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PRODUCTS OF MULTIPLICATION, COMPOSITION AND
DIFFERENTIATION OPERATORS FROM MIXED-NORM SPACES TO

WEIGHTED-TYPE SPACES

Fang Zhang and Yongmin Liu

Abstract. Let ϕ be an analytic self-map of the unit disk D, H(D) the space
of analytic functions on D and ψ1, ψ2 ∈ H(D). Recently Stević and co-workers
defined the following operator

Tψ1,ψ2,ϕf(z) = ψ1(z)f(ϕ(z)) + ψ2(z)f ′(ϕ(z)), f ∈ H(D).

The boundedness and compactness of the operators Tψ1,ψ2,ϕ from mixed-norm
spaces to weighted-type spaces are investigated in this paper.

1. INTRODUCTION

Let H(D) denote the space of all analytic functions in the open unit disc D of
the complex plane C. A positive continuous function φ on the interval [0,1) is called
normal if there exist positive numbers a, b, 0 < a < b and t0 ∈ [0, 1), such that

φ(t)
(1−t2)a is decreasing for t0 ≤ t < 1 and lim

t→1−
φ(t)

(1−t2)a = 0;

φ(t)
(1−t2)a is increasing for t0 ≤ t < 1 and lim

t→1−
φ(t)

(1−t2)a = ∞
(see, e.g., [20]).
For 0 < p < ∞, 0 < q < ∞ and a normal function φ, the mixed-norm space

H(p, q, φ) is the space of analytic functions on the unit disk D such that

‖f‖p,q,φ =
( ∫ 1

0

Mp
q (f, r)

φp(r)
1− r

rdr
)1/p

,
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where the integral means Mp(f, r) are defined by

Mp(f, r) =
( 1

2π

∫ 2π

0
|f(reiθ)|pdθ

)1/p
, 0 ≤ r < 1.

For 1 ≤ p <∞, H(p, q, φ) equipped with the norm ‖ · ‖p,q,φ is a Banach space. When
0 < p < 1, ‖ · ‖p,q,φ is a quasinorm on H(p, q, φ), H(p, q, φ) is a Fréchet space but
not a Banach space. If 0 < p = q <∞, then H(p, p, φ) is the Bergman-type space

H(p, p, φ) = {f ∈ H(D) :
∫

D

|f(z)|pφ
p(|z|)

1 − |z|dA(z) <∞},

where dA(z) denotes the normalized Lebesgue area measure on the unit disk D such
that A(D) = 1. Note that if φ(r) = (1 − r)(α+1)/p, then H(p, p, φ) is the weighted
Bergman space Apα defined for 0 < p <∞ and α > −1, as the space of all f ∈ H(D)
such that

‖f‖p
Ap

α
=

∫
D

|f(z)|p(1 − |z|2)αdA(z) <∞

(see, e.g., [4]).
Let μ be a positive continuous function on D (weight). The weighted-type space

H∞
μ (D) = H∞

μ consists of all f ∈ H(D) such that

‖f‖H∞
μ

= sup
z∈D

μ(z)|f(z)| <∞.

It is known thatH∞
μ is a Banach space. LetH∞

μ,0 denote the subspace of H∞
μ consisting

of those f ∈ H∞
μ such that sup

|z|→1

μ(z)|f(z)| = 0. This space is called the little

weighted-type space. For some results on weighted-type spaces see, e.g.[6] and the
related references therein.

Denote by S(D) the set of analytic self-maps of D. For ϕ ∈ S(D) the composition
operator Cϕ is defined by

Cϕf = f ◦ ϕ, f ∈ H(D).

It is interesting to provide a function theoretic characterization for ϕ inducing a bounded
or compact composition operator on various spaces. It is well known that the compo-
sition operator is bounded on Hardy space, the Bergman space and the Bloch space.
The composition operator was studied extensively by many people, see, for example,
[1, 19, 31] and references therein.

For ψ ∈ H(D), the multiplication operator Mψ is defined by

Mψf = ψ · f, f ∈ H(D).
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Given ψ ∈ H(D) and ϕ ∈ S(D), the weighted composition operator with symbols ψ
and ϕ is defined as the linear operator on H(D) given by

(ψCϕf)(z) = ψ(z)f(ϕ(z)) = (MψCϕf)(z), f ∈ H(D), z ∈ D.

