H-SEMI-SLANT SUBMERSIONS FROM ALMOST QUATERNIONIC HERMITIAN MANIFOLDS

Kwang-Soon Park

Abstract

As a generalization of semi-slant submersions, h-slant submersions, and h -semi-invariant submersions, we introduce the notions of h-semi-slant submersions and almost h-semi-slant submersions from almost quaternionic Hermitian manifolds onto Riemannian manifolds. We obtain characterizations and investigate the integrability of distributions, the geometry of fibers, and the harmonicity of such maps. We also find a condition for such maps to be totally geodesic. Moreover, we give some examples of such maps.

1. Introduction

Given a C^{∞}-submersion F from a Riemannian manifold $\left(M, g_{M}\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$, according to the conditions on the map $F:\left(M, g_{M}\right) \mapsto$ (N, g_{N}), we obtain the following:
a Riemannian submersion ([10, 15, 9]), an almost Hermitian submersion [23], an invariant submersion [22], an anti-invariant submersion [19], a slant submersion ($[7,20]$), a semi-invariant submersion [21], a semi-slant submersion [18], a quaternionic submersion [11], a h-slant submersion and an almost h-slant submersion [16], a h-semiinvariant submersion and an almost h-semi-invariant submersion [17], etc.

As we know, Riemannian submersions were independently introduced by B. O’Neill [15] and A. Gray [10] in 1960s. In particular, by using the notion of almost Hermitian submersions, B. Watson [23] gave some differential geometric properties among fibers, base manifolds, and total manifolds. After that, there are lots of results on this topic.

It is well-known that Riemannian submersions are related with physics and have their applications in the Yang-Mills theory ([5, 24]), Kaluza-Klein theory ([4, 12]), Supergravity and superstring theories ($[13,14]$), etc. And the quaternionic Kähler manifolds have applications in physics as the target spaces for nonlinear σ-models with supersymmetry [8].

Received November 22, 2013, accepted April 7, 2014.

The paper is organized as follows. In section 2 we remind some notions, which are needed in the following sections. In section 3 we give the definitions of h-semi-slant submersions and almost h-semi-slant submersions and obtain some properties on them: the characterizations of such maps, the harmonicity of such maps, the conditions for such maps to be totally geodesic, the integrability of distributions, the geometry of fibers, etc. In section 4 we obtain some examples of h-semi-slant submersions and almost h-semi-slant submersions.

2. Preliminaries

Let $\left(M, g_{M}\right)$ and $\left(N, g_{N}\right)$ be Riemannian manifolds, where g_{M} and g_{N} are Riemannian metrics on C^{∞}-manifolds M and N, respectively.

Let $F:\left(M, g_{M}\right) \mapsto\left(N, g_{N}\right)$ be a C^{∞}-map.
We call the map F a C^{∞}-submersion if F is surjective and the differential $\left(F_{*}\right)_{p}$ has maximal rank for any $p \in M$.

Then the map F is said to be a Riemannian submersion ([15], [9]) if F is a C^{∞}-submersion and

$$
\left(F_{*}\right)_{p}:\left(\left(\operatorname{ker}\left(F_{*}\right)_{p}\right)^{\perp},\left(g_{M}\right)_{p}\right) \mapsto\left(T_{F(p)} N,\left(g_{N}\right)_{F(p)}\right)
$$

is a linear isometry for any $p \in M$, where $\left(\operatorname{ker}\left(F_{*}\right)_{p}\right)^{\perp}$ is the orthogonal complement of the space $\operatorname{ker}\left(F_{*}\right)_{p}$ in the tangent space $T_{p} M$ to M at p.

Let $F:\left(M, g_{M}\right) \mapsto\left(N, g_{N}\right)$ be a Riemannian submersion.
For any vector field $U \in \Gamma(T M)$, we have

$$
U=\mathcal{V} U+\mathcal{H} U,
$$

where $\mathcal{V} U \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $\mathcal{H} U \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
Define the (O'Neill) tensors \mathcal{T} and \mathcal{A} by

$$
\begin{aligned}
& \mathcal{A}_{E} F=\mathcal{H} \nabla_{\mathcal{H E}} \mathcal{V} F+\mathcal{V} \nabla_{\mathcal{H E}} \mathcal{H} F \\
& \mathcal{T}_{E} F=\mathcal{H} \nabla_{\mathcal{V} E} \mathcal{V} F+\mathcal{V} \nabla_{\mathcal{V}_{E} \mathcal{H} F}
\end{aligned}
$$

for vector fields $E, F \in \Gamma(T M)$, where ∇ is the Levi-Civita connection of g_{M} ([15], [9]).

Define $\widehat{\nabla}_{X} Y:=\mathcal{V} \nabla_{X} Y$ for $X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right)$.
Let $\left(M, g_{M}, J\right)$ be an almost Hermitian manifold, where J is an almost complex structure on M.

A Riemannian submersion $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ is called a semi-slant submersion if there is a distribution $\mathcal{D}_{1} \subset \operatorname{ker} F_{*}$ such that

$$
\operatorname{ker} F_{*}=\mathcal{D}_{1} \oplus \mathcal{D}_{2}, J\left(\mathcal{D}_{1}\right)=\mathcal{D}_{1},
$$

and the angle $\theta=\theta(X)$ between $J X$ and the space $\left(\mathcal{D}_{2}\right)_{q}$ is constant for nonzero $X \in\left(\mathcal{D}_{2}\right)_{q}$ and $q \in M$, where \mathcal{D}_{2} is the orthogonal complement of \mathcal{D}_{1} in ker F_{*} [18].

We call the angle θ a semi-slant angle.
Let M be a $4 m$-dimensional C^{∞}-manifold and let E be a rank 3 subbundle of $\operatorname{End}(T M)$ such that for any point $p \in M$ with a neighborhood U, there exists a local basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of sections of E on U satisfying for all $\alpha \in\{1,2,3\}$

$$
J_{\alpha}^{2}=-i d, \quad J_{\alpha} J_{\alpha+1}=-J_{\alpha+1} J_{\alpha}=J_{\alpha+2}
$$

where the indices are taken from $\{1,2,3\}$ modulo 3.
Then we call E an almost quaternionic structure on M and (M, E) an almost quaternionic manifold [1].

Moreover, let g be a Riemannian metric on M such that for any point $p \in M$ with a neighborhood U, there exists a local basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of sections of E on U satisfying for all $\alpha \in\{1,2,3\}$

$$
\begin{equation*}
J_{\alpha}^{2}=-i d, \quad J_{\alpha} J_{\alpha+1}=-J_{\alpha+1} J_{\alpha}=J_{\alpha+2} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
g\left(J_{\alpha} X, J_{\alpha} Y\right)=g(X, Y) \tag{2}
\end{equation*}
$$

for all vector fields $X, Y \in \Gamma(T M)$, where the indices are taken from $\{1,2,3\}$ modulo 3.

Then we call (M, E, g) an almost quaternionic Hermitian manifold [11].
Conveniently, the above basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ satisfying (1) and (2) is said to be a quaternionic Hermitian basis.

Let (M, E, g) be an almost quaternionic Hermitian manifold.
We call (M, E, g) a quaternionic Kahler manifold if there exist locally defined 1 -forms $\omega_{1}, \omega_{2}, \omega_{3}$ such that for $\alpha \in\{1,2,3\}$

$$
\nabla_{X} J_{\alpha}=\omega_{\alpha+2}(X) J_{\alpha+1}-\omega_{\alpha+1}(X) J_{\alpha+2}
$$

for any vector field $X \in \Gamma(T M)$, where the indices are taken from $\{1,2,3\}$ modulo 3 [11].

If there exists a global parallel quaternionic Hermitian basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of sections of E on M (i.e., $\nabla J_{\alpha}=0$ for $\alpha \in\{1,2,3\}$, where ∇ is the Levi-Civita connection of the metric g), then (M, E, g) is said to be a hyperkähler manifold. Furthermore, we call $\left(J_{1}, J_{2}, J_{3}, g\right)$ a hyperkähler structure on M and g a hyperkähler metric [2].

Let $\left(M, E_{M}, g_{M}\right)$ and $\left(N, E_{N}, g_{N}\right)$ be almost quaternionic Hermitian manifolds.
A map $F: M \mapsto N$ is called a $\left(E_{M}, E_{N}\right)$-holomorphic map if given a point $x \in M$, for any $J \in\left(E_{M}\right)_{x}$ there exists $J^{\prime} \in\left(E_{N}\right)_{F(x)}$ such that

$$
F_{*} \circ J=J^{\prime} \circ F_{*} .
$$

A Riemannian submersion $F: M \mapsto N$ which is a (E_{M}, E_{N})-holomorphic map is called a quaternionic submersion [11].

