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H-SEMI-SLANT SUBMERSIONS FROM ALMOST QUATERNIONIC
HERMITIAN MANIFOLDS

Kwang-Soon Park

Abstract. As a generalization of semi-slant submersions, h-slant submersions, and
h-semi-invariant submersions, we introduce the notions of h-semi-slant submer-
sions and almost h-semi-slant submersions from almost quaternionic Hermitian
manifolds onto Riemannian manifolds. We obtain characterizations and investi-
gate the integrability of distributions, the geometry of fibers, and the harmonicity
of such maps. We also find a condition for such maps to be totally geodesic.
Moreover, we give some examples of such maps.

1. INTRODUCTION

Given a C∞-submersion F from a Riemannian manifold (M, gM) onto a Rie-
mannian manifold (N, gN), according to the conditions on the map F : (M, gM) �→
(N, gN), we obtain the following:

a Riemannian submersion ([10, 15, 9]), an almost Hermitian submersion [23],
an invariant submersion [22], an anti-invariant submersion [19], a slant submersion
([7, 20]), a semi-invariant submersion [21], a semi-slant submersion [18], a quaternionic
submersion [11], a h-slant submersion and an almost h-slant submersion [16], a h-semi-
invariant submersion and an almost h-semi-invariant submersion [17], etc.

As we know, Riemannian submersions were independently introduced by B. O’Neill
[15] and A. Gray [10] in 1960s. In particular, by using the notion of almost Hermitian
submersions, B. Watson [23] gave some differential geometric properties among fibers,
base manifolds, and total manifolds. After that, there are lots of results on this topic.

It is well-known that Riemannian submersions are related with physics and have
their applications in the Yang-Mills theory ([5, 24]), Kaluza-Klein theory ([4, 12]),
Supergravity and superstring theories ([13, 14]), etc. And the quaternionic Kähler
manifolds have applications in physics as the target spaces for nonlinear σ−models
with supersymmetry [8].
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The paper is organized as follows. In section 2 we remind some notions, which are
needed in the following sections. In section 3 we give the definitions of h-semi-slant
submersions and almost h-semi-slant submersions and obtain some properties on them:
the characterizations of such maps, the harmonicity of such maps, the conditions for
such maps to be totally geodesic, the integrability of distributions, the geometry of
fibers, etc. In section 4 we obtain some examples of h-semi-slant submersions and
almost h-semi-slant submersions.

2. PRELIMINARIES

Let (M, gM) and (N, gN) be Riemannian manifolds, where gM and gN are Rie-
mannian metrics on C∞-manifolds M and N , respectively.

Let F : (M, gM) �→ (N, gN) be a C∞-map.
We call the map F a C∞-submersion if F is surjective and the differential (F∗)p

has maximal rank for any p ∈ M .
Then the map F is said to be a Riemannian submersion ([15], [9]) if F is a

C∞-submersion and

(F∗)p : ((ker(F∗)p)⊥, (gM)p) �→ (TF (p)N, (gN)F (p))

is a linear isometry for any p ∈ M , where (ker(F∗)p)⊥ is the orthogonal complement
of the space ker(F∗)p in the tangent space TpM to M at p.

Let F : (M, gM) �→ (N, gN) be a Riemannian submersion.
For any vector field U ∈ Γ(TM), we have

U = VU + HU,

where VU ∈ Γ(kerF∗) and HU ∈ Γ((kerF∗)⊥).
Define the (O’Neill) tensors T and A by

AEF = H∇HEVF + V∇HEHF

TEF = H∇VEVF + V∇VEHF

for vector fields E, F ∈ Γ(TM), where ∇ is the Levi-Civita connection of gM ([15],
[9]).

Define ∇̂XY := V∇XY for X, Y ∈ Γ(ker F∗).
Let (M, gM , J) be an almost Hermitian manifold, where J is an almost complex

structure on M .
A Riemannian submersion F : (M, gM , J) �→ (N, gN) is called a semi-slant sub-

mersion if there is a distribution D1 ⊂ ker F∗ such that

kerF∗ = D1 ⊕D2, J(D1) = D1,
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and the angle θ = θ(X) between JX and the space (D2)q is constant for nonzero
X ∈ (D2)q and q ∈ M , where D2 is the orthogonal complement of D1 in kerF∗ [18].

We call the angle θ a semi-slant angle.
Let M be a 4m−dimensional C∞-manifold and let E be a rank 3 subbundle of

End(TM) such that for any point p ∈ M with a neighborhood U , there exists a local
basis {J1, J2, J3} of sections of E on U satisfying for all α ∈ {1, 2, 3}

J2
α = −id, JαJα+1 = −Jα+1Jα = Jα+2,

where the indices are taken from {1, 2, 3} modulo 3.
Then we call E an almost quaternionic structure on M and (M, E) an almost

quaternionic manifold [1].
Moreover, let g be a Riemannian metric on M such that for any point p ∈ M

with a neighborhood U , there exists a local basis {J1, J2, J3} of sections of E on U
satisfying for all α ∈ {1, 2, 3}

(1) J2
α = −id, JαJα+1 = −Jα+1Jα = Jα+2,

(2) g(JαX, JαY ) = g(X, Y )

for all vector fields X, Y ∈ Γ(TM), where the indices are taken from {1, 2, 3} modulo
3.

