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CHEN’S INEQUALITIES FOR SUBMANIFOLDS OF A RIEMANNIAN
MANIFOLD OF QUASI-CONSTANT CURVATURE WITH A

SEMI-SYMMETRIC METRIC CONNECTION

Pan Zhang, Liang Zhang* and Weidong Song

Abstract. In this paper, we obtain Chen’s inequalities for submanifolds of a
Riemannian manifold of quasi-constant curvature endowed with a semi-symmetric
metric connection. Also, some results of A. Mihai and C. Özgur’s paper have
been modified.

1. INTRODUCTION

According to B.-Y. Chen [5], one of the most important problems in submani-
fold theory is to find simple relationships between the main extrinsic invariants and
the main intrinsic invariants of a submanifold. Related with famous Nash embedding
theorem [22], B.-Y. Chen introduced a new type of Riemannian invariants, known as
δ−invariants [4,6,13]. The author’s original motivation was to provide answers to a
question raised by S.S. Chern concerning the existence of minimal isometric immer-
sions into Euclidean space [26]. Therefore, B.-Y. Chen obtained a necessary condition
for the existence of minimal isometric immersion from a given Riemannian manifold
into Euclidean space and established inequalities for submanifolds in real space forms
in terms of the sectional curvature, the scalar curvature and the squared mean curvature
[7]. Later, he established general inequalities relating δ(n1, · · · , nk) and the squared
mean curvature for submanifolds in real space forms [8]. Similar inequalities also hold
for Lagrangian submanifolds of complex space forms. In [9], B.-Y. Chen proved that,
for any δ(n1, · · · , nk), the equality case holds if and only if the Lagrangian submani-
fold is minimal. This interesting phenomenon inspired people to look for a more sharp
inequality. In 2007, T. Oprea improved the inequality on δ(2) for Lagrangian subman-
ifolds in complex space forms [27]. Recently, B.-Y. Chen and F. Dillen established
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general inequalities for submanifolds in complex space forms and provided some exam-
ples showing these new improved inequalities are best possible [14]. However, it was
pointed out in [15] that the proof of the general inequality given [14] is incorrect when∑k

i=1
1

2+ni
> 1

3 . In [16], B.-Y. Chen, F. Dillen, J. Van der Veken and L. Vrancken
corrected the proof of the general inequality in the case n1 + · · ·+nk < n and showed
that the inequality can be improved in the case n1 + · · ·+ nk = n.

Such invariants and inequalities have many nice applications to several areas in
mathematics [10].

Afterwards, many papers studied Chen’s inequalities for different submanifolds
in various ambient spaces, like complex space forms [20], generalized complex space
forms[1], (κ, μ)−contact space forms [23], Riemannian manifold of quasi-constant cur-
vature[18], Euclidean space [19] and locally conformal almost cosymplectic manifolds
[29].

Recently, A. Mihai and C. Özgür proved Chen’s inequalities for submanifolds of
real space forms, complex space forms and Sasakian space forms with semi-symmetric
metric connections [2,3]. In this paper, we obtain Chen first inequalities and Chen-Ricci
inequalities for submanifolds of a Riemannian manifold of quasi-constant curvature
endowed with a semi-symmetric metric connection by using algebraic lemmas. We
should point out that our approaches are different from B.Y. Chen’s. Moreover, we
prove a result of A. Mihai and C. Özgür [2, Theorem 4.1.] is incorrect and the
Corollary 4.2 from [2] isn’t ideal. For the sake of correcting the results, we establish
Chen-Ricci inequalities for submanifolds of real space forms with a semi-symmetric
metric connection at the end of Section 5.

2. PRELIMINARIES

To meet the requirements in the next sections, here, the basic elements of the theory
of Riemannian manifolds endowed with a semi-symmetric metric connection are briefly
presented.

Let Nn+p be an (n + p)−dimensional Riemannian manifold with Riemannian
metric g, the linear connection ∇ and the Riemannian connection∇̂. For the vector
fields X, Y on Nn+p the torsion tensor field T of the linear connection ∇ is defined
by T (X, Y ) = ∇XY − ∇Y X − [X, Y ]. A liner connection ∇ is said to be a semi-
symmetric connection if the torsion tensor T of the connection ∇ satisfies T (X, Y ) =
φ(Y )X−φ(X)Y , where φ is a 1-form on Nn+p. Further, if ∇ satisfies∇g = 0, then ∇
is called a semi-symmetric metric connection[25]. In [25], K. Yano obtained a relation
between the semi-symmetric metric connection ∇ and the Riemannian connection ∇̂
which is given by ∇XY = ∇̂XY + φ(Y )X − g(X, Y )P, where P is a vector field
given by g(P, X) = φ(X) for any vector field X on Nn+p.

Let Mn be an n−dimensional submanifold of an (n + p)-dimensional manifold
Nn+p with the semi-symmetric metric connection ∇ and the Riemannian connection
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∇̂. On Mn we consider the induced semi-symmetric metric connection denoted by ∇
and the induced Levi-Civita connection denoted by ∇̂. We denote by R and R̂ the
curvature tensors associated to ∇ and ∇̂.

The Gauss formulas with respect to ∇, respectively ∇̂, can be written as the
following

∇XY = ∇XY + h(X, Y ), ∇̂XY = ∇̂XY + ĥ(X, Y ),

for any vector fields X, Y on Mn, where h is a (0, 2) symmetric tensor on Mn and ĥ
is the second fundamental form associated to Riemaniann connection ∇̂ [30].

We will consider a Riemanniann manifold Nn+p of quasi-constant curvature [17]
endowed with a semi-symmetric metric connection ∇ and the Riemannian connection
∇̂.

