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THE INVARIANCE OF DOMAIN FOR k-SET-PSEUDO-CONTRACTIVE
OPERATORS IN BANACH SPACES

Claudio H. Morales and Aniefiok Udomene*

Abstract. We introduce a new family of nonlinear operators called k-set-pseudo-
contractions where several well-known mappings, such as, the condensing map-
pings (for k = 1) and the compact perturbations of k-pseudo-contractive mappings
are embraced in the class of k-set-pseudo-contractions. We prove an invariance of
domain theorem and (as a consequence) a fixed point theorem for a k-set-pseudo-
contraction (0 < k < 1) which is also an L-set-contraction (L ≥ 0). Several well
known results can be deduced from our theorems.

1. INTRODUCTION

Let X be a metric space and let B(X) denote the family of bounded subsets of X .
The Kuratowski [12] measure of noncompactness of A ∈ B(X) is defined by

γ(A) = inf{ε > 0 : A can be covered by finitely many sets with diameter ≤ ε}.
It is clear that γ maps B(X) into [0,∞). The mapping γ satisfies the following basic
properties (see for examples, [17, 1, 2]), which will be needed in the sequel. For all
A, A1, A2 ∈ B(X),

(a) Regularity: γ(A) = 0 ⇔ A is precompact.
(b) Invariance under closure: γ(A) = γ(A).
(c) Semi-additivity: γ(A1

⋃
A2) = max{γ(A1), γ(A2)}.

Furthermore, if X is a Banach space then γ also satisfies the following.
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(d) Semi-homogeneity: γ(tA) = |t|γ(A) for any real number t.
(e) Algebraic sub-additivity: γ(A1 + A2) ≤ γ(A1) + γ(A2).
(f) Invariance on convex hull: γ(co(A)) = γ(A), (where co(A) denotes the convex

hull of A).

Let X∗ denote the dual space of a normed space X . For each x ∈ X , the normalized
duality mapping J : X −→ 2X∗ is defined by

J(x) := {j ∈ X∗ : 〈x, j〉 = ‖x‖2, ‖j‖ = ‖x‖}.
Definition 1.1. Let X be a Banach space. An operator T : D ⊆ X −→ X is

called strongly pseudo-contractive (see for example, [3]) if there exists t > 1 such that

(1.1) ‖x − y‖ ≤ ‖(1 + r)(x − y) − rt(Tx − Ty)‖
for all x, y ∈ D and r > 0. If t = 1, the operator T is said to be pseudo-contractive.

The mapping T is said to be strictly pseudo-contractive (in the sense of Browder
and Petryshyn [4]) if and only if for each pair x, y ∈ D there exist α > 0, j(x− y) ∈
J(x − y) such that

〈Tx − Ty, j(x− y)〉 ≤ ‖x − y‖2 − α‖(I − T )x − (I − T )y‖2.

By a characterization of Kato [10], T is strongly pseudo-contractive if and only
if for each x, y ∈ D, there exists some j(x − y) ∈ J(x − y) and a number t > 1
such that 〈Tx − Ty, j(x− y)〉 ≤ t−1‖x − y‖2 (where t is as in Definition 1.1), and
pseudo-contractive if and only if for each x, y ∈ D, there exists some j(x − y) ∈
J(x − y) such that 〈Tx − Ty, j(x− y)〉 ≤ ‖x − y‖2. Therefore, it is clear that the
strict pseudo-contractive mappings form a subclass of the class of Lipschitz pseudo-
contractive mappings.

Definition 1.2. An operator T : D ⊆ X −→ X is said to be k-pseudo-contractive
with k > 0 (see for instance, [13]) if for each pair x, y ∈ D and λ > k,

(1.2) (λ − k)‖x − y‖ ≤ ‖λx− Tx − (λy − Ty)‖,
and T is called pseudo-contractive if k = 1.

For k ≤ 1, it is easy to verify that Definitions 1.1 and 1.2 are equivalent. We use
the latter formulation to establish the multi-valued version of this concept.

