BICOVARIANT DIFFERENTIAL CALCULI ON A WEAK HOPF ALGEBRA

Haixing Zhu*, Shuanhong Wang and Juzhen Chen

Abstract

Let H be a weak Hopf algebra with bijective antipode. In this paper we follow Woronowicz's fundamental method to characterize bicovariant differential calculi on H. We show that there exists a 1-1 correspondence between bicovariant differential calculi and some right ideals of H contained in $k e r \varepsilon_{s}$ such that these ideals are right H-comodules with coadjoint maps, where ε_{s} is the source map of H. This is a generalization of well-known Woronowicz's theorem about bicovariant differential calculi on quantum groups.

1. Introduction

Noncommutative geometry is the study of noncommutative algebras as if they were algebras of functions on spaces which was initiated in [4] by Connes. An interesting example of such noncommutative geometry was provided in the framework of quantum groups (i.e., noncommutative and noncocommutative Hopf algebras). Based on the ideas of Connes, Woronowicz [23] used the axiomatic method to introduce first order differential calculi and investigated bicovariant differential calculi on quantum groups. He showed that there exists a 1-1 correspondence between bicovariant differential calculi and some special right ideals of a quantum group, see [23]. Using this correspondence, the classifications of bicovariant differential calculi of some quantum groups have been carried out, for example, see [11, 12, 15, 20].

At the same time, when considering the solution of a quantum dynamical YangBaxter equation, Felder [9] used the Faddeev-Reshetikhin-Takhtajan method to obtain a certain algebra F_{U} called the dynamical quantum group. However, F_{U} is not a Hopf algebra, but a Hopf algebroid in [13]. In general, to any dynamical twist in [1], one can associate a Hopf algebroid, see [6, 8, 24]. In particular, for every dynamical twist of a Hopf algebra H, by [6] one can obtain a dynamical quantum group F_{H}, which is called a weak Hopf algebra (special Hopf algebroid).

[^0]Following Woronowicz's axiomatic method, the notion of a differential calculus can be easily defined on a dynamical quantum group. However, this kind of differential calculi is a bit different from the case of Hopf algebras (for example, if we consider its high order differential calculi, the tensor product must be over some subalgebra, not its base field k, see [3]). So it is very necessary to investigate these differential calculi. In this paper, we mainly focus on differential calculi on weak Hopf algebras. Although a weak Hopf algebra is just a special Hopf algebroid, our theory is enough to cover many important cases such as dynamical quantum groups [6], compact face algebras [10] and weak Hopf $*$-algebras.

In [3], Chen and Wang generalized results in $[18,19]$ to weak Hopf algebras. For example, they gave noncommutative differential calculus on weak smash product, and also studied connections and high order differential calculi. Here our main goal is to characterize bicovariant differential calculi of a weak Hopf algebra by a fundamental method in [23].

Let H be a weak Hopf algebra with the target subalgebra H_{t} and the source subalgebra H_{s}. We show that a bicovariant differential calculi on H must be both $H_{t^{-}}$and H_{s}-bilinear. This unexpected fact is a bit different from the case of Hopf algebras. However, it explains why the high order differential calculi on a weak Hopf algebra must be over some minimal weak Hopf algebra $H_{\text {min }}$, see [3]. Although $H_{t^{-}}$ and H_{s}-linearities appear, we still find some 1-1 correspondence between bicovariant differential calculi and some special ideals. Similar to quantum groups, this result provides us a possibility of the classifications of bicovariant differential calculi on a compact face algebra and a dynamical quantum group obtained by a dynamical twist of a Hopf algebra.

This paper is organized as follows. In Section 2 we recall the basic definitions and results about weak Hopf algebras, weak Hopf bimodules and first order differential calculi. Section 3 is devoted to some special Hopf bimodules. The investigation of bicovariant differential calculi are carried out in Section 4. We first characterize the H_{t} and H_{s}-linearities of first order differential calculi by several necessary and sufficient conditions. Next we show that a left first order differential calculus is $H_{t^{-}}$ bilinear while a right first order differential calculus is H_{s}-bilinear. Finally, we study bicovariant differential calculi on weak Hopf algebras. Here is our main result:

Let H be a weak Hopf algebra with bijective antipode. Let ε_{s} be the source map of H. Then there exists a 1-1 correspondence between bicovariant differential calculi on H and some right ideals of H contained in $k e r \varepsilon_{s}$ such that these ideals are right H-comodules with coadjoint maps.

It constitutes a generalization of the well-known Woronowicz's theorem about bicovariant differential calculi on quantum groups, see [23, Thm 1.8].

2. Basic Definitions and Results

Throughout this paper, k is a fixed field. Unless otherwise stated, unadorned tensor
products will be over k. For a k-coalgebra, the coproduct will be denoted by Δ. We adopt a Sweedler's like notation e.g., $\Delta(a)=a_{(1)} \otimes a_{(2)}$, see [21].

2.1. Weak Hopf algebras

For the basic definitions and properties of weak Hopf algebras, the reader is referred to [2]. A weak Hopf algebra H is an k-algebra (H, m, μ) and a k-coalgebra (H, Δ, ε) such that the following axioms hold:

- $\Delta(h k)=\Delta(h) \Delta(k)$,
- $\Delta^{2}(1)=1_{1} \otimes 1_{2} 1_{\left(1^{\prime}\right)} \otimes 1_{2^{\prime}}=1_{1} \otimes 1_{1^{\prime}} 1_{2} \otimes 1_{2^{\prime}}$,
- $\varepsilon(h k l)=\varepsilon\left(h k_{1}\right) \varepsilon\left(k_{2} l\right)=\varepsilon\left(h k_{2}\right) \varepsilon\left(k_{1} l\right)$,
- There exists a k-linear map $S: H \longrightarrow H$, called the antipode, satisfying

$$
\begin{aligned}
& h_{1} S\left(h_{2}\right)=\varepsilon\left(1_{1} h\right) 1_{2}, \quad S\left(h_{1}\right) h_{2}=1_{1} \varepsilon\left(h 1_{2}\right), \\
& S(h)=S\left(h_{1}\right) h_{2} S\left(h_{3}\right),
\end{aligned}
$$

for all $h, k, l \in H$. We have idempotent maps $\varepsilon_{t}, \varepsilon_{s}: H \longrightarrow H$ defined by

$$
\varepsilon_{t}(h)=\varepsilon\left(1_{1} h\right) 1_{2}, \quad \varepsilon_{s}(h)=1_{1} \varepsilon\left(h 1_{2}\right) .
$$

Here $\varepsilon_{t}\left(\varepsilon_{s}\right)$ is called the target map (source map), and its imagine $H_{t}\left(H_{s}\right)$ is called the target (source space), which can also be described as follows:

$$
\begin{aligned}
H_{t} & =\left\{h \in H \mid \varepsilon_{t}(h)=h\right\}=\left\{h \in H \mid \Delta(h)=1_{1} h \otimes 1_{2}=h 1_{1} \otimes 1_{2}\right\}, \\
H_{s} & =\left\{h \in H \mid \varepsilon_{s}(h)=h\right\}=\left\{h \in H \mid \Delta(h)=1_{1} \otimes h 1_{2}=1_{1} \otimes 1_{2} h\right\} .
\end{aligned}
$$

Let H be a weak Hopf algebra. There are the following equations:

$$
\begin{align*}
& h_{1} \otimes h_{2} S\left(h_{3}\right)=1_{1} h \otimes 1_{2}, \tag{2.1}\\
& S\left(h_{1}\right) h_{2} \otimes h_{3}=1_{1} \otimes h 1_{2}, \tag{2.2}\\
& h_{1} \otimes S\left(h_{2}\right) h_{3}=h 1_{1} \otimes S\left(1_{2}\right), \tag{2.3}\\
& h_{1} S\left(h_{2}\right) \otimes h_{3}=S\left(1_{1}\right) \otimes 1_{2} h, \tag{2.4}\\
& \varepsilon\left(g \varepsilon_{t}(h)\right)=\varepsilon(g h)=\varepsilon\left(\varepsilon_{s}(g) h\right), \tag{2.5}\\
& y 1_{1} \otimes S\left(1_{2}\right)=1_{1} \otimes S\left(1_{2}\right) y, \tag{2.6}\\
& z S\left(1_{1}\right) \otimes 1_{2}=S\left(1_{1}\right) \otimes 1_{2} z, \tag{2.7}
\end{align*}
$$

for all $g, h \in H, y \in H_{s}$ and $z \in H_{t}$. Moreover, S restricts to an anti-algebra isomorphism $H_{t} \longrightarrow H_{s}$.

Remark.

(1) H is an ordinary Hopf algebra if and only if $\Delta(1)=1 \otimes 1$ if and only if ε is a homomorphism if and only if $H_{t}=H_{s}=k$.
(2) The paragroups [17], the generalized Kac algebras in [25] and the face algebras [10] are the important subclasses of weak Hopf algebras, respectively.
(3) By [6] for every dynamical twist of a Hopf algebra H, one can obtain a dynamical quantum group F_{H}, which is actually a weak Hopf algebra.
(4) There exists closely relations between representation categories of some special weak Hopf algebras and (multi)fusion categories, for example, see [7].
(5) A weak Hopf algebra is a special Hopf algebroid, see [6, Sec. 2]. A finite dimensional weak Hopf algebra is self-dual and its antipode is automatically bijective.

In the sequel, a weak Hopf algebra always means a weak Hopf algebra with bijective antipode.

2.2. Weak Hopf bimodules

Let H be a weak Hopf algebra. Following [22, 23] a left weak Hopf bimodule M over H is an H-bimodule M with a left coaction denoted by $\rho_{L}: M \longrightarrow H \otimes M$, such that is ρ_{L} is an H-bimodule map:

$$
\Delta(h) \rho_{L}(m)=\rho_{L}(h m) \quad \text { and } \quad \rho_{L}(m) \Delta(h)=\rho_{L}(m h)
$$

A right weak Hopf bimodule M over H is a bimodule M with a right coaction denoted by $\rho_{L}: M \longrightarrow M \otimes H$, such that is ρ_{R} is an H-bimodule map:

$$
\Delta(h) \rho_{R}(m)=\rho_{R}(h m) \quad \text { and } \quad \rho_{R}(m) \Delta(h)=\rho_{R}(m h)
$$

A weak Hopf bimodule M over H is both a left weak Hopf bimodule and a right weak Hopf bimodule with left and right coactions, denoted by ρ_{L} and ρ_{R}, such that M is also a bicomodule. We shall also use Sweedler's notations, namely, $\rho_{R}(v)=v_{(0)} \otimes v_{(1)}$ and $\rho_{L}(v)=v_{(-1)} \otimes v_{(0)}$ for all $v \in V$.

In particular, a vector space M is a right-right weak Hopf module if M is both a right H-module and a right H-comodule such that

$$
\rho_{R}(m \cdot h)=m_{(0)} \cdot h_{(1)} \otimes m_{(1)} h_{(2)}
$$

for all $h \in H$ and $m \in M$. Similarly, one can define a left-left (left-right or right-left) weak Hopf module. Let M be a left-left weak Hopf module. Let

$$
{ }^{c o H} M=\left\{m \in M \mid \rho_{L}(m)=1_{(1)} \otimes 1_{(2)} \cdot m\right\}
$$

be the vector space of left coinvariants. It follows from [2] that ${ }^{c o H} M$ is a left

the vector space of right coinvariants of a right-right weak Hopf module N and have $N^{c o H} \otimes_{H_{t}} H \cong N$.

Let M be a left (right) weak Hopf bimodule over H. Assume that N is a left (right) weak Hopf sub-bimodule of N. It is not hard to see that the factor space M / N is naturally a left (right) weak Hopf bimodule over H.

2.3. First order differential calculi

Let A be an algebra with unity. Let Γ be a bimodule over A and $d: A \longrightarrow \Gamma$ be a k-linear map. By [23, Defn 1.1] (Γ, d) is called a first order differential calculus over A if
(1) $d(a b)=d(a) b+a d(b)$ for all $a, b \in A$;
(2) the map $A \otimes A \longrightarrow \Gamma, \quad a \otimes b \longmapsto a d(b)$ is surjective.

Two first order differential calculi (Γ, d) and $\left(\Gamma^{\prime}, d^{\prime}\right)$ over A are said to be identical if there exists a bimodule isomorphism $i: \Gamma \longrightarrow \Gamma^{\prime}$ such that

$$
i(d(a))=d^{\prime}(a) \text { for all } a \in A \text {. }
$$

Denote by A^{2} the vector space $\{a \otimes b \in A \otimes A \mid a b=0\}$. Then A^{2} is an A-bimodule with the following structure

$$
c(a \otimes b)=c a \otimes b, \quad(a \otimes b) c=a \otimes b c
$$

for any $a \otimes b \in A^{2}$ and $c \in A$. Define $D(b)=1 \otimes b-b \otimes 1$ for all $b \in A$. Then $\left(A^{2}, D\right)$ is a first order differential calculus over A. There exists the following lemma (see [23, Prop 1.1]):
(Γ, d) is a first order differential calculus over A if and only if there exists a subbimodule $N \subset A^{2}$ such that $\Gamma=A^{2} / N$ and $d=\pi \circ D$, where π is the canonical epimorphism $A^{2} \longrightarrow \Gamma$.