From [17], the curvature tensor R̂ with respect to the Levi-Civita connection ∇̂ on
Nn+p is expressed by

(2.1)

R̂(X, Y, Z, W ) = a[g(X, Z)g(Y,W )− g(Y, Z)g(X,W )]

+b[g(X, Z)T (Y )T (W )− g(X, W )T (Y )T (Z)

+g(Y, W )T (X)T (Z)− g(Y, Z)T (X)T (W )],

where a, b are scalar functions and T is a 1−form defined by

(2.2) g(X, U) = T (X),

and U is a unit vector field. If b = 0, it can be easily seen that the manifold reduces
to a space of constant curvature.

Decomposing the vector field U on M uniquely into its tangent and normal com-
ponents UT and U⊥, respectively, we have

(2.3) U = UT + U⊥.

The curvature tensor R with respect to the semi-symmetric metric connection ∇
on Nn+p can be written as [30]

(2.4)
R(X, Y, Z,W ) = R̂(X, Y, Z, W) + α(Y, Z)g(X, W )− α(X, Z)g(Y, W )

+α(X, W )g(Y, Z)− α(Y, W )g(X, Z),

for any vector fields X, Y, Z, W on Mn, where α is a (0, 2)-tensor field defined by

α(X, Y ) = (∇̂Xφ)Y − φ(X)φ(Y ) +
1
2
φ(P )g(X, Y ).

Denote λ the trace of α.
From (2.1) and (2.4) it follows that the curvature tensor R can be expressed as
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(2.5)

R(X, Y, Z, W ) = a[g(X, Z)g(Y,W )− g(Y, Z)g(X,W )]

+b[g(X, Z)T (Y )T (W )− g(X, W )T (Y )T (Z)

+g(Y, W )T (X)T (Z)− g(Y, Z)T (X)T (W )]

+α(Y, Z)g(X, W )− α(X, Z)g(Y, W )

+α(X, W )g(Y, Z)− α(Y, W )g(X, Z).

The Gauss equation with respect to semi-symmetric metric connection is [30]

(2.6)
R(X, Y, Z, W) = R(X, Y, Z, W )+ g(h(X, Z), h(Y,W ))

−g(h(X, W ), h(Y,Z)).

In Nn+p we can choose a local orthonormal frame
(2.7) e1, · · · , en, en+1, · · · , en+p,

such that, restricting to Mn, e1, e2, · · · , en are tangent to Mn. We write hr
ij =

g(h(ei, ej), er). The squared length of h is ‖ h ‖2=
n∑

i,j=1
g(h(ei, ej), h(ei, ej)) and

the mean curvature vector of M associated to ∇ is H = 1
n

n∑
i=1

h(ei, ei). Similarly, the

mean curvature vector of Mn associated to ∇̂ is Ĥ = 1
n

n∑
i=1

ĥ(ei, ei).

If ĥr
ij = krgij , where kr are real-valued functions on M , then M is said to be

totally umbilical with respect to Levi-Civita connection. Similarly, if hr
ij = krgij , then

M is said to be totally umbilical with respect to semi-symmetric metric connection
[30].

Let π ⊂ TxM and π⊥ ⊂ T⊥
x M be plane sections for any x in Mn and K(π) the

sectional curvature of Mn associated to the induced semi-symmetric metric connection
∇. The scalar curvature τ at x is defined by

(2.8) τ(x) =
∑

1≤i<j≤n

Kij.

Suppose L is an l-dimensional subspace of TxM , x ∈ M , l ≥ 2 and {e1, · · · , el}
an orthonormal basis of L. We define the scalar curvature τ(L) of the l−plane L by

(2.9) τ(L) =
∑

1≤μ<ν≤l

K(eμ ∧ eν).

For simplicity we put

(2.10)

Ψ1(L) =
∑

1≤i<j≤l

[α(ei, ei) + α(ej, ej)],

Ψ2(L) =
∑

1≤i<j≤l

[g(UT , ei)2 + g(UT , ej)2].
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For an integer k ≥ 0 we denote by S(n, k) the set of k−tuples (n1, · · · , nk) of integers
≥ 2 satisfying n1 < n and n1 + · · ·+nk ≤ n. We denote by S(n) the set of unordered
k− tuples with k ≥ 0 for a fixed n. For each k− tuples (n1, · · · , nk) ∈ S(n), B.-Y.
Chen defined a Riemannian invariant δ(n1, · · · , nk) as follows [8]

(2.11) δ(n1, · · · , nk)(x) = τ(x)− S(n1, · · · , nk)(x),

where
S(n1, · · · , nk)(x) = inf{τ(L1) + · · ·+ τ(Lk)},

and L1, · · · , Lk run over all k mutually orthogonal subspaces of TxM such that
dimLj = nj, j ∈ {1, · · · , k}. In particular, we have δ(2) = τ(x) − infK, where
K is the sectional curvature.

For each (n1, · · · , nk) ∈ S(n), we put

c(n1, · · · , nk)=

n2
(
n+k−1−

k∑
j=1

nj

)

2
(
n+k−

k∑
j=1

nj

) , d(n1, · · · , nk)=
1
2
[n(n−1)−

k∑
j=1

nj(nj−1)].

According to the formula (7) from [30] we have

Lemma 2.1. [30]. If P is a tangent vector field on Mn, we have H = Ĥ, h = ĥ.

On the other hand, Z. Nakao proved

Lemma 2.2. [30, Theorem 3]. A submanifold M of a Riemannian manifold N is
totally umbilical if and only if it is totally umbilical with respect to the semi-symmetric
metric connection.