Special cases for ψ(z) = 1 and ϕ(z) = z, z ∈ D, are the composition operator Cϕ
and the multiplication operator Mψ. For some recent articles on weighted composition
operators on some H∞-type spaces, see, for example, [7, 9, 17, 21, 22, 23] and
references therein.

Let D be the differentiation operator, it is defined by

Df = f ′, f ∈ H(D).

The differentiation operator is typically unbounded on many analytic function spaces.
Products of concrete linear operators between spaces of holomorphic functions have

been the object of study for recent several years, see, e.g. [3, 5, 8, 10, 11, 12, 14, 15,
18, 25, 27, 30, 32] and the related references therein.

The products of composition operator and differentiation operator DCϕ and CϕD
are defined respectively as follows

DCϕf = f ′(ϕ)ϕ′, f ∈ H(D)

and
CϕDf = f ′ ◦ ϕ, f ∈ H(D).

They have been recently studied, for example, in [5, 8, 10, 11, 12, 14, 18, 25, 27, 29, 30]
(see also the related references therein). Ohon in [18] devoted most of the paper to
finding necessary and sufficient conditions for CϕD to be bounded as well as for CϕD
to be compact on the Hardy space H2. The operator DCϕ was studied for the first
time in [5], where the boundedness and compactness of DCϕ between Bergman and
Hardy spaces are investigated. Li and Stević in [8, 10, 12] studied the boundedness and
compactness of the operator DCϕ between Bloch type space, weighted Bergman space
Apα and Bloch type space Bβ , mixed-norm space and α-Bloch space Bα as well as
the space of bounded analytic functions and the Bloch-type space. Liu and Yu in [15]
studied the boundedness and compactness of the operator DCϕ from H∞ and Bloch
spaces to Zygmund spaces. Yang in [28] studied the same problems for operators CϕD
and DCϕ from QK(p, q) space to Bμ and Bμ,0.

The products of differentiation operator and multiplication operator, denoted by
DMϕ, is defined as follows

DMψf = ψ′ · f + ψ · f ′, f ∈ H(D).

Stević in [26] studied the boundedness and compactness of the products of differen-
tiation and multiplication operators DMψ from mixed-norm spaces to weighted-type
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spaces. Liu and Yu in [14] studied the operators DMψ from H∞ to Zygmund spaces.
Yu and Liu in [30] investigated the same problems for operators DMψ from mixed-
norm spaces to Bloch-type spaces.

Zhu in [32] completely characterized the boundedness and compactness of linear
operators which are obtained by taking products of differentiation, composition and
multiplication operators and which act from Bergman type spaces to Bers spaces. Ku-
mar and Singh investigated the same problem for operators DCϕMψ acting on Apα and
used the Carleson-type conditions. They also found the essential norm estimates of
MψDCϕ in the spirit of the work by Čǔcković and Zhao [2].

The products of composition, multiplication and differentiation operators can be
defined in following six ways

(1)

(MψCϕDf)(z) = ψ(z)f ′(ϕ(z));

(MψDCϕf)(z) = ψ(z)ϕ′(z)f ′(ϕ(z));

(CϕMψDf)(z) = ψ(ϕ(z))f ′(ϕ(z));

(DMψCϕf)(z) = ψ′(z)f(ϕ(z)) + ψ(z)ϕ′(z)f ′(ϕ(z));

(CϕDMψf)(z) = ψ′(ϕ(z))f(ϕ(z)) + ψ(ϕ(z))f ′(ϕ(z));

(DCϕMψf)(z) = ψ′(ϕ(z))ϕ′(z)f(ϕ(z)) + ψ(ϕ(z))ϕ′(z)f ′(ϕ(z));

for z ∈ D and f ∈ H(D).
It is interesting to provide a function theoretic characterization of ψ and ϕ when the

six above operators become bounded or compact operators between spaces of analytic
functions in the unit disk, the polydisk and the unit ball.