3. Weak Hopf Bimodules

Let H be a weak Hopf algebra. In this section we will discuss some special weak Hopf bimodules needed in next section.

3.1. Left weak Hopf bimodules

First consider a k-linear map:

$$
\rho_{L}: H \otimes H \longrightarrow H \otimes H \otimes H, a \otimes b \longmapsto a_{1} b_{1} \otimes a_{2} \otimes b_{2} .
$$

Lemma 3.1.1. Let H be a weak Hopf algebra. Then
$\rho_{L}(a \otimes b)=a_{1} b_{1} \otimes a_{2} S\left(1_{1}\right) \otimes 1_{2} b_{2}=\rho_{L}\left(a S\left(1_{1}\right) \otimes 1_{2} b\right), \quad \forall a \otimes b \in H \otimes H$.
Proof. For all $a \otimes b \in H \otimes H$, we have

$$
\begin{aligned}
\rho_{L}(a \otimes b) & =a_{1} S\left(1_{2}\right) 1_{1}^{\prime} b_{1} \otimes a_{2} S\left(1_{1}\right) \otimes 1_{2}^{\prime} b_{2} \\
& =a_{1} S\left(1_{2}\right) 1_{1}^{\prime} b_{1} \otimes a_{2} S\left(1_{1}\right) \otimes S^{-1}\left(S\left(1_{2}^{\prime}\right)\right) b_{2} \\
& \stackrel{(2.6)}{=} a_{1} 1_{1}^{\prime} b_{1} \otimes a_{2} S\left(1_{1}\right) \otimes S^{-1}\left(S\left(1_{2}^{\prime}\right) S\left(1_{2}\right)\right) b_{2} \\
& =a_{1} 1_{1}^{\prime} b_{1} \otimes a_{2} S\left(1_{1}\right) \otimes 1_{2} 1_{2}^{\prime} b_{2} \\
& =a_{1} b_{1} \otimes a_{2} S\left(1_{1}\right) \otimes 1_{2} b_{2} .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\rho_{L}\left(a S\left(1_{1}\right) \otimes 1_{2} b\right) & =\left(a S\left(1_{1}\right)\right)_{1}\left(1_{2} b\right)_{1} \otimes\left(a S\left(1_{1}\right)\right)_{2} \otimes\left(1_{2} b\right)_{2} \\
& =a_{1} S\left(1_{1}\right) 1_{2} b_{1} \otimes a_{2} \otimes b_{2}=a_{1} b_{1} \otimes a_{2} \otimes b_{2} .
\end{aligned}
$$

Similar to [23], consider the following two maps:

$$
\begin{aligned}
& R_{1}: H \otimes H \longrightarrow H \otimes H, a \otimes b \longmapsto a b_{1} \otimes b_{2}, \\
& R_{2}: H \otimes H \longrightarrow H \otimes H, a \otimes b \longmapsto a S\left(b_{1}\right) \otimes b_{2},
\end{aligned}
$$

for all $a \otimes b \in H \otimes H$. Now we give some relationship between R_{1} and R_{2}.
Lemma 3.1.2. Let H be a weak Hopf algebra. Then

$$
R_{1} R_{2} R_{1}=R_{1}, \quad R_{2} R_{1} R_{2}=R_{2} .
$$

Proof. We compute as follows

$$
\begin{aligned}
R_{1} R_{2} R_{1}(a \otimes b) & =R_{1} R_{2}\left(a b_{1} \otimes b_{2}\right)=R_{1}\left(a b_{1} S\left(b_{2}\right) \otimes b_{3}\right) \\
& =a b_{1} S\left(b_{2}\right) b_{3} \otimes b_{4} \stackrel{(2.4)}{=} R_{1}(a \otimes b),
\end{aligned}
$$

for all $a \otimes b \in H \otimes H$. Similarly $R_{2} R_{1} R_{2}=R_{2}$ holds.
For the sake of convenience we introduce another two maps:

$$
\begin{aligned}
& P_{1}=R_{2} R_{1}: H \otimes H \longrightarrow H \otimes H, a \otimes b \longmapsto a S\left(1_{1}\right) \otimes 1_{2} b, \\
& P_{2}=R_{1} R_{2}: H \otimes H \longrightarrow H \otimes H, a \otimes b \longmapsto a 1_{1} \otimes b 1_{2} .
\end{aligned}
$$

It is easy to see $P_{1}^{2}=P_{1}$ and $P_{2}^{2}=P_{2}$. The following lemma is clear:
Lemma 3.1.3. Let H be a weak Hopf algebra. Then
(1) R_{1} is a bijective map from $P_{1}(H \otimes H)$ to $R_{1}(H \otimes H)$ with the inverse R_{2};
(2) R_{2} is a bijective map from $P_{2}(H \otimes H)$ to $R_{2}(H \otimes H)$ with the inverse R_{1}.

Lemma 3.1.4. Let H be a weak Hopf algebra. Then $P_{1}(H \otimes H)$ is a maximal left H-comodule with the structure map ρ_{L} defined as above.

Proof. Note that for all $a \otimes b \in H \otimes H$,

$$
\left(1 \otimes \rho_{L}\right) \circ \rho_{L}(a \otimes b)=a_{1} b_{1} \otimes a_{2} b_{2} \otimes a_{3} \otimes b_{3}=(\Delta \otimes 1) \circ \rho_{L}(a \otimes b) .
$$

Lemma 3.1.1 implies that $\left(1 \otimes \rho_{L}\right) \circ \rho_{L}\left(a S\left(1_{1}\right) \otimes 1_{2} b\right)=(\Delta \otimes 1) \circ \rho_{L}\left(a S\left(1_{1}\right) \otimes 1_{2} b\right)$.

$$
\begin{aligned}
&(\varepsilon \otimes 1) \circ \rho_{L}\left(a S\left(1_{1}\right) \otimes 1_{2} b\right) \\
&= \varepsilon\left(a_{1} b_{1}\right) a_{2} S\left(1_{1}\right) \otimes 1_{2} b_{2} \\
&= \varepsilon\left(a_{1} \varepsilon_{t}\left(b_{1}\right)\right) a_{2} S\left(1_{1}\right) \otimes 1_{2} b_{2} \\
& \stackrel{(2.4)}{=} \varepsilon\left(a_{1} S\left(1_{1}^{\prime}\right)\right) a_{2} S\left(1_{1}\right) \otimes 1_{2} 1_{2}^{\prime} b \\
&= \varepsilon\left(a_{1} \varepsilon_{t}\left(1_{1}^{\prime}\right)\right) a_{2} 1_{2}^{\prime} S\left(1_{1}\right) \otimes 1_{2} b \\
&= \varepsilon\left(a_{1} 1_{1}^{\prime}\right) a_{2} 1_{2}^{\prime} S\left(1_{1}\right) \otimes 1_{2} b \\
&= a S\left(1_{1}\right) \otimes 1_{2} b .
\end{aligned}
$$

Suppose that $(H \otimes H)^{\prime}$ is a subspace of $H \otimes H$ such that $\left((H \otimes H)^{\prime}, \rho_{L}\right)$ is a left H-comodule. By Lemma 3.1.1 we have for any $c \otimes d \in(H \otimes H)^{\prime}$,
$c \otimes d=(\varepsilon \otimes 1) \circ \rho_{L}(c \otimes d)=\varepsilon\left(c_{1} d_{1}\right) c_{2} S\left(1_{1}\right) \otimes 1_{2} d_{2}=c S\left(1_{1}\right) \otimes 1_{2} d \in P_{1}(H \otimes H)$.
Thus $(H \otimes H)^{\prime}$ is a subcomodule of $P_{1}(H \otimes H)$.
Furthermore, $P_{1}(H \otimes H)$ is a maximal left Hopf bimodule.
Proposition 3.1.5. Let H be a weak Hopf algebra. Then $P_{1}(H \otimes H)$ is a maximal left Hopf bimodule with the following structure:

$$
\begin{aligned}
& \rho_{L}(a \otimes b)=a_{1} b_{1} \otimes a_{2} \otimes b_{2} \\
& c(a \otimes b)=c a \otimes b \\
& (a \otimes b) c=a \otimes b c
\end{aligned}
$$

for all $a \otimes b \in P_{1}(H \otimes H)$ and $c \in H$.
Proof. This proof follows Lemma 3.1.4.
Proposition 3.1.6. Let H be a weak Hopf algebra. Then

$$
\left\{S\left(c_{1}\right) \otimes c_{2} \mid \forall c \in H\right\}={ }^{c o H} P_{1}(H \otimes H)
$$

Proof. For any $S\left(c_{1}\right) \otimes c_{2}$, we have

$$
S\left(c_{1}\right) \otimes c_{2}=S\left(1_{1} c_{1}\right) \otimes 1_{2} c_{2}=S\left(c_{1}\right) S\left(1_{1}\right) \otimes 1_{2} c_{2} \in P_{1}(H \otimes H)
$$

And $S\left(c_{1}\right) \otimes c_{2}$ is contained in ${ }^{c o H} P_{1}(H \otimes H)$ by the calculation:

$$
\begin{aligned}
\rho_{L}\left(S\left(c_{1}\right) \otimes c_{2}\right) & =S\left(c_{2}\right) c_{3} \otimes S\left(c_{1}\right) \otimes c_{4} \\
& =\varepsilon_{s}\left(c_{2}\right) \otimes S\left(c_{1}\right) \otimes c_{3} \\
& \stackrel{(2.3)}{=} S\left(1_{2}\right) \otimes S\left(c_{1} 1_{1}\right) \otimes c_{2} \\
& =1_{1} \otimes 1_{2} S\left(c_{1}\right) \otimes c_{2} \\
& =1_{1} \otimes 1_{2} \cdot\left(S\left(c_{1}\right) \otimes c_{2}\right) .
\end{aligned}
$$

Conversely, for any $a S\left(1_{1}\right) \otimes 1_{2} b \in{ }^{c o H} P_{1}(H \otimes H)$, we can get

$$
\rho_{L}\left(a S\left(1_{1}\right) \otimes 1_{2} b\right)=1_{1}^{\prime} \otimes 1_{2}^{\prime} a S\left(1_{1}\right) \otimes 1_{2} b .
$$

Applying $1 \otimes \varepsilon \otimes 1$ to two sides of the above,

$$
a S\left(1_{1}\right)\left(1_{2} b\right)_{1} \otimes\left(1_{2} b\right)_{2}=1_{1}^{\prime} \varepsilon\left(1_{2}^{\prime} a S\left(1_{1}\right)\right) \otimes 1_{2} b .
$$

Applying R_{2} to two sides, by Lemma 3.1.3, on one hand,

$$
a S\left(1_{1}\right) \otimes 1_{2} b=1_{1}^{\prime} \varepsilon\left(1_{2}^{\prime} a S\left(1_{1}\right)\right) S\left(\left(1_{2} b\right)_{1}\right) \otimes\left(1_{2} b\right)_{2} .
$$

On the other hand,

$$
\begin{aligned}
& 1_{1}^{\prime} \varepsilon\left(1_{2}^{\prime} a S\left(1_{1}\right)\right) S\left(\left(1_{2} b\right)_{1}\right) \otimes\left(1_{2} b\right)_{2} \\
= & 1_{1}^{\prime} \varepsilon\left(1_{2}^{\prime} a S\left(1_{1}\right)\right) S\left(1_{2} b_{1}\right) \otimes b_{2} \\
= & S\left(1_{2}^{\prime}\right) \varepsilon\left(S\left(1_{1}^{\prime}\right) a S\left(1_{1}\right)\right) S\left(1_{2} b_{1}\right) \otimes b_{2} \\
\stackrel{(2.7)}{=} & S\left(1_{2} 1_{2}^{\prime \prime} b_{1} 1_{2}^{\prime} \varepsilon\left(S\left(1_{1}^{\prime}\right) a S\left(1_{1}^{\prime \prime}\right) S\left(1_{1}\right)\right)\right) \otimes b_{2} \\
= & S\left(1_{2} 1_{2}^{\prime \prime} b_{1} 1_{2}^{\prime} \varepsilon\left(1_{1} S^{-1}\left(a S\left(1_{1}^{\prime \prime}\right)\right) 1_{1}^{\prime}\right)\right) \otimes b_{2} \\
= & S\left(\varepsilon_{t}\left(S^{-1}\left(a S\left(1_{1}^{\prime \prime}\right)\right) 1_{1}^{\prime}\right) 1_{2}^{\prime \prime} b_{1} 1_{2}^{\prime}\right) \otimes b_{2} \\
= & S\left(\left(\varepsilon_{t}\left(S^{-1}\left(a S\left(1_{1}\right)\right) 1_{1}^{\prime}\right) 1_{2} b 1_{2}^{\prime}\right)_{1}\right) \otimes\left(\left(\varepsilon_{t}\left(S^{-1}\left(a S\left(1_{1}\right)\right) 1_{1}^{\prime}\right) 1_{2} b 1_{2}^{\prime}\right)_{2} .\right.
\end{aligned}
$$

Let $c^{\prime}=\varepsilon_{t}\left(S^{-1}\left(a S\left(1_{1}\right)\right) 1_{1}^{\prime}\right) 1_{2} b 1_{2}^{\prime}$. Then

$$
a S\left(1_{1}\right) \otimes 1_{2} b=S\left(c_{1}^{\prime}\right) \otimes c_{2}^{\prime} \in\left\{S\left(c_{1}\right) \otimes c_{2} \mid \forall c \in H\right\} .
$$

Proposition 3.1.7. Let H be a weak Hopf algebra and M be a left weak Hopf bimodule over H. Set

$$
\begin{aligned}
& M^{\prime}=\left\{m \in M \mid m_{(-1)} \otimes m_{0}=1_{1} \otimes m 1_{2}\right\}, \\
& M^{\prime \prime}=\left\{m \in M \mid m_{(-1)} \otimes m_{0}=1_{1} 1_{1}^{\prime} \otimes 1_{2} m 1_{2}^{\prime}\right\} .
\end{aligned}
$$

Then $\quad M^{\prime \prime} \supset M^{\prime} \supset{ }^{c o H} M$.