Definition 1.3. A multivalued mapping T : D ⊆ X −→ 2X is said to be k-pseudo-
contractive with k > 0 (see for instance, [14]) if for each x, y ∈ D, u ∈ Tx, v ∈ Ty
and λ > k,

(1.3) (λ − k)‖x− y‖ ≤ ‖(λx− u) − (λy − v)‖.
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Now, we extend the definition of a k-pseudo-contractive mapping (k > 0) to the
more general notion of what we call a k-set-pseudo-contractive mapping. We shall
show below why the new definition is definitely more general.

Definition 1.4. An operator T : D ⊆ X −→ 2X is said to be k-set-pseudo-
contractive if for each bounded subset A ⊆ D for which T (A) is bounded, we have

(1.4) (λ − k)γ(A) ≤ γ((λI − T )(A)) for λ > k.

If k = 1, then T is called a 1-set-pseudo-contractive mapping.

Using property (d) of the mapping γ , it can be shown that inequality (1.4) is
equivalent to the following :

(1.5) γ(A) ≤ γ((1 + r)I − rk−1T )(A))

for all r > 0. As a matter of fact, from either definition, it can be easily derived that
if T is a 1-set-pseudo-contraction, then kT is a k-set-pseudo-contraction.

The fact that many properties of k-contractions have been shown to carry over to
k-pseudo-contractions, opens many interesting questions concerning the extension to
k-set-pseudo-contractions. As a matter of fact, we address the extension of some of
these properties to this new family of operators, including non-trivial examples that
justify the generality of this family of operators. The motivation stems from the remark
made by Gatica and Kirk concerning Theorem 1 in their paper [8]. They claim that
if an operator T satisfies the inequality (1.5) with k = 1, Theorem 1 would still hold
true. However, this claim had the need for a new open mapping theorem that was not
addressed in [8].

Determining whether or not these new type of operators have fixed points under
standard additional assumptions constitutes a main objective of this paper. Attaining
such a goal requires two fundamental results. One, an invariance of domain theorem
for the mapping I − T , and, two, whether (I − T )(C) is closed whenever C is a
closed set. It turns out that, the first result (see Theorem 3.1) holds under an additional
condition, and the second result (see Proposition 2.1) holds with no extra assumptions.
As a consequence of these facts, we prove a fixed point theorem under the weaker
Leray-Schauder boundary condition introduced earlier by Kirk and Morales [11] as
opposed to the standard Leray-Schauder condition amply used by many authors.

We shall denote by D and ∂D the closure, and the boundary of D, respectively.
Also, for x, y ∈ X , we denote by [x, y] the set {(1− t)x + ty : t ∈ [0, 1]}.

2. PRELIMINARIES

A continuous mapping T : D ⊆ X −→ X is called L-set-contractive [5] (with
L ≥ 0) if for each A ∈ B(D) for which T (A) ∈ B(X), we have the inequality

γ(T (A)) ≤ Lγ(A).
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Similarly, a continuous mapping T : D ⊆ X −→ X is called condensing (or
densifying) (see [15, 6]) if γ(T (A)) < γ(A), whenever γ(A) > 0.

Proposition 2.1. Let D be a bounded subset of a Banach space X and let T :
D → X be a 1-set-pseudo-contraction. Suppose yn = xn − tnTxn with xn ∈ D, such
that yn → y, while tn → t ∈ [0, 1). Then there exists a convergent subsequence of
{xn}. In addition, for D closed and T continuous, (I − tT )(D) is closed for each
t ∈ [0, 1).

Proof. We first observe that as a direct consequence of Definition 1.4, we have

(λ − t)γ(A) ≤ γ((λI − tT )(A)), (λ > 1)

for A ⊆ D and T (A) ∈ B(X). Then

(λ − t)γ({xn}) ≤ γ((λI − tT )({xn}))
≤ (λ − 1)γ({xn}) + γ((tn − t)T{xn})
≤ (λ − 1)γ({xn}) + |tn − t|γ(T (D)),

which implies that γ({xn}) = 0. Thus, there exists a convergent subsequence {xni}
of {xn} such that xni → x ∈ X . But D closed, x ∈ D and the continuity of T imply
that y = x − tTx ∈ (I − tT )(D), which completes the proof.

We state a well-known invariance of domain theorem obtained by Nussbaum [16],
which will be used in an invariance of domain theorem for this new family of k-set-
pseudo-contractive mappings.