Then we call (M, E, g) an almost quaternionic Hermitian manifold [11].
Conveniently, the above basis {J1, J2, J3} satisfying (1) and (2) is said to be a

quaternionic Hermitian basis.
Let (M, E, g) be an almost quaternionic Hermitian manifold.
We call (M, E, g) a quaternionic Kähler manifold if there exist locally defined

1-forms ω1, ω2, ω3 such that for α ∈ {1, 2, 3}

∇XJα = ωα+2(X)Jα+1 − ωα+1(X)Jα+2

for any vector field X ∈ Γ(TM), where the indices are taken from {1, 2, 3} modulo 3
[11].

If there exists a global parallel quaternionic Hermitian basis {J1, J2, J3} of sections
of E on M (i.e., ∇Jα = 0 for α ∈ {1, 2, 3}, where ∇ is the Levi-Civita connection of
the metric g), then (M, E, g) is said to be a hyperkähler manifold. Furthermore, we
call (J1, J2, J3, g) a hyperkähler structure on M and g a hyperkähler metric [2].

Let (M, EM , gM) and (N, EN , gN) be almost quaternionic Hermitian manifolds.
A map F : M �→ N is called a (EM , EN)−holomorphic map if given a point

x ∈ M , for any J ∈ (EM)x there exists J ′ ∈ (EN)F (x) such that

F∗ ◦ J = J ′ ◦ F∗.
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A Riemannian submersion F : M �→ N which is a (EM , EN)−holomorphic map is
called a quaternionic submersion [11].

Moreover, if (M, EM , gM) is a quaternionic Kähler manifold (or a hyperkähler
manifold), then we say that F is a quaternionic Kähler submersion (or a hyperkähler
submersion) [11].

Then it is well-known that any quaternionic Kähler submersion is a harmonic map
[11].

Let (M, E, gM) be an almost quaternionic Hermitian manifold and (N, gN) a Rie-
mannian manifold.

A Riemannian submersion F : (M, E, gM) �→ (N, gN) is said to be an almost
h-slant submersion if given a point p ∈ M with a neighborhood U , there exists a
quaternionic Hermitian basis {I, J, K} of sections of E on U such that for R ∈
{I, J, K} the angle θR(X) between RX and the space ker(F∗)q is constant for nonzero
X ∈ ker(F∗)q and q ∈ U [16].

We call such a basis {I, J, K} an almost h-slant basis.
A Riemannian submersion F : (M, E, gM) �→ (N, gN) is called a h-slant sub-

mersion if given a point p ∈ M with a neighborhood U , there exists a quaternionic
Hermitian basis {I, J, K} of sections of E on U such that for R ∈ {I, J, K} the angle
θR(X) between RX and the space ker(F∗)q is constant for nonzero X ∈ ker(F∗)q and
q ∈ U , and θ = θI(X) = θJ (X) = θK(X) [16].

We call such a basis {I, J, K} a h-slant basis and the angle θ a h-slant angle.
And a Riemannian submersion F : (M, E, gM) �→ (N, gN) is called a h-semi-

invariant submersion if given a point p ∈ M with a neighborhood U , there exists
a quaternionic Hermitian basis {I, J, K} of sections of E on U such that for any
R ∈ {I, J, K}, there is a distribution D1 ⊂ ker F∗ on U such that

kerF∗ = D1 ⊕ D2, R(D1) = D1, R(D2) ⊂ (kerF∗)⊥,

where D2 is the orthogonal complement of D1 in ker F∗ [17].
We call such a basis {I, J, K} a h-semi-invariant basis.
A Riemannian submersion F : (M, E, gM) �→ (N, gN) is called an almost h-semi-

invariant submersion if given a point p ∈ M with a neighborhood U , there exists
a quaternionic Hermitian basis {I, J, K} of sections of E on U such that for each
R ∈ {I, J, K}, there is a distribution DR

1 ⊂ kerF∗ on U such that

kerF∗ = DR
1 ⊕DR

2 , R(DR
1 ) = DR

1 , R(DR
2 ) ⊂ (kerF∗)⊥,

where DR
2 is the orthogonal complement of DR

1 in kerF∗ [17].
We call such a basis {I, J, K} an almost h-semi-invariant basis.
Let (M, gM) and (N, gN) be Riemannian manifolds and F : (M, gM) �→ (N, gN)

a C∞-map.
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The second fundamental form of F is given by

(∇F∗)(X, Y ) := ∇F
XF∗Y − F∗(∇XY ) for X, Y ∈ Γ(TM),

where ∇F is the pullback connection and we denote conveniently by ∇ the Levi-Civita
connections of the metrics gM and gN [6].

Recall that F is said to be harmonic if trace(∇F∗) = 0 and F is called a totally
geodesic map if (∇F∗)(X, Y ) = 0 for X, Y ∈ Γ(TM) [6].

Throughout this paper, we will use the above notations.

3. H-SEMI-SLANT SUBMERSIONS

Definition 3.1. Let (M, E, gM) be an almost quaternionic Hermitian manifold
and (N, gN) a Riemannian manifold. A Riemannian submersion F : (M, E, gM) �→
(N, gN) is called a h-semi-slant submersion if given a point p ∈ M with a neighborhood
U , there exists a quaternionic Hermitian basis {I, J, K} of sections of E on U such
that for any R ∈ {I, J, K}, there is a distribution D1 ⊂ kerF∗ on U such that

ker F∗ = D1 ⊕D2, R(D1) = D1,

and the angle θR = θR(X) between RX and the space (D2)q is constant for nonzero
X ∈ (D2)q and q ∈ U , where D2 is the orthogonal complement of D1 in kerF∗.