Moreover, if $\left(M, E_{M}, g_{M}\right)$ is a quaternionic Kähler manifold (or a hyperkähler manifold), then we say that F is a quaternionic Kähler submersion (or a hyperkähler submersion) [11].

Then it is well-known that any quaternionic Kahler submersion is a harmonic map [11].

Let $\left(M, E, g_{M}\right)$ be an almost quaternionic Hermitian manifold and $\left(N, g_{N}\right)$ a Riemannian manifold.

A Riemannian submersion $F:\left(M, E, g_{M}\right) \mapsto\left(N, g_{N}\right)$ is said to be an almost h-slant submersion if given a point $p \in M$ with a neighborhood U, there exists a quaternionic Hermitian basis $\{I, J, K\}$ of sections of E on U such that for $R \in$ $\{I, J, K\}$ the angle $\theta_{R}(X)$ between $R X$ and the space $\operatorname{ker}\left(F_{*}\right)_{q}$ is constant for nonzero $X \in \operatorname{ker}\left(F_{*}\right)_{q}$ and $q \in U$ [16].

We call such a basis $\{I, J, K\}$ an almost h-slant basis.
A Riemannian submersion $F:\left(M, E, g_{M}\right) \mapsto\left(N, g_{N}\right)$ is called a h-slant submersion if given a point $p \in M$ with a neighborhood U, there exists a quaternionic Hermitian basis $\{I, J, K\}$ of sections of E on U such that for $R \in\{I, J, K\}$ the angle $\theta_{R}(X)$ between $R X$ and the space $\operatorname{ker}\left(F_{*}\right)_{q}$ is constant for nonzero $X \in \operatorname{ker}\left(F_{*}\right)_{q}$ and $q \in U$, and $\theta=\theta_{I}(X)=\theta_{J}(X)=\theta_{K}(X)$ [16].

We call such a basis $\{I, J, K\}$ a h-slant basis and the angle θ a h-slant angle.
And a Riemannian submersion $F:\left(M, E, g_{M}\right) \mapsto\left(N, g_{N}\right)$ is called a h-semiinvariant submersion if given a point $p \in M$ with a neighborhood U, there exists a quaternionic Hermitian basis $\{I, J, K\}$ of sections of E on U such that for any $R \in\{I, J, K\}$, there is a distribution $\mathcal{D}_{1} \subset \operatorname{ker} F_{*}$ on U such that

$$
\operatorname{ker} F_{*}=\mathcal{D}_{1} \oplus \mathcal{D}_{2}, \quad R\left(\mathcal{D}_{1}\right)=\mathcal{D}_{1}, \quad R\left(\mathcal{D}_{2}\right) \subset\left(\operatorname{ker} F_{*}\right)^{\perp}
$$

where \mathcal{D}_{2} is the orthogonal complement of \mathcal{D}_{1} in $\operatorname{ker} F_{*}$ [17].
We call such a basis $\{I, J, K\}$ a h-semi-invariant basis.
A Riemannian submersion $F:\left(M, E, g_{M}\right) \mapsto\left(N, g_{N}\right)$ is called an almost h-semiinvariant submersion if given a point $p \in M$ with a neighborhood U, there exists a quaternionic Hermitian basis $\{I, J, K\}$ of sections of E on U such that for each $R \in\{I, J, K\}$, there is a distribution $\mathcal{D}_{1}^{R} \subset \operatorname{ker} F_{*}$ on U such that

$$
\operatorname{ker} F_{*}=\mathcal{D}_{1}^{R} \oplus \mathcal{D}_{2}^{R}, \quad R\left(\mathcal{D}_{1}^{R}\right)=\mathcal{D}_{1}^{R}, \quad R\left(\mathcal{D}_{2}^{R}\right) \subset\left(\operatorname{ker} F_{*}\right)^{\perp}
$$

where \mathcal{D}_{2}^{R} is the orthogonal complement of \mathcal{D}_{1}^{R} in $\operatorname{ker} F_{*}$ [17].
We call such a basis $\{I, J, K\}$ an almost h-semi-invariant basis.
Let $\left(M, g_{M}\right)$ and $\left(N, g_{N}\right)$ be Riemannian manifolds and $F:\left(M, g_{M}\right) \mapsto\left(N, g_{N}\right)$ a C^{∞}-map.

The second fundamental form of F is given by

$$
\left(\nabla F_{*}\right)(X, Y):=\nabla_{X}^{F} F_{*} Y-F_{*}\left(\nabla_{X} Y\right) \quad \text { for } X, Y \in \Gamma(T M)
$$

where ∇^{F} is the pullback connection and we denote conveniently by ∇ the Levi-Civita connections of the metrics g_{M} and g_{N} [6].

Recall that F is said to be harmonic if $\operatorname{trace}\left(\nabla F_{*}\right)=0$ and F is called a totally geodesic map if $\left(\nabla F_{*}\right)(X, Y)=0$ for $X, Y \in \Gamma(T M)$ [6].

Throughout this paper, we will use the above notations.

3. H-Semi-slant Submersions

Definition 3.1. Let $\left(M, E, g_{M}\right)$ be an almost quaternionic Hermitian manifold and $\left(N, g_{N}\right)$ a Riemannian manifold. A Riemannian submersion $F:\left(M, E, g_{M}\right) \mapsto$ $\left(N, g_{N}\right)$ is called a h-semi-slant submersion if given a point $p \in M$ with a neighborhood U, there exists a quaternionic Hermitian basis $\{I, J, K\}$ of sections of E on U such that for any $R \in\{I, J, K\}$, there is a distribution $\mathcal{D}_{1} \subset \operatorname{ker} F_{*}$ on U such that

$$
\operatorname{ker} F_{*}=\mathcal{D}_{1} \oplus \mathcal{D}_{2}, \quad R\left(\mathcal{D}_{1}\right)=\mathcal{D}_{1},
$$

and the angle $\theta_{R}=\theta_{R}(X)$ between $R X$ and the space $\left(\mathcal{D}_{2}\right)_{q}$ is constant for nonzero $X \in\left(\mathcal{D}_{2}\right)_{q}$ and $q \in U$, where \mathcal{D}_{2} is the orthogonal complement of \mathcal{D}_{1} in ker F_{*}.

We call such a basis $\{I, J, K\}$ a h-semi-slant basis and the angles $\left\{\theta_{I}, \theta_{J}, \theta_{K}\right\}$ h-semi-slant angles.

Furthermore, if we have

$$
\theta=\theta_{I}=\theta_{J}=\theta_{K},
$$

then we call the map $F:\left(M, E, g_{M}\right) \mapsto\left(N, g_{N}\right)$ a strictly h-semi-slant submersion, $\{I, J, K\}$ a strictly h-semi-slant basis, and the angle θ a strictly h-semi-slant angle.

Definition 3.2. Let $\left(M, E, g_{M}\right)$ be an almost quaternionic Hermitian manifold and $\left(N, g_{N}\right)$ a Riemannian manifold. A Riemannian submersion $F:\left(M, E, g_{M}\right) \mapsto$ $\left(N, g_{N}\right)$ is called an almost h-semi-slant submersion if given a point $p \in M$ with a neighborhood U, there exists a quaternionic Hermitian basis $\{I, J, K\}$ of sections of E on U such that for each $R \in\{I, J, K\}$, there is a distribution $\mathcal{D}_{1}^{R} \subset \operatorname{ker} F_{*}$ on U such that

$$
\operatorname{ker} F_{*}=\mathcal{D}_{1}^{R} \oplus \mathcal{D}_{2}^{R}, R\left(\mathcal{D}_{1}^{R}\right)=\mathcal{D}_{1}^{R}
$$

and the angle $\theta_{R}=\theta_{R}(X)$ between $R X$ and the space $\left(\mathcal{D}_{2}^{R}\right)_{q}$ is constant for nonzero $X \in\left(\mathcal{D}_{2}^{R}\right)_{q}$ and $q \in U$, where \mathcal{D}_{2}^{R} is the orthogonal complement of \mathcal{D}_{1}^{R} in $\operatorname{ker} F_{*}$.

We call such a basis $\{I, J, K\}$ an almost h-semi-slant basis and the angles $\left\{\theta_{I}, \theta_{J}, \theta_{K}\right\}$ almost h-semi-slant angles.