Note that the operator MψCϕD induces many known operators. If ψ(z) = 1, then
MψCϕD = CϕD. When ψ(z) = ϕ′(z), then we get the operator DCϕ. If we put
ϕ(z) = z, then MψCϕD = MψD, that is, the product of differentiation operator. Also
note that MψDCϕ = Mψϕ′CϕD and CϕMψD = Mψ◦ϕCϕD. Thus the corresponding
characterizations of boundedness and compactness of MψDCϕ and CϕMψD can be
obtained by replacing ψ, respectively by ψϕ and ψ◦ϕ in the results stated for MψCϕD.

Let ψ1, ψ2 ∈ H(D) and ϕ be a holomorphic self-map of D. The products of
multiplication composition and differentiation operators are defined as follows

Tψ1,ψ2,ϕf(z) = ψ1(z)f(ϕ(z)) + ψ2(z)f ′(ϕ(z)), f ∈ H(D).

The operator Tψ1,ψ2,ϕ was studied by Stević and co-workers for the first time in [27],
where the boundedness and compactness of Tψ1,ψ2,ϕ between Bergman spaces are in-
vestigated. It is clear that all products of composition, multiplication and differentiation
operators in (1.1) can be obtained from the operator Tψ1,ψ2,ϕ by fixing ψ1 and ψ2. More
specifically we have

MψCϕD = T0,ψ,ϕ, MψDCϕ = T0,ψϕ′,ϕ, CϕMψD = T0,ψ◦ϕ,ϕ,
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DMψCϕ = Tψ′,ψϕ,ϕ, CϕDMψ = Tψ′◦ϕ,ψϕ,ϕ, DCϕMψ = T(ψ′◦ϕ)ϕ′,(ψ◦ϕ)ϕ′,ϕ.

Motivated by the results [26, 27], we consider the boundedness and compactness of
the operator Tψ1,ψ2,ϕ from mixed-norm space H(p, q, φ) to weighted-type space H∞

μ .
Throughout this article, the letter C denotes a positive constant which may vary at

each occurrence but it is independent of the essential variables.

2. SOME LEMMAS

Lemma 2.1. [24]. Assume that p, q ∈ (0,∞), φ is normal and f ∈ H(p, q, φ).
Then for each n ∈ N0, there is a positive constant C independent of f such that

|f (n)(z)| ≤ C
‖f‖p,q,φ

φ(|z|)(1− |z|2)1/q+n , z ∈ D.

By standard arguments (see [16, 21]) the following lemmas follows.

Lemma 2.2. Assume that ψ1, ψ2 ∈ H(D) and ϕ ∈ S(D).Then Tψ1,ψ2,ϕ : H(p, q, φ) →
H∞
μ is compact if and only if Tψ1,ψ2,ϕ : H(p, q, φ) → H∞

μ is bounded and for any
bounded sequence fk in H(p, q, φ) which converges to zero uniformly on compact
subsets of D as k → ∞, we have ‖Tψ1,ψ2,ϕfk‖H∞

μ
→ 0 as k → ∞.

Lemma 2.3. A closed set K in H∞
μ,0 is compact if and only if K is bounded and

satisfies
lim
|z|→1

sup
f∈K

μ(z)|f(z)| = 0.

3. MAIN RESULTS AND PROOFS

Theorem 3.1. Assume that ψ1, ψ2 ∈ H(D) and ϕ ∈ S(D). Then Tψ1,ψ2,ϕ :
H(p, q, φ)→ H∞

μ is bounded if and only if

(1) sup
z∈D

μ(z)|ψ1(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q <∞,

and

(2) sup
z∈D

μ(z)|ψ2(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q+1

<∞.

Proof. Suppose that Tψ1,ψ2,ϕ : H(p, q, φ) → H∞
μ is bounded, i.e., there exists a

constant C such that ‖Tψ1,ψ2,ϕf‖H∞
μ

≤ C‖f‖p,q,φ. For a fixed w ∈ D, set

fw(z) =
(1 − |w|2)b+1

φ(|w|) (
1

(1−wz)α
− 2α(1− |w|2)

(α+ 1)(1− wz)α+1
+

α(1 − |w|2)2
(α+ 2)(1− wz)α+2

),
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where the constant b is from the definition of the normality of the function φ and
α = 1/q + b+ 1. A straightforward calculation show that

f ′w(z) =
(1− |w|2)b+1w

φ(|w|) (
α

(1− wz)α+1
− 2α(1− |w|2)