We call such a basis {I, J, K} a h-semi-slant basis and the angles {θI , θJ , θK}
h-semi-slant angles.

Furthermore, if we have
θ = θI = θJ = θK ,

then we call the map F : (M, E, gM) �→ (N, gN) a strictly h-semi-slant submersion,
{I, J, K} a strictly h-semi-slant basis, and the angle θ a strictly h-semi-slant angle.

Definition 3.2. Let (M, E, gM) be an almost quaternionic Hermitian manifold
and (N, gN) a Riemannian manifold. A Riemannian submersion F : (M, E, gM) �→
(N, gN) is called an almost h-semi-slant submersion if given a point p ∈ M with a
neighborhood U , there exists a quaternionic Hermitian basis {I, J, K} of sections of
E on U such that for each R ∈ {I, J, K}, there is a distribution DR

1 ⊂ kerF∗ on U
such that

ker F∗ = DR
1 ⊕DR

2 , R(DR
1 ) = DR

1 ,

and the angle θR = θR(X) between RX and the space (DR
2 )q is constant for nonzero

X ∈ (DR
2 )q and q ∈ U , where DR

2 is the orthogonal complement of DR
1 in ker F∗.

We call such a basis {I, J, K} an almost h-semi-slant basis and the angles {θI , θJ , θK}
almost h-semi-slant angles.
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Remark 3.3. Obviously, almost h-semi-invariant submersions and h-semi-invariant
submersions are almost h-semi-slant submersions with almost h-semi-slant angles θI =
θJ = θK = π

2 and h-semi-slant submersions with h-semi-slant angles θI = θJ = θK =
π
2 , respectively [17]. As we know, the fibers of h-semi-invariant submersions from
hyperkähler manifolds onto Riemannian manifolds are quaternionic CR-submanifolds
([3, 17]).

Remark 3.4. Clearly, almost h-slant submersions are h-semi-slant submersions
with kerF∗ = D2 [16]. Like Remark 2.2 of [18], there are some similarities and
differences between almost h-slant submersions and almost h-semi-slant submersions.
For the sufficient conditions for such maps to be harmonic, almost h-slant submersions
have more nice form than almost h-semi-slant submersions. But almost h-semi-slant
submersions contain much more information than almost h-slant submersions. (i.e., the
mean curvature vector field of fibers, the geometry of distributions, etc.)

Let F : (M, E, gM) �→ (N, gN) be an almost h-semi-slant submersion.
Given a point p ∈ M with a neighborhood U , there exists a quaternionic Hermitian

basis {I, J, K} of sections of E on U such that for each R ∈ {I, J, K}, there is a
distribution DR

1 ⊂ kerF∗ on U such that

ker F∗ = DR
1 ⊕DR

2 , R(DR
1 ) = DR

1 ,

and the angle θR = θR(X) between RX and the space (DR
2 )q is constant for nonzero

X ∈ (DR
2 )q and q ∈ U , where DR

2 is the orthogonal complement of DR
1 in ker F∗.

Then for X ∈ Γ(kerF∗), we have

X = PRX + QRX,

where PRX ∈ Γ(DR
1 ) and QRX ∈ Γ(DR

2 ).
For X ∈ Γ(kerF∗), we get

RX = φRX + ωRX,

where φRX ∈ Γ(ker F∗) and ωRX ∈ Γ((kerF∗)⊥).
For Z ∈ Γ((kerF∗)⊥), we obtain

RZ = BRZ + CRZ,

where BRZ ∈ Γ(kerF∗) and CRZ ∈ Γ((kerF∗)⊥).
Then

(kerF∗)⊥ = ωRDR
2 ⊕ μR,

where μR is the orthogonal complement of ωRDR
2 in (kerF∗)⊥ and is R-invariant.

Furthermore,

φRDR
1 = DR

1 , ωRDR
1 = 0, φRDR

2 ⊂ DR
2 , BR((kerF∗)⊥) = DR

2

φ2
R+BRωR =−id, C2

R+ωRBR =−id, ωRφR+CRωR =0, BRCR+φRBR =0.
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Then it is easy to have

Lemma 3.5. Let F be an almost h-semi-slant submersion from a hyperkähler
manifold (M, I, J, K, gM) onto a Riemannian manifold (N, gN) such that (I, J, K) is
an almost h-semi-slant basis. Then we get

(1)
∇̂XφRY + TXωRY = φR∇̂XY + BRTXY

TXφRY + H∇XωRY = ωR∇̂XY + CRTXY

for X, Y ∈ Γ(ker F∗) and R ∈ {I, J, K}.
(2)

V∇ZBRW + AZCRW = φRAZW + BRH∇ZW

AZBRW + H∇ZCRW = ωRAZW + CRH∇ZW

for Z, W ∈ Γ((kerF∗)⊥) and R ∈ {I, J, K}.
(3)

∇̂XBRZ + TXCRZ = φRTXZ + BRH∇XZ

TXBRZ + H∇XCRZ = ωRTXZ + CRH∇XZ

for X ∈ Γ(ker F∗), Z ∈ Γ((kerF∗)⊥), and R ∈ {I, J, K}.

Theorem 3.6. Let F be a h-semi-slant submersion from a hyperkähler manifold
(M, I, J, K, gM) onto a Riemannian manifold (N, gN) such that (I, J, K) is a h-semi-
slant basis. Then the following conditions are equivalent:

(a) the complex distribution D1 is integrable.
(b) QI(∇̂XφIY − ∇̂Y φIX) = 0 and TXφIY = TY φIX for X, Y ∈ Γ(D1).
(c) QJ (∇̂XφJY − ∇̂Y φJX) = 0 and TXφJY = TY φJX for X, Y ∈ Γ(D1).
(d) QK(∇̂XφKY − ∇̂Y φKX) = 0 and TXφKY = TY φKX for X, Y ∈ Γ(D1).