Theorem N. Let G be an open subset of a Banach space X and let T : G → X

be a condensing mapping such that I − T is one-to-one. Then (I − T )(G) is open.

2.1. Properties of set-pseudo-contractive mappings

The following propositions show that the new class of k-set-pseudo-contractive
mappings is quite ample and includes well-known family of operators.

Proposition 2.2. Let X be a Banach space and let T : D ⊆ X −→ X be a
k-set-contraction (0 < k ≤ 1). Then T is a k-set-pseudo-contraction.

Proof. Let A ∈ B(D), let T be a k-set-contraction and let λ > k. Applying the
properties of γ , we have that

λγ(A) = γ(λA) = γ[(λI − T + T )(A)]

≤ γ[(λI − T )(A) + T (A)] ≤ γ((λI − T )(A)) + γ(T (A))

≤ γ((λI − T )(A)) + kγ(A).
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Thus (λ − k)γ(A) ≤ γ((λI − T )(A)). Hence, T is a k-set-pseudo-contraction.

It is known that every non-expansive mapping is a 1-set-contraction. In this case,
we shall show that every k-pseudo-contraction is a k-set-pseudo-contraction; in par-
ticular, we derive that every pseudo-contraction is a 1-set-pseudo-contraction. We
continue our journey by proving that the sum of k1-pseudo-contractive mapping and a
k2-set-contractive mapping is (k1 +k2)-set-pseudo-contractive. In particular, it follows
that a compact perturbation of a k-pseudo-contractive mapping is also k-set-pseudo-
contractive.

Proposition 2.3. Let X be a Banach space, let T : D ⊆ X −→ X be a k1-
pseudo-contractive mapping and let f : D −→ X be a k2-set-contractive mapping.
Then T + f is (k1 + k2)-set-pseudo-contractive.

Proof. Let T be a k1-pseudo-contractive mapping (k1 > 0) and suppose that
A ∈ B(D) while T (A) ∈ B(X). Let k = k1 + k2 and let λ > k. Set Tλ :=
(λ − k1)−1(λI − T ). Then Tλ is one-to-one and T−1

λ is a non-expansive mapping on
its domain. Let C = Tλ(A). Then

γ(A) = γ(T−1
λ (C)) ≤ γ(C)

= γ(Tλ(A)) = (λ − k1)−1γ((λI − T )(A)),

and it follows that (λ− k1)γ(A) ≤ γ((λI−T )(A)). Since f is k2-set-contractive, we
have

(λ − k1)γ(A) ≤ γ((λI − T )(A))

= γ((λI − T − f + f)(A))

≤ γ((λI − T − f)(A)) + γ(f(A))

≤ γ((λI − (T + f))(A)) + k2γ(A).

This yields that (λ−k)γ(A) ≤ γ((λI−(T +f))(A)). Hence, T +f is a k-set-pseudo-
contraction.

Since compact operators are obviously 0-set-contractions, we derive from Proposi-
tion 2.3, the following.

Corollary 2.4. Let X be a Banach space and let T : D ⊆ X −→ X be a k-
pseudo-contractive mapping (k > 0) and let f : D −→ X be a compact mapping.
Then T + f is a k-set-pseudo-contraction.

Corollary 2.5. Let X be a Banach space and let T : D ⊆ X −→ X be a
k-pseudo-contractive mapping (k > 0). Then T is a k-set-pseudo-contraction.
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Corollary 2.6. Let X be a Banach space and let T : D ⊆ X −→ X be a strictly
pseudo-contractive mapping. Then T is a 1-set-pseudo-contraction which is also an
L-set-contraction.

Proof. The L-set-contraction follows from the fact that every strictly pseudo-
contractive mapping is Lipschitz.

The next proposition shows that the class of k-set-pseudo-contractions is larger
than expected. It shows that every multivalued k-pseudo-contractive mapping (as in
Definition 1.3) is a k-set-pseudo-contraction.

Proposition 2.7. Let X be a Banach space and let T : D ⊆ X −→ 2X be
a multivalued k-pseudo-contractive mapping (k > 0) and let f : D −→ X be a
compact mapping. Then T + f is a k-set-pseudo-contraction.