Proof. Since M is a left weak Hopf bimodule, for any $m \in M$,

$$
\rho(m)=\rho(1 m 1)=1_{1} m_{(-1)} 1_{1}^{\prime} \otimes 1_{2} m_{0} 1_{2}^{\prime}
$$

So $M^{\prime} \subset M^{\prime \prime}$ and $M^{\prime \prime} \supset{ }^{c o H} M$. By [2] the map

$$
p: M \longrightarrow{ }^{c o H} M, p(m)=S\left(m_{(-1)}\right) m_{0}
$$

is a projection. For any $m \in{ }^{c o H} M$, there exists $m^{\prime} \in M$ such that $m=S\left(m_{(-1)}^{\prime}\right) m_{0}^{\prime}$. So we have

$$
\begin{aligned}
m_{(-1)} \otimes m_{0} & =1_{1} \otimes 1_{2} m=1_{1} \otimes 1_{2} S\left(m_{(-1)}^{\prime}\right) m_{0}^{\prime} \\
& =1_{1} \otimes 1_{2} S\left(1_{1}^{\prime}\right) S\left(m_{(-1)}^{\prime}\right) m_{0}^{\prime} 1_{2}^{\prime} \\
& \stackrel{(2.7)}{=} 1_{1} \otimes S\left(1_{1}^{\prime}\right) S\left(m_{(-1)}^{\prime}\right) m_{0}^{\prime} 1_{2}^{\prime} 1_{2} \\
& =1_{1} \otimes S\left(m_{(-1)}^{\prime}\right) m_{0}^{\prime} 1_{2} \\
& =1_{1} \otimes m 1_{2}
\end{aligned}
$$

Thus $M^{\prime} \supset{ }^{\mathrm{coH}} M$.
Corollary 3.1.8. Let H be a weak Hopf algebra. Then

$$
P_{1}(H \otimes H)^{\prime \prime}=P_{1}(H \otimes H)^{\prime}={ }^{c o H} P_{1}(H \otimes H)
$$

Proof. Similar to the proof of proposition 3.1.6, for any $a S\left(1_{1}\right) \otimes 1_{2} b \in P_{1}(H \otimes$ $H)^{\prime \prime}$, we have

$$
\begin{aligned}
& 1_{1}^{\prime} 1_{1}^{\prime \prime} \varepsilon\left(1_{2}^{\prime} a S\left(1_{1}\right)\right) S\left(\left(1_{2} b 1_{2}^{\prime \prime}\right)_{1}\right) \otimes\left(1_{2} b 1_{2}^{\prime \prime}\right)_{2} \\
= & 1_{1}^{\prime} 1_{1}^{\prime \prime} \varepsilon\left(1_{2}^{\prime} a S\left(1_{1}\right)\right) S\left(1_{2} b_{1} 1_{2}^{\prime \prime}\right) \otimes b_{2} \\
= & 1_{1}^{\prime} 1_{1}^{\prime \prime} S\left(1_{2}^{\prime \prime}\right) \varepsilon\left(1_{2}^{\prime} a S\left(1_{1}\right)\right) S\left(1_{2} b_{1}\right) \otimes b_{2} \\
= & S\left(1_{2}^{\prime}\right) \varepsilon\left(S\left(1_{1}^{\prime}\right) a S\left(1_{1}\right)\right) S\left(1_{2} b_{1}\right) \otimes b_{2} \\
= & S\left(\left(\varepsilon_{t}\left(S^{-1}\left(a S\left(1_{1}\right)\right) 1_{1}^{\prime}\right) 1_{2} b 1_{2}^{\prime}\right)_{1}\right) \otimes\left(\left(\varepsilon_{t}\left(S^{-1}\left(a S\left(1_{1}\right)\right) 1_{1}^{\prime}\right) 1_{2} b 1_{2}^{\prime}\right)_{2}\right.
\end{aligned}
$$

Let $c^{\prime}=\varepsilon_{t}\left(S^{-1}\left(a S\left(1_{1}\right)\right) 1_{1}^{\prime}\right) 1_{2} b 1_{2}^{\prime}$. We can get

$$
a S\left(1_{1}\right) \otimes 1_{2} b=S\left(c_{1}^{\prime}\right) \otimes c_{2}^{\prime} \in\left\{S\left(c_{1}\right) \otimes c_{2} \mid \forall c \in H\right\}
$$

By proposition 3.1.6, $a S\left(1_{1}\right) \otimes 1_{2} b \in{ }^{c o H} P_{1}(H \otimes H)$. So $P_{1}(H \otimes H)^{\prime \prime} \subset{ }^{c o H} P_{1}(H \otimes$ $H)$. It follows from proposition 3.1.7 that $P_{1}(H \otimes H)^{\prime \prime}=P_{1}(H \otimes H)^{\prime}={ }^{c o H} P_{1}(H \otimes$ $H)$.

Corollary 3.1.9. Let H be a weak Hopf algebra and M be a left weak Hopf sub-bimodule in $P_{1}(H \otimes H)$. Then $M^{\prime \prime}=M^{\prime}={ }^{c o H} M$.

Proof. For any $a S\left(1_{1}\right) \otimes 1_{2} b \in M^{\prime \prime} \subset P_{1}(H \otimes H)^{\prime \prime}$, if

$$
\rho_{L}\left(a S\left(1_{1}\right) \otimes 1_{2} b\right)=1_{1}^{\prime} 1_{1}^{\prime \prime} \otimes 1_{2}^{\prime} a S\left(1_{1}\right) \otimes 1_{2} b 1_{2}^{\prime \prime}
$$

similar to corollary 3.1.8, there exists an element c^{\prime} in H such that

$$
c^{\prime}=\varepsilon_{t}\left(S^{-1}\left(a S\left(1_{1}\right)\right) 1_{1}^{\prime}\right) 1_{2} b 1_{2}^{\prime}
$$

and $a S\left(1_{1}\right) \otimes 1_{2} b=S\left(c_{1}^{\prime}\right) \otimes c_{2}^{\prime}$. We obtain

$$
\begin{aligned}
\rho_{L}\left(a S\left(1_{1}\right) \otimes 1_{2} b\right) & =1_{1}^{\prime} 1_{1}^{\prime \prime} \otimes 1_{2}^{\prime} a S\left(1_{1}\right) \otimes 1_{2} b 1_{2}^{\prime \prime} \\
& =1_{1}^{\prime} 1_{1}^{\prime \prime} \otimes 1_{2}^{\prime} S\left(c_{1}^{\prime}\right) \otimes c_{2}^{\prime} 1_{2}^{\prime \prime} \\
& =1_{1}^{\prime} 1_{1}^{\prime \prime} \otimes 1_{2}^{\prime} S\left(1_{1}\right) S\left(c_{1}^{\prime}\right) \otimes c_{2}^{\prime} 1_{2} 1_{2}^{\prime \prime} \\
& \stackrel{(2.7)}{=} 1_{1}^{\prime} \otimes 1_{2}^{\prime} S\left(c_{1}^{\prime}\right) \otimes c_{2}^{\prime} \\
& =1_{1}^{\prime} \otimes 1_{2}^{\prime} a S\left(1_{1}\right) \otimes 1_{2} b .
\end{aligned}
$$

This implies that $a S\left(1_{1}\right) \otimes 1_{2} b \in{ }^{c o H} M$. So $M^{\prime \prime} \subset{ }^{c o H} M$. By proposition 3.1.6, $M^{\prime \prime}=M^{\prime}={ }^{c o H} M$.

3.2. Right weak Hopf bimodules

In the subsection we will write down similar results in the case of right weak Hopf bimodules. Some necessary details will also be given for the sake of completeness.

Now consider:

$$
\rho_{R}: A \otimes A \longrightarrow A \otimes A \otimes A, a \otimes b \longmapsto a_{1} \otimes b_{1} \otimes a_{2} b_{2} .
$$

Lemma 3.2.1. Let H be a weak Hopf algebra. Then there exists an equation:

$$
\rho_{R}(a \otimes b)=a_{1} 1_{1} \otimes S\left(1_{2}\right) b_{1} \otimes a_{2} b_{2}=\rho_{R}\left(a 1_{1} \otimes S\left(1_{2}\right) b\right), \forall a, b \in H
$$

For any $a \otimes b \in H \otimes H$, define two maps

$$
S_{1}(a \otimes b)=b_{1} \otimes a b_{2}, \quad S_{2}(a \otimes b)=b S^{-1}\left(a_{2}\right) \otimes a_{1}
$$

Lemma 3.2.2. Let H be a weak Hopf algebra. Then

$$
S_{1} S_{2} S_{1}=S_{1}, \quad S_{2} S_{1} S_{2}=S_{2}
$$

Proof. For all $a \otimes b \in H \otimes H$, we compute as follows

$$
\begin{aligned}
S_{1} S_{2} S_{1}(a \otimes b) & =S_{1} S_{2}\left(b_{1} \otimes a b_{2}\right)=S_{1}\left(a b_{3} S^{-1}\left(b_{2}\right) \otimes b_{1}\right) \\
& \left.\left.=b_{1} \otimes a b_{3} S^{-1}\left(b_{3}\right) b_{2}\right)=b_{1} \otimes a S^{-1}\left(S\left(b_{2}\right) b_{3} S\left(b_{4}\right)\right)\right) \\
& =b_{1} \otimes a b_{2}=S_{1}(a \otimes b)
\end{aligned}
$$

Similarly, $S_{2} S_{1} S_{2}=S_{2}$ holds.
By lemma 3.2.2, we can define two maps

$$
\begin{aligned}
& P_{3}=S_{2} S_{1}: A \otimes A \longrightarrow A \otimes A, a \otimes b \longmapsto a 1_{1} \otimes S\left(1_{2}\right) b \\
& P_{4}=S_{1} S_{2}: A \otimes A \longrightarrow A \otimes A, a \otimes b \longmapsto 1_{1} a \otimes 1_{2} b
\end{aligned}
$$

It is clear that $P_{3}^{2}=P_{3}$ and $P_{4}^{2}=P_{4}$.
Lemma 3.2.3. Let H be a weak Hopf algebra. Then
(1) S_{1} is a bijective map from $P_{3}(H \otimes H)$ to $S_{1}(H \otimes H)$ with the inverse S_{2};
(2) S_{2} is a bijective map from $P_{4}(H \otimes H)$ to $S_{2}(H \otimes H)$ with the inverse S_{1}.

Lemma 3.2.4. Let H be a weak Hopf algebra. Then $P_{3}(H \otimes H)$ is a maximal right H-comodule with the structure map ρ_{R} defined as above.