Proof. Given X, Y ∈ Γ(D1) and R ∈ {I, J, K}, we obtain

R[X, Y ] = R(∇XY −∇Y X) = ∇XRY −∇Y RX

= ∇̂XφRY − ∇̂Y φRX + TXφRY − TY φRX.

Since D1 is R-invariant, we have

a) ⇔ b), a) ⇔ c), a) ⇔ d).

Therefore, we get the result.

Theorem 3.7. Let F be a h-semi-slant submersion from a hyperkähler manifold
(M, I, J, K, gM) onto a Riemannian manifold (N, gN) such that (I, J, K) is a h-semi-
slant basis. Then the following conditions are equivalent:
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(a) the slant distribution D2 is integrable.
(b) PI(∇̂XφIY − ∇̂Y φIX + TXωIY − TY ωIX) = 0 for X, Y ∈ Γ(D2).
(c) PJ (∇̂XφJY − ∇̂Y φJX + TXωJY − TY ωJX) = 0 for X, Y ∈ Γ(D2).
(d) PK(∇̂XφKY − ∇̂Y φKX + TXωKY − TY ωKX) = 0 for X, Y ∈ Γ(D2).

Proof. Given X, Y ∈ Γ(D2), Z ∈ Γ(D1), and R ∈ {I, J, K}, we obtain

gM([X, Y ], RZ) = −gM (R[X, Y ], Z) = −gM(∇XRY −∇Y RX, Z)

= −gM (∇̂XφRY + TXφRY + TXωRY + H∇XωRY − ∇̂Y φRX

− TY φRX − TY ωRX −H∇Y ωRX, Z)

= −gM (∇̂XφRY + TXωRY − ∇̂Y φRX − TY ωRX, Z).

Since [X, Y ] ∈ Γ(ker F∗), we have

(a) ⇔ (b), (a) ⇔ (c), (a) ⇔ (d).

Therefore, the result follows.

Proposition 3.8. Let F be an almost h-semi-slant submersion from an almost
quaternionic Hermitian manifold (M, E, gM) onto a Riemannian manifold (N, gN).
Then we get

φ2
RX = − cos2 θRX for X ∈ Γ(DR

2 ) and R ∈ {I, J, K},

where {I, J, K} is an almost h-semi-slant basis with the almost h-semi-slant angles
{θI , θJ , θK}.

Proof. Since

cos θR =
gM(RX, φRX)
|RX | · |φRX | =

−gM(X, φ2
RX)

|X | · |φRX |

and cos θR =
|φRX |
|RX | , we obtain

cos2 θR = −gM(X, φ2
RX)

|X |2 for X ∈ Γ(DR
2 ).

Hence,

φ2
RX = − cos2 θRX for X ∈ Γ(DR

2 ).

Remark 3.9. In particular, it is easy to see that the converse of Proposition 3.8 is
also true.
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Assume that the almost h-semi-slant angle θR ∈ [0, π
2 ) for some R ∈ {I, J, K}

and define an endomorphism R̂ of kerF∗ by

R̂ := RPR +
1

cos θR
φRQR.

Then,

R̂2 = −id on kerF∗.(3)

Remark 3.10. Let F be an almost h-semi-slant submersion from an almost quater-
nionic Hermitian manifold (M, E, gM) onto a Riemannian manifold (N, gN). Assume
that dimM = 4m, dimN = n, and {θI , θJ , θK} ∩ [0, π

2 ) �= ∅. From (3), we obtain

dim(ker(F∗)p) = 2k and dim((ker(F∗)p)⊥) = 4m − 2k for p ∈ M,

where k is a non-negative integer.
Hence, n should be even.

Theorem 3.11. Let F be an almost h-semi-slant submersion from an almost quater-
nionic Hermitian manifold (M, E, gM) onto a Riemannian manifold (N, gN) such that
{θI , θJ , θK} ∩ [0, π

2 ) �= ∅, where {θI , θJ , θK} are almost h-semi-slant angles. Then
N is an even-dimensional manifold.

Proposition 3.12. Let F be an almost h-semi-slant submersion from a hyperkähler
manifold (M, I, J, K, gM) onto a Riemannian manifold (N, gN) such that (I, J, K) is
an almost h-semi-slant basis. Then the following conditions are equivalent:

(a) the distribution (kerF∗)⊥ defines a totally geodesic foliation.
(b) φI(V∇XBIY + AXCIY ) + BI(AXBIY + H∇XCIY ) = 0 for X, Y ∈

Γ((kerF∗)⊥).
(c) φJ (V∇XBJY + AXCJY ) + BJ (AXBJY + H∇XCJY ) = 0 for X, Y ∈

Γ((kerF∗)⊥).
(d) φK(V∇XBKY + AXCKY ) + BK(AXBKY + H∇XCKY ) = 0 for X, Y ∈

Γ((kerF∗)⊥).

Proof. Given X, Y ∈ Γ((kerF∗)⊥) and R ∈ {I, J, K}, we get

∇XY = −R∇XRY = −R(V∇XBRY + AXBRY + AXCRY + H∇XCRY )

= −(φRV∇XBRY +ωRV∇XBRY +BRAXBRY +CRAXBRY +φRAXCRY

+ ωRAXCRY + BRH∇XCRY + CRH∇XCRY ).