Proof. We shall first prove that a multivalued k-pseudo-contractive mapping is
a k-set-pseudo-contraction. Let λ > k. Let K be a bounded subset of D and suppose
that (λI − T )(K) is bounded. Given ε > 0, let {Vi}i∈I ⊂ 2X , where I is some finite
index set, such that

(λI − T )(K) ⊆
⋃
i∈I

Vi and diamVi < γ((λI − T )(K)) + ε for all i ∈ I.

Then
γ((λI − T )(K)) + ε

> max
i∈I

diamVi

≥ max
i∈I

diam [Vi ∩ (λI − T )(K)]

= max
i∈I

sup{‖(λx− u)− (λy − v)‖ :

u ∈ Tx, v ∈ Ty; λx− u, λy − v ∈ Vi ∩ (λI − T )(K)}
≥ max

i∈I
sup{(λ − k)‖x− y‖ :

u ∈ Tx, v ∈ Ty; λx− u, λy − v ∈ Vi ∩ (λI − T )(K)}
= (λ − k) max

i∈I
diam [K ∩ (λI − T )−1(Vi)]

≥ (λ − k) max
i∈I

γ[K ∩ (λI − T )−1(Vi)]

= (λ − k)γ[K ∩
(⋃

i∈I

(λI − T )−1(Vi)
)
]

= (λ − k)γ(K) (since K ⊆
⋃
i∈I

(λI − T )−1(Vi)).
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Since ε > 0 is arbitrary,

(λ − k)γ(K) ≤ γ((λI − T )(K)),

proving that a multivalued k-pseudo-contractive mapping (defined as in Definition
1.3) is a k-set-pseudo-contraction. Next, we prove that a compact perturbation of a
multivalued k-pseudo-contractive mapping is a k-set-pseudo-contraction.

Let f : D −→ X be a compact map. If λx−u ∈ (λI −T )(K) with u ∈ Tx, then

λx− u = (λx− u − f(x)) + f(x) ∈ (λI − T − f)(K) + f(K),

so that
(λI − T )(K) ⊆ (λI − T − f)(K) + f(K).

Therefore,

(λ − k)γ(K) ≤ γ((λI − T )(K)) ≤ γ[(λI − T − f)(K) + f(K)]

≤ γ[(λI − T − f)(K)] + γ(f(K))

= γ[(λI − T − f)(K)].

Hence, T + f is also a k-set-pseudo-contraction.

3. MAIN RESULTS

Let X be a Banach space and let D be a subset of X with 0 ∈ D. Following
[11], we define ED := {λ > 1 : Tx = λx for some x ∈ D}. We prove an invariance
of domain theorem and a fixed point theorem for k-set-pseudo-contractive mappings
(where 0 < k < 1), and derive as corollaries corresponding results for 1-set-pseudo-
contractive mappings

In the sequel, we shall assume that L ≥ 1, otherwise the results obtained in this
work would be well-known.

3.1. An Invariance of domain theorem

Theorem 3.1. Let G be an open subset of a Banach space X and let T : G −→ X

be a k-set-pseudo-contractive and L-set-contractive mapping such that I − tT is one-
to-one for all t ∈ [0, 1]. Then (I − T )(G) is open.

Proof. Let Tt := I − tT and let S = {t ∈ [0, 1] : Tt(G) is open}. Due to
Theorem N, [0, L−1) ⊂ S. We shall show now that 1 ∈ S. To see this, we first prove
that S is open in [0, 1]. Let t ∈ S and denote by Rt the inverse of Tt.

Let Ã ⊆ Tt(G) such that Rt(Ã) is bounded. Then there exists A ⊆ G such
that Ã = Tt(A). As observed in the proof of Proposition 2.1, (λ − kt)γ(A) ≤
γ((λI − tT )(A)), for all λ > k. By choosing λ > 1, we have that
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(λ − kt)γ(Rt(Ã)) = (λ − kt)γ(A) ≤ γ((λI − tT )(A))

≤ γ(Tt(A)) + (λ − 1)γ(A)

= γ(Ã) + (λ − 1)γ(Rt(Ã)).

which implies that (1 − kt)γ(Rt(Ã)) ≤ γ(Ã). Therefore Rt is a (1 − kt)−1-set-
contraction on Tt(G). Next, choose 0 < δ < 1−k