We recall the well-known Chen’s lemma:

Lemma 2.3. [7]. Let a1, a2, · · · , an, b be (n + 1)(n ≥ 2) real numbers such that

(
n∑

i=1

ai)2 = (n − 1)(
n∑

i=1

a2
i + b),

then 2a1a2 ≥ b, with equality holding if and only if a1 + a2 = a3 = · · · = an.

Most of the geometers (cf. [1, 2, 3, 7, 18, 23, 29]) established inequalities relating
δ(2) and the squared mean curvature for different submanifolds in various ambient
spaces by using the above algebraic lemma except for T. Oprea (cf. [27, 28]). In [28],
T. Oprea gave an another proof of Chen’s inequalities for submanifolds in a real space
form by using optimization techniques applied in the setup of Riemannian geometry.
We will use another algebraic lemma to obtain inequalities relating δ(2) and the squared
mean curvature.
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Lemma 2.4. Let f(x1, x2, · · · , xn) (n ≥ 3)be a function in Rn defined by

f(x1, x2, · · · , xn) = (x1 + x2)
n∑

i=3

xi +
∑

3≤i<j≤n

xixj.

If x1 + x2 + · · ·+ xn = (n − 1)ε, then we have

f(x1, x2, · · · , xn) ≤ (n − 1)(n − 2)
2

ε2,

with the equality holding if and only if x1 + x2 = x3 = · · · = xn = ε.

Proof. By simple calculation, we have

(2.12)

f(x1, x2, · · · , xn) = (x1 + x2)
n∑

i=3

xi +
∑

3≤i<j≤n

xixj

=
1
2
{(x1 + x2 + · · ·+ xn)2 − [(x1 + x2)2 + x2

3 + · · ·+ x2
n]}

=
1
2
{(n− 1)2ε2 − [(x1 + x2)2 + x2

3 + · · ·+ x2
n]}.

On the other hand, by the Cauchy-Schwartz inequality we have

(2.13) [(x1 + x2) + x3 + · · ·+ xn]2 ≤ (n − 1)[(x1 + x2)2 + x2
3 + · · ·+ x2

n],

with the equality holding if and only if x1 + x2 = x3 = · · · = xn.

Noting that (x1 + x2) + · · ·+ xn = (n − 1)ε, from (2.13) we have

(2.14) (x1 + x2)2 + x2
3 + · · ·+ x2

n ≥ (n − 1)ε2.

Using (2.12) and (2.14) we derive

f(x1, x2, · · · , xn) ≤ 1
2
[(n− 1)2ε2 − (n − 1)ε2] =

(n − 1)(n− 2)
2

ε2,

which represents Lemma 2.4 to prove.

In Section 5, we use a more simple way to obtain the relation between the Ricci
curvature and the spared mean curvature. We need the following lemma.

Lemma 2.5. Let f(x1, x2, · · · , xn) be a function in Rn defined by

f(x1, x2, · · · , xn) = x1

n∑
i=2

xi.

If x1 + x2 + · · ·+ xn = 2ε, then we have

f(x1, x2, · · · , xn) ≤ ε2,
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with the equality holding if and only if x1 = x2 + x3 + · · ·+ xn = ε.

Proof. From x1 + x2 + · · ·+ xn = 2ε, we have
n∑

i=2

xi = 2ε − x1.

It follows that

f(x1, x2, · · · , xn) = x1(2ε− x1) = −(x1 − ε)2 + ε2,

which represents Lemma 2.5 to prove.

3. CHEN FIRST INEQUALITY

For submanifolds of a Riemannian manifold of quasi-constant curvature endowed
with a semi-symmetric metric connection we establish the following optimal inequality
relating δ(2) and squared mean curvature, which will call Chen first inequality.

Theorem 3.1. Let Mn, n ≥ 3, be an n−dimensional submanifold of an (n +
p)−dimensional Riemannian manifold of quasi-constant curvature Nn+p endowed with
a semi-symmetric metric connection, then we have

τ(x)− K(π) ≤ (n + 1)(n− 2)
2

a + b[(n− 1) ‖ UT ‖2 − ‖ Uπ ‖2]

−(n − 2)λ − trace(α |π⊥) +
n2(n − 2)
2(n − 1)

‖ H ‖2,

where π is a 2−plane section of TxM
n, x ∈ Mn.

Remark 3.2. For b = 0, Theorem 3.1 is due to A. Mihai and C. Özgür [2, Theorem
3.1].

Proof. We consider the point x ∈ Mn, choose a local orthonormal frame (2.7) such
that {e1, e2} being an orthonormal frame in the 2-plane which minimize the sectional
curvature at the point x. We remark that

(3.1) Uπ = prπU, α(e1, e1) + α(e2, e2) = λ − trace(α |π⊥).

Using (2.3), (2.5) and (2.6) we have

(3.2)

Rijij = a + b[g(UT , ei)2 + g(UT , ej)2]− α(ei, ei)

−α(ej, ej) +
n+p∑

r=n+1

[hr
iih

r
jj − (hr

ij)
2],
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it follows that

(3.3)

τ(x) =
∑

1≤i<j≤n

Rijij =
n2 − n

2
a + b(n− 1) ‖ UT ‖2

−(n − 1)λ +
n+p∑

r=n+1

∑
1≤i<j≤n

[hr
iih

r
jj − (hr

ij)
2].

Using (3.1) and (3.2) we have

(3.4)

R1212 = a + b[g(UT , e1)2 + g(UT , e2)2] − α(e1, e1)

−α(e2, e2) +
n+p∑

r=n+1

[hr
11h

r
22 − (hr

12)
2]

= a + b ‖ Uπ ‖2 −[λ − trace(α |π⊥)] +
n+p∑

r=n+1

[hr
11h

r
22 − (hr

12)
2].