Thus,

∇XY ∈ Γ((kerF∗)⊥) ⇔ φR(V∇XBRY +AXCRY )+BR(AXBRY +H∇XCRY ) = 0.
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Hence, we have
a) ⇔ b), a) ⇔ c), a) ⇔ d).

Therefore, we get the result.

In a similar way, we have

Proposition 3.13. Let F be an almost h-semi-slant submersion from a hyperkähler
manifold (M, I, J, K, gM) onto a Riemannian manifold (N, gN) such that (I, J, K) is
an almost h-semi-slant basis. Then the following conditions are equivalent:

(a) the distribution ker F∗ defines a totally geodesic foliation.
(b) ωI (∇̂XφIY +TXωIY )+CI(TXφIY +H∇XωIY ) = 0 for X, Y ∈ Γ(kerF∗).
(c) ωJ (∇̂XφJY +TXωJY )+CJ (TXφJY +H∇XωJY ) = 0 for X, Y ∈Γ(ker F∗).
(d) ωK(∇̂XφKY + TXωKY ) + CK(TXφKY + H∇XωKY ) = 0 for X, Y ∈

Γ(ker F∗).

Proposition 3.14. Let F be a h-semi-slant submersion from a hyperkähler manifold
(M, I, J, K, gM) onto a Riemannian manifold (N, gN) such that (I, J, K) is a h-semi-
slant basis. Then the following conditions are equivalent:

(a) the distribution D2 defines a totally geodesic foliation.
(b)

PI(φI(∇̂XφIY + TXωIY ) + BI (TXφIY + H∇XωIY )) = 0

ωI (∇̂XφIY + TXωIY ) + CI (TXφIY + H∇XωIY ) = 0

for X, Y ∈ Γ(D2).
(c)

PJ (φJ(∇̂XφJY + TXωJY ) + BJ(TXφJY + H∇XωJY )) = 0

ωJ (∇̂XφJY + TXωJY ) + CJ (TXφJY + H∇XωJY ) = 0

for X, Y ∈ Γ(D2).
(d)

PK(φK(∇̂XφKY + TXωKY ) + BK(TXφKY + H∇XωKY )) = 0

ωK(∇̂XφKY + TXωKY ) + CK(TXφKY + H∇XωKY ) = 0

for X, Y ∈ Γ(D2).

Proof. Given X, Y ∈ Γ(D2) and R ∈ {I, J, K}, we get

∇XY = −R∇XRY = −R(∇̂XφRY + TXφRY + TXωRY + H∇XωRY )

= −(φR∇̂XφRY + ωR∇̂XφRY + BRTXφRY + CRTXφRY + φRTXωRY

+ ωRTXωRY + BRH∇XωRY + CRH∇XωRY ).
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Thus,

∇XY ∈Γ(D2)⇔

⎧⎨
⎩

PR(φR(∇̂XφRY +TXωRY )+BR(TXφRY +H∇XωRY ))=0,

ωR(∇̂XφRY +TXωRY )+CR(TXφRY +H∇XωRY )=0.

Hence, we have
a) ⇔ b), a) ⇔ c), a) ⇔ d).

Therefore, the result follows.

Similarly, we get

Proposition 3.15. Let F be a h-semi-slant submersion from a hyperkähler manifold
(M, I, J, K, gM) onto a Riemannian manifold (N, gN) such that (I, J, K) is a h-semi-
slant basis. Then the following conditions are equivalent:

(a) the distribution D1 defines a totally geodesic foliation.
(b)

QI(φI∇̂XφIY + BITXφIY ) = 0 and ωI∇̂XφIY + CITXφIY = 0

for X, Y ∈ Γ(D1).
(c)

QJ(φJ∇̂XφJY + BJTXφJY ) = 0 and ωJ ∇̂XφJY + CJTXφJY = 0

for X, Y ∈ Γ(D1).
(d)

QK(φK∇̂XφKY + BKTXφKY ) = 0 and ωK∇̂XφKY + CKTXφKY = 0

for X, Y ∈ Γ(D1).

Now, we obtain a condition for such maps to be totally geodesic.

Theorem 3.16. Let F be an almost h-semi-slant submersion from a hyperkähler
manifold (M, I, J, K, gM) onto a Riemannian manifold (N, gN) such that (I, J, K) is
an almost h-semi-slant basis. Then the following conditions are equivalent:

(a) F is a totally geodesic map.
(b)

ωI (∇̂XφIY + TXωIY ) + CI (TXφIY + H∇XωIY ) = 0

ωI(∇̂XBIZ + TXCIZ) + CI (TXBIZ + H∇XCIZ) = 0

for X, Y ∈ Γ(kerF∗) and Z ∈ Γ((kerF∗)⊥).
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(c)
ωJ (∇̂XφJY + TXωJY ) + CJ (TXφJY + H∇XωJY ) = 0

ωJ(∇̂XBJZ + TXCJZ) + CJ (TXBJZ + H∇XCJZ) = 0

for X, Y ∈ Γ(kerF∗) and Z ∈ Γ((kerF∗)⊥).
(d)

ωK(∇̂XφKY + TXωKY ) + CK(TXφKY + H∇XωKY ) = 0

ωK(∇̂XBKZ + TXCKZ) + CK(TXBKZ + H∇XCKZ) = 0

for X, Y ∈ Γ(kerF∗) and Z ∈ Γ((kerF∗)⊥).