Proposition 3.2.5. Let H be a weak Hopf algebra. Then $P_{3}(H \otimes H)$ is a maximal right Hopf bimodule with the following structure:

$$
\begin{aligned}
& \rho_{R}(a \otimes b)=a_{1} \otimes b_{1} \otimes a_{2} b_{2} \\
& c(a \otimes b)=c a \otimes b \\
& (a \otimes b) c=a \otimes b c
\end{aligned}
$$

for any $a \otimes b \in P_{3}(H \otimes H)$ and $c \in H$.
Proposition 3.2.6. Let H be a weak Hopf algebra. Then

$$
\left\{S^{-1}\left(c_{2}\right) \otimes c_{1} \mid \forall c \in H\right\}=P_{3}(H \otimes H)^{\mathrm{coH}}
$$

Proof. For any $S^{-1}\left(c_{2}\right) \otimes c_{1}$, we have

$$
S^{-1}\left(c_{2}\right) \otimes c_{1}=S^{-1}\left(c_{2}\right) S^{-1}\left(1_{2}\right) \otimes 1_{1} c_{1}=S^{-1}\left(c_{2}\right) 1_{1} \otimes S\left(1_{2}\right) c_{1} \in P_{3}(H \otimes H)
$$

And $S^{-1}\left(c_{2}\right) \otimes c_{1}$ is contained in $P_{3}(H \otimes H)^{c o H}$ by the calculation:

$$
\begin{aligned}
\rho_{R}\left(S^{-1}\left(c_{2}\right) \otimes c_{1}\right) & =S^{-1}\left(c_{3}\right)_{1} \otimes c_{1} \otimes S^{-1}\left(c_{3}\right)_{2} c_{2} \\
& =S^{-1}\left(c_{4}\right) \otimes c_{1} \otimes S^{-1}\left(c_{3}\right) c_{2} \\
& =S^{-1}\left(c_{4}\right) \otimes c_{1} \otimes S^{-1}\left(S\left(c_{2}\right) c_{3}\right) \\
& \stackrel{(2.3)}{=} S^{-1}\left(c_{2}\right) \otimes c_{1} 1_{1} \otimes S^{-1}\left(S\left(1_{2}\right)\right) \\
& =S^{-1}\left(c_{2}\right) \otimes c_{1} 1_{1} \otimes 1_{2} \\
& =\left(S^{-1}\left(c_{2}\right) \otimes c_{1}\right) 1_{1} \otimes 1_{2}
\end{aligned}
$$

Conversely, for any $a 1_{1} \otimes S\left(1_{2}\right) b \in P_{3}(H \otimes H)^{c o H}$, we can get

$$
\rho_{R}\left(a 1_{1} \otimes S\left(1_{2}\right) b\right)=a 1_{1} \otimes S\left(1_{2}\right) b 1_{1}^{\prime} \otimes 1_{2}^{\prime}
$$

Applying $S_{2} \circ(\varepsilon \otimes 1 \otimes 1)$ to two sides of the above, we have

$$
a 1_{1} \otimes S\left(1_{2}\right) b=S_{2}\left(\varepsilon\left(a 1_{1}\right) S\left(1_{2}\right) b 1_{1}^{\prime} \otimes 1_{2}^{\prime}\right)
$$

Note that

$$
\begin{aligned}
& S_{2}\left(\varepsilon\left(a 1_{1}\right) S\left(1_{2}\right) b 1_{1}^{\prime} \otimes 1_{2}^{\prime}\right) \\
= & S_{2}\left(\varepsilon\left(a 1_{1}^{\prime \prime} S\left(1_{1}\right)\right) S\left(1_{2}\right) S\left(1_{2}^{\prime \prime}\right) b 1_{1}^{\prime} \otimes 1_{2}^{\prime}\right) \\
= & S_{2}\left(\varepsilon\left(a 1_{1}^{\prime \prime} 1_{2}\right) 1_{1} S\left(1_{2}^{\prime \prime}\right) b 1_{1}^{\prime} \otimes 1_{2}^{\prime}\right) \\
= & S_{2}\left(\varepsilon_{s}\left(a 1_{1}\right) S\left(1_{2}\right) b 1_{1}^{\prime} \otimes 1_{2}^{\prime}\right) \\
= & 1_{2}^{\prime} S^{-1}\left(\left(\varepsilon_{s}\left(a 1_{1}\right) S\left(1_{2}\right) b 1_{1}^{\prime}\right)_{2}\right) \otimes\left(\varepsilon_{s}\left(a 1_{1}\right) S\left(1_{2}\right) b 1_{1}^{\prime}\right)_{1} \\
= & 1_{2}^{\prime} S^{-1}\left(\left(\varepsilon_{s}\left(a 1_{1}\right) S\left(1_{2}\right) b\right)_{2} 1_{1}^{\prime}\right) \otimes\left(\varepsilon_{s}\left(a 1_{1}\right) S\left(1_{2}\right) b\right)_{1} \\
= & 1_{2}^{\prime} S^{-1}\left(1_{1}^{\prime}\right) S^{-1}\left(\left(\varepsilon_{s}\left(a 1_{1}\right) S\left(1_{2}\right) b\right)_{2}\right) \otimes\left(\varepsilon_{s}\left(a 1_{1}\right) S\left(1_{2}\right) b\right)_{1} \\
= & S^{-1}\left(\left(\varepsilon_{s}\left(a 1_{1}\right) S\left(1_{2}\right) b\right)_{2}\right) \otimes\left(\varepsilon_{s}\left(a 1_{1}\right) S\left(1_{2}\right) b\right)_{1}
\end{aligned}
$$

let $c^{\prime}=\varepsilon_{s}\left(a 1_{1}\right) S\left(1_{2}\right) b$, then

$$
a 1_{1} \otimes S\left(1_{2}\right) b=S^{-1}\left(c_{2}^{\prime}\right) \otimes c_{1}^{\prime} \in\left\{S^{-1}\left(c_{2}\right) \otimes c_{1} \mid \forall c \in H\right\}
$$

Proposition 3.2.7. Let H be a weak Hopf algebra and N be a right weak Hopf bimodule over H. Set

$$
\begin{aligned}
& N^{\prime}=\left\{m \in N \mid m_{(-1)} \otimes m_{0}=1_{1} m \otimes \cdot 1_{2}\right\} \\
& N^{\prime \prime}=\left\{m \in N \mid m_{(-1)} \otimes m_{0}=1_{1} m 1_{1}^{\prime} \otimes 1_{2} 1_{2}^{\prime}\right\}
\end{aligned}
$$

Then $\quad N^{\prime \prime} \supset N^{\prime} \supset N^{c o H}$.
Proof. By [2] the map

$$
p: N \longrightarrow N^{c o H}, p(m)=m_{0} S\left(m_{(1)}\right)
$$

is a projection. The rest is similar to the proof of proposition 3.1.7.
Corollary 3.2.8. Let H be a weak Hopf algebra. Then

$$
P_{3}(H \otimes H)^{\prime \prime}=P_{3}(H \otimes H)^{\prime}=P_{3}(H \otimes H)^{\mathrm{coH}}
$$

Proof. Similar to corollary 3.1.8.

Corollary 3.1.9. Let H be a weak Hopf algebra and N be a right weak Hopf sub-bimodule in $P_{3}(H \otimes H)$. Then $N^{\prime \prime}=N^{\prime}=N^{c o H}$.

Proof. Similar to corollary 3.1.9.

3.3. Weak Hopf bimodules

In the subsection we will investigate weak Hopf bimodules coming from $H \otimes H$.
Lemma 3.3.1. Let H be a weak Hopf algebra. Then $P_{1} \circ P_{3}=P_{3} \circ P_{1}$.
Proof. For all $a \otimes b \in H \otimes H$, we have
$P_{1} \circ P_{3}(a \otimes b)=a 1_{1} S\left(1_{1}^{\prime}\right) \otimes 1_{2}^{\prime} S\left(1_{2}\right) b=a S\left(1_{1}^{\prime}\right) 1_{1} \otimes S\left(1_{2}\right) 1_{2}^{\prime} b=P_{3} \circ P_{1}(a \otimes b)$.
Let $P=P_{1} \circ P_{3}$. Then $P^{2}=P$.
Lemma 3.3.2. Let H be a weak Hopf algebra. Then $P(H \otimes H)$ is a maximal weak Hopf bimodule with the following structure:

$$
\begin{aligned}
& \rho_{L}(a \otimes b)=a_{1} b_{1} \otimes a_{2} \otimes b_{2}, \\
& \rho_{R}(a \otimes b)=a_{1} \otimes b_{1} \otimes a_{2} b_{2}, \\
& c(a \otimes b)=c a \otimes b, \\
& (a \otimes b) c=a \otimes b c .
\end{aligned}
$$

for any $a \otimes b \in P(H \otimes H)$ and $c \in H$.
Proof. We first prove that $P(H \otimes H)$ is a left weak Hopf bimodule with the structure map ρ_{L}. It only needs to check that $\left(P(H \otimes H), \rho_{L}\right)$ is a left H-subcomodule, namely, $\rho_{L}(P(H \otimes H)) \subset H \otimes P(H \otimes H)$. Note that $a \otimes b=P(a \otimes b)$ for all $a \otimes b \in P(H \otimes H)$. We have

$$
\begin{aligned}
\rho_{L}(a \otimes b) & =\rho_{L}\left(a 1_{1} S\left(1_{1}^{\prime}\right) \otimes 1_{2}^{\prime} S\left(1_{2}\right) b\right) \\
& =\left(a 1_{1}\right)_{1}\left(S\left(1_{2}\right) b\right)_{1} \otimes\left(a 1_{1}\right)_{2} S\left(1_{1}^{\prime}\right) \otimes 1_{2}^{\prime}\left(S\left(1_{2}\right) b\right)_{2} \\
& =a_{1} b_{1} \otimes a_{2} 1_{1} S\left(1_{1}^{\prime}\right) \otimes 1_{2}^{\prime} S\left(1_{2}\right) b_{2} \in H \otimes P(H \otimes H) .
\end{aligned}
$$

Similarly, $P(H \otimes H)$ is a right weak Hopf bimodule with the structure map ρ_{R}.
Next we check $\left(1 \otimes \rho_{R}\right) \circ \rho_{L}=\left(\rho_{L} \otimes 1\right) \circ \rho_{R}$. By Lemma 3.1.1 and 3.2.1,

$$
\begin{aligned}
& \left(1 \otimes \rho_{R}\right) \circ \rho_{L}(a \otimes b) \\
= & a_{1} b_{1} \otimes \rho_{R}\left(a_{2} \otimes b_{2}\right)=a_{1} b_{1} \otimes a_{2} \otimes b_{2} \otimes a_{3} b_{3} \\
= & \rho_{L}\left(a_{1} \otimes b_{1}\right) \otimes a_{2} b_{2}=\left(\rho_{L} \otimes 1\right) \circ \rho_{R}(a \otimes b) .
\end{aligned}
$$

Now let M be any subspace of $H \otimes H$. Assume that M with the structure as stated is a weak Hopf bimodule. We prove $M \subset P(H \otimes H)$ as a weak Hopf bimodule. For any $c \otimes d \in M$, we have

$$
\begin{aligned}
c \otimes d & =(\varepsilon \otimes 1) \circ \rho_{L}(c \otimes d) \\
& =c S\left(1_{1}\right) \otimes 1_{2} d \\
& =(1 \otimes \varepsilon) \circ \rho_{R}\left(c S\left(1_{1}\right) \otimes 1_{2} d\right) \\
& =c S\left(1_{1}\right) 1_{1}^{\prime} \otimes S\left(1_{2}^{\prime}\right) 1_{2} d \in P(H \otimes H)
\end{aligned}
$$

Thus $M \subset P(H \otimes H)$.
Lemma 3.3.3. Let M be a left weak Hopf sub-bimodule of $P_{1}(H \otimes H)$ and N be a right weak Hopf sub-bimodule of $P_{3}(H \otimes H)$. Then
(1) If M_{1} is a left weak Hopf sub-bimodule of M, then $P_{3}\left(M_{1}\right)$ is a left weak Hopf sub-bimodule of $P_{3}(M)$;
(2) If N_{1} is a right weak Hopf sub-bimodule of N, then $P_{1}\left(N_{1}\right)$ is a right weak Hopf sub-bimodule of $P_{1}(N)$.

Proof. Assume that M_{1} is a left weak Hopf sub-bimodule of M. Note that $a S(1) \otimes 1_{2} b=a \otimes b$ for all $a \otimes b \in M_{1}$. We have

$$
\begin{aligned}
\rho_{L}\left(P_{3}(a \otimes b)\right) & =\rho_{L}\left(a 1_{1} S\left(1_{1}^{\prime}\right) \otimes 1_{2}^{\prime} S\left(1_{2}\right) b\right) \\
& =a_{1} b_{1} \otimes a_{2} 1_{1} S\left(1_{1}^{\prime}\right) \otimes 1_{2}^{\prime} S\left(1_{2}\right) b_{2} \\
& =a_{1} b_{1} \otimes P_{3}\left(a_{2} S\left(1_{1}^{\prime}\right) \otimes 1_{2}^{\prime} b_{2}\right) \in H \otimes P_{3}\left(M_{1}\right) \subset H \otimes P_{3}(M)
\end{aligned}
$$

So $P_{3}\left(M_{1}\right)$ is a left weak Hopf sub-comodule of $P_{3}(M)$. The rest is easy.
The second statement can be similarly proved.

4. Bicovariant Differential Calculi

Let H be a weak Hopf algebra with bijective antipode S. Let (Γ, d) be a first order differential calculus over H. We first investigate the linearities of the map d.

Lemma 4.0.1. Let (Γ, d) be a first order differential calculus over H. Then for $a, b \in H$, the following are equivalent:
(1) $d\left(S\left(1_{1}\right)\right) 1_{2}=0$,
(2) $S\left(1_{1}\right) d\left(1_{2}\right)=0$,
(3) $1_{1} 1_{1}^{\prime} \otimes d\left(1_{2}\right) 1_{2}^{\prime}=0$,
(4) $1_{1} 1_{1}^{\prime} \otimes 1_{2} d\left(1_{2}^{\prime}\right)=0$,
(5) $1_{1} \otimes d\left(1_{2}\right)=0$,
(6) $d\left(H_{t}\right)=0$,
(7) $d\left(\varepsilon_{t}(a) b\right)=\varepsilon_{t}(a) d(b)$,
(8) $d\left(a \varepsilon_{t}(b)\right)=d(a) \varepsilon_{t}(b)$.

Proof. Since $d(1)=d(1)+d(1)$ holds, then $d(1)=0$. Note that $d(1)=$ $d\left(S\left(1_{1}\right) 1_{2}\right)=d\left(S\left(1_{1}\right)\right) 1_{2}+S\left(1_{1}\right) d\left(1_{2}\right)$. We easily see that (1) is equivalent to (2).

