Λ2 in the above inequality by its formula and arguing as in (3.14), we get that

(3.16) 0 < (a+ 1)

(
log 2

logα

)
− n+

log g(n−m)

logα
<

6

αn−`
.

We are now ready to apply Lemma 2.4 with the obvious parameters

γ :=
log 2

logα
, µ :=

log g(n−m)

logα
, A := 6, B := α.

It is easy to see that γ is irrationnal. We can take M := 4×1043 and we apply Lemma 2.4

to inequality (3.16) for all possible choices of n−m ∈ [0, 124], except when n−m = 1, 2.
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Computing all the possible cases with suitable values for the parameter q, we find that if

(n,m, `, a) is a solution to (1.2), with n−m 6= 1, 2, then n− ` ≤ 140. For the special cases

where n−m = 1, 2, we have that

log g(x)

logα
=


0 if x = 1,

1− log 2

logα
if x = 2.

Thus, we cannot apply Lemma 2.4, because the value for the parameter ε is always ≤ 0.

Thus, in these cases, the reduction algorithm is not useful. However, we can see that if

n−m = 1, 2, then the resulting inequality from (3.16) has the shape 0 < |xγ − y| < 6/αn−`

with γ being an irrational number and x, y ∈ Z. So, we can use as before the known

properties of the convergents of the continued fractions to obtain a nontrivial lower bound

for |xγ − y|. This gives us an upper bound for n−`. Let’s see the details. When n−m = 1,

log g(n−m)/logα = 0 and we get from (3.16) that

(3.17) 0 < (a+ 1)γ − n < 6

αn−`
where γ :=

log 2

logα
.

Arguing as in inequality (3.14) with a+1 < 4×1043 and aM := max {ai : i = 1, 2, . . . , 88} =

100, then, inequality (3.17) becomes

1

(aM + 2)(a+ 1)
< (a+ 1)γ − n < 6

αn−`

which yields

αn−` < 6 · 102 · 4× 1043.

Thus, n− ` < 122. The same argument as before gives that n− ` < 122 in the case when

n−m = 2. Therefore, n− ` ≤ 140 always holds. Finally, in order to obtain a better upper

bound on n, we use again inequality (3.10) where we put

Λ3 := (a+ 1) log 2− n logα+ log φ(n−m,n− `),

with φ(x1, x2) :=
√

2(1 + α−x1 + α−x2)−1. Then (3.10) implies that

(3.18)
∣∣1− eΛ3

∣∣ < 2

αn
.

We observe that Λ3 6= 0. We now analyze the cases Λ3 > 0 and Λ3 < 0. If Λ3 > 0, then

0 < Λ3 <
2

αn
.

Suppose now that Λ3 < 0. Since 2/αn < 1/2 for n > 150, from (3.18), we get that∣∣eΛ3 − 1
∣∣ < 1/2, therefore e|Λ3| < 2. Since Λ3 < 0, we have that

0 < |Λ3| ≤ e|Λ3| − 1 = e|Λ3|
∣∣eΛ3 − 1

∣∣ < 4

αn
.
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Thus, we get in both cases that

0 < |Λ3| <
4

αn
.

Replacing Λ3 in the above inequality by its formula and arguing as in (3.14), we get that

(3.19) 0 <

∣∣∣∣(a+ 1)

(
log 2

logα

)
− n+

(
log φ(n−m,n− `)

logα

)∣∣∣∣ < 5

αn
.

Here, we take M := 4× 1043 and as we explained before, we apply Lemma 2.4 to inequal-

ity (3.19) for all possible choices of n −m ∈ [0, 124] and n − ` ∈ [0, 140]. With the help

of Mathematica, we find that if (n,m, `, a) is a possible solution to the equation (1.2),

then n < 150, contradicting our assumption that n > 150. This finishes the proof of the

theorem.
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