Proof. Since F is a Riemannian submersion, we get

(∇F∗)(Z1, Z2) = 0 for Z1, Z2 ∈ Γ((kerF∗)⊥).

Given X, Y ∈ Γ(kerF∗), we have

(∇F∗)(X, Y ) = −F∗(∇XY ) = F∗(I∇X(φIY + ωIY ))

= F∗(φI∇̂XφIY + ωI ∇̂XφIY + BITXφIY + CITXφIY + φITXωIY

+ ωITXωIY + BIH∇XωIY + CIH∇XωIY ).

Thus,

(∇F∗)(X, Y ) = 0 ⇔ ωI(∇̂XφIY + TXωIY ) + CI(TXφIY + H∇XωIY ) = 0.

For X ∈ Γ(ker F∗) and Z ∈ Γ((kerF∗)⊥), since (∇F∗)(X, Z) = (∇F∗)(Z, X), it is
sufficient to consider the following:

(∇F∗)(X, Z) = −F∗(∇XZ) = F∗(I∇X(BIZ + CIZ))

= F∗(φI∇̂XBIZ+ωI∇̂XBIZ+BITXBIZ+CITXBIZ+φITXCIZ

+ ωITXCIZ + BIH∇XCIZ + CIH∇XCIZ).

Thus,

(∇F∗)(X, Z) = 0 ⇔ ωI (∇̂XBIZ + TXCIZ) + CI(TXBIZ + H∇XCIZ) = 0.

Hence,
(a) ⇔ (b).

Similarly, we get
(a) ⇔ (c) and (a) ⇔ (d).
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Therefore, the result follows.

Let F be an almost h-semi-slant submersion from a hyperkähler manifold
(M, I, J, K, gM) onto a Riemannian manifold (N, gN) such that (I, J, K) is an almost
h-semi-slant basis. Given a complex structure R ∈ {I, J, K}, we can choose a local
orthonormal frame {v1, · · · , vl} of DR

2 and a local orthonormal frame {e1, · · · , e2k} of
DR

1 such that e2i = Re2i−1 for 1 ≤ i ≤ k. If DR
1 is integrable, then we easily obtain

F∗(∇Re2i−1Re2i−1) = −F∗(∇e2i−1e2i−1) for 1 ≤ i ≤ k

so that we have

trace(∇F∗) = 0 ⇔
l∑

j=1

F∗(∇vjvj) = 0.

Theorem 3.17. Let F be an almost h-semi-slant submersion from a hyperkähler
manifold (M, I, J, K, gM) onto a Riemannian manifold (N, gN) such that (I, J, K) is
an almost h-semi-slant basis. Then each of the following conditions implies that F is
a harmonic map:

(a) DI
1 is integrable and trace(∇F∗) = 0 on DI

2.

(b) DJ
1 is integrable and trace(∇F∗) = 0 on DJ

2 .

(c) DK
1 is integrable and trace(∇F∗) = 0 on DK

2 .

Corollary 3.18. Let F be an almost h-semi-slant submersion from a hyperkähler
manifold (M, I, J, K, gM) onto a Riemannian manifold (N, gN) such that (I, J, K)
is an almost h-semi-slant basis. Assume that kerF∗ = DR

1 for some R ∈ {I, J, K}.
Then F is a harmonic map.

Let F : (M, gM) �→ (N, gN) be a Riemannian submersion. The map F is called a
Riemannian submersion with totally umbilical fibers if

TXY = gM(X, Y )H for X, Y ∈ Γ(kerF∗),(4)

where H is the mean curvature vector field of the fiber.

Lemma 3.19. Let F be an almost h-semi-slant submersion with totally umbili-
cal fibers from a hyperkähler manifold (M, I, J, K, gM) onto a Riemannian manifold
(N, gN) such that (I, J, K) is an almost h-semi-slant basis. Then we obtain

H ∈ Γ(ωRDR
2 ) for R ∈ {I, J, K}.

Proof. Given X, Y ∈ Γ(DR
1 ), W ∈ Γ(μR), and R ∈ {I, J, K}, we get

TXRY + ∇̂XRY = ∇XRY = R∇XY = BRTXY + CRTXY + φR∇̂XY + ωR∇̂XY
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so that
gM(TXRY, W ) = gM(CRTXY, W ).

By (4), we easily have

gM(X, RY )gM(H, W ) = −gM (X, Y )gM(H, RW ).

Interchanging the role of X and Y , we get

gM(Y, RX)gM(H, W ) = −gM (Y, X)gM(H, RW ).

Using the above two equations, we obtain

gM(X, Y )gM(H, RW ) = 0,

which implies H ∈ Γ(ωRDR
2 ), since μR is R-invariant.

Therefore, we have the result.

4. EXAMPLES

Note that given an Euclidean space R
4m with coordinates (x1, x2, · · · , x4m), we

can canonically choose complex structures I, J, K on R
4m as follows:

I( ∂
∂x4k+1

)= ∂
∂x4k+2

, I( ∂
∂x4k+2

)=− ∂
∂x4k+1

, I( ∂
∂x4k+3

)= ∂
∂x4k+4

, I( ∂
∂x4k+4

)=− ∂
∂x4k+3

,

J( ∂
∂x4k+1

)= ∂
∂x4k+3

, J( ∂
∂x4k+2

)=− ∂
∂x4k+4

, J( ∂
∂x4k+3

)=− ∂
∂x4k+1

, J( ∂
∂x4k+4

)= ∂
∂x4k+2

,

K( ∂
∂x4k+1

)= ∂
∂x4k+4

, K( ∂
∂x4k+2

)= ∂
∂x4k+3

, K( ∂
∂x4k+3

)=− ∂
∂x4k+2

, K( ∂
∂x4k+4

)=− ∂
∂x4k+1

for k ∈ {0, 1, · · · , m− 1}.
Then we easily check that (I, J, K, 〈 , 〉) is a hyperkähler structure on R

4m, where
〈 , 〉 denotes the Euclidean metric on R

4m. Throughout this section, we will use these
notations.