For any $a, b \in H$, we have $\quad d\left(\varepsilon_{t}(a) b\right)=\varepsilon_{t}(a) d(b)+d\left(\varepsilon_{t}(a)\right) b$, which implies that $(6) \Longrightarrow(7)$ is clear. If (7) holds, we get $d\left(\varepsilon_{t}(a)\right) b=0$. So (6) is obtained by taking $b=1$. Similarly, (6) is equivalent to (8).

$$
(2) \Longleftrightarrow(6): \text { If (6) is true, so is (2) since } 1_{1} \otimes 1_{2} \in H_{s} \otimes H_{t} \text {. Note that }
$$

$$
\varepsilon_{t}(a) S\left(1_{1}\right) d\left(1_{2}\right) \stackrel{(2.7)}{=} S\left(1_{1}\right) d\left(1_{2} \varepsilon_{t}(a)\right)=S\left(1_{1}\right) d\left(1_{2}\right) \varepsilon_{t}(a)+S\left(1_{1}\right) 1_{2} d\left(\varepsilon_{t}(a)\right) .
$$

If $S\left(1_{1}\right) d\left(1_{2}\right)=0$, we have

$$
0=\varepsilon_{t}(a) S\left(1_{1}\right) d\left(1_{2}\right)=0+S\left(1_{1}\right) 1_{2} d\left(\varepsilon_{t}(a)\right) .
$$

So $d\left(\varepsilon_{t}(a)\right)=0$. Thus (6) holds.
(5) $\Longleftrightarrow(6):$ If $d\left(H_{t}\right)=0$, then $1_{1} \otimes d\left(1_{2}\right)=1_{1} \otimes d\left(\varepsilon_{t}\left(1_{2}\right)\right)=0$. Conversely, if (5) is true, then

$$
d\left(\varepsilon_{t}(a)\right)=\varepsilon\left(1_{1} a\right) d\left(1_{2}\right)=(\varepsilon \otimes 1)\left[\left(1_{1} \otimes d\left(1_{2}\right)\right)(a \otimes 1)\right]=0 .
$$

$(3) \Longleftrightarrow(6):$ It is easy to see that (6) implies (3). Assume that (3) holds, i.e., $1_{1} 1_{1}^{\prime} \otimes d\left(1_{2}\right) 1_{2}^{\prime}=0$. We have

$$
0=\varepsilon\left(1_{1} 1_{1}^{\prime}\right) d\left(1_{2}\right) 1_{2}^{\prime}=d\left(\varepsilon_{t}\left(1_{1}\right)\right) 1_{2}=d\left(S\left(1_{1}\right)\right) 1_{2},
$$

which shows that (1) holds and so does (2). The statement (6) follows from (2).
Finally, we turn to check $(4) \Longleftrightarrow(6)$: It is obvious that (6) implies (4). Suppose that $1_{1} 1_{1}^{\prime} \otimes 1_{2} d\left(1_{2}^{\prime}\right)=0$. We get

$$
0=\varepsilon\left(1_{1} 1_{1}^{\prime}\right) 1_{2} d\left(1_{2}^{\prime}\right)=\varepsilon_{t}\left(1_{1}\right) d\left(1_{2}\right)=S\left(1_{1}\right) d\left(1_{2}\right) .
$$

This means that (2) holds and so does (6).
Lemma 4.0.2. (Γ, d) be a first order differential calculus over H. Then for $a, b \in H$, the following are equivalent:
(1) $d\left(1_{1}\right) S\left(1_{2}\right)=0$,
(2) $1_{1} d\left(S\left(1_{2}\right)\right)=0$,
(3) $d\left(1_{1}\right) 1_{1}^{\prime} \otimes 1_{2} 1_{2}^{\prime}=0$,
(4) $1_{1} d\left(1_{1}^{\prime}\right) \otimes 1_{2} 1_{2}^{\prime}=0$,
(5) $d\left(1_{1}\right) \otimes 1_{2}=0$,
(6) $d\left(H_{s}\right)=0$,
(7) $d\left(\varepsilon_{s}(a) b\right)=\varepsilon_{s}(a) d(b)$,
(8) $d\left(a \varepsilon_{s}(b)\right)=d(a) \varepsilon_{s}(b)$.

Proof. Note that $d(1)=d\left(1_{1} S\left(1_{2}\right)\right)=d\left(1_{1}\right) S\left(1_{2}\right)+1_{1} d\left(S\left(1_{2}\right)\right),(1) \Longleftrightarrow(2)$ holds. Similar to Lemma 4.1, $(6) \Longleftrightarrow(7) \Longleftrightarrow(8)$ can be easily checked.
$(2) \Longleftrightarrow(6)$: If (6) is true, clearly, so is (2). If $1_{1} d\left(S\left(1_{2}\right)\right)=0$, for any $a \in H$, we have
$\varepsilon_{s}(a) 1_{1} d\left(S\left(1_{2}\right)\right) \stackrel{(2.6)}{=} 1_{1} d\left(S\left(1_{2}\right) \varepsilon_{s}(a)\right)=1_{1} d\left(S\left(1_{2}\right)\right) \varepsilon_{s}(a)+1_{1} S\left(1_{2}\right) d\left(\varepsilon_{s}(a)\right)=d\left(\varepsilon_{s}(a)\right)$,
Note that $\varepsilon_{s}(a) 1_{1} d\left(S\left(1_{2}\right)\right)=0$. So (6) holds.
$(5) \Longleftrightarrow(6)$: If $d\left(H_{s}\right)=0$, then $d\left(1_{1}\right) \otimes 1_{2}=0$. Conversely, if (5) is true, then

$$
d\left(\varepsilon_{s}(a)\right)=\varepsilon\left(a 1_{2}\right) d\left(1_{1}\right)=(1 \otimes \varepsilon)\left[(1 \otimes a)\left(d\left(1_{1}\right) \otimes 1_{2}\right)\right]=0
$$

$(3) \Longleftrightarrow(6)$: That (6) implies (3) is easy. If (3) holds, we have

$$
0=d\left(1_{1}\right) 1_{1}^{\prime} \varepsilon\left(1_{2} 1_{2}^{\prime}\right)=d\left(1_{1}\right) S\left(1_{2}\right)
$$

This means that (1) holds. So does (2). Thus (6) follows from (2).
Similarly, $(4) \Longleftrightarrow$ (6) holds.
The statements (7) and (8) in Lemma 4.0.1 (4.0.2) are equivalent to say that the linear map d is left and right $H_{t}\left(H_{s}\right)$-linear, respectively. However, there really exists the linear map d that is neither H_{t}-linear nor H_{s}-linear.

Lemma 4.0.3. Let H be a weak Hopf algebra. If $1 \varepsilon(a)=\varepsilon_{t}(a)$ for all $a \in H$, then H is a Hopf algebra.

Proof. For any $a \in H$, if $1 \varepsilon(a)=\varepsilon_{t}(a)$, we have

$$
\varepsilon(a b)=\varepsilon\left(a 1_{1}\right) \varepsilon\left(1_{2} b\right)=\varepsilon\left(a \varepsilon_{t}\left(1_{1}\right)\right) \varepsilon\left(1_{2} b\right)=\varepsilon\left(a 1 \varepsilon\left(1_{1}\right)\right) \varepsilon\left(1_{2} b\right)=\varepsilon(a) \varepsilon(b)
$$

This means that ε is a algebra map and so H is an ordinary Hopf algebra.
Example 4.0.4. Let $\left(H^{2}, D\right)$ be a first order differential calculus over H as in Subsection 2.3. Suppose that the map D is H_{t}-linear. We can get

$$
D\left(\varepsilon_{t}(a)\right)=1 \otimes \varepsilon_{t}(a)-\varepsilon_{t}(a) \otimes 1=0
$$

This means that $1 \varepsilon(a)=\varepsilon_{t}(a)$. By Lemma 4.0.3, H is an ordinary Hopf algebra. Consequently, if H is a weak Hopf algebra (not a Hopf algebra), then the map D is not H_{t}-linear; Similarly, D is not H_{s}-linear.

In the sequel, we will see that Woronowicz's bicovariant differential calculi over weak Hopf algebras must be H_{t}-bilinear and H_{s}-bilinear. This is very different from bicovariant differential calculi over quantum groups.

4.1. Left-covariant first order differential calculi

In this subsection, we will discuss left-covariant first order differential calculus.

Definition 4.1.1. Let (Γ, d) be a first order differential calculus over $H .(\Gamma, d)$ is called A-type if the linear map d is H_{t}-linear.

Definition 4.1.2. [23]. Let (Γ, d) be a first order differential calculus over H. (Γ, d) is left-covariant if $a d(b)=0$ implies that $a_{1} b_{1} \otimes a_{2} d\left(b_{2}\right)=0$ for all $a, b \in \Gamma$.

Note that $1 d(1)=0$. Then $1_{1} 1_{1}^{\prime} \otimes 1_{2} d\left(1_{2}^{\prime}\right)=0$. By Lemma 4.0.1, we have
Proposition 4.1.3. Let (Γ, d) be a left-covariant first order differential calculus over H. Then (Γ, d) is A-type.

Example 4.1.4. Let $P_{1}\left(H^{2}\right)=\left\{a S\left(1_{1}\right) \otimes 1_{2} b \mid a \otimes b \in H^{2}\right\}$ and $D_{1}(a)=$ $S\left(1_{1}\right) \otimes 1_{2} a-a S\left(1_{1}\right) \otimes 1_{2}$ for all $a \in H$. Then $\left(P_{1}\left(H^{2}\right), D_{1}\right)$ is a left-covariant first order differential calculus over H and so A-type. Moreover, $\left(1 \otimes D_{1}\right) \circ \Delta=\rho_{L} \circ D_{1}$.

Proof. It is straightforward to check that $P_{1}\left(H^{2}\right)$ is a submodule of H^{2}. By [23] $\left(P_{1}\left(H^{2}\right), D_{1}\right)$ is a first order differential calculus over H. It needs to show that $a D_{1}(b)=0$ implies that $a_{1} b_{1} \otimes a_{2} D_{1}\left(b_{2}\right)=0$ for all $a, b \in H$.

Assume that $a D_{1}(b)=0$. We obtain $a S\left(1_{1}\right) \otimes 1_{2} b=a b S\left(1_{1}\right) \otimes 1_{2}$. So

$$
\begin{aligned}
a_{1} b_{1} \otimes a_{2} D_{1}\left(b_{2}\right) & =a_{1} b_{1} \otimes a_{2} S\left(1_{1}\right) \otimes 1_{2} b_{2}-a_{1} b_{1} \otimes a_{2} b_{2} S\left(1_{1}\right) \otimes 1_{2} \\
& =\rho_{L}\left(a S\left(1_{1}\right) \otimes 1_{2} b\right)-a_{1} b_{1} 1_{1}^{\prime} \otimes a_{2} b_{2} 1_{2}^{\prime} S\left(1_{1}\right) \otimes 1_{2} \\
& =\rho_{L}\left(a S\left(1_{1}\right) \otimes 1_{2} b\right)-a_{1} b_{1} 1_{1}^{\prime} \otimes a_{2} b_{2} S\left(1_{1}\right) \otimes 1_{2} 1_{2}^{\prime} \\
& =\rho_{L}\left(a S\left(1_{1}\right) \otimes 1_{2} b\right)-\rho_{L}\left(a b S\left(1_{1}\right) \otimes 1_{2} 1\right) \\
& =\rho_{L}\left(a S\left(1_{1}\right) \otimes 1_{2} b-a b S\left(1_{1}\right) \otimes 1_{2} 1\right) \\
& =0 .
\end{aligned}
$$

Lemma 4.1.5. Let H be a weak Hopf algebra. Then a first order differential calculus (Γ, d) is A-type if and only if there exists a sub-bimodule $N \subset P_{1}\left(H^{2}\right)$ such that $\Gamma=P_{1}\left(H^{2}\right) / N$ and $d=\pi \circ D_{1}$, where π is the canonical epimorphism $P_{1}\left(H^{2}\right) \longrightarrow \Gamma$.

Proof. Here we take a method in [23]. If N is a submodule of $P_{1}\left(H^{2}\right), N$ is also a submodule of H^{2}. By [23] (Γ, d) is a first order differential calculus. Note that the map π is H-linear. For all $a, b \in H$,

$$
\begin{aligned}
\pi \circ D_{1}(a b) & =\pi\left[\left(D_{1}(a) b+a D_{1}(b)\right)\right] \\
& =\left[\pi \circ\left(D_{1}(a)\right)\right] b+a\left[\pi \circ D_{1}(b)\right] .
\end{aligned}
$$

The map $\pi \circ D_{1}$ is surjective. For all $a, b \in H$,

$$
\pi \circ D_{1}\left(\varepsilon_{t}(a) b\right)=\pi\left[D_{1}\left(\varepsilon_{t}(a) b\right)\right]=\pi\left[\varepsilon_{t}(a) D_{1}(b)\right]=\varepsilon_{t}(a)\left[\pi \circ D_{1}(b)\right] .
$$

So (Γ, d) is A-type.