(1− wz)α+2
+
α(1− |w|2)2
(1 −wz)α+3

),

fw(w) =
2

(α+ 1)(α+ 2)φ(|w|)(1− |w|2)1/q ,

f ′w(w) = 0,

and sup
w∈D

‖fw‖p,q,φ ≤ C (see [24, 26]). Hence,

C ≥ ‖Tψ1,ψ2,ϕfϕ(w)‖H∞
μ

≥ μ(w)|ψ1(w)fϕ(w)(ϕ(w)) + ψ2(w)f ′ϕ(w)(ϕ(w))|
= μ(w)|ψ1(w)| 2

(α+ 1)(α+ 2)φ(|ϕ(w)|)(1− |ϕ(w)|2)1/q ,

for every w ∈ D. Therefore

sup
z∈D

μ(z)|ψ1(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q <∞.

For a fixed w ∈ D. Set

gw(z) =
(1− |w|2)t+1

φ(|w|)(1− wz)1/q+t+1
,

where the constant t is from the definition of the normality of the function φ. A
straightforward calculation show that

g′w(z) =
(t+ 1 + 1/q)(1− |w|2)t+1w

φ(|w|)(1− wz)1/q+t+2
,

gw(w) =
1

φ(|w|)(1− |w|2)1/q ,

and sup
w∈D

‖gw‖p,q,φ ≤ C (see [13]). Hence,

C ≥ ‖Tψ1,ψ2,ϕgϕ(w)‖H∞
μ

≥ μ(w)|ψ1(w)gϕ(w)(ϕ(w)) + ψ2(w)g′ϕ(w)(ϕ(w))|
≥ μ(w)|ψ2(w)||g′ϕ(w)(ϕ(w))| − μ(w)|ψ1(w)||gϕ(w)(ϕ(w))|
= μ(w)|ψ2(w)| (t+ 1 + 1/q)(1− |ϕ(w)|2)t+1|ϕ(w)|

φ(|ϕ(w)|)(1− |ϕ(w)|2)1/q+t+2

−μ(w)|ψ1(w)| 1
φ(|ϕ(w)|)(1− |ϕ(w)|2)1/q

=
(t+ 1 + 1/q)μ(w)|ψ2(w)||ϕ(w)|
φ(|ϕ(w)|)(1− |ϕ(w)|2)1/q+1

− μ(w)|ψ1(w)|
φ(|ϕ(w)|)(1− |ϕ(w)|2)1/q
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for every w ∈ D. Therefore,

(t+ 1 + 1/q)μ(w)|ψ2(w)||ϕ(w)|
φ(|ϕ(w)|)(1− |ϕ(w)|2)1/q+1

≤ C +
μ(w)|ψ1(w)|

φ(|ϕ(w)|)(1− |ϕ(w)|2)1/q .

From (1), we get

(3) sup
z∈D

μ(z)|ψ2(z)||ϕ(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q+1

<∞.

From (3), we have

(4) sup
|ϕ(z)|>1

2

μ(z)|ψ2(z)|
φ(|ϕ(z)|)(1−|ϕ(z)|2)1/q+1

≤ sup
|ϕ(z)|>1

2

2μ(z)|ψ2(z)||ϕ(z)|
φ(|ϕ(z)|)(1−|ϕ(z)|2)1/q+1

<∞.

Since f(z) = 1, g(z) = z ∈ H(p, q, φ), it follows that

sup
z∈D

μ(z)|ψ1(z)| ≤ ‖Tψ1,ψ2,ϕf‖H∞
μ

≤ C

and
sup
z∈D

μ(z)|ψ1(z)ϕ(z) + ψ2(z)| ≤ ‖Tψ1,ψ2,ϕg‖H∞
μ

≤ C.

It is easy to see that

μ(w)|ψ2(w)| ≤ ‖Tψ1,ψ2,ϕg‖H∞
μ

+ μ(w)|ψ1(w)ϕ(w)| ≤ C

for every w ∈ D. From this and the fact φ is normal we obtain

(5) sup
|ϕ(z)|≤ 1

2

μ(z)|ψ2(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q+1

≤ C sup
|ϕ(z)|≤ 1

2

μ(z)|ψ2(z)| <∞.