From (3.3) and (3.4) one gets

(3.5)

τ(x)− K(π) =
(n + 1)(n− 2)

2
a + b[(n − 1) ‖ UT ‖2 − ‖ Uπ ‖2]

−(n − 2)λ − trace(α |π⊥)

+
n+p∑

r=n+1

⎡
⎣ ∑

1≤i<j≤n

hr
iih

r
jj − hr

11h
r
22 −

∑
1≤i<j≤n

(hr
ij)

2 + (hr
12)

2

⎤
⎦

=
(n + 1)(n− 2)

2
a + b[(n− 1) ‖ UT ‖2 − ‖ Uπ ‖2]

−(n − 2)λ − trace(α |π⊥)

+
n+p∑

r=n+1

⎡
⎣(hr

11 + hr
22)

∑
3≤i≤n

hr
ii +

∑
3≤i<j≤n

hr
iih

r
jj

−
∑

3≤j≤n

(hr
1j)

2 −
∑

2≤i<j≤n

(hr
ij)

2

⎤
⎦

≤ (n + 1)(n− 2)
2

a + b[(n− 1) ‖ UT ‖2 − ‖ Uπ ‖2]

−(n − 2)λ − trace(α |π⊥)

+
n+p∑

r=n+1

⎡
⎣(hr

11 + hr
22)

∑
3≤i≤n

hr
ii +

∑
3≤i<j≤n

hr
iih

r
jj

⎤
⎦ .



Chen’s Inequalities for Submanifolds of a Riemannian Manifold of Quasi-constant 1849

Let us consider the quadratic forms fr : R
n → R, defined by

fr(hr
11, h

r
22, · · · , hr

nn) = (hr
11 + hr

22)
∑

3≤i≤n

hr
ii +

∑
3≤i<j≤n

hr
iih

r
jj.

We consider the problem maxfr, subject to Ξ : hr
11 + hr

22 + · · ·+ hr
nn = kr, where kr

is a real constant. From Lemma 2.4, we see that the solution (hr
11, h

r
22, · · · , hr

nn) of
the problem in question must satisfy

(3.6) hr
11 + hr

22 = hr
ii =

kr

n − 1
, i = 3, · · · , n,

with the following holds

(3.7) fr ≤ n − 2
2(n − 1)

(kr)2.

Form (3.5) and (3.7) we have

τ(x) − K(π) ≤ (n + 1)(n− 2)
2

a + b[(n− 1) ‖ UT ‖2 − ‖ Uπ ‖2]

−(n − 2)λ − trace(α |π⊥) +
∑

r

n − 2
2(n − 1)

(kr)2

=
(n + 1)(n − 2)

2
a + b[(n − 1) ‖ UT ‖2 − ‖ Uπ ‖2]

−(n − 2)λ − trace(α |π⊥) +
n2(n − 2)
2(n − 1)

‖ H ‖2,

which represents the inequality to prove.

Corollary 3.3. If P is a tangent vector field on Mn, then H = Ĥ , here we used
Lemma 2.1. In this case the inequality proved in Theorem 3.1 becomes

(3.8)
τ(x) − K(π) ≤ (n + 1)(n− 2)

2
a + b[(n− 1) ‖ UT ‖2 − ‖ Uπ ‖2]

−(n − 2)λ − trace(α |π⊥) +
n2(n − 2)
2(n− 1)

‖ Ĥ ‖2 .

Corollary 3.4. If P is a tangent vector field on Mn, then h = ĥ. In these
conditons the equality case of (3.8) holds at a point x ∈ M if and only if, with respect
to a suitable orthonormal basis {eA} at x, the shape operators Ar = Aer take the
following forms:
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An+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

hn+1
11 0 0 · · · 0

0 hn+1
22 0 · · · 0

0 0 hn+1
11 + hn+1

22 · · · 0
...

...
... . . . 0

0 0 0 · · · hn+1
11 + hn+1

22

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and

Ar =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

hr
11 hr

12 0 · · · 0
hr

12 −hr
11 0 · · · 0

0 0 0 · · · 0
...

...
... . . . 0

0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, r = n + 2, · · · , n + p.

Proof. If the equality case of (3.8) holds at a point x ∈ M , then the equality cases
of (3.5) and (3.7) hold, it follows that

∑
3≤i≤n

(hr
1i)

2 = 0,
∑

2≤i<j≤n

(hr
ij)

2 = 0, ∀r,

hr
11 + hr

22 = hr
ii, 3 ≤ i ≤ n, ∀r.

So choose a suitable orthonormal basis, the shape operators take the desired forms.

Corollary 3.5. Under the same assumptions as in Theorem 3.1, if U is tangent to
Mn, we have

τ(x) −K(π) ≤ (n + 1)(n− 2)
2

a + b[n − 1− ‖ Uπ ‖2]

−(n − 2)λ − trace(α |π⊥) +
n2(n − 2)
2(n − 1)

‖ H ‖2,

If U is normal to Mn, we have

τ(x)− K(π) ≤ (n + 1)(n− 2)
2

a − (n − 2)λ − trace(α |π⊥) +
n2(n − 2)
2(n − 1)

‖ H ‖2 .