Example 4.1. Let F be an almost h-slant submersion from an almost quaternionic
Hermitian manifold (M, E, gM) onto a Riemannian manifold (N, gN). Then the map
F : (M, E, gM) �→ (N, gN) is a h-semi-slant submersion with D2 = kerF∗. [16].

Example 4.2. Let F be an almost h-semi-invariant submersion from an almost
quaternionic Hermitian manifold (M, E, gM) onto a Riemannian manifold (N, gN).
Then the map F : (M, E, gM) �→ (N, gN) is an almost h-semi-slant submersion with
the almost h-semi-slant angles θI = θJ = θK = π

2 . [17].

Example 4.3. Let (M, E, g) be an almost quaternionic Hermitian manifold. Let
π : TM �→ M be the natural projection. Then the map π is a strictly h-semi-slant
submersion such that D1 = kerπ∗ and the strictly h-semi-slant angle θ = 0 [11].
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Example 4.4. Let (M, EM , gM) and (N, EN , gN) be almost quaternionic Hermi-
tian manifolds. Let F : M �→ N be a quaternionic submersion. Then the map F is
a strictly h-semi-slant submersion such that D1 = ker F∗ and the strictly h-semi-slant
angle θ = 0 [11].

Example 4.5. Define a map F : R
8 �→ R

3 by

F (x1, · · · , x8) = (x5 sin α − x7 cosα, x6, x8),

where α is constant. Then the map F is a strictly h-semi-slant submersion such that

D1 =<
∂

∂x1
,

∂

∂x2
,

∂

∂x3
,

∂

∂x4
> and D2 =< cosα

∂

∂x5
+ sin α

∂

∂x7
>

with the strictly h-semi-slant angle θ = π
2 .

Example 4.6. Let (M, I, J, K, gM) be a 4m−dimensional hyperkähler manifold
and (N, gN) a (4m−1)−dimensional Riemannian manifold. Let F̂ : (M, I, J, K, gM)
�→ (N, gN) be a Riemannian submersion.

Define a map F : (M, I, J, K, gM) × R
4k �→ (N, gN) by

F (x, y) = F̂ (x) for x ∈ M and y ∈ R
4k.

Then the map F is a strictly h-semi-slant submersion such that

D1 = 0 × R
4k and D2 = ker F̂∗ × 0

with the strictly h-semi-slant angle θ = π
2 .

Example 4.7. Define a map F : R
12 �→ R

4 by

F (x1, · · · , x12) = (
x5 − x7√

2
, x8,

x9 − x11√
2

, x10).

Then the map F is a h-semi-slant submersion such that

D1 =<
∂

∂x1
,

∂

∂x2
,

∂

∂x3
,

∂

∂x4
> and D2 =<

∂

∂x6
,

∂

∂x12
,

∂

∂x5
+

∂

∂x7
,

∂

∂x9
+

∂

∂x11
>

with the h-semi-slant angles {θI = π
4 , θJ = π

2 , θK = π
4}.

Example 4.8. Define a map F : R
12 �→ R

2 by

F (x1, · · · , x12) = (x5 cosα − x7 sinα, x6 sinβ − x8 cosβ),

where α and β are constant. Then the map F is a h-semi-slant submersion such that

D1 =<
∂

∂x1
,

∂

∂x2
,

∂

∂x3
,

∂

∂x4
,

∂

∂x9
,

∂

∂x10
,

∂

∂x11
,

∂

∂x12
>
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and
D2 =< sinα

∂

∂x5
+ cos α

∂

∂x7
, cosβ

∂

∂x6
+ sinβ

∂

∂x8
>

with the h-semi-slant angles {θI , θJ = π
2 , θK} such that cos θI = | sin(α + β)| and

cos θK = | cos(α + β)|.

Example 4.9. Define a map F : R
12 �→ R

6 by

F (x1, · · · , x12) = (x3, · · · , x8).

Then the map F is an almost h-semi-slant submersion such that

DI
1 =<

∂

∂x1
,

∂

∂x2
,

∂

∂x9
,

∂

∂x10
,

∂

∂x11
,

∂

∂x12
>,

DJ
1 = DK

1 =<
∂

∂x9
,

∂

∂x10
,

∂

∂x11
,

∂

∂x12
>,

DI
2 = 0, DJ

2 = DK
2 =<

∂

∂x1
,

∂

∂x2
> .

with the almost h-semi-slant angles {θI = 0, θJ = π
2 , θK = π

2 }.
By Corollary 3.18, F is also harmonic.

Example 4.10. Define a map F : R
12 �→ R

4 by

F (x1, · · · , x12) = (x7, x5, x1, x2).