Combining (4) and (5), we get (2) as desired.
For the converse, suppose that (1) and (2) hold. For any f ∈ H(p, q, φ), by Lemma

2.1, we have

μ(z)|ψ1(z)f(ϕ(z)) + ψ2(z)f ′(ϕ(z))|

≤ μ(z)|ψ1(z)|‖f‖p,q,φ
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q +

μ(z)|ψ2(z)|‖f‖p,q,φ
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q+1

.

Therefore, Tψ1,ψ2,ϕ : H(p, q, φ) → H∞
μ is bounded. The proof of the theorem is

complete.

Theorem 3.2. Assume that ψ1, ψ2 ∈ H(D) and ϕ ∈ S(D). Then Tψ1,ψ2,ϕ :
H(p, q, φ)→ H∞

μ is compact if and only if Tψ1,ψ2,ϕ : H(p, q, φ) → H∞
μ is bounded,
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(6) lim
|ϕ(z)|→1

μ(z)|ψ1(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q = 0,

and

(7) lim
|ϕ(z)|→1

μ(z)|ψ2(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q+1

= 0.

Proof. Suppose that Tψ1,ψ2,ϕ : H(p, q, φ) → H∞
μ is compact. Then let {zk}k∈N

be a sequence in D such that |ϕ(zk)| → 1 as k → ∞. We can use the test functions
in Theorem 3.2. Let

fk(z) = fϕ(zk)(z).

We have
fk(ϕ(zk)) =

2
(α+ 1)(α+ 2)

1
φ(|ϕ(zk)|)(1− |ϕ(zk)|2)1/q

,

f ′k(ϕ(zk)) = 0 and sup
k∈N

‖fk‖p,q,φ ≤ C. For |z| = r < 1, using the fact that φ is

normal, we have

|fk(z)| ≤ C

(1 − r)1/q+1
(1− |ϕ(zk)|) → 0 (k → ∞),

that is, fk converges to 0 uniformly on compact subsets of D, using the compactness
of Tψ1,ψ2,ϕ : H(p, q, φ) → H∞

μ and Lemma 2.2, we obtain

μ(zk)|ψ1(zk)| 2
(α+ 1)(α+ 2)

1
φ(|ϕ(zk)|)(1− |ϕ(zk)|2)1/q

≤ ‖Tψ1,ψ2,ϕfk‖H∞
μ

→ 0,

as k → ∞. From this, and |ϕ(zk)| → 1, it follows that

lim
k→∞

μ(zk)|ψ1(zk)|
φ(|ϕ(zk)|)(1− |ϕ(zk)|2)1/q

= 0,

and consequently (6) holds.
In order to prove (7), choose

gk(z) = gϕ(zk)(z).

We have
gk(ϕ(zk)) =

1
φ(|ϕ(zk)|)(1− |ϕ(zk)|2)1/q

,

g′k(ϕ(zk)) =
(t+ 1 + 1/q)(1− |ϕ(zk)|2)t+1ϕ(zk)
φ(|ϕ(zk)|)(1− |ϕ(zk)|2)2+t+1/q

and
sup
k∈N

‖gk‖p,q,φ ≤ C,
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and gk converges to 0 uniformly on compact subsets of D. The lemma 2.2 implies that

lim
k→∞

‖Tψ1,ψ2,ϕgk‖H∞
μ

= 0.

It follows that
(t+ 1 + 1/q)μ(zk)|ψ2(zk)||ϕ(zk)|
φ(|ϕ(zk)|)(1− |ϕ(zk)|2)1/q+1

≤ ‖Tψ1,ψ2,ϕgk‖H∞
μ

+
μ(zk)|ψ1(zk)|

φ(|ϕ(zk)|)(1− |ϕ(zk)|2)1/q
→ 0,

as k → ∞. From this, and |ϕ(zk)| → 1, it follows that

lim
k→∞

μ(zk)|ψ2(zk)|
φ(|ϕ(zk)|)(1− |ϕ(zk)|2)1/q+1

= 0,

and consequently (7) holds.
Conversely, assume that Tψ1,ψ2,ϕ : H(p, q, φ) → H∞

μ is bounded and the conditions
(6) and (7) hold. For any bounded sequence {fk} in H(p, q, φ) with fk → 0 uniformly
on compact subsets of D. To establish the assertion, it suffices, in view of Lemma 2.2,
to show that ‖Tψ1,ψ2,ϕfk‖H∞