4. CHEN’S GENERAL INEQUALITY

Next we prove a generalization of Theorem 3.1 in terms of Chen’s invariant
δ(n1, · · · , nk).
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Theorem 4.1. If Mn (n ≥ 3) is a submanifold of a Riemannian manifold of quasi-
constant curvature Nn+p endowed with a semi-symmetric metric connection, then we
have

(4.1)

δ(n1, · · · , nk) ≤ c(n1, · · · , nk) ‖ H ‖2 +d(n1, · · · , nk)a − (n − 1)λ

+
k∑

j=1

Ψ1(Lj) + b[(n− 1) ‖ UT ‖2 −
k∑

j=1

Ψ2(Lj)],

for any k−tuples (n1, · · · , nk) ∈ S(n). If P is a tangent vector field on Mn, the
equality case of (4.1) holds at x ∈ Mn if and only if there exist an orthonormal basis
{e1, · · · , en} of TxM and an orthonormal basis {en+1, · · · , en+p} of T⊥

x M such that
the shape operators of Mn in Nn+p at x have the following forms:

Aen+1 =

⎛
⎜⎜⎜⎜⎜⎝

a1 0 · · · 0
0 a2 · · · 0
...

... . . . ...
0 0 · · · an

⎞
⎟⎟⎟⎟⎟⎠

, Aer =

⎛
⎜⎜⎜⎜⎜⎝

Ar
1 · · · 0 0

... . . . ...
...

0 · · · Ar
k 0

0 · · · 0 ςrI

⎞
⎟⎟⎟⎟⎟⎠

, r=n+2, · · · , n+p,

where a1, · · · , an satisfy

a1 + · · ·+ an1 = · · · = an1+···+nk−1+1 + · · ·+ an1+···+nk
= an1+···+nk+1 = · · · = an

and each Ar
j is a symmetric nj×nj submatrix satisfying trace(Ar

1) = · · · = trace(Ar
k) =

ςr. I is an identity matrix.

Remark 4.2. For δ(2), inequality (4.1) is due to Theorem 3.1.

Proof. Choose an orthonormal basis {e1, e2, · · · , en} for TxMn and {en+1, en+2,

· · · , en+p} for the normal space T⊥
x Mn such that the mean curvature vector H is in

the direction of the normal vector to en+1. For convenience, we set

ai = hn+1
ii , i = 1, 2, · · · , n,

b1 = a1, b2 = a2 + · · ·+ an1 , b3 = an1+1 + · · ·+ an1+n2 , · · · ,

bk+1 = an1+···+nk−1+1 + · · ·+ an1+n2+···+nk−1+nk
,

bk+2 = an1+···+nk+1, · · · , bγ+1 = an,

Δ1 = {1, · · · , n1}, · · · ,

Δk = {(n1 + · · ·+ nk−1) + 1, · · · , n1 + · · ·+ nk},
Δk+1 = (Δ1 × Δ1) ∪ · · · ∪ (Δk × Δk).

Let L1, · · · , Lk be mutually orthogonal subspaces of TxM with dimLj = nj , defined
by

Lj = Span{en1+···+nj−1+1, · · · , en1+···+nj}, j = 1, · · · , k.
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From (2.5), (2.6), (2.8), (2.9) and (2.10) we have

(4.2)

τ(Lj) =
nj(nj − 1)

2
a + bΨ2(Lj) − Ψ1(Lj)

+
n+p∑

r=n+1

∑
μj<νj

[hr
μjμj

hr
νjνj

− (hr
μjνj

)2],

(4.3) 2τ = n(n − 1)a + 2b(n− 1) ‖ UT ‖2 −2(n − 1)λ + n2 ‖ H ‖2 − ‖ h ‖2 .

We can rewrite (4.3) as
n2 ‖ H ‖2= (‖ h ‖2 +η)γ,

or equivalently,

(4.4)

(
n∑

i=1

hn+1
ii )2 = γ[

n∑
i=1

(hn+1
ii )2 +

∑
i�=j

(hn+1
ij )2

+
n+p∑

r=n+2

n∑
i,j=1

(hr
ij)

2 + η],

where

(4.5) η=2τ−2c(n1, · · · , nk) ‖H ‖2−n(n−1)a−2(n−1)b ‖UT ‖2 +2(n−1)λ,

γ = n + k −
k∑

j=1

nj .

From (4.4) we deduce

(
∑γ+1

i=1 bi)2 = γ[η +
γ+1∑
i=1

b2
i +

∑
i�=j

(hn+1
ij )2 +

n+p∑
r=n+2

n∑
i,j=1

(hr
ij)

2

−2
∑

μ1<ν1

aμ1aν1 − · · · − 2
∑

μk<νk

aμk
aνk

],

where μj, νj ∈ Δj , for all j = 1, · · · , k. Applying Lemma 2.3, we derive
k∑

j=1

∑
μj<νj

aμj aνj ≥ 1
2
[η +

∑
i�=j

(hn+1
ij )2 +

n+p∑
r=n+2

n∑
i,j=1

(hr
ij)

2],

it follows that

(4.6)

k∑
j=1

n+p∑
r=n+1

∑
μj<νj

[hr
μjμj

hr
νjνj

− (hr
μjνj

)2] ≥ η

2
+

1
2

n+p∑
r=n+1

∑
(μ,ν)/∈Δk+1

(hr
μν)2

+
n+p∑

r=n+2

∑
μj∈Δj

(hr
μjμj

)2 ≥ η

2
.
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From (4.2) and (4.6) we have

(4.7)
k∑

j=1

τ(Lj) ≥
k∑

j=1

[
nj(nj − 1)

2
a + bΨ2(Lj) − Ψ1(Lj)] +

1
2
η.

Using (2.11), (4.5) and (4.7), we derive the desired inequality.
The equality case of (4.1) at a point x ∈ M holds if and only if we have the equality

in all the previous inequality and also in the Lemma 2.3, thus, the shape operators take
the desired forms.