Remark 3.3. Obviously, almost h-semi-invariant submersions and h-semi-invariant submersions are almost h-semi-slant submersions with almost h-semi-slant angles $\theta_{I}=$ $\theta_{J}=\theta_{K}=\frac{\pi}{2}$ and h-semi-slant submersions with h-semi-slant angles $\theta_{I}=\theta_{J}=\theta_{K}=$ $\frac{\pi}{2}$, respectively [17]. As we know, the fibers of h-semi-invariant submersions from hyperkähler manifolds onto Riemannian manifolds are quaternionic CR-submanifolds ($[3,17]$).

Remark 3.4. Clearly, almost h-slant submersions are h-semi-slant submersions with $\operatorname{ker} F_{*}=\mathcal{D}_{2}$ [16]. Like Remark 2.2 of [18], there are some similarities and differences between almost h-slant submersions and almost h-semi-slant submersions. For the sufficient conditions for such maps to be harmonic, almost h-slant submersions have more nice form than almost h-semi-slant submersions. But almost h-semi-slant submersions contain much more information than almost h-slant submersions. (i.e., the mean curvature vector field of fibers, the geometry of distributions, etc.)

Let $F:\left(M, E, g_{M}\right) \mapsto\left(N, g_{N}\right)$ be an almost h-semi-slant submersion.
Given a point $p \in M$ with a neighborhood U, there exists a quaternionic Hermitian basis $\{I, J, K\}$ of sections of E on U such that for each $R \in\{I, J, K\}$, there is a distribution $\mathcal{D}_{1}^{R} \subset \operatorname{ker} F_{*}$ on U such that

$$
\text { ker } F_{*}=\mathcal{D}_{1}^{R} \oplus \mathcal{D}_{2}^{R}, R\left(\mathcal{D}_{1}^{R}\right)=\mathcal{D}_{1}^{R},
$$

and the angle $\theta_{R}=\theta_{R}(X)$ between $R X$ and the space $\left(\mathcal{D}_{2}^{R}\right)_{q}$ is constant for nonzero $X \in\left(\mathcal{D}_{2}^{R}\right)_{q}$ and $q \in U$, where \mathcal{D}_{2}^{R} is the orthogonal complement of \mathcal{D}_{1}^{R} in $\operatorname{ker} F_{*}$.

Then for $X \in \Gamma\left(\operatorname{ker} F_{*}\right)$, we have

$$
X=P_{R} X+Q_{R} X,
$$

where $P_{R} X \in \Gamma\left(\mathcal{D}_{1}^{R}\right)$ and $Q_{R} X \in \Gamma\left(\mathcal{D}_{2}^{R}\right)$.
For $X \in \Gamma\left(\operatorname{ker} F_{*}\right)$, we get

$$
R X=\phi_{R} X+\omega_{R} X,
$$

where $\phi_{R} X \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $\omega_{R} X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
For $Z \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, we obtain

$$
R Z=B_{R} Z+C_{R} Z
$$

where $B_{R} Z \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $C_{R} Z \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
Then

$$
\left(\operatorname{ker} F_{*}\right)^{\perp}=\omega_{R} \mathcal{D}_{2}^{R} \oplus \mu_{R},
$$

where μ_{R} is the orthogonal complement of $\omega_{R} \mathcal{D}_{2}^{R}$ in $\left(\operatorname{ker} F_{*}\right)^{\perp}$ and is R-invariant. Furthermore,

$$
\begin{aligned}
& \phi_{R} \mathcal{D}_{1}^{R}=\mathcal{D}_{1}^{R}, \omega_{R} \mathcal{D}_{1}^{R}=0, \phi_{R} \mathcal{D}_{2}^{R} \subset \mathcal{D}_{2}^{R}, B_{R}\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)=\mathcal{D}_{2}^{R} \\
& \phi_{R}^{2}+B_{R} \omega_{R}=-i d, C_{R}^{2}+\omega_{R} B_{R}=-i d, \omega_{R} \phi_{R}+C_{R} \omega_{R}=0, B_{R} C_{R}+\phi_{R} B_{R}=0 .
\end{aligned}
$$

Then it is easy to have
Lemma 3.5. Let F be an almost h-semi-slant submersion from a hyperkähler manifold $\left(M, I, J, K, g_{M}\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$ such that (I, J, K) is an almost h-semi-slant basis. Then we get

$$
\begin{gather*}
\widehat{\nabla}_{X} \phi_{R} Y+\mathcal{T}_{X} \omega_{R} Y=\phi_{R} \widehat{\nabla}_{X} Y+B_{R} \mathcal{T}_{X} Y \tag{1}\\
\mathcal{T}_{X} \phi_{R} Y+\mathcal{H} \nabla_{X} \omega_{R} Y=\omega_{R} \widehat{\nabla}_{X} Y+C_{R} \mathcal{T}_{X} Y
\end{gather*}
$$

for $X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $R \in\{I, J, K\}$.
(2)

$$
\begin{aligned}
& \mathcal{V} \nabla_{Z} B_{R} W+\mathcal{A}_{Z} C_{R} W=\phi_{R} \mathcal{A}_{Z} W+B_{R} \mathcal{H} \nabla_{Z} W \\
& \mathcal{A}_{Z} B_{R} W+\mathcal{H} \nabla_{Z} C_{R} W=\omega_{R} \mathcal{A}_{Z} W+C_{R} \mathcal{H} \nabla_{Z} W
\end{aligned}
$$

for $Z, W \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $R \in\{I, J, K\}$.
(3)

$$
\begin{aligned}
& \qquad \begin{aligned}
\hat{\nabla}_{X} B_{R} Z+\mathcal{T}_{X} C_{R} Z=\phi_{R} \mathcal{T}_{X} Z+B_{R} \mathcal{H} \nabla_{X} Z \\
\mathcal{T}_{X} B_{R} Z+\mathcal{H} \nabla_{X} C_{R} Z=\omega_{R} \mathcal{T}_{X} Z+C_{R} \mathcal{H} \nabla_{X} Z \\
\text { for } X \in \Gamma\left(\operatorname{ker} F_{*}\right), Z \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right), \text { and } R \in\{I, J, K\}
\end{aligned}
\end{aligned}
$$

Theorem 3.6. Let F be a h-semi-slant submersion from a hyperkahler manifold $\left(M, I, J, K, g_{M}\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$ such that (I, J, K) is a h-semislant basis. Then the following conditions are equivalent:
(a) the complex distribution \mathcal{D}_{1} is integrable.
(b) $Q_{I}\left(\widehat{\nabla}_{X} \phi_{I} Y-\widehat{\nabla}_{Y} \phi_{I} X\right)=0$ and $\mathcal{T}_{X} \phi_{I} Y=\mathcal{T}_{Y} \phi_{I} X \quad$ for $X, Y \in \Gamma\left(\mathcal{D}_{1}\right)$.
(c) $Q_{J}\left(\widehat{\nabla}_{X} \phi_{J} Y-\widehat{\nabla}_{Y} \phi_{J} X\right)=0$ and $\mathcal{T}_{X} \phi_{J} Y=\mathcal{T}_{Y} \phi_{J} X \quad$ for $X, Y \in \Gamma\left(\mathcal{D}_{1}\right)$.
(d) $Q_{K}\left(\widehat{\nabla}_{X} \phi_{K} Y-\widehat{\nabla}_{Y} \phi_{K} X\right)=0$ and $\mathcal{T}_{X} \phi_{K} Y=\mathcal{T}_{Y} \phi_{K} X \quad$ for $X, Y \in \Gamma\left(\mathcal{D}_{1}\right)$.

Proof. Given $X, Y \in \Gamma\left(\mathcal{D}_{1}\right)$ and $R \in\{I, J, K\}$, we obtain

$$
\begin{aligned}
R[X, Y] & =R\left(\nabla_{X} Y-\nabla_{Y} X\right)=\nabla_{X} R Y-\nabla_{Y} R X \\
& =\widehat{\nabla}_{X} \phi_{R} Y-\widehat{\nabla}_{Y} \phi_{R} X+\mathcal{T}_{X} \phi_{R} Y-\mathcal{T}_{Y} \phi_{R} X
\end{aligned}
$$

Since \mathcal{D}_{1} is R-invariant, we have

$$
a) \Leftrightarrow b), \quad a) \Leftrightarrow c), \quad a) \Leftrightarrow d)
$$

Therefore, we get the result.
Theorem 3.7. Let F be a h-semi-slant submersion from a hyperkähler manifold $\left(M, I, J, K, g_{M}\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$ such that (I, J, K) is a h-semislant basis. Then the following conditions are equivalent:
(a) the slant distribution \mathcal{D}_{2} is integrable.
(b) $P_{I}\left(\widehat{\nabla}_{X} \phi_{I} Y-\widehat{\nabla}_{Y} \phi_{I} X+\mathcal{T}_{X} \omega_{I} Y-\mathcal{T}_{Y} \omega_{I} X\right)=0 \quad$ for $X, Y \in \Gamma\left(\mathcal{D}_{2}\right)$.
(c) $P_{J}\left(\widehat{\nabla}_{X} \phi_{J} Y-\widehat{\nabla}_{Y} \phi_{J} X+\mathcal{T}_{X} \omega_{J} Y-\mathcal{T}_{Y} \omega_{J} X\right)=0 \quad$ for $X, Y \in \Gamma\left(\mathcal{D}_{2}\right)$.
(d) $P_{K}\left(\widehat{\nabla}_{X} \phi_{K} Y-\widehat{\nabla}_{Y} \phi_{K} X+\mathcal{T}_{X} \omega_{K} Y-\mathcal{T}_{Y} \omega_{K} X\right)=0 \quad$ for $X, Y \in \Gamma\left(\mathcal{D}_{2}\right)$.