μ
→ 0, as k → ∞. We assume that ‖fk‖p,q,φ ≤ 1. From

(6) and (7), there exists a δ ∈ (0, 1), when δ < |ϕ(z)| < 1, we have

(8)
μ(z)|ψ1(z)|

φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q +
μ(z)|ψ2(z)|

φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q+1
< ε.

From the proof of Theorem 3.1, we see that
sup
z∈D

μ(z)|ψ1(z)| ≤ C.

and
sup
z∈D

μ(z)|ψ2(z)| ≤ C.

Since fk → 0 uniformly on compact subsets of D, Cauchy’s estimate gives that f ′k
converges to 0 uniformly on compact subsets of D, there exists a K0 ∈ N such that
k > K0 implies that
(9) sup

|ϕ(z)|≤δ
μ(z)|ψ1(z)fk(ϕ(z))|+ sup

|ϕ(z)|≤δ
μ(z)|ψ2(z)f ′k(ϕ(z))| < Cε.

From (8), (9) and Lemma 2.1, we have
‖Tψ1,ψ2,ϕfk‖H∞

μ
= sup

z∈D

μ(z)|ψ1(z)fk(ϕ(z)) + ψ2(z)f ′k(ϕ(z))|

≤ sup
|ϕ(z)|≤δ

μ(z)|ψ1(z)fk(ϕ(z))|+ sup
|ϕ(z)|≤δ

μ(z)|ψ2(z)f ′k(ϕ(z))|

+ sup
|ϕ(z)|>δ

(
μ(z)|ψ1(z)|

φ(|ϕ(z)|)(1−|ϕ(z)|2)1/q+
μ(z)|ψ2(z)|

φ(|ϕ(z)|)(1−|ϕ(z)|2)1/q+1
)

< (C + 1)ε,
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when k > K0. By using Lemma 3.2, it follows that the operator Tψ1,ψ2,ϕ : H(p, q, φ) →
H∞
μ is compact.

Theorem 3.3. Assume that ψ1, ψ2 ∈ H(D) and ϕ ∈ S(D). Then Tψ1,ψ2,ϕ :
H(p, q, φ)→ H∞

μ,0 is bounded if and only if Tψ1,ψ2,ϕ : H(p, q, φ) → H∞
μ is bounded,

(10) lim
|z|→1

μ(z)|ψ1(z)| = 0,

and

(11) lim
|z|→1

μ(z)|ψ2(z)| = 0,

Proof. Suppose that Tψ1,ψ2,ϕ : H(p, q, φ) → H∞
μ,0 is bounded. Then it is clear that

Tψ1,ψ2,ϕ : H(p, q, φ) → H∞
μ is bounded.

Taking the functions f(z) = 1 and f(z) = z, respectively, we obtain

lim
|z|→1

μ(z)|ψ1(z)| = 0

and
lim
|z|→1

μ(z)|ψ1(z)ϕ(z) + ψ2(z)| = 0.

Since

μ(z)|ψ1(z)ϕ(z) + ψ2(z)| ≥ μ(z)|ψ2(z)| − μ(z)|ψ1(z)ϕ(z)|,
μ(z)|ψ2(z)| ≤ μ(z)|ψ1(z)ϕ(z)|+ μ(z)|ψ1(z)ϕ(z) + ψ2(z)|,

we get
lim
|z|→1

μ(z)|ψ2(z)| = 0.

Conversely, assume that Tψ1,ψ2,ϕ : H(p, q, φ) → H∞
μ is bounded and the conditions

(10), (11) hold. For each polynomial p(z), we get

(12) μ(z)|(Tψ1,ψ2,ϕ)p(z)| = μ(z)|ψ1(z)p(ϕ(z)) + ψ2(z)p′(ϕ(z))|.