From Theorem 4.1, we have

Corollary 4.3. If Mn (n ≥ 3) is a submanifold of an (n + p)−dimensional real
space form Nn+p(c) of constant curvature c endowed with a semi-symmetric metric
connection, then we have

(4.8)

δ(n1, · · · , nk) ≤ c(n1, · · · , nk) ‖ H ‖2 +d(n1, · · · , nk)c

−(n − 1)λ +
k∑

j=1

Ψ1(Lj),

for any k−tuples (n1, · · · , nk) ∈ S(n). If P is a tangent vector field on Mn, the
equality case of (4.8) holds at x ∈ Mn if and only if there exist an orthonormal basis
{e1, · · · , en} of TxM and an orthonormal basis {en+1, · · · , en+p} of T⊥

x M such that
the shape operators of Mn in Nn+p at x have the following forms:

Aen+1 =

⎛
⎜⎜⎜⎝

a1 0 · · · 0
0 a2 · · · 0
...

... . . . ...
0 0 · · · an

⎞
⎟⎟⎟⎠, Aer =

⎛
⎜⎜⎜⎝

Ar
1 · · · 0 0

... . . . ...
...

0 · · · Ar
k 0

0 · · · 0 ςrI

⎞
⎟⎟⎟⎠, r=n+2, · · · , n+p,

where a1, · · · , an satisfy
a1 + · · ·+ an1 = · · · = an1+···+nk−1+1 + · · ·+ an1+···+nk

= an1+···+nk+1 = · · · = an

and each Ar
j is a symmetric nj×nj submatrix satisfying trace(Ar

1) = · · · = trace(Ar
k) =

ςr. I is an identity matrix.
Remark 4.4. For δ(2), inequality (4.8) is due to A. Mihai and C. Özgür [2,

Theorem 3.1].

5. CHEN-RICCI INEQUALITY

In [11], B.-Y. Chen established a sharp relationship between the Ricci curvature
and the squared mean curvature for any n−dimensional Riemannian submanifold of a
real space form Rm(c) of constant sectional curvature c as follows

Theorem 5.1. (See [11, Theorem 4]). Let M be an n−dimensional submanifold
of a real space form Rm(c). Then the following statements are true.
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(i) For each unit vector X ∈ TpM , we have

(5.1) ‖H‖2 ≥ 4
n2 [Ric(X)− (n − 1)c].

(ii) If H(p) = 0, then a unit vector X ∈ TpM satisfies the equality case of (5.1) if
and only if X belongs to the relative null space N(p) given by

N(p) = {X ∈ TpM | h(X, Y ) = 0, ∀Y ∈ TpM}.
(iii) The equality case of (5.1) holds for all unit vectors X ∈ TpM if and only if

either p is a geodesic point or n = 2 and p is an umbilical point.

Afterwards, many papers studied similar Chen-Ricci inequalities for different sub-
manifolds in various ambient manifolds[12,21,24]. Besides, after putting an extra
condition on the ambient manifold, like semi-symmetric metric connections in the case
of real space forms [2], one proves the results similar to that of Theorem 5.1.

In this section, we establish Chen-Ricci inequalities for submanifolds of a Rie-
mannian manifold of quasi-constant curvature endowed with a semi-symmetric metric
connection.

Theorem 5.2. Let Mn, n ≥ 2, be an n−dimensional submanifold of an (n +
p)−dimensional Riemannian manifold of quasi-constant curvature Nn+p endowed with
a semi-symmetric metric connection ∇. Then:

(i) For each unit vector X in TxM we have

(5.2)
Ric(X) ≤ (n − 1)a + b[(n − 2)g(UT , X)2+ ‖ UT ‖2]

−(n − 2)α(X, X)− λ +
n2

4
‖ H ‖2 .

(ii) If H(x) = 0, then a unit tangent vector X at x satisfies the equality case of
(5.2) if and only if X ∈ N (x) = {X ∈ TxM | h(X, Y ) = 0, ∀Y ∈ TxM}.

(iii) The equality of (5.2) holds for all unit tangent vector at x if and only if either
(1) n �= 2, hr

ij = 0, i, j = 1, 2, · · · , n, r = n + 1, · · · , n + p or
(2) n = 2, hr

11 = hr
22, hr

12 = 0, r = 3, · · · , 2 + p,
where h is a (0, 2) symmetric tensor on Mn.

Proof. (i) LetX ∈ TxM be a unit tangent vector at x. We choose the local field of
orthonormal frames (2.7) at x such that e1 = X . From the equation (3.2) we have

(5.3)

Ric(X) =
n∑

i=2

R1i1i = (n − 1)a + (n − 1)bg(UT , e1)2

+b

n∑
i=2

g(UT , ei)2 − (n − 1)α(X, X)−
n∑

i=2

α(ei, ei)
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+
n+p∑

r=n+1

n∑
i=2

[hr
11h

r
ii − (hr

1i)
2]

≤ (n − 1)a + (n − 2)bg(UT , X)2 + b ‖ UT ‖2

−(n − 2)α(X, X)− λ +
n+p∑

r=n+1

n∑
i=2

hr
11h

r
ii.

Let us consider the quadratic forms fr : R
n → R, defined by

fr(hr
11, h

r
22, · · · , hr

nn) =
n∑

i=2

hr
11h

r
ii.

We consider the problem maxfr, subject to Ξ : hr
11 +hr

22 + · · ·+hr
nn = kr, where

kr is a real constant. From Lemma 2.5, we can see that the solution (hr
11, h

r
22, · · · , hr

nn)
of the problem in question must satisfy

(5.4) hr
11 =

n∑
i=2

hr
ii =

kr

2
,

with the following holds

(5.5) fr ≤ (kr)2

4
.

From (5.3) and (5.5) we have

Ric(X) ≤ (n − 1)a + (n − 2)bg(UT , X)2 + b ‖ UT ‖2

−(n − 2)α(X, X)− λ +
n+p∑

r=n+1

(kr)2

4

= (n − 1)a + (n − 2)bg(UT , X)2 + b ‖ UT ‖2

−(n − 2)α(X, X)− λ +
n2

4
‖ H ‖2 .