Proof. Given $X, Y \in \Gamma\left(\mathcal{D}_{2}\right), Z \in \Gamma\left(\mathcal{D}_{1}\right)$, and $R \in\{I, J, K\}$, we obtain

$$
\begin{aligned}
g_{M}([X, Y], R Z)= & -g_{M}(R[X, Y], Z)=-g_{M}\left(\nabla_{X} R Y-\nabla_{Y} R X, Z\right) \\
= & -g_{M}\left(\widehat{\nabla}_{X} \phi_{R} Y+\mathcal{T}_{X} \phi_{R} Y+\mathcal{T}_{X} \omega_{R} Y+\mathcal{H} \nabla_{X} \omega_{R} Y-\widehat{\nabla}_{Y} \phi_{R} X\right. \\
& \left.-\mathcal{T}_{Y} \phi_{R} X-\mathcal{T}_{Y} \omega_{R} X-\mathcal{H} \nabla_{Y} \omega_{R} X, Z\right) \\
= & -g_{M}\left(\widehat{\nabla}_{X} \phi_{R} Y+\mathcal{T}_{X} \omega_{R} Y-\widehat{\nabla}_{Y} \phi_{R} X-\mathcal{T}_{Y} \omega_{R} X, Z\right)
\end{aligned}
$$

Since $[X, Y] \in \Gamma\left(\operatorname{ker} F_{*}\right)$, we have

$$
(a) \Leftrightarrow(b), \quad(a) \Leftrightarrow(c), \quad(a) \Leftrightarrow(d)
$$

Therefore, the result follows.
Proposition 3.8. Let F be an almost h-semi-slant submersion from an almost quaternionic Hermitian manifold $\left(M, E, g_{M}\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then we get

$$
\phi_{R}^{2} X=-\cos ^{2} \theta_{R} X \quad \text { for } X \in \Gamma\left(\mathcal{D}_{2}^{R}\right) \text { and } R \in\{I, J, K\}
$$

where $\{I, J, K\}$ is an almost h-semi-slant basis with the almost h-semi-slant angles $\left\{\theta_{I}, \theta_{J}, \theta_{K}\right\}$.

Proof. Since

$$
\cos \theta_{R}=\frac{g_{M}\left(R X, \phi_{R} X\right)}{|R X| \cdot\left|\phi_{R} X\right|}=\frac{-g_{M}\left(X, \phi_{R}^{2} X\right)}{|X| \cdot\left|\phi_{R} X\right|}
$$

and $\cos \theta_{R}=\frac{\left|\phi_{R} X\right|}{|R X|}$, we obtain

$$
\cos ^{2} \theta_{R}=-\frac{g_{M}\left(X, \phi_{R}^{2} X\right)}{|X|^{2}} \quad \text { for } X \in \Gamma\left(\mathcal{D}_{2}^{R}\right)
$$

Hence,

$$
\phi_{R}^{2} X=-\cos ^{2} \theta_{R} X \quad \text { for } X \in \Gamma\left(\mathcal{D}_{2}^{R}\right) .
$$

Remark 3.9. In particular, it is easy to see that the converse of Proposition 3.8 is also true.

Assume that the almost h-semi-slant angle $\theta_{R} \in\left[0, \frac{\pi}{2}\right)$ for some $R \in\{I, J, K\}$ and define an endomorphism \widehat{R} of ker F_{*} by

$$
\widehat{R}:=R P_{R}+\frac{1}{\cos \theta_{R}} \phi_{R} Q_{R} .
$$

Then,

$$
\begin{equation*}
\widehat{R}^{2}=-i d \quad \text { on } \operatorname{ker} F_{*} . \tag{3}
\end{equation*}
$$

Remark 3.10. Let F be an almost h-semi-slant submersion from an almost quaternionic Hermitian manifold (M, E, g_{M}) onto a Riemannian manifold (N, g_{N}). Assume that $\operatorname{dim} M=4 m, \operatorname{dim} N=n$, and $\left\{\theta_{I}, \theta_{J}, \theta_{K}\right\} \cap\left[0, \frac{\pi}{2}\right) \neq \varnothing$. From (3), we obtain

$$
\operatorname{dim}\left(\operatorname{ker}\left(F_{*}\right)_{p}\right)=2 k \text { and } \operatorname{dim}\left(\left(\operatorname{ker}\left(F_{*}\right)_{p}\right)^{\perp}\right)=4 m-2 k \quad \text { for } p \in M,
$$

where k is a non-negative integer.
Hence, n should be even.
Theorem 3.11. Let F be an almost h-semi-slant submersion from an almost quaternionic Hermitian manifold (M, E, g_{M}) onto a Riemannian manifold (N, g_{N}) such that $\left\{\theta_{I}, \theta_{J}, \theta_{K}\right\} \cap\left[0, \frac{\pi}{2}\right) \neq \varnothing$, where $\left\{\theta_{I}, \theta_{J}, \theta_{K}\right\}$ are almost h-semi-slant angles. Then N is an even-dimensional manifold.

Proposition 3.12. Let F be an almost h-semi-slant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an almost h-semi-slant basis. Then the following conditions are equivalent:
(a) the distribution $\left(\operatorname{ker} F_{*}\right)^{\perp}$ defines a totally geodesic foliation.
(b) $\phi_{I}\left(\mathcal{V} \nabla_{X} B_{I} Y+\mathcal{A}_{X} C_{I} Y\right)+B_{I}\left(\mathcal{A}_{X} B_{I} Y+\mathcal{H} \nabla_{X} C_{I} Y\right)=0 \quad$ for $X, Y \in$ $\Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(c) $\phi_{J}\left(\mathcal{V} \nabla_{X} B_{J} Y+\mathcal{A}_{X} C_{J} Y\right)+B_{J}\left(\mathcal{A}_{X} B_{J} Y+\mathcal{H} \nabla_{X} C_{J} Y\right)=0 \quad$ for $X, Y \in$ $\Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(d) $\phi_{K}\left(\mathcal{V} \nabla_{X} B_{K} Y+\mathcal{A}_{X} C_{K} Y\right)+B_{K}\left(\mathcal{A}_{X} B_{K} Y+\mathcal{H} \nabla_{X} C_{K} Y\right)=0 \quad$ for $X, Y \in$ $\Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.

Proof. Given $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $R \in\{I, J, K\}$, we get

$$
\begin{aligned}
\nabla_{X} Y= & -R \nabla_{X} R Y=-R\left(\mathcal{V} \nabla_{X} B_{R} Y+\mathcal{A}_{X} B_{R} Y+\mathcal{A}_{X} C_{R} Y+\mathcal{H} \nabla_{X} C_{R} Y\right) \\
= & -\left(\phi_{R} \mathcal{V} \nabla_{X} B_{R} Y+\omega_{R} \mathcal{V} \nabla_{X} B_{R} Y+B_{R} \mathcal{A}_{X} B_{R} Y+C_{R} \mathcal{A}_{X} B_{R} Y+\phi_{R} \mathcal{A}_{X} C_{R} Y\right. \\
& \left.+\omega_{R} \mathcal{A}_{X} C_{R} Y+B_{R} \mathcal{H} \nabla_{X} C_{R} Y+C_{R} \mathcal{H} \nabla_{X} C_{R} Y\right) .
\end{aligned}
$$

Thus,
$\nabla_{X} Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right) \Leftrightarrow \phi_{R}\left(\mathcal{V} \nabla_{X} B_{R} Y+\mathcal{A}_{X} C_{R} Y\right)+B_{R}\left(\mathcal{A}_{X} B_{R} Y+\mathcal{H} \nabla_{X} C_{R} Y\right)=0$.