Conversely, assume that (Γ, d) is an A-type first order differential calculus. Namely, d is H_{t}-linear. For any $a S\left(1_{1}\right) \otimes 1_{2} b \in P_{1}(H \otimes H)$ and $c \in H$, define a map

$$
\pi^{\prime}: P_{1}(H \otimes H) \longrightarrow \Gamma, a S\left(1_{1}\right) \otimes 1_{2} b \longmapsto a S\left(1_{1}\right) d\left(1_{2} b\right)
$$

The H-linearity of the map π^{\prime} follows from the following:

$$
\begin{aligned}
& c\left(a S\left(1_{1}\right) d\left(1_{2} b\right)\right)=c a S\left(1_{1}\right) d\left(1_{2} b\right), \\
& a S\left(1_{1}\right) d\left(1_{2} b c\right)=a S\left(1_{1}\right) d\left(1_{2} b c\right) \\
= & \left.a S\left(1_{1}\right) d\left(1_{2}\right) b c+a S\left(1_{1}\right) 1_{2} d(b) c+a S\left(1_{1}\right) 1_{2} b\right) d(c) \\
= & \left.a S\left(1_{1}\right) 1_{2} d(b) c+a S\left(1_{1}\right) 1_{2} b\right) d(c) \\
= & a S\left(1_{1}\right) 1_{2} d(b) c+a S\left(1_{1}\right) 1_{2} b d(c) \\
= & a S\left(1_{1}\right) 1_{2} d(b) c=a S\left(1_{1}\right) d\left(1_{2} b\right) c .
\end{aligned}
$$

If $m \in \Gamma$, then there exist a and b in H such that $m=a d(b)$. Note that $a S\left(1_{1}\right) \otimes$ $1_{2} b-a b S\left(1_{1}\right) \otimes 1_{2} \in P_{1}(H \otimes H)$. We have

$$
\begin{aligned}
& \pi^{\prime}\left(a S\left(1_{1}\right) \otimes 1_{2} b-a b S\left(1_{1}\right) \otimes 1_{2}\right) \\
= & \pi^{\prime}\left(a S\left(1_{1}\right) \otimes 1_{2} b\right)-\pi^{\prime}\left(a b S\left(1_{1}\right) \otimes 1_{2}\right) \\
= & a S\left(1_{1}\right) d\left(1_{2} b\right)-a b S\left(1_{1}\right) d\left(1_{2}\right) \\
= & a S\left(1_{1}\right) 1_{2} d(b)-0=a d(b)=m .
\end{aligned}
$$

So π^{\prime} is surjective. Let $k e r \pi^{\prime}$ be the kernel of π^{\prime}. As an H-bimodule, we have $P_{1}(H \otimes H) / k e r \pi^{\prime} \cong \Gamma$. For any $a \in H$,

$$
\begin{aligned}
\pi^{\prime} \circ D_{1}(a) & =\pi^{\prime}\left(S\left(1_{1}\right) \otimes 1_{2} a-a S\left(1_{1}\right) \otimes 1_{2}\right) \\
& =S\left(1_{1}\right) d\left(1_{2} a\right)-a S\left(1_{1}\right) d\left(1_{2}\right)=d(a) .
\end{aligned}
$$

Lemma 4.1.6. Let H be a weak Hopf algebra. Then $P_{1}\left(H^{2}\right)$ is a left weak Hopf sub-bimodule of $P_{1}(H \otimes H)$.

Proof. For any $a S\left(1_{1}\right) \otimes 1_{2} b \in P_{1}\left(H^{2}\right)$, we have

$$
\begin{aligned}
& (1 \otimes m) \circ \rho_{L}\left(a S\left(1_{1}\right) \otimes 1_{2} b\right) \\
= & (1 \otimes m)\left(\left(a S\left(1_{1}\right)\right)_{1}\left(1_{2} b\right)_{1} \otimes\left(a S\left(1_{1}\right)\right)_{2} \otimes\left(1_{2} b\right)_{2}\right) \\
= & \left(a S\left(1_{1}\right)\right)_{1}\left(1_{2} b\right)_{1} \otimes\left(a S\left(1_{1}\right)\right)_{2}\left(1_{2} b\right)_{2} \\
= & \left(a S\left(1_{1}\right)\right)_{1}\left(1_{2} b\right)_{1} \otimes\left(a S\left(1_{1}\right)\right)_{2}\left(1_{2} b\right)_{2} \\
= & \Delta\left(a S\left(1_{1}\right) 1_{2} b\right)=0 .
\end{aligned}
$$

This means $\rho_{L}\left(P_{1}\left(H^{2}\right)\right) \subset H \otimes P_{1}\left(H^{2}\right)$. The rest follows Proposition 3.1.6.

Theorem 4.1.7. Let H be a weak Hopf algebra. Then the first order differential calculus (Γ, d) is left-covariant if and only if there exists a left weak Hopf sub-bimodule $N \subset P_{1}\left(H^{2}\right)$ such that $\Gamma=P_{1}\left(H^{2}\right) / N$ and $d=\pi \circ D_{1}$, where π is the canonical epimorphism $P_{1}\left(H^{2}\right) \longrightarrow \Gamma$.

Proof. Here the notations is the same as in Lemma 4.1.5. First assume that N is a left weak Hopf sub-bimodule of $P_{1}\left(H^{2}\right)$. Then the map π is H-linear and left H-colinear. By Example 4.1.4, $\left(1 \otimes D_{1}\right) \circ \Delta=\rho_{L} \circ D_{1}$. Since Lemma 4.1.5 holds, it remains to prove that $a \pi\left[D_{1}(b)\right]=0$ implies $a_{1} b_{1} \otimes a_{2} \pi\left[D_{1}\left(b_{2}\right)\right]=0$ for all $a, b \in H$. If $a \pi\left[D_{1}(b)\right]=0$, we can get

$$
\begin{aligned}
a_{1} b_{1} \otimes a_{2} \pi\left[D_{1}\left(b_{2}\right)\right] & =\left(a_{1} \otimes a_{2}\right)\left(b_{1} \otimes \pi\left(D_{1}\left(b_{2}\right)\right)\right) \\
& =\left(a_{1} \otimes a_{2}\right)\left[(1 \otimes \pi)\left(b_{1} \otimes D_{1}\left(b_{2}\right)\right)\right] \\
& =\left(a_{1} \otimes a_{2}\right)\left[(1 \otimes \pi)\left(\rho_{L} \circ D_{1}(b)\right)\right] \\
& =\left(a_{1} \otimes a_{2}\right)\left[(1 \otimes \pi) \circ \rho_{L}\left(D_{1}(b)\right)\right] \\
& =\Delta(a)\left[\rho_{L} \circ \pi\left(\left(D_{1}(b)\right)\right]\right. \\
& =\rho_{L}\left[a\left(\pi \circ D_{1}(b)\right)\right]=0 .
\end{aligned}
$$

Conversely, suppose that (Γ, d) is left-covariant. For all $a S\left(1_{1}\right) \otimes 1_{2} b \in k e r \pi^{\prime}$, we have $a_{1} b_{1} \otimes a_{2} d\left(b_{2}\right)=0$. By Lemma 4.1.5, $a_{1} b_{1} \otimes a_{2} \pi^{\prime}\left(S\left(1_{1}\right) \otimes 1_{2} b_{2}\right)=a_{1} b_{1} \otimes$ $a_{2} \pi^{\prime}\left(b_{2} S\left(1_{1}\right) \otimes 1_{2}\right)$. Since $c d(1)=0$ for any $c \in H$, then $c S\left(1_{1}\right) \otimes 1_{2} \in k e r \pi^{\prime}$. So

$$
\left(1 \otimes \pi^{\prime}\right) \circ \rho_{L}\left(a S\left(1_{1}\right) \otimes 1_{2} b\right)=a_{1} b_{1} \otimes a_{2} \pi^{\prime}\left(b_{2} S\left(1_{1}\right) \otimes 1_{2}\right)=0 .
$$

This means that $\rho_{L}\left(k e r \pi^{\prime}\right) \subset H \otimes k e r \pi^{\prime}$. The other axioms on a left weak Hopf bimodule are easily checked.

Proposition 4.1.8. Let (Γ, d) be a left-covariant first order differential calculus over H. Then there uniquely exists a linear map $\rho_{L}: \Gamma \longrightarrow H \otimes \Gamma$ such that $\left(\Gamma, \rho_{L}\right)$ is a left weak Hopf bimodule. Moreover, $(1 \otimes d) \circ \Delta=\rho_{L} \circ d$.

Proof. Straightforward.
Lemma 4.1.9. Let H be a weak Hopf algebra. Then

$$
\left\{S\left(c_{1}\right) \otimes c_{2} \mid \forall c \in k e r \varepsilon_{s}\right\}={ }^{c o H} P_{1}\left(H^{2}\right)
$$

Proof. For any $c \in \operatorname{ker}_{s}$, we have $S\left(c_{1}\right) c_{2}=\varepsilon_{s}(c)=0$ and

$$
S\left(c_{1}\right) \otimes c_{2}=S\left(c_{1}\right) S\left(1_{1}\right) \otimes 1_{2} c_{2} \in P_{1}\left(H^{2}\right) \subset P_{1}(H \otimes H) .
$$

It follows from Lemma 4.1.6 and Proposition 3.1.6 that $S\left(c_{1}\right) \otimes c_{2} \in{ }^{c o H} P_{1}\left(H^{2}\right)$.
Conversely, for any $S\left(c_{1}\right) \otimes c_{2} \in{ }^{\mathrm{coH}} P_{1}\left(H^{2}\right)$, we have $0=S\left(c_{1}\right) c_{2}=\varepsilon_{s}(c)$.

Lemma 4.1.10. Let R be a right ideal of H such that R is contained in $k e r \varepsilon_{s}$. Let $N=R_{2}(H \otimes R)=\left\{a S\left(b_{1}\right) \otimes b_{2} \mid a \otimes b \in H \otimes R\right\}$. Then N is a left weak Hopf sub-bimodule of $P_{1}\left(H^{2}\right)$. Moreover, ${ }^{c o H} N=\left\{S\left(b_{1}\right) \otimes b_{2} \mid b \in R\right\}$.

Proof. We first check that N is a subspace of $P_{1}\left(H^{2}\right)$. For any $a \otimes b \in H \otimes R$, we have $a \otimes b \in H \otimes k e r \varepsilon_{s}$ and so $a \varepsilon_{s}(b)=0$. Since $a S\left(b_{1}\right) \otimes b_{2}=a S\left(b_{1}\right) S\left(1_{1}\right) \otimes 1_{2} b_{2}$ and $a S\left(b_{1}\right) b_{2}=a \varepsilon_{s}(b)=0$, then $N \subseteq P_{1}\left(H^{2}\right)$.

Next we show that N is a sub-bimodule of $P_{1}\left(H^{2}\right)$. For any $c \in H$ and $a S\left(b_{1}\right) \otimes$ $b_{2} \in N$, we have

$$
c\left(a S\left(b_{1}\right) \otimes b_{2}\right)=c a S\left(b_{1}\right) \otimes b_{2}, \quad\left(a S\left(b_{1}\right) \otimes b_{2}\right) c=a S\left(b_{1}\right) \otimes b_{2} c
$$

Note that $a \otimes b \in H \otimes R$. we get $c a \otimes b \in H \otimes R$ and $c a S\left(b_{1}\right) \otimes b_{2} \in N$. Since R is a right ideal, $a c_{1} \otimes b c_{2}$ is an element in $H \otimes R$. Now compute as follows:

$$
a c_{1} S\left(b_{1} c_{2}\right) \otimes b_{2} c_{3}=a \varepsilon_{t}\left(c_{1}\right) S\left(b_{1}\right) \otimes b_{2} c_{2}=a S\left(1_{1}\right) S\left(b_{1}\right) \otimes b_{2} 1_{2} c=a S\left(b_{1}\right) \otimes b_{2} c
$$

So $\left(a S\left(b_{1}\right) \otimes b_{2}\right) c=a S\left(b_{1}\right) \otimes b_{2} c \in N$. Thus N is a sub-bimodule.
Now we verify that N is a sub-comodule of $P_{1}\left(H^{2}\right)$. For any $a \otimes b \in H \otimes R$, we have $a_{1} \otimes a_{2} \otimes b \in H \otimes H \otimes R$ and

$$
\begin{aligned}
\rho_{L}\left(a S\left(b_{1}\right) \otimes b_{2}\right) & =a_{1} S\left(b_{1}\right)_{1} b_{2} \otimes a_{2} S\left(b_{1}\right)_{2} \otimes b_{3} \\
& =a_{1} S\left(b_{2}\right) b_{3} \otimes a_{2} S\left(b_{1}\right) \otimes b_{4} \\
& =a_{1} \varepsilon_{s}\left(b_{2}\right) \otimes a_{2} S\left(b_{1}\right) \otimes b_{3} \\
& =a_{1} S\left(1_{2}\right) \otimes a_{2} S\left(b_{1} 1_{1}\right) \otimes b_{2} \\
& =a_{1} \otimes a_{2} S\left(b_{1}\right) \otimes b_{2} .
\end{aligned}
$$