(ii) For each unit vector X at x, if the equality case of inequality (5.2) holds, from
(5.3), (5.4) and (5.5) we have

(5.6) hr
1i = 0, i �= 1, ∀ r,

(5.7) hr
11 + hr

22 + · · ·+ hr
nn − 2hr

11 = 0, ∀r.

Noting that H(x) = 0, we have hr
11 = 0, then hr

1j = 0, ∀j, r, i.e. X ∈ N (x).
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(iii) For all unit vector X at x, if the equality case of inequality (5.2) holds, noting
that X is arbitrary, by computing Ric(ej), j = 2, 3, · · · , n and combining (5.6) and
(5.7) we have

hr
ij = 0, i �= j, ∀r,

hr
11 + hr

22 + · · ·+ hr
nn − 2hr

ii = 0, ∀i, r.

We can distinguish two cases:

(1) n �= 2, hr
ij = 0, i, j = 1, 2, · · · , n, r = n + 1, · · · , n + p or

(2) n = 2, hr
11 = hr

22, hr
12 = 0, r = 3, · · · , 2 + p.

The converse is trivial.

Theorem 5.3. If the equality case of inequality (5.2) holds for all unit tangent
vector X of Mn, then Mn is a totally umbilical submanifold. Moreover, we have

(i) The equality case of inequality (5.2) holds for all unit tangent vector X of M2

if and only if M2 is a totally umbilical submanifold.
(ii) If P is a tangent vector field on Mn and n ≥ 3, Mn is a totally geodesic

submanifold.

Proof. For n = 2, the equality case of inequality (5.2) holds for all unit tangent
vector X of M2 if and only if M2 is a totally umbilical submanifold with respect
to the semi-symmetric metric connection. Then from Lemma 2.2, M2 is a totally
umbilical submanifold with respect to the Levi-Civita connection. For n ≥ 3, from
Theorem 5.2 the the equality case of inequality (5.2) holds for all unit tangent vector
X of Mn if and only if hr

ij = 0, ∀i, j, r. According to the formula (7) from [30],
we have ĥr

ij = hr
ij + krgij , where kr are real-valued functions on M . Thus, we have

ĥr
ij = krgij , which implies Mn is a totally umbilical submanifold.

If P is a tangent vector field on Mn, from Lemma 2.1 we have ĥ = h. For n ≥ 3,
from Theorem 5.2 the the equality case of inequality (5.2) holds for all unit tangent
vector X of Mn if and only if hr

ij = 0, ∀i, j, r. Thus we have ĥr
ij = 0, ∀i, j, r, which

implies Mn is a totally geodesic submanifold.

In [2], A. Mihai and C. Özgür proved:

Theorem 5.4. (See [2, Theorem 4.1]) Let Mn be an n−dimensional submanifold
of an (n + p)−dimensional real space form Nn+p(c) endowed with a semi-symmetric
metric connection. Then

(i) For each unit vector X in TxM we have

(5.8) Ric(X) ≤ (n − 1)c +
n2 ‖ H ‖2

4
+ (n − 2)α(X, X)− (2n − 3)λ.
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(ii) If H(x) = 0, then a unit tangent vector X at x satisfies the equality case of
(5.8) if and only if X ∈ N (x) = {X ∈ TxM | h(X, Y ) = 0, ∀Y ∈ TxM}.

Further on, they obtained

Corollary 5.5. (see [2, Corollary 4.2]). If P is tangent to Mn, then the equality
case of inequality (5.8) holds for all unit tangent vectors at x if and only if either x is
a totally geodesic point, or n = 2 and x is a totally umbilical point.

Remark 5.6. Without the condition that P is tangent to M , we can also classify
submanifolds in real space forms endowed with semi-symmetric metric connection
satisfying the equality case of (5.8).

Remark 5.7. For n �= 2, if the equality case of (5.9) holds for all unit tangent
vectors X at x, from Corollary 5.5, we know that hr

ij = 0, ∀i, j, r. Further, using the
equation of Gauss we have

Ric(X) =
n∑

i=2

R1i1i = (n − 1)c− (n − 2)α(X, X)− λ,

here is a contradiction with the equality case of (5.8).

Remark 5.8. In the proof of Theorem 4.1 in [2], they wrote

n2 ‖ H ‖2 ≥ 1
2
n2 ‖ H ‖2 +2

(
τ −

∑
2≤i<j≤n

)
Kij + 2

n+p∑
r=n+1

n∑
j=2

(hr
1j)

2

= −2(n − 1)c + 2(2n− 3)λ − 2(n − 2)α(e1, e1),

but according to the formula (4.2) and (4.3) in [2], one gets

n2 ‖ H ‖2 ≥ 1
2
n2 ‖ H ‖2 +2

(
τ −

∑
2≤i<j≤n

)
Kij + 2

n+p∑
r=n+1

n∑
j=2

(hr
1j)

2

= −2(n − 1)c + 2λ + 2(n − 2)α(e1, e1).

This is the reason they made a mistake.

Under these circumstances it becomes necessary to give a theorem, which could
present a sharp inequality between the Ricci-curvature and the squared mean curvature
with respect to the semi-symmetric metric connection. From Theorem 5.2 and Theorem
5.3 we have

Corollary 5.9. Let Mn be an n−dimensional submanifold of an (n+p)−dimensional
real space form Nn+p(c) of constant curvature c endowed with a semi-symmetric met-
ric connection. Then:
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(i) For each unit vector X in TxM we have

(5.9) Ric(X) ≤ (n − 1)c− (n − 2)α(X, X)− λ + n2

4 ‖ H ‖2 .