Hence, we have

$$
a) \Leftrightarrow b), \quad a) \Leftrightarrow c), \quad a) \Leftrightarrow d)
$$

Therefore, we get the result.
In a similar way, we have
Proposition 3.13. Let F be an almost h-semi-slant submersion from a hyperkähler manifold $\left(M, I, J, K, g_{M}\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$ such that (I, J, K) is an almost h-semi-slant basis. Then the following conditions are equivalent:
(a) the distribution ker F_{*} defines a totally geodesic foliation.
(b) $\omega_{I}\left(\widehat{\nabla}_{X} \phi_{I} Y+\mathcal{T}_{X} \omega_{I} Y\right)+C_{I}\left(\mathcal{T}_{X} \phi_{I} Y+\mathcal{H} \nabla_{X} \omega_{I} Y\right)=0 \quad$ for $X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right)$.
(c) $\omega_{J}\left(\widehat{\nabla}_{X} \phi_{J} Y+\mathcal{T}_{X} \omega_{J} Y\right)+C_{J}\left(\mathcal{T}_{X} \phi_{J} Y+\mathcal{H} \nabla_{X} \omega_{J} Y\right)=0 \quad$ for $X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right)$.
(d) $\omega_{K}\left(\widehat{\nabla}_{X} \phi_{K} Y+\mathcal{T}_{X} \omega_{K} Y\right)+C_{K}\left(\mathcal{T}_{X} \phi_{K} Y+\mathcal{H} \nabla_{X} \omega_{K} Y\right)=0 \quad$ for $X, Y \in$ $\Gamma\left(\operatorname{ker} F_{*}\right)$.

Proposition 3.14. Let F be a h-semi-slant submersion from a hyperkähler manifold $\left(M, I, J, K, g_{M}\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$ such that (I, J, K) is a h-semislant basis. Then the following conditions are equivalent:
(a) the distribution \mathcal{D}_{2} defines a totally geodesic foliation.
(b)

$$
\begin{gathered}
P_{I}\left(\phi_{I}\left(\hat{\nabla}_{X} \phi_{I} Y+\mathcal{T}_{X} \omega_{I} Y\right)+B_{I}\left(\mathcal{T}_{X} \phi_{I} Y+\mathcal{H} \nabla_{X} \omega_{I} Y\right)\right)=0 \\
\omega_{I}\left(\hat{\nabla}_{X} \phi_{I} Y+\mathcal{T}_{X} \omega_{I} Y\right)+C_{I}\left(\mathcal{T}_{X} \phi_{I} Y+\mathcal{H} \nabla_{X} \omega_{I} Y\right)=0
\end{gathered}
$$

for $X, Y \in \Gamma\left(\mathcal{D}_{2}\right)$.
(c)

$$
\begin{gathered}
P_{J}\left(\phi_{J}\left(\hat{\nabla}_{X} \phi_{J} Y+\mathcal{T}_{X} \omega_{J} Y\right)+B_{J}\left(\mathcal{T}_{X} \phi_{J} Y+\mathcal{H} \nabla_{X} \omega_{J} Y\right)\right)=0 \\
\omega_{J}\left(\hat{\nabla}_{X} \phi_{J} Y+\mathcal{T}_{X} \omega_{J} Y\right)+C_{J}\left(\mathcal{T}_{X} \phi_{J} Y+\mathcal{H} \nabla_{X} \omega_{J} Y\right)=0
\end{gathered}
$$

for $X, Y \in \Gamma\left(\mathcal{D}_{2}\right)$.
(d)

$$
\begin{gathered}
P_{K}\left(\phi_{K}\left(\hat{\nabla}_{X} \phi_{K} Y+\mathcal{T}_{X} \omega_{K} Y\right)+B_{K}\left(\mathcal{T}_{X} \phi_{K} Y+\mathcal{H} \nabla_{X} \omega_{K} Y\right)\right)=0 \\
\omega_{K}\left(\hat{\nabla}_{X} \phi_{K} Y+\mathcal{T}_{X} \omega_{K} Y\right)+C_{K}\left(\mathcal{T}_{X} \phi_{K} Y+\mathcal{H} \nabla_{X} \omega_{K} Y\right)=0
\end{gathered}
$$

for $X, Y \in \Gamma\left(\mathcal{D}_{2}\right)$.
Proof. Given $X, Y \in \Gamma\left(\mathcal{D}_{2}\right)$ and $R \in\{I, J, K\}$, we get

$$
\begin{aligned}
\nabla_{X} Y= & -R \nabla_{X} R Y=-R\left(\widehat{\nabla}_{X} \phi_{R} Y+\mathcal{T}_{X} \phi_{R} Y+\mathcal{T}_{X} \omega_{R} Y+\mathcal{H} \nabla_{X} \omega_{R} Y\right) \\
= & -\left(\phi_{R} \widehat{\nabla}_{X} \phi_{R} Y+\omega_{R} \widehat{\nabla}_{X} \phi_{R} Y+B_{R} \mathcal{T}_{X} \phi_{R} Y+C_{R} \mathcal{T}_{X} \phi_{R} Y+\phi_{R} \mathcal{T}_{X} \omega_{R} Y\right. \\
& \left.+\omega_{R} \mathcal{T}_{X} \omega_{R} Y+B_{R} \mathcal{H} \nabla_{X} \omega_{R} Y+C_{R} \mathcal{H} \nabla_{X} \omega_{R} Y\right)
\end{aligned}
$$

Thus,

$$
\nabla_{X} Y \in \Gamma\left(\mathcal{D}_{2}\right) \Leftrightarrow\left\{\begin{array}{l}
P_{R}\left(\phi_{R}\left(\widehat{\nabla}_{X} \phi_{R} Y+\mathcal{T}_{X} \omega_{R} Y\right)+B_{R}\left(\mathcal{T}_{X} \phi_{R} Y+\mathcal{H} \nabla_{X} \omega_{R} Y\right)\right)=0, \\
\omega_{R}\left(\widehat{\nabla}_{X} \phi_{R} Y+\mathcal{T}_{X} \omega_{R} Y\right)+C_{R}\left(\mathcal{T}_{X} \phi_{R} Y+\mathcal{H} \nabla_{X} \omega_{R} Y\right)=0
\end{array}\right.
$$

Hence, we have

$$
a) \Leftrightarrow b), \quad a) \Leftrightarrow c), \quad a) \Leftrightarrow d)
$$

Therefore, the result follows.
Similarly, we get
Proposition 3.15. Let F be a h-semi-slant submersion from a hyperkähler manifold $\left(M, I, J, K, g_{M}\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$ such that (I, J, K) is a h-semislant basis. Then the following conditions are equivalent:
(a) the distribution \mathcal{D}_{1} defines a totally geodesic foliation.
(b)

$$
Q_{I}\left(\phi_{I} \widehat{\nabla}_{X} \phi_{I} Y+B_{I} \mathcal{T}_{X} \phi_{I} Y\right)=0 \text { and } \omega_{I} \widehat{\nabla}_{X} \phi_{I} Y+C_{I} \mathcal{T}_{X} \phi_{I} Y=0
$$

for $X, Y \in \Gamma\left(\mathcal{D}_{1}\right)$.
(c)

$$
Q_{J}\left(\phi_{J} \widehat{\nabla}_{X} \phi_{J} Y+B_{J} \mathcal{I}_{X} \phi_{J} Y\right)=0 \text { and } \omega_{J} \widehat{\nabla}_{X} \phi_{J} Y+C_{J} \mathcal{T}_{X} \phi_{J} Y=0
$$

for $X, Y \in \Gamma\left(\mathcal{D}_{1}\right)$.
(d)

$$
Q_{K}\left(\phi_{K} \widehat{\nabla}_{X} \phi_{K} Y+B_{K} \mathcal{T}_{X} \phi_{K} Y\right)=0 \text { and } \omega_{K} \widehat{\nabla}_{X} \phi_{K} Y+C_{K} \mathcal{T}_{X} \phi_{K} Y=0
$$

for $X, Y \in \Gamma\left(\mathcal{D}_{1}\right)$.
Now, we obtain a condition for such maps to be totally geodesic.
Theorem 3.16. Let F be an almost h-semi-slant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold $\left(N, g_{N}\right)$ such that (I, J, K) is an almost h-semi-slant basis. Then the following conditions are equivalent:
(a) F is a totally geodesic map.
(b)

$$
\begin{aligned}
& \omega_{I}\left(\widehat{\nabla}_{X} \phi_{I} Y+\mathcal{T}_{X} \omega_{I} Y\right)+C_{I}\left(\mathcal{T}_{X} \phi_{I} Y+\mathcal{H} \nabla_{X} \omega_{I} Y\right)=0 \\
& \omega_{I}\left(\hat{\nabla}_{X} B_{I} Z+\mathcal{T}_{X} C_{I} Z\right)+C_{I}\left(\mathcal{T}_{X} B_{I} Z+\mathcal{H} \nabla_{X} C_{I} Z\right)=0
\end{aligned}
$$

for $X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $Z \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(c)

$$
\begin{aligned}
& \omega_{J}\left(\widehat{\nabla}_{X} \phi_{J} Y+\mathcal{T}_{X} \omega_{J} Y\right)+C_{J}\left(\mathcal{T}_{X} \phi_{J} Y+\mathcal{H} \nabla_{X} \omega_{J} Y\right)=0 \\
& \omega_{J}\left(\widehat{\nabla}_{X} B_{J} Z+\mathcal{T}_{X} C_{J} Z\right)+C_{J}\left(\mathcal{T}_{X} B_{J} Z+\mathcal{H} \nabla_{X} C_{J} Z\right)=0
\end{aligned}
$$

for $X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $Z \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.