So $\rho_{L}(N) \in H \otimes N$. The other axioms on left weak Hopf modules are straightforward.
Finally we prove that ${ }^{c o H} N=\left\{S\left(b_{1}\right) \otimes b_{2} \mid b \in R\right\}$. Clearly, $\left\{S\left(b_{1}\right) \otimes b_{2} \mid b \in\right.$ $R\} \subset N$. Using Lemma 3.1.6 we get $\left\{S\left(b_{1}\right) \otimes b_{2} \mid b \in R\right\} \subset{ }^{c o H} N$. Conversely, by Lemma 3.1.6, for any $S\left(c_{1}\right) \otimes c_{2} \in{ }^{c o H} N$, we need to check that c lies in R. Note that there exists $a \in H$ and $b \in R$ such that $S\left(c_{1}\right) \otimes c_{2}=a S\left(b_{1}\right) \otimes b_{2}$. We have

$$
c=\varepsilon\left(a S\left(b_{1}\right)\right) b_{2}=\varepsilon\left(\varepsilon_{s}\left(b_{1}\right) S^{-1}(a)\right) b_{2}=\varepsilon\left(1_{1} S^{-1}(a)\right) b 1_{2}=b \varepsilon_{t}\left(S^{-1}(a)\right)
$$

Then $c \in R$ since R is a right ideal in H.
Lemma 4.1.11. Let N be a left weak Hopf sub-bimodule of $P_{1}\left(H^{2}\right)$. Then there exists a right ideal R in $H, R \subset k e r \varepsilon_{s}$ such that

$$
N=R_{2}(H \otimes R)=\left\{a S\left(b_{1}\right) \otimes b_{2} \mid a \otimes b \in H \otimes R\right\}
$$

Proof. Note that ${ }^{c o H} N \subset{ }^{c o H} P_{1}\left(H^{2}\right)$. Define a subspace

$$
R:=\left\{c \in \operatorname{ker} \varepsilon_{s} \mid S\left(c_{1}\right) \otimes c_{2} \in{ }^{c o H} N\right\}
$$

We first show that R is a right ideal in H. Clearly, R is a subspace of $k e r \varepsilon_{s}$. Since ${ }^{c o H} N$ is a H-sub-comodule, we have for any $c \in R$ and $b \in H$,

$$
\begin{aligned}
\rho_{L}\left(S\left((c b)_{1}\right) \otimes(c b)_{2}\right) & \left.=\rho_{L}\left(S\left(b_{1}\right) S\left(c_{1}\right) \otimes c_{2} b_{2}\right)\right) \\
& =S\left(b_{2}\right) S\left(c_{1}\right)_{1} c_{2} b_{3} \otimes S\left(b_{1}\right) S\left(c_{1}\right)_{2} \otimes c_{3} b_{4} \\
& =S\left(b_{2}\right) b_{3} \otimes S\left(b_{1}\right) S\left(c_{1}\right) \otimes c_{2} b_{4} \\
& =S\left(1_{2}\right) \otimes S\left(b_{1} 1_{1}\right) S\left(c_{1}\right) \otimes c_{2} b_{3} \\
& =1_{1} \otimes 1_{2} S\left(b_{1}\right) S\left(c_{1}\right) \otimes c_{2} b_{3} \\
& =1_{1} \otimes 1_{2} S\left((c b)_{1}\right) \otimes(c b)_{2}
\end{aligned}
$$

which means $S\left((c b)_{1}\right) \otimes(c b)_{2} \in{ }^{c o H} N$. So $c b \in R$.
Next we check that $N \subset R_{2}(H \otimes R)$. By [2] if M is a left-left weak Hopf module, there exists a projection $p: M \longrightarrow{ }^{c o H} M, p(m)=S\left(m_{(-1)}\right) m_{(0)}$. Additionally, for any $m \in M$, we have

$$
m=\varepsilon\left(1_{1} m_{(-1)}\right) 1_{2} m_{(0)}=\varepsilon\left(1_{1} m_{(-1)}\right) 1_{2} m_{(0)}=m_{(-1)} S\left(m_{(0)_{(-1)}}\right) m_{(0)_{(0)}}
$$

So there exists $a \in H$ and $m^{\prime} \in{ }^{c o H} M$ such that $m=a m^{\prime}$. Thus $N \subset R_{2}(H \otimes R)$.
Now we verify that $R_{2}(H \otimes R) \subset N$. Since N is a left weak Hopf sub-bimodule of $P_{1}\left(H^{2}\right)$ and ${ }^{c o H} N$ is a subcomodule of N, we have $S\left(c_{1}\right) \otimes c_{2} \in N$. So $a S\left(c_{1}\right) \otimes c_{2} \in$ N for all $c \in R$ and $a \in H$. Therefore, $R_{2}(H \otimes R)$ is contained in N.

Proposition 4.1.12. Let H be a weak Hopf algebra. Then N is a left weak Hopf sub-bimodule of $P_{1}\left(H^{2}\right)$ if and only if there exists a right ideal R in $H, R \subset k e r \varepsilon_{s}$ such that $N=R_{2}(H \otimes R)=\left\{a S\left(b_{1}\right) \otimes b_{2} \mid a \otimes b \in H \otimes R\right\}$.

Proof. Following Lemma 4.1.10 and 4.1.11.
Similar to Theorem 1.5 in [23], all left-covariant differential calculi over weak Hopf algebras are characterized as follows:

Theorem 4.1.13. Let H be a weak Hopf algebra. Then the first order differential calculus (Γ, d) is left-covariant if and only if there exists a right ideal R in $H, R \subset$ ker ε_{s} such that $\Gamma=P_{1}\left(H^{2}\right) / N$ and $d=\pi \circ D_{1}$, where $N=R_{2}(H \otimes R)$ and π is the canonical epimorphism $P_{1}\left(H^{2}\right) \longrightarrow \Gamma$.

Proof. Following Theorem 4.1.7 and Proposition 4.1.12.

4.2. Right-covariant first order differential calculi

Here we will consider right-covariant first order differential calculi by a similar way. Some details of some proofs will also by given for the sake of completeness.

Definition 4.2.1. Let (Γ, d) be a first order differential calculus over $H .(\Gamma, d)$ is called B-type if the linear map d is H_{s}-linear.

Definition 4.2.2. [23]. Let (Γ, d) be a first order differential calculus over H. (Γ, d) is called right-covariant if $a d(b)=0$ implies that $a_{1} d\left(b_{1}\right) \otimes a_{2} b_{2}=0$.

Proposition 4.2.3. Let (Γ, d) be a left-covariant first order differential calculus over H. Then (Γ, d) is B-type.

Proof. The proof follows from Lemma 4.0.2.
Example 4.2.4. Let $P_{3}\left(H^{2}\right)=\left\{a 1_{1} \otimes S\left(1_{2}\right) b \mid a \otimes b \in H^{2}\right\}$ and $D_{2}(a)=$ $1_{1} \otimes S\left(1_{2}\right) a-a 1_{1} \otimes S\left(1_{2}\right)$, for any $a \in H$. Then $\left(P_{3}\left(H^{2}\right), D_{2}\right)$ is a right-covariant first order differential calculus over H and so B-type. Moreover, $\left(D_{2} \otimes 1\right) \circ \Delta=\rho_{R} \circ D_{2}$.

Proof. Similar to Example 4.1.4.
Lemma 4.2.5. Let H be a weak Hopf algebra. Then a first order differential calculus (Γ, d) is B-type if and only if there exists a sub-bimodule $N \subset P_{3}\left(H^{2}\right)$ such that $\Gamma=P_{3}\left(H^{2}\right) / N$ and $d=\pi \circ D_{2}$, where π is the canonical epimorphism $P_{3}\left(H^{2}\right) \longrightarrow \Gamma$.

Proof. If N is a submodule of $P_{3}\left(H^{2}\right)$, then by [23] (Γ, d) is a first order differential calculus. Note that the map π is H-linear. We have for all $a, b \in H$,

$$
\pi \circ D_{2}(a b)=\pi\left[\left(D_{2}(a) b+a D_{2}(b)\right)\right]=\left[\pi \circ\left(D_{2}(a)\right)\right] b+a\left[\pi \circ D_{2}(b)\right]
$$

The map $\pi \circ D_{2}$ is surjective. For all $a, b \in H$,

$$
\pi \circ D_{1}\left(\varepsilon_{s}(a) b\right)=\pi\left[D_{2}\left(\varepsilon_{s}(a) b\right)\right]=\pi\left[\varepsilon_{s}(a) D_{1}(b)\right]=\varepsilon_{s}(a)\left[\pi \circ D_{2}(b)\right]
$$

So (Γ, d) is B-type.
Conversely, assume that (Γ, d) is a B-type first order differential calculus. Namely, d is H_{s}-linear. For any $a 1_{1} \otimes S\left(1_{2}\right) b \in P_{3}(H \otimes H)$ and $c \in H$, define a map

$$
\pi^{\prime}: P_{1}(H \otimes H) \longrightarrow \Gamma, a 1_{1} \otimes S\left(1_{2}\right) b \longmapsto a 1_{1} d\left(S\left(1_{2}\right) b\right)
$$

Similar to Lemma 4.1.5, the map π^{\prime} is left and right H-linear. If $m \in \Gamma$, then there exist a and b in H such that $m=a d(b)$. Note that $a S\left(1_{1}\right) \otimes 1_{2} b-a b S\left(1_{1}\right) \otimes 1_{2} \in P_{1}(H \otimes H)$. We have

$$
\pi^{\prime}\left(a S\left(1_{1}\right) \otimes 1_{2} b-a b S\left(1_{1}\right) \otimes 1_{2}\right)=a d(b)=m
$$

So π^{\prime} is surjective. Let $k e r \pi^{\prime}$ be the kernel of π^{\prime}. Then $P_{1}(H \otimes H) / k e r \pi^{\prime} \cong \Gamma$ as an H-bimodule. Thus

$$
\pi^{\prime} \circ D_{1}(a)=\pi^{\prime}\left(S\left(1_{1}\right) \otimes 1_{2} a-a S\left(1_{1}\right) \otimes 1_{2}\right)=d(a)
$$

Lemma 4.2.6. Let H be a weak Hopf algebra. Then $P_{3}\left(H^{2}\right)$ is a left weak Hopf sub-bimodule of $P_{3}(H \otimes H)$.

Proof. For any $a 1_{1} \otimes S\left(1_{2}\right) b \in P_{3}\left(H^{2}\right)$, we have

$$
\begin{aligned}
& (m \otimes 1) \circ \rho_{R}\left(a 1_{1} \otimes S\left(1_{2}\right) b\right) \\
= & (m \otimes 1)\left(\left(a 1_{1}\right)_{1} \otimes\left(S\left(1_{2}\right) b\right)_{1} \otimes\left(a 1_{1}\right)_{2}\left(S\left(1_{2}\right) b\right)_{2}\right) \\
= & \Delta\left(a 1_{1} S\left(1_{2}\right) b\right)=0 .
\end{aligned}
$$

Thus $\rho_{R}\left(P_{3}\left(H^{2}\right)\right) \subset H \otimes P_{3}\left(H^{2}\right)$.
Theorem 4.2.7. Let H be a weak Hopf algebra. Then a first order differential calculus (Γ, d) is right-covariant if and only if there exists a right weak Hopf subbimodule $N \subset P_{1}\left(H^{2}\right)$ such that $\Gamma=P_{3}\left(H^{2}\right) / N$ and $d=\pi \circ D_{2}$, where π is the canonical epimorphism $P_{3}\left(H^{2}\right) \longrightarrow \Gamma$.

Proof. Here the notations are the same as in Lemma 4.2.5. First assume that N is a right weak Hopf sub-bimodule of $P_{3}\left(H^{2}\right)$. Then the map π is H-linear and right H-colinear. By Example 4.2.4 and Lemma 4.2.5, we only need to prove that $a \pi\left[D_{2}(b)\right]=0$ implies $a_{1} \pi\left[D_{2}\left(b_{1}\right)\right] \otimes a_{2} b_{2}=0$ for $a, b \in H$. If $a \pi\left[D_{2}(b)\right]=0$, then

$$
\begin{aligned}
a_{1} \pi\left[D_{2}\left(b_{1}\right)\right] \otimes a_{2} b_{2} & =\Delta(a)\left[(\pi \otimes 1)\left(D_{2}\left(b_{1}\right) \otimes b_{2}\right)\right] \\
& =\left(a_{1} \otimes a_{2}\right)\left[(\pi \otimes 1)\left(\rho_{R} \circ D_{2}(b)\right)\right] \\
& =\Delta(a)\left[\rho_{R} \circ \pi\left(\left(D_{2}(b)\right)\right]\right. \\
& =\rho_{R}\left[a\left(\pi \circ D_{2}(b)\right)\right]=0 .
\end{aligned}
$$

Assume that (Γ, d) is right-covariant. We have $a_{1} d\left(b_{1}\right) \otimes a_{2} b_{2}=0$ for any $a 1_{1} \otimes$ $1 S(2) b \in k e r \pi^{\prime}$. By Lemma 4.1.5,

$$
a_{1} \pi^{\prime}\left(1_{1} \otimes S\left(1_{2}\right) b_{1}\right) \otimes a_{2} b_{2}=a_{1} \pi^{\prime}\left(b_{1} 1_{1} \otimes S\left(1_{2}\right)\right) \otimes a_{2} b_{2}
$$

Note that $c d(1)=0$ for any $c \in H$. We have $c 1_{1} \otimes S\left(1_{2}\right) \in k e r \pi^{\prime}$. So we get

$$
\left(\pi^{\prime} \otimes 1\right) \circ \rho_{R}\left(a 1_{1} \otimes S\left(1_{2}\right) b\right)=a_{1} \pi^{\prime}\left(b_{1} 1_{1} \otimes S\left(1_{2}\right)\right) \otimes a_{2} b_{2}=0
$$

So $\rho_{R}\left(k e r \pi^{\prime}\right) \subset k e r \pi^{\prime} \otimes H$. The rest is easy.
Proposition 4.2.8. Let (Γ, d) be a right-covariant first order differential calculus over H. Then there uniquely exists a linear map $\rho_{R}: \Gamma \longrightarrow \Gamma \otimes H$ such that $\left(\Gamma, \rho_{L}\right)$ is a right weak Hopf bimodule. Moreover, $(d \otimes 1) \circ \Delta=\rho_{R} \circ d$.