Then the map F is an almost h-semi-slant submersion such that

DI
1 =<

∂

∂x3
,

∂

∂x4
,

∂

∂x9
,

∂

∂x10
,

∂

∂x11
,

∂

∂x12
>,

DJ
1 =<

∂

∂x6
,

∂

∂x8
,

∂

∂x9
,

∂

∂x10
,

∂

∂x11
,

∂

∂x12
>,

DK
1 =<

∂

∂x9
,

∂

∂x10
,

∂

∂x11
,

∂

∂x12
>,

DI
2 =<

∂

∂x6
,

∂

∂x8
>, DJ

2 =<
∂

∂x3
,

∂

∂x4
>,

DK
2 =<

∂

∂x3
,

∂

∂x4
,

∂

∂x6
,

∂

∂x8
>

with the almost h-semi-slant angles {θI = π
2 , θJ = π

2 , θK = π
2}.

Example 4.11. Let F̂ be an almost h-slant submersion from an almost quater-
nionic Hermitian manifold (M1, E1, gM1) onto a Riemannian manifold (N, gN) and
(M2, E2, gM2) an almost quaternionic Hermitian manifold.
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Define a map F : (M1, E1, gM1) ×f (M2, E2, gM2) �→ (N, gN) by

F (x, y) = F̂ (x) for x ∈ M1 and y ∈ M2,

where (M1, E1, gM1) ×f (M2, E2, gM2) is the warped product of (M1, E1, gM1) and
(M2, E2, gM2) with the warping function f : M1 �→ R

+. i.e., g = gM1 + f2gM2 .
Then the map F is a h-semi-slant submersion such that

D1 = TM2 and D2 = ker F̂∗

with the h-semi-slant angles {θI , θJ , θK}, where {I, J, K} is an almost h-slant basis
of the map F̂ with the slant angles {θI , θJ , θK} [16].

REFERENCES

1. D. V. Alekseevsky and S. Marchiafava, Almost complex submanifolds of quaternionic
manifolds, in: Proceedings of the Colloquium on Differential Geometry, Debrecen
(Hungary), 25-30 July 2000; Inst. Math. Inform. Debrecen, 2001, pp. 23-38.

2. A. L. Besse, Einstein Manifolds, Springer Verlag, Berlin, 1987.

3. M. Barros, B. Y. Chen and F. Urbano, Quaternion CR-submanifolds of quaternion man-
ifolds, Kodai Mathematical Journal, 4 (1980), 399-417.

4. J. P. Bourguignon and H. B. Lawson, A mathematician’s visit to Kaluza-Klein theory,
Rend. Semin. Mat. Torino Fasc. Spec., (1989), 143-163.

5. J. P. Bourguignon and H. B. Lawson, Stability and isolation phenomena for Yang-mills
fields, Commum. Math. Phys. 79 (1981), 189-230.

6. P. Baird and J. C. Wood, Harmonic Morphisms between Riemannian Manifolds, Oxford
Science Publications, 2003.

7. B. Y. Chen, Geometry of Slant Submaniflods, Katholieke Universiteit Leuven, Leuven,
1990.

8. V. Cortés, C. Mayer, T. Mohaupt and F. Saueressig, Special geometry of Euclidean
supersymmetry 1. Vector multiplets, J. High Energy Phys., 3 (2004), 028.

9. M. Falcitelli, S. Ianus and A. M. Pastore, Riemannian Submersions and Related Topics,
World Scientific Publishing Co., 2004.

10. A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math.
Mech., 16 (1967), 715-737.

11. S. Ianus, R. Mazzocco and G. E. Vilcu, Riemannian submersions from quaternionic
manifolds, Acta. Appl. Math., 104 (2008), 83-89.

12. S. Ianus and M. Visinescu, Kaluza-Klein theory with scalar fields and generalized Hopf
manifolds, Class. Quantum Gravity, 4 (1987), 1317-1325.



1926 Kwang-Soon Park

13. S. Ianus and M. Visinescu, Space-time compactification and Riemannian submersions,
in: The Mathematical Heritage of C. F. Gauss, Rassias, G. (ed.), World Scientific, River
Edge., 1991, pp. 358-371.

14. M. T. Mustafa, Applications of harmonic morphisms to gravity, J. Math. Phys., 41(10)
(2000), 6918-6929.

15. B. O’Neill, The fundamental equations of a submersion, Mich. Math. J., 13 (1966),
458-469.

16. K. S. Park, H-slant submersions, Bull. Korean Math. Soc., 49(2) (2012), 329-338.

17. K. S. Park, H-semi-invariant submersions, Taiwan. J. Math., 16(5) (2012), 1865-1878.

18. K. S. Park and R. Prasad, Semi-slant submersions, Bull. Korean Math. Soc., 50(3)
(2013), 951-962.

19. B. Sahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds,
Cent. Eur. J. Math., 8(3) (2010), 437-447.

20. B. Sahin, Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci.
Math. Roumanie Tome, 54(1) (102) (2011), 93-105.

21. B. Sahin, Semi-invariant submersions from almost Hermitian manifolds, Canad. Math.
Bull., 56(1) (2013), 173-183.

22. B. Sahin, Riemannian submersions from almost Hermitian manifolds, Taiwanese J.
Math., 17(2) (2013), 629-659.

23. B. Watson, Almost Hermitian submersions, J. Differential Geom., 11(1) (1976), 147-165.

24. B. Watson, G, G′-Riemannian submersions and nonlinear gauge field equations of gen-
eral relativity, in: Global Analysis - Analysis on Manifolds, Rassias, T. (ed.), dedicated
M. Morse. Teubner-Texte Math., 57 (1983), 324-349, Teubner, Leipzig.

Kwang-Soon Park
Department of Mathematical Sciences
Seoul National University
Seoul 151-747
Republic of Korea
E-mail: parkksn@gmail.com