$$
\begin{gathered}
\omega_{K}\left(\hat{\nabla}_{X} \phi_{K} Y+\mathcal{T}_{X} \omega_{K} Y\right)+C_{K}\left(\mathcal{T}_{X} \phi_{K} Y+\mathcal{H} \nabla_{X} \omega_{K} Y\right)=0 \\
\omega_{K}\left(\widehat{\nabla}_{X} B_{K} Z+\mathcal{T}_{X} C_{K} Z\right)+C_{K}\left(\mathcal{T}_{X} B_{K} Z+\mathcal{H} \nabla_{X} C_{K} Z\right)=0
\end{gathered}
$$

for $X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $Z \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
Proof. Since F is a Riemannian submersion, we get

$$
\left(\nabla F_{*}\right)\left(Z_{1}, Z_{2}\right)=0 \quad \text { for } Z_{1}, Z_{2} \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right) .
$$

Given $X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right)$, we have

$$
\begin{aligned}
\left(\nabla F_{*}\right)(X, Y)= & -F_{*}\left(\nabla_{X} Y\right)=F_{*}\left(I \nabla_{X}\left(\phi_{I} Y+\omega_{I} Y\right)\right) \\
= & F_{*}\left(\phi_{I} \widehat{\nabla}_{X} \phi_{I} Y+\omega_{I} \widehat{\nabla}_{X} \phi_{I} Y+B_{I} \mathcal{T}_{X} \phi_{I} Y+C_{I} \mathcal{T}_{X} \phi_{I} Y+\phi_{I} \mathcal{T}_{X} \omega_{I} Y\right. \\
& \left.+\omega_{I} \mathcal{T}_{X} \omega_{I} Y+B_{I} \mathcal{H} \nabla_{X} \omega_{I} Y+C_{I} \mathcal{H} \nabla_{X} \omega_{I} Y\right)
\end{aligned}
$$

Thus,

$$
\left(\nabla F_{*}\right)(X, Y)=0 \Leftrightarrow \omega_{I}\left(\widehat{\nabla}_{X} \phi_{I} Y+\mathcal{T}_{X} \omega_{I} Y\right)+C_{I}\left(\mathcal{T}_{X} \phi_{I} Y+\mathcal{H} \nabla_{X} \omega_{I} Y\right)=0 .
$$

For $X \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $Z \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, since $\left(\nabla F_{*}\right)(X, Z)=\left(\nabla F_{*}\right)(Z, X)$, it is sufficient to consider the following:

$$
\begin{aligned}
\left(\nabla F_{*}\right)(X, Z)= & -F_{*}\left(\nabla_{X} Z\right)=F_{*}\left(I \nabla_{X}\left(B_{I} Z+C_{I} Z\right)\right) \\
= & F_{*}\left(\phi_{I} \widehat{\nabla}_{X} B_{I} Z+\omega_{I} \widehat{\nabla}_{X} B_{I} Z+B_{I} \mathcal{T}_{X} B_{I} Z+C_{I} \mathcal{T}_{X} B_{I} Z+\phi_{I} \mathcal{T}_{X} C_{I} Z\right. \\
& \left.+\omega_{I} \mathcal{T}_{X} C_{I} Z+B_{I} \mathcal{H} \nabla_{X} C_{I} Z+C_{I} \mathcal{H} \nabla_{X} C_{I} Z\right)
\end{aligned}
$$

Thus,

$$
\left(\nabla F_{*}\right)(X, Z)=0 \Leftrightarrow \omega_{I}\left(\hat{\nabla}_{X} B_{I} Z+\mathcal{T}_{X} C_{I} Z\right)+C_{I}\left(\mathcal{T}_{X} B_{I} Z+\mathcal{H} \nabla_{X} C_{I} Z\right)=0
$$

Hence,

$$
(a) \Leftrightarrow(b) .
$$

Similarly, we get

$$
(a) \Leftrightarrow(c) \quad \text { and } \quad(a) \Leftrightarrow(d) .
$$

Therefore, the result follows.
Let F be an almost h-semi-slant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an almost h-semi-slant basis. Given a complex structure $R \in\{I, J, K\}$, we can choose a local orthonormal frame $\left\{v_{1}, \cdots, v_{l}\right\}$ of \mathcal{D}_{2}^{R} and a local orthonormal frame $\left\{e_{1}, \cdots, e_{2 k}\right\}$ of \mathcal{D}_{1}^{R} such that $e_{2 i}=R e_{2 i-1}$ for $1 \leq i \leq k$. If \mathcal{D}_{1}^{R} is integrable, then we easily obtain

$$
F_{*}\left(\nabla_{R e_{2 i-1}} R e_{2 i-1}\right)=-F_{*}\left(\nabla_{e_{2 i-1}} e_{2 i-1}\right) \quad \text { for } 1 \leq i \leq k
$$

so that we have

$$
\operatorname{trace}\left(\nabla F_{*}\right)=0 \Leftrightarrow \sum_{j=1}^{l} F_{*}\left(\nabla_{v_{j}} v_{j}\right)=0
$$

Theorem 3.17. Let F be an almost h-semi-slant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an almost h-semi-slant basis. Then each of the following conditions implies that F is a harmonic map:
(a) \mathcal{D}_{1}^{I} is integrable and trace $\left(\nabla F_{*}\right)=0$ on \mathcal{D}_{2}^{I}.
(b) \mathcal{D}_{1}^{J} is integrable and trace $\left(\nabla F_{*}\right)=0$ on \mathcal{D}_{2}^{J}.
(c) \mathcal{D}_{1}^{K} is integrable and trace $\left(\nabla F_{*}\right)=0$ on \mathcal{D}_{2}^{K}.

Corollary 3.18. Let F be an almost h-semi-slant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an almost h-semi-slant basis. Assume that $\operatorname{ker} F_{*}=\mathcal{D}_{1}^{R}$ for some $R \in\{I, J, K\}$. Then F is a harmonic map.

Let $F:\left(M, g_{M}\right) \mapsto\left(N, g_{N}\right)$ be a Riemannian submersion. The map F is called a Riemannian submersion with totally umbilical fibers if

$$
\begin{equation*}
\mathcal{T}_{X} Y=g_{M}(X, Y) H \quad \text { for } X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right), \tag{4}
\end{equation*}
$$

where H is the mean curvature vector field of the fiber.
Lemma 3.19. Let F be an almost h-semi-slant submersion with totally umbilical fibers from a hyperkahler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold $\left(N, g_{N}\right)$ such that (I, J, K) is an almost h-semi-slant basis. Then we obtain

$$
H \in \Gamma\left(\omega_{R} \mathcal{D}_{2}^{R}\right) \quad \text { for } R \in\{I, J, K\} .
$$

Proof. Given $X, Y \in \Gamma\left(\mathcal{D}_{1}^{R}\right), W \in \Gamma\left(\mu_{R}\right)$, and $R \in\{I, J, K\}$, we get

$$
\mathcal{T}_{X} R Y+\widehat{\nabla}_{X} R Y=\nabla_{X} R Y=R \nabla_{X} Y=B_{R} \mathcal{T}_{X} Y+C_{R} \mathcal{T}_{X} Y+\phi_{R} \widehat{\nabla}_{X} Y+\omega_{R} \widehat{\nabla}_{X} Y
$$

so that

$$
g_{M}\left(\mathcal{T}_{X} R Y, W\right)=g_{M}\left(C_{R} \mathcal{T}_{X} Y, W\right) .
$$

By (4), we easily have

$$
g_{M}(X, R Y) g_{M}(H, W)=-g_{M}(X, Y) g_{M}(H, R W) .
$$

Interchanging the role of X and Y, we get

$$
g_{M}(Y, R X) g_{M}(H, W)=-g_{M}(Y, X) g_{M}(H, R W) .
$$

Using the above two equations, we obtain

$$
g_{M}(X, Y) g_{M}(H, R W)=0,
$$

which implies $H \in \Gamma\left(\omega_{R} \mathcal{D}_{2}^{R}\right)$, since μ_{R} is R-invariant.
Therefore, we have the result.