(ii) If H(x) = 0, then a unit tangent vector X at x satisfies the equality case of
(5.9) if and only if X ∈ N (x) = {X ∈ TxM | h(X, Y ) = 0, ∀Y ∈ TxM}.

(iii) If the equality case of inequality (5.9) holds for all unit tangent vector X of
Mn, then Mn is a totally umbilical submanifold. Moreover, we have

(1) The equality case of inequality (5.9) holds for all unit tangent vector X of
M2 if and only if M2 is a totally umbilical submanifold.

(2) If P is a tangent vector field on Mn and n ≥ 3, Mn is a totally geodesic
submanifold.

6. k−RICCI CURVATURE

Let L be a k−plane section of TxMn, x ∈ M , and X a unit vector in L. We
choose an orthonormal frame e1, · · · , ek of L such that e1 = X . In [11], B.-Y. Chen
defined the k−Ricci curvature of L at X by

(6.1) RicL(X) = K12 + K13 + · · ·+ K1k.

The scalar curvature of a k−plane section L is given by

(6.2) τ(L) =
∑

1≤i<j≤n

Kij.

For an integer k, 2 ≤ k ≤ n, the Riemannian invariant Θk on Mn defined by

(6.3) Θk(x) =
1

k − 1
inf{RicL(X) | L, X}, x ∈ M,

where L runs over all k−plane sections in TxM and X runs over all unit vectors in L.
From (2.8), (6.1) and (6.2), it follows that for any k−plane section Li1···ik spanned

by {ei1, · · · , eik}, one has

(6.4) τ(Li1···ik ) =
1
2

∑
i∈{i1,··· ,ik}

RicLi1···ik (ei)

and

(6.5) τ(x) =
1

Ck−2
n−2

∑
1≤i1<···<ik≤n

τ(Li1···ik).
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From (6.3), (6.4) and (6.5) we obtain

(6.6) τ(x) ≥ n(n − 1)
2

Θk(x).

In this section, we prove a relationship between the k−Ricci curvature of Mn

(intrinsic invariant) and the mean curvature ‖ H ‖ (extrinsic invariant), as another
answer of the basic problem in submanifold theory which we have mentioned in the
introduction. In this section, we assume that the vector field P is tangent to Mn.

Theorem 6.1. Let Mn, n ≥ 3, be an n−dimensional submanifold of an (n +
p)−dimensional Riemannian manifold of quasi-constant curvature Nn+p endowed with
a semi-symmetric metric connection ∇, then for any integer k, 2 ≤ k ≤ n, and any
point x ∈ Mn, we have

‖ H ‖2 (x) ≥ Θk(x)− a − 2b

n
‖ UT ‖2 +

2
n

λ.

Remark 6.2. For b = 0, Theorem 6.1 is due to A. Mihai and C. Özgür [2, Theorem
5.2].

Proof. We choose the orthonormal frame (2.7) at x such that the en+1 is in the
direction of the mean curvature vector H(x) and {e1, · · · , en} diagonalize the shape
operator An+1. Then the shape operators take the following forms

(6.7) An+1 =

⎛
⎜⎜⎜⎝

a1 0 · · · 0
0 a2 · · · 0
...

... . . . 0
0 0 · · · an

⎞
⎟⎟⎟⎠ ,

traceAr = 0, r = n + 2, · · · , n + p.

From (4.3) and (6.7) we have

(6.8)

n2 ‖ H ‖2= 2τ+ ‖ h ‖2 −(n2 − n)a − 2b(n − 1) ‖ UT ‖2 +2(n − 1)λ

= 2τ +
n∑

i=1

a2
i +

n+p∑
r=n+2

n∑
i,j=1

(hr
ij)

2 − (n2 − n)a

−2b(n− 1) ‖ UT ‖2 +2(n − 1)λ.

Using the Cauchy-Schwartz inequality we have

(n ‖ H ‖)2 = (
n∑

i=1

ai)2 ≤ n

n∑
i=1

a2
i ,
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it follows that

(6.9)
n∑

i=1

a2
i ≥ n ‖ H ‖2 .

From (6.8) and (6.9) we have

n2 ‖ H ‖2≥ 2τ + n ‖ H ‖2 −(n2 − n)a − 2b(n − 1) ‖ UT ‖2 +2(n − 1)λ,

which implies

(6.10) ‖ H ‖2≥ 2τ

n(n − 1)
− a − 2b

n
‖ UT ‖2 +

2
n

λ.

Using (6.6) and (6.10) we have

‖ H ‖2 (x) ≥ Θk(x) − a − 2b

n
‖ UT ‖2 +

2
n

λ.
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18. C. Özgür, B. Y. Chen inequalities for submanifolds a Riemannian manifold of a quasi-
constant curvature, Turk. J. Math., 35 (2011), 501-509.

19. F. Dillen, M. Petrovic and L. Verstraelen, Einstein, conformally flat and semi-symmetric
submanifolds satisfying Chen’s equality, Israel Journal of Mathematics, 100(1) (1997),
163-169.

20. G. Li and C. Wu, Slant immersions of complex space forms and Chen’s inequality, Acta
Mathematica Scientia., 25B(2) (2005), 223-232.

21. I. Mihai, Ricci curvature of submanifolds in Sasakian space forms, J. Aust. Math. Soc.,
72 (2002), 247-256.

22. J. F. Nash, The imbedding problem for Riemannian manifolds, Ann. of Math., 63 (1956),
20-63.

23. K. Arslan, R. Ezentas, I. Mihai and C. Özgür, Certain inequalities for submanifolds
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