L and let s > 0 such that |t − s| < δ.
Then for w ∈ Tt(G), we have

(3.1) Ts(Rt(w)) = Tt(Rt(w)) + (Ts − Tt)(Rt(w)) = w + Us(w),

where Us := (Ts−Tt) ◦Rt. Then I +Us is clearly a one-to-one mapping. In addition,
since Ts−Tt = (t−s)T is δL-set-contraction, and due to the choice of δ, we conclude
that Us is a condensing mapping on Tt(G). Once again, by Theorem N, we derive that
I + Us is an open mapping on Tt(G). Thus, Ts(G) = (I + Us)(Tt(G)) is an open set
in X , and hence [t, t + δ) ⊂ J , which implies that S is open.

To complete the proof, let [0, t0) be the largest interval contained in S. Then by
the above argument, t0 ∈ S, which completes the proof. Consequently (I − T )(G) is
open.

We now derive the following as a consequence of Theorem 3.1.

Corollary 3.2. Let G be an open subset of a Banach space X , T : G −→ X be
a 1-set-pseudo-contractive mapping which is also an L-set-contractive mapping such
that I − tT is one-to-one for all t ∈ [0, 1). Then I − tT is an open mapping.

Proof. Since T is a 1-set-pseudo-contraction, tT is a t-set-pseudo-contraction,
and hence by Theorem 3.1, I − tT is an open mapping for t ∈ [0, 1).

Next, we show a new example that reflects that the class of k-set-pseudo-contractive
mappings is a much larger class than the k-pseudo-contractive mappings.

Example 3.3. Let B denote the closed unit ball of a Banach space X , let a be a
real constant satisfying 0 < a < 1 and let f : B −→ 2B be a compact multivalued
map. Define T : B −→ 2X by Tx = f(x) +

(
1− 1

‖x‖ + a

)
x for all x ∈ B. Then T

is a k0-set-pseudo-contractive mapping, where k0 = 1+a+a2

(1+a)2
.

Proof. Let λ > k0 and let K be a subset of B such that γ(K) > 0. Suppose that
(λI − T )(K) is bounded. Given ε > 0, let {Vi}i∈I be a finite collection of subsets of
X such that

(λI − T + f)(K) ⊆
⋃
i∈I

Vi and diam Vi < γ((λI − T + f)(K)) + ε for all i ∈ I.
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γ((λI−T )(K))+ε ≥ γ((λI−T )(K)+f(K))+ε≥γ((λI−T+f)(K))+ε

> max
i∈I

diam Vi ≥ max
i∈I

diam (Vi ∩ [(λI − T + f)(K)])

= max
i∈I

sup{
∥∥∥(λ − 1)(x− y) +

x

‖x‖ + a
− y

‖y‖+ a

∥∥∥ :

λx − Tx + f(x), λy − Ty + f(y) ⊂ Vi ∩ (λI − T + f)(K)}

= max
i∈I

sup{
∥∥∥
(
λ − 1 +

a

(‖x‖+ a)(‖y‖+ a)

)
(x − y) +

‖y‖x − ‖x‖y
(‖x‖+ a)(‖y‖+ a)

∥∥∥ :

λx − Tx + f(x), λy − Ty + f(y) ⊂ Vi ∩ (λI − T + f)(K)}

= max
i∈I

sup{
∥∥∥
(
λ−1+

a

(‖x‖+a)(‖y‖+a)

)
(x−y)+

‖y‖(x−y)+(‖y‖−‖x‖)y
(‖x‖+a)(‖y‖+a)

∥∥∥ :

λx − Tx + f(x), λy − Ty + f(y) ⊂ Vi ∩ (λI − T + f)(K)}

≥ max
i∈I

sup{
(
λ − 1 +

‖y‖+ a

(‖x‖+ a)(‖y‖+ a)

)
‖x− y‖

− ‖y‖
(‖x‖ + a)(‖y‖+ a)

| ‖y‖ − ‖x‖ | :

λx − Tx + f(x), λy − Ty + f(y) ⊂ Vi ∩ (λI − T + f)(K)}

≥ max
i∈I

sup{
(
λ − 1 +

a

(‖x‖+ a)(‖y‖+ a)

)
‖x− y‖ :