4. Examples

Note that given an Euclidean space $\mathbb{R}^{4 m}$ with coordinates $\left(x_{1}, x_{2}, \cdots, x_{4 m}\right)$, we can canonically choose complex structures I, J, K on $\mathbb{R}^{4 m}$ as follows:
$I\left(\frac{\partial}{\partial x_{4 k+1}}\right)=\frac{\partial}{\partial x_{4 k+2}}, I\left(\frac{\partial}{\partial x_{4 k+2}}\right)=-\frac{\partial}{\partial x_{4 k+1}}, I\left(\frac{\partial}{\partial x_{4 k+3}}\right)=\frac{\partial}{\partial x_{4 k+4}}, I\left(\frac{\partial}{\partial x_{4 k+4}}\right)=-\frac{\partial}{\partial x_{4 k+3}}$,
$J\left(\frac{\partial}{\partial x_{4 k+1}}\right)=\frac{\partial}{\partial x_{4 k+3}}, J\left(\frac{\partial}{\partial x_{4 k+2}}\right)=-\frac{\partial}{\partial x_{4 k+4}}, J\left(\frac{\partial}{\partial x_{4 k+3}}\right)=-\frac{\partial}{\partial x_{4 k+1}}, J\left(\frac{\partial}{\partial x_{4 k+4}}\right)=\frac{\partial}{\partial x_{4 k+2}}$,
$K\left(\frac{\partial}{\partial x_{4 k+1}}\right)=\frac{\partial}{\partial x_{4 k+4}}, K\left(\frac{\partial}{\partial x_{4 k+2}}\right)=\frac{\partial}{\partial x_{4 k+3}}, K\left(\frac{\partial}{\partial x_{4 k+3}}\right)=-\frac{\partial}{\partial x_{4 k+2}}, K\left(\frac{\partial}{\partial x_{4 k+4}}\right)=-\frac{\partial}{\partial x_{4 k+1}}$
for $k \in\{0,1, \cdots, m-1\}$.
Then we easily check that $(I, J, K,\langle\rangle$,$) is a hyperkähler structure on \mathbb{R}^{4 m}$, where \langle,$\rangle denotes the Euclidean metric on \mathbb{R}^{4 m}$. Throughout this section, we will use these notations.

Example 4.1. Let F be an almost h-slant submersion from an almost quaternionic Hermitian manifold (M, E, g_{M}) onto a Riemannian manifold (N, g_{N}). Then the map $F:\left(M, E, g_{M}\right) \mapsto\left(N, g_{N}\right)$ is a h-semi-slant submersion with $\mathcal{D}_{2}=\operatorname{ker} F_{*}$. [16].

Example 4.2. Let F be an almost h-semi-invariant submersion from an almost quaternionic Hermitian manifold (M, E, g_{M}) onto a Riemannian manifold (N, g_{N}). Then the map $F:\left(M, E, g_{M}\right) \mapsto\left(N, g_{N}\right)$ is an almost h-semi-slant submersion with the almost h-semi-slant angles $\theta_{I}=\theta_{J}=\theta_{K}=\frac{\pi}{2}$. [17].

Example 4.3. Let (M, E, g) be an almost quaternionic Hermitian manifold. Let $\pi: T M \mapsto M$ be the natural projection. Then the map π is a strictly h-semi-slant submersion such that $\mathcal{D}_{1}=\operatorname{ker} \pi_{*}$ and the strictly h-semi-slant angle $\theta=0$ [11].

Example 4.4. Let $\left(M, E_{M}, g_{M}\right)$ and (N, E_{N}, g_{N}) be almost quaternionic Hermitian manifolds. Let $F: M \mapsto N$ be a quaternionic submersion. Then the map F is a strictly h-semi-slant submersion such that $\mathcal{D}_{1}=\operatorname{ker} F_{*}$ and the strictly h-semi-slant angle $\theta=0$ [11].

Example 4.5. Define a map $F: \mathbb{R}^{8} \mapsto \mathbb{R}^{3}$ by

$$
F\left(x_{1}, \cdots, x_{8}\right)=\left(x_{5} \sin \alpha-x_{7} \cos \alpha, x_{6}, x_{8}\right),
$$

where α is constant. Then the map F is a strictly h-semi-slant submersion such that

$$
\mathcal{D}_{1}=<\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{4}}>\text { and } \mathcal{D}_{2}=<\cos \alpha \frac{\partial}{\partial x_{5}}+\sin \alpha \frac{\partial}{\partial x_{7}}>
$$

with the strictly h-semi-slant angle $\theta=\frac{\pi}{2}$.
Example 4.6. Let (M, I, J, K, g_{M}) be a $4 m$-dimensional hyperkähler manifold and $\left(N, g_{N}\right)$ a $(4 m-1)$-dimensional Riemannian manifold. Let $\widehat{F}:\left(M, I, J, K, g_{M}\right)$ $\mapsto\left(N, g_{N}\right)$ be a Riemannian submersion.

Define a map $F:\left(M, I, J, K, g_{M}\right) \times \mathbb{R}^{4 k} \mapsto\left(N, g_{N}\right)$ by

$$
F(x, y)=\widehat{F}(x) \quad \text { for } x \in M \text { and } y \in \mathbb{R}^{4 k} .
$$

Then the map F is a strictly h-semi-slant submersion such that

$$
\mathcal{D}_{1}=0 \times \mathbb{R}^{4 k} \text { and } \mathcal{D}_{2}=\operatorname{ker} \widehat{F}_{*} \times 0
$$

with the strictly h-semi-slant angle $\theta=\frac{\pi}{2}$.
Example 4.7. Define a map $F: \mathbb{R}^{12} \mapsto \mathbb{R}^{4}$ by

$$
F\left(x_{1}, \cdots, x_{12}\right)=\left(\frac{x_{5}-x_{7}}{\sqrt{2}}, x_{8}, \frac{x_{9}-x_{11}}{\sqrt{2}}, x_{10}\right) .
$$

Then the map F is a h-semi-slant submersion such that $\mathcal{D}_{1}=<\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{4}}>$ and $\mathcal{D}_{2}=<\frac{\partial}{\partial x_{6}}, \frac{\partial}{\partial x_{12}}, \frac{\partial}{\partial x_{5}}+\frac{\partial}{\partial x_{7}}, \frac{\partial}{\partial x_{9}}+\frac{\partial}{\partial x_{11}}>$ with the h-semi-slant angles $\left\{\theta_{I}=\frac{\pi}{4}, \theta_{J}=\frac{\pi}{2}, \theta_{K}=\frac{\pi}{4}\right\}$.

Example 4.8. Define a map $F: \mathbb{R}^{12} \mapsto \mathbb{R}^{2}$ by

$$
F\left(x_{1}, \cdots, x_{12}\right)=\left(x_{5} \cos \alpha-x_{7} \sin \alpha, x_{6} \sin \beta-x_{8} \cos \beta\right),
$$

where α and β are constant. Then the map F is a h-semi-slant submersion such that

$$
\mathcal{D}_{1}=<\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{4}}, \frac{\partial}{\partial x_{9}}, \frac{\partial}{\partial x_{10}}, \frac{\partial}{\partial x_{11}}, \frac{\partial}{\partial x_{12}}>
$$

and

$$
\mathcal{D}_{2}=<\sin \alpha \frac{\partial}{\partial x_{5}}+\cos \alpha \frac{\partial}{\partial x_{7}}, \cos \beta \frac{\partial}{\partial x_{6}}+\sin \beta \frac{\partial}{\partial x_{8}}>
$$

with the h-semi-slant angles $\left\{\theta_{I}, \theta_{J}=\frac{\pi}{2}, \theta_{K}\right\}$ such that $\cos \theta_{I}=|\sin (\alpha+\beta)|$ and $\cos \theta_{K}=|\cos (\alpha+\beta)|$.