Since sup
z∈D

p(ϕ(z)) <∞ and sup
z∈D

p′(ϕ(z)) <∞, from (12) it follows that Tψ1,ψ2,ϕp ∈
H∞
μ,0. From the set of all polynomials is dense in H(p, q, φ), we have that for every

f ∈ H(p, q, φ), there is a sequence of polynomials {pk}k∈N such that ‖f−pk‖p,q,φ → 0
as k → ∞. Hence

‖Tψ1,ψ2,ϕf − Tψ1,ψ2,ϕpk‖H∞
μ

≤ ‖Tψ1,ψ2,ϕ‖ · ‖f − pk‖p,q,φ → 0
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as k → ∞, by using the boundedness of the operator Tψ1,ψ2,ϕ : H(p, q, φ) → H∞
μ .

Since H∞
μ,0 is a closed subset of H∞

μ , we obtain Tψ1,ψ2,ϕ(H(p, q, φ)) ⊂ H∞
μ,0. There-

fore Tψ1,ψ2,ϕ : H(p, q, φ)→ H∞
μ,0 is bounded.

Theorem 3.4. Assume that ψ1, ψ2 ∈ H(D) and ϕ ∈ S(D). Then Tψ1,ψ2,ϕ :
H(p, q, φ)→ H∞

μ,0 is compact if and only if

(13) lim
|z|→1

μ(z)|ψ1(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q = 0,

and

(14) lim
|z|→1

μ(z)|ψ2(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q+1

= 0.

Proof. Assume that conditions (13) and (14) hold. Then it is clear that (1) and (2)
hold. Hence Tψ1,ψ2,ϕ : H(p, q, φ) → H∞

μ is bounded by Theorem 3.1. Since

μ(z)|Tψ1,ψ2,ϕf(z)|
= μ(z)|ψ1(z)f(ϕ(z)) + ψ2(z)f ′(ϕ(z))|
≤ μ(z)|ψ1(z)|‖f‖p,q,φ
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q +

μ(z)|ψ2(z)|‖f‖p,q,φ
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q+1

,

Taking the supremum in above inequality over all f ∈ H(p, q, φ) such that ‖f‖p,q,φ ≤ 1
and letting |z| → 1, yields

lim
|z|→1

sup
‖f‖p,q,φ≤1

μ(z)|Tψ1,ψ2,ϕf(z)| = 0.

Hence, by Lemma 2.3 we see that the operator Tψ1,ψ2,ϕ : H(p, q, φ)→ H∞
μ,0 is compact.

Now assume that Tψ1,ψ2,ϕ : H(p, q, φ) → H∞
μ,0 is compact. Then Tψ1,ψ2,ϕ :

H(p, q, φ)→ H∞
μ,0 is bounded, and by taking the function f(z) = 1, it follows that

(16) sup
|z|→1

μ(z)|ψ1(z)| = 0.

Since Tψ1,ψ2,ϕ : H(p, q, φ) → H∞
μ,0 is compact, then Tψ1,ψ2,ϕ : H(p, q, φ) → H∞

μ is
compact, by Theorem 3.2 we have

lim
|ϕ(z)|→1

μ(z)|ψ1(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q = 0.

It follows that for every ε > 0, there exists δ ∈ (0, 1) such that

(17)
μ(z)|ψ1(z)|

φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q < ε,
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when δ < |ϕ(z)| < 1. Using (16) we see that there exists τ ∈ (0, 1) such that

(18) μ(z)|ψ1(z)| < ε inf
t∈[0,δ]

φ(t)(1− t2)1/q,

when τ < |z| < 1.
Therefore, when τ < |z| < 1 and δ < |ϕ(z)| < 1, by (17) we have

(19)
μ(z)|ψ1(z)|

φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q < ε,

On the other hand, when δ < |ϕ(z)| < 1 and |ϕ(z)| ≤ δ, by (18) we obtain

(20)
μ(z)|ψ1(z)|

φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q ≤ μ(z)|ψ1(z)|
inf
t∈[0,δ]

φ(t)(1− t2)1/q
< ε.

From (19) and (20), we obtain (13), as desired. Similarly, the result (14) holds. This
completes the proof of the theorem.
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