λx − Tx + f(x), λy − Ty + f(y) ⊂ Vi ∩ (λI − T + f)(K)}

≥ max
i∈I

sup{
(
λ − 1 +

a

(1 + a)2
)
‖x − y‖ :

λx − Tx + f(x), λy − Ty + f(y) ⊂ Vi ∩ (λI − T + f)(K)}

=
(
λ − k0

)
max
i∈I

sup{‖x− y‖ :

λx − Tx + f(x), λy − Ty + f(y) ⊂ Vi ∩ (λI − T + f)(K)}

=
(
λ − k0

)
max
i∈I

diam [K ∩ (λI − T + f)−1(Vi)]

≥
(
λ − k0

)
max
i∈I

γ([K ∩ (λI − T + f)−1(Vi)])

=
(
λ − k0

)
γ(

⋃
i∈I

[K ∩ (λI − T + f)−1(Vi)])

=
(
λ − k0

)
γ(K ∩ [

⋃
i∈I

(λI − T + f)−1(Vi)])

=
(
λ − k0

)
γ(K) since K ⊆

⋃
i∈I

(λI − T + f)−1(Vi).
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Thus, γ((λI − T )(K)) ≥
(
λ − k0

)
γ(K) since ε > 0 is arbitrary. This proves that T

is k0-set-pseudo-contractive.

Remark 3.4. We observe that the mapping T in Example 3.3 is neither compact
nor k0-pseudo-contractive.

We first show that T is not a compact mapping. Assume (by contradiction) that T

were compact. Let S = {x ∈ B : ‖x‖ = 1}. Then γ(S) = γ(coS) = γ(B) > 0. Now
(
1 − 1

1 + a

)
S = {

(
1− 1

‖x‖+ a

)
x : x ∈ S} =

⋃
x∈S

(Tx− f(x))

and

0 <
(
1 − 1

1 + a

)
γ(S) = γ(

⋃
x∈S

(Tx− f(x)))

= γ((T − f)(S)) ≤ γ(T (S))+ γ(f(S)) = 0,

which is a contradiction. Hence T is not a compact mapping.
To see that T is not k0-pseudo-contractive it suffices to show that T is not pseudo-

contractive. To this end, fix x0 ∈ B with ‖x0‖ = 1
2 , let f : B −→ 2B be a compact

multivalued map defined by f(x) =
{3

2
x0,−3

2
x0

}
for all x ∈ B. Then the mapping

T defined in Example 3.3 is given by

Tx =
{3

2
x0,−3

2
x0

}
+

(
1 − 1

‖x‖ + a

)
x for all x ∈ B.

Select u = 3
2x0 +

(
1 − 1

‖x0‖+a

)
x0 ∈ Tx0, v = −3

2x0 −
(
1 − 1

‖x0‖+a

)
x0 ∈ T (−x0).

If we let a = 1
3 and λ = 3

2 then we have that

‖λx0−u−(λ(−x0)−v)‖ =
1
5
‖x0−(−x0)‖ <

1
2
‖x0−(−x0)‖ = (λ−1)‖x0−(−x0)‖.

It follows from Definition 1.3 that T is not pseudo-contractive and thus it cannot be
k0-pseudo-contractive.

3.2. A fixed point theorem for k-set-pseudo-contractions

Theorem 3.5. Let X be a Banach space, G be a bounded open subset of X with
0 ∈ G. Let T : G −→ X be a k-set-pseudo-contractive and L-set-contractive mapping
satisfying

(i) λ ∈ E∂G ⇒ EG

⋂
[1, λ) �= ∅;

(ii) I − tT is one-to-one for all t ∈ [0, 1).

Then T has a fixed point in G.
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Proof. Let Gt = (I − tT )(G) for each t ∈ [0, 1] and let S = {t ∈ [0, 1] : 0 ∈
(I − tT )(G)}. Then S �= ∅ since 0 ∈ S. In addition, due to Proposition 1 of [11],
[0, 1

L) ⊂ S. Therefore, α = sup S > 0. We prove now that α ∈ S. Let {αn} ⊂ S

such that αn → α as n → ∞. Then, for each n ∈ N, there exists xn ∈ G such that
xn − αnTxn = 0. Consequently, by Proposition 2.1, there exists a subsequence {xni}
of {xn} such that xni → x ∈ G. Since T is continuous, it follows that x − αTx = 0
and thus α ∈ S. Suppose α < 1 and x ∈ ∂G. Then, there exist μ ∈ EG

⋂
[1, α−1) and

x∗ ∈ G so that Tx∗ = μx∗. This would imply that μ−1 ∈ S, which is a contradiction!
Therefore x ∈ G.