Example 4.9. Define a map $F: \mathbb{R}^{12} \mapsto \mathbb{R}^{6}$ by

$$
F\left(x_{1}, \cdots, x_{12}\right)=\left(x_{3}, \cdots, x_{8}\right) .
$$

Then the map F is an almost h-semi-slant submersion such that

$$
\begin{aligned}
& \mathcal{D}_{1}^{I}=<\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{9}}, \frac{\partial}{\partial x_{10}}, \frac{\partial}{\partial x_{11}}, \frac{\partial}{\partial x_{12}}>, \\
& \mathcal{D}_{1}^{J}=\mathcal{D}_{1}^{K}=<\frac{\partial}{\partial x_{9}}, \frac{\partial}{\partial x_{10}}, \frac{\partial}{\partial x_{11}}, \frac{\partial}{\partial x_{12}}>, \\
& \mathcal{D}_{2}^{I}=0, \quad \mathcal{D}_{2}^{J}=\mathcal{D}_{2}^{K}=<\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}>.
\end{aligned}
$$

with the almost h-semi-slant angles $\left\{\theta_{I}=0, \theta_{J}=\frac{\pi}{2}, \theta_{K}=\frac{\pi}{2}\right\}$.
By Corollary 3.18, F is also harmonic.
Example 4.10. Define a map $F: \mathbb{R}^{12} \mapsto \mathbb{R}^{4}$ by

$$
F\left(x_{1}, \cdots, x_{12}\right)=\left(x_{7}, x_{5}, x_{1}, x_{2}\right) .
$$

Then the map F is an almost h-semi-slant submersion such that

$$
\begin{aligned}
& \mathcal{D}_{1}^{I}=<\frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{4}}, \frac{\partial}{\partial x_{9}}, \frac{\partial}{\partial x_{10}}, \frac{\partial}{\partial x_{11}}, \frac{\partial}{\partial x_{12}}>, \\
& \mathcal{D}_{1}^{J}=<\frac{\partial}{\partial x_{6}}, \frac{\partial}{\partial x_{8}}, \frac{\partial}{\partial x_{9}}, \frac{\partial}{\partial x_{10}}, \frac{\partial}{\partial x_{11}}, \frac{\partial}{\partial x_{12}}>, \\
& \mathcal{D}_{1}^{K}=<\frac{\partial}{\partial x_{9}}, \frac{\partial}{\partial x_{10}}, \frac{\partial}{\partial x_{11}}, \frac{\partial}{\partial x_{12}}>, \\
& \mathcal{D}_{2}^{I}=<\frac{\partial}{\partial x_{6}}, \frac{\partial}{\partial x_{8}}>, \quad \mathcal{D}_{2}^{J}=<\frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{4}}>, \\
& \mathcal{D}_{2}^{K}=<\frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{4}}, \frac{\partial}{\partial x_{6}}, \frac{\partial}{\partial x_{8}}>
\end{aligned}
$$

with the almost h-semi-slant angles $\left\{\theta_{I}=\frac{\pi}{2}, \theta_{J}=\frac{\pi}{2}, \theta_{K}=\frac{\pi}{2}\right\}$.
Example 4.11. Let \widehat{F} be an almost h-slant submersion from an almost quaternionic Hermitian manifold ($M_{1}, E_{1}, g_{M_{1}}$) onto a Riemannian manifold (N, g_{N}) and ($M_{2}, E_{2}, g_{M_{2}}$) an almost quaternionic Hermitian manifold.

Define a map $F:\left(M_{1}, E_{1}, g_{M_{1}}\right) \times_{f}\left(M_{2}, E_{2}, g_{M_{2}}\right) \mapsto\left(N, g_{N}\right)$ by

$$
F(x, y)=\widehat{F}(x) \quad \text { for } x \in M_{1} \text { and } y \in M_{2},
$$

where $\left(M_{1}, E_{1}, g_{M_{1}}\right) \times_{f}\left(M_{2}, E_{2}, g_{M_{2}}\right)$ is the warped product of ($M_{1}, E_{1}, g_{M_{1}}$) and $\left(M_{2}, E_{2}, g_{M_{2}}\right.$) with the warping function $f: M_{1} \mapsto \mathbb{R}^{+}$. i.e., $g=g_{M_{1}}+f^{2} g_{M_{2}}$.

Then the map F is a h-semi-slant submersion such that

$$
\mathcal{D}_{1}=T M_{2} \text { and } \mathcal{D}_{2}=\operatorname{ker} \widehat{F}_{*}
$$

with the h-semi-slant angles $\left\{\theta_{I}, \theta_{J}, \theta_{K}\right\}$, where $\{I, J, K\}$ is an almost h-slant basis of the map \widehat{F} with the slant angles $\left\{\theta_{I}, \theta_{J}, \theta_{K}\right\}$ [16].

References

1. D. V. Alekseevsky and S. Marchiafava, Almost complex submanifolds of quaternionic manifolds, in: Proceedings of the Colloquium on Differential Geometry, Debrecen (Hungary), 25-30 July 2000; Inst. Math. Inform. Debrecen, 2001, pp. 23-38.
2. A. L. Besse, Einstein Manifolds, Springer Verlag, Berlin, 1987.
3. M. Barros, B. Y. Chen and F. Urbano, Quaternion CR-submanifolds of quaternion manifolds, Kodai Mathematical Journal, 4 (1980), 399-417.
4. J. P. Bourguignon and H. B. Lawson, A mathematician's visit to Kaluza-Klein theory, Rend. Semin. Mat. Torino Fasc. Spec., (1989), 143-163.
5. J. P. Bourguignon and H. B. Lawson, Stability and isolation phenomena for Yang-mills fields, Commum. Math. Phys. 79 (1981), 189-230.
6. P. Baird and J. C. Wood, Harmonic Morphisms between Riemannian Manifolds, Oxford Science Publications, 2003.
7. B. Y. Chen, Geometry of Slant Submaniflods, Katholieke Universiteit Leuven, Leuven, 1990.
8. V. Cortés, C. Mayer, T. Mohaupt and F. Saueressig, Special geometry of Euclidean supersymmetry 1. Vector multiplets, J. High Energy Phys., 3 (2004), 028.
9. M. Falcitelli, S. Ianus and A. M. Pastore, Riemannian Submersions and Related Topics, World Scientific Publishing Co., 2004.
10. A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech., 16 (1967), 715-737.
11. S. Ianus, R. Mazzocco and G. E. Vilcu, Riemannian submersions from quaternionic manifolds, Acta. Appl. Math., 104 (2008), 83-89.
12. S. Ianus and M. Visinescu, Kaluza-Klein theory with scalar fields and generalized Hopf manifolds, Class. Quantum Gravity, 4 (1987), 1317-1325.
13. S. Ianus and M. Visinescu, Space-time compactification and Riemannian submersions, in: The Mathematical Heritage of C. F. Gauss, Rassias, G. (ed.), World Scientific, River Edge., 1991, pp. 358-371.
14. M. T. Mustafa, Applications of harmonic morphisms to gravity, J. Math. Phys., 41(10) (2000), 6918-6929.
15. B. O’Neill, The fundamental equations of a submersion, Mich. Math. J., 13 (1966), 458-469.
16. K. S. Park, H-slant submersions, Bull. Korean Math. Soc., 49(2) (2012), 329-338.
17. K. S. Park, H-semi-invariant submersions, Taiwan. J. Math., 16(5) (2012), 1865-1878.
18. K. S. Park and R. Prasad, Semi-slant submersions, Bull. Korean Math. Soc., 50(3) (2013), 951-962.
19. B. Sahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Cent. Eur. J. Math., 8(3) (2010), 437-447.
20. B. Sahin, Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie Tome, 54(1) (102) (2011), 93-105.
21. B. Sahin, Semi-invariant submersions from almost Hermitian manifolds, Canad. Math. Bull., 56(1) (2013), 173-183.
22. B. Sahin, Riemannian submersions from almost Hermitian manifolds, Taiwanese J. Math., 17(2) (2013), 629-659.
23. B. Watson, Almost Hermitian submersions, J. Differential Geom., 11(1) (1976), 147-165.
24. B. Watson, G, G^{\prime}-Riemannian submersions and nonlinear gauge field equations of general relativity, in: Global Analysis - Analysis on Manifolds, Rassias, T. (ed.), dedicated M. Morse. Teubner-Texte Math., 57 (1983), 324-349, Teubner, Leipzig.

Kwang-Soon Park
Department of Mathematical Sciences
Seoul National University
Seoul 151-747
Republic of Korea
E-mail: parkksn@gmail.com