To complete the proof, let tn ∈ (α, 1) such that tn → α as n → ∞. Then clearly
0 /∈ (I − tnT )(G) while x − tnTx ∈ Gtn. Since, by Theorems 3.1 and Proposition
2.1, we know that ∂Gtn = (I − tnT )(∂G), we may choose zn ∈ [0, x− tnTx]

⋂
∂Gtn

for each n ∈ N. This and the fact x − αTx = 0, imply

‖zn‖ ≤ ‖x − tnTx‖ = ‖x − tnTx − x + αTx‖
≤ (tn − α)‖Tx‖ → 0,

as n → ∞ and zn = un − tnTun for some un ∈ ∂G. Once again, by Proposition
2.1, we may extract a convergent subsequence {uni} of {un} which converges to some
u ∈ ∂G. The continuity of T , leads to u − αTu = 0. However, by the Boundary
Condition (i), there exist μ ∈ EG

⋂
[1, α−1) and u∗ ∈ G such that Tu∗ = μu∗, which

would imply that α < μ−1 ∈ S, a contradiction!, since α = sup S. Hence, α = 1 and
the proof is complete.

Corollary 3.6. Let X be a Banach space and let K be a bounded convex closed
subset of X with 0 ∈ int(K). Let T : K −→ K be a k-set-pseudo-contractive and
L-set-contractive mapping satisfying

I − tT is one-to-one for all t ∈ [0, 1).

Then T has a fixed point in K.

We should observe that Condition (i) of Theorem 3.5 is the weaker Leray-Schauder
boundary condition introduced by Kirk and Morales [11]. However, the classical Leray-
Schauder boundary condition (see [9]),

Tx �= λx for x ∈ ∂G, λ > 1,

is equivalent to the vacuous case of condition (i). It is shown in Theorem 1 of [13]
that if T : G −→ X is a continuous strongly pseudo-contractive mapping and 0 ∈ G,
then Condition (i) of Theorem 3.5 is sufficient to guarantee a fixed point of T in G.
Also observe that Condition (ii) of Theorem 3.5 holds trivially for k-pseudo-contractive
mappings.
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Sup., 51 (1934), 45-78.

10. T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, 19 (1967),
508-520.

11. W. A. Kirk and Claudio Morales, Condensing mappings and the Leray-Schauder bound-
ary condition, Nonlinear Analysis, TMA, 3 (1979), 533-538.

12. K. Kuratowski, Sur les espaces complets, Fund. Math., 15 (1930), 301-309.

13. C. H. Morales, Pseudo-contractive mappings and the Leray-Schauder boundary condition,
Comment. Math. Univ. Carolinae, 20 (1979), 745-756.

14. C. H. Morales, Multivalued pseudo-contractive mappings defined on unbounded sets in
Banach spaces, Comment. Math. Univ. Carolinae, 33 (1992), 625-630.

15. R. D. Nussbaum, The fixed point index for local condensing maps, Ann. Mat. Pura
Appl., 89(4) (1971), 217-258.

16. R. D. Nussbaum, Degree theory for local condensing maps, J. Math. Anal. Appl., 37
(1972), 741-766.



k-Set-pseudo-contractions 1839

17. W. V. Petryshyn, Fixed point theorems for various classes of 1-set-contractive and 1-
ball-contractive mappings in Banach spaces, Trans. Amer. Math. Soc., 182 (1973),
323-352.

Claudio H. Morales
Department of Mathematics
University of Alabama in Huntsville
Huntsville, Alabama 35899
USA
E-mail: morales@math.uah.edu

Aniefiok Udomene
Department of Mathematics/Statistics
Akwa-Ibom State University
P.M.B 1167, Uyo
Akwa-Ibom State
Nigeria
E-mail: a.udomene@gmail.com