Proof. Straightforward.
Lemma 4.2.9. Let H be a weak Hopf algebra. Then

$$
\left\{S^{-1}\left(c_{2}\right) \otimes c_{1} \mid \forall c \in \operatorname{ker} \varepsilon_{s}\right\}=P_{3}\left(H^{2}\right)^{c o H}
$$

Proof. For any $c \in k e r \varepsilon_{s}$, we have $S^{-1}\left(c_{2}\right) c_{1}=S^{-1}\left(\varepsilon_{s}(c)\right)=0$ and

$$
S^{-1}\left(c_{2}\right) \otimes c_{1}=S^{-1}\left(c_{2}\right) S^{-1}\left(1_{2}\right) \otimes 1_{1} c_{1}=S^{-1}\left(c_{2}\right) 1_{1} \otimes S\left(1_{2}\right) c_{1}
$$

Lemma 4.2.6 and Proposition 3.2.6 imply that $S^{-1}\left(c_{2}\right) \otimes c_{1} \in P_{3}\left(H^{2}\right)^{c o H}$.
For any $S^{-1}\left(c_{2}\right) \otimes c_{1} \in P_{3}\left(H^{2}\right)^{c o H}$, it is easy to see that $\varepsilon_{s}(c)=0$.
Lemma 4.2.10. Let R be a right ideal of H such that R is contained in ker ε_{s}. Let $N=S_{2}(R \otimes H)=\left\{b S^{-1}\left(a_{2}\right) \otimes a_{1} \mid a \otimes b \in R \otimes H\right\}$. Then N is a right weak Hopf sub-bimodule of $P_{3}\left(H^{2}\right)$. Moreover, $N^{c o H}=\left\{S^{-1}\left(a_{2}\right) \otimes a_{1} \mid a \in R\right\}$.

Proof. We first check that N is a subspace of $P_{3}\left(H^{2}\right)$. For any $a \otimes b \in R \otimes H$, $a \otimes S(b) \in R \otimes H$. So $\varepsilon_{s}(a) S(b)=0$. Since $b S^{-1}\left(a_{2}\right) \otimes a_{1}=b S^{-1}\left(a_{2}\right) 1_{1} \otimes S\left(1_{2}\right) a_{1}$ and $b S^{-1}\left(a_{2}\right) a_{1}=S^{-1}\left(S\left(a_{1}\right) a_{2} S(b)\right)=S^{-1}\left(\varepsilon_{s}(a) S(b)\right)=0$, we get $N \subseteq P_{1}\left(H^{2}\right)$.

Next we prove that N is a sub-bimodule of $P_{1}\left(H^{2}\right)$. In fact

$$
c\left(b S^{-1}\left(a_{2}\right) \otimes a_{1}\right)=c b S^{-1}\left(a_{2}\right) \otimes a_{1}, \quad\left(b S^{-1}\left(a_{2}\right) \otimes a_{1}\right) c=b S^{-1}\left(a_{2}\right) \otimes a_{1} c
$$

where $c \in H$ and $b S^{-1}\left(a_{2}\right) \otimes a_{1} \in N$. Note that $a \otimes b \in R \otimes H$. We have that $a \otimes c b \in H \otimes R$ and $c b S^{-1}\left(a_{2}\right) \otimes a_{1} \in N$. We easily get that $a c_{1} \otimes b c_{2}$ lies in $R \otimes H$ since R is a right ideal. Then $b S^{-1}\left(a_{2}\right) \otimes a_{1} c$ is an element in N since

$$
b c_{3} S^{-1}\left(a_{2} c_{2}\right) \otimes a_{1} c_{1}=b S^{-1}\left(a_{2} \varepsilon_{t}\left(c_{2}\right)\right) \otimes a_{1} c_{1}=b S^{-1}\left(a_{2}\right) \otimes a_{1} c
$$

Now we verify that N is a sub-comodule of $P_{1}\left(H^{2}\right)$. For any $a \otimes b \in R \otimes H$, we have $a \otimes b_{1} \otimes b_{2} \in R \otimes H \otimes H$ and

$$
\begin{aligned}
\rho_{R}\left(b S^{-1}\left(a_{2}\right) \otimes a_{1}\right) & =b_{1} S^{-1}\left(a_{3}\right)_{1} \otimes a_{1} \otimes b_{2} S^{-1}\left(a_{3}\right)_{2} a_{2} \\
& =b_{1} S^{-1}\left(a_{4}\right) \otimes a_{1} \otimes b_{2} S^{-1}\left(a_{3}\right) a_{2} \\
& =b_{1} S^{-1}\left(a_{3}\right) \otimes a_{1} \otimes b_{2} S^{-1}\left(\varepsilon_{s}\left(a_{2}\right)\right) \\
& =b_{1} S^{-1}\left(a_{2} 1_{2}\right) \otimes a_{1} \otimes b_{2} S^{-1}\left(1_{1}\right) \\
& =b_{1} S^{-1}\left(a_{2}\right) \otimes a_{1} \otimes b_{2}
\end{aligned}
$$

So $\rho_{R}(N) \subset N \otimes H$. The rest is similar to Lemma 4.1.10.
Lemma 4.2.11. Let N be a right weak Hopf sub-bimodule of $P_{1}\left(H^{2}\right)$. Then there exists a right ideal R in $H, R \subset k e r \varepsilon_{s}$ such that

$$
N=S_{2}(R \otimes H)=\left\{b S^{-1}\left(a_{2}\right) \otimes a_{1} \mid a \otimes b \in R \otimes H\right\}
$$

Proof. Note that $N^{\mathrm{coH}} \subset P_{3}\left(H^{2}\right)^{\mathrm{coH}}$. Define a space

$$
R=\left\{c \in k e r \varepsilon_{s} \mid S^{-1}\left(c_{2}\right) \otimes c_{1} \in N^{c o H}\right\}
$$

We first check that R is a right ideal in H. Clearly, R is a subspace of $k e r \varepsilon_{s}$. Note that $N^{c o H}$ is a H-sub-comodule. We have for any $c \in R$ and $b \in H$,

$$
\begin{aligned}
& \rho_{R}\left(S^{-1}\left((c b)_{2}\right) \otimes(c b)_{1}\right) \\
= & \left.\rho_{R}\left(S^{-1}\left(b_{2}\right) S^{-1}\left(c_{2}\right) \otimes c_{1} b_{1}\right)\right) \\
= & S^{-1}\left(b_{4}\right) S^{-1}\left(c_{4}\right) \otimes c_{1} b_{1} \otimes S^{-1}\left(b_{3}\right) S^{-1}\left(c_{3}\right) c_{2} b_{2} \\
= & S^{-1}\left(b_{4}\right) S^{-1}\left(c_{3}\right) \otimes c_{1} b_{1} \otimes S^{-1}\left(\varepsilon_{s}\left(c_{2}\right) b_{3}\right) b_{2} \\
= & S^{-1}\left(b_{4}\right) S^{-1}\left(c_{3}\right) \otimes c_{1} 1_{1} b_{1} \otimes S^{-1}\left(S\left(1_{2}\right) b_{3}\right) b_{2} \\
= & S^{-1}\left(b_{4}\right) S^{-1}\left(c_{2}\right) \otimes c_{1} b_{1} \otimes S^{-1}\left(S\left(b_{2}\right) b_{3}\right) \\
= & S^{-1}\left(b_{2}\right) S^{-1}\left(c_{2}\right) \otimes c_{1} b_{1} 1_{1} \otimes 1_{2} \\
= & \left.S^{-1}(c b)_{2}\right) \otimes(c b)_{1} 1_{1} \otimes 1_{2},
\end{aligned}
$$

So $S^{-1}\left((c b)_{2}\right) \otimes(c b)_{1} \in N^{c o H}$. Thus $c b \in R$.
Now we show that $N \subset R_{2}(H \otimes R)$. By [2] if M is a right-right weak Hopf module, there exists a projection $p: N \longrightarrow N^{c o H}, p(n)=n_{(0)} S\left(n_{(1)}\right)$. Additionally, for any $n \in N$, we have

$$
n=\varepsilon\left(n_{(1)} 1_{2}\right) n_{(0)} 1_{1}=\varepsilon\left(1_{1} n_{(-1)}\right) 1_{2} n_{(0)}=n_{(0)_{(0)}} S\left(n_{(0)_{(1)}}\right) n_{(1)}
$$

so there exists $a \in H$ and $n^{\prime} \in N^{c o H}$ such that $n=a n^{\prime}$. So $N \subset S_{2}(R \otimes H)$ is clear.
Finally, we verify that $S_{2}(R \otimes H) \subset N$. Since N is a left weak Hopf sub-bimodule of $P_{3}\left(H^{2}\right)$ and $N^{c o H}$ is a subcomodule of N, we have $S^{-1}\left(c_{2}\right) \otimes c_{1} \in N$ for any $c \in R$, and $a \in H$. So $a S^{-1}\left(c_{2}\right) \otimes c_{1} \in N$. Therefore, $S_{2}(R \otimes H)$ is contained in N.

Proposition 4.2.12. Let H be a weak Hopf algebra. Then N is a left weak Hopf sub-bimodule of $P_{3}\left(H^{2}\right)$ if and only if there exists a right ideal R in $H, R \subset k e r \varepsilon_{s}$ such that $N=S_{2}(R \otimes H)=\left\{b S^{-1}\left(a_{2}\right) \otimes a_{1} \mid a \otimes b \in R \otimes H\right\}$.

Proof. Following Lemma 4.2.10 and 4.2.11.
Using Theorem 4.2.7 and Proposition 4.2.12, Theorem 1.6 of Woronowicz (1989) has been generalized to the case of weak Hopf algebra.

Theorem 4.2.13. Let H be a weak Hopf algebra. Then a first order differential calculus (Γ, d) is right-covariant if and only if there exists a right ideal R in H, $R \subset k e r \varepsilon_{s}$ such that $\Gamma=P_{3}\left(H^{2}\right) / N$ and $d=\pi \circ D_{2}$, where $N=S_{2}(R \otimes H)$ and π is the canonical epimorphism $P_{3}\left(H^{2}\right) \longrightarrow \Gamma$.

4.3. Bicovariant differential calculi

In this subsection, we will investigate bicovariant differential calculus by Woronowicz's fundamental method.

Definition 4.3.1. Let (Γ, d) be a first order differential calculus over $H .(\Gamma, d)$ is called C-type if it is H_{t} and H_{s}-linear.

Definition 4.3.2. [23]. Let (Γ, d) be a first order differential calculus over H. (Γ, d) is called bicovariant if it is left-covariant and right-covariant.

Proposition 4.3.3. Let (Γ, d) be a bicovariant first order differential calculus over H. Then (Γ, d) is C-type.

Proof. Following Proposition 4.1.3 and 4.2.3.
Example 4.3.4. Let $P\left(H^{2}\right)=\left\{a 1_{1} S\left(1_{1}^{\prime}\right) \otimes 1_{2}^{\prime} S\left(1_{2}\right) b \mid a \otimes b \in H^{2}\right\}$ and $D_{3}(a)=$ $1_{1} S\left(1_{1}^{\prime}\right) \otimes 1_{2}^{\prime} S\left(1_{2}\right) a-a 1_{1} S\left(1_{1}^{\prime}\right) \otimes 1_{2}^{\prime} S\left(1_{2}\right)$ for all $a \in H$. Then $\left(P\left(H^{2}\right), D_{3}\right)$ is a bicovariant first order differential calculus over H and so C-type.

Proof. Following Lemma 3.3.2, Example 4.1.4 and Example 4.2.4.
Lemma 4.3.5. Let H be a weak Hopf algebra. Then a first order differential calculus (Γ, d) is C-type if and only if there exists a sub-bimodule $N \subset P\left(H^{2}\right)$ such that $\Gamma=P\left(H^{2}\right) / N$ and $d=\pi \circ D_{3}$, where π is the canonical epimorphism $P\left(H^{2}\right) \longrightarrow \Gamma$.

Proof. If N is a submodule of $P_{3}\left(H^{2}\right)$, then by [23] (Γ, d) is a first order differential calculus. Note that the map π is H-linear. For all $a, b \in H$,

$$
\begin{aligned}
\pi \circ D_{2}(a b) & =\pi\left[\left(D_{2}(a) b+a D_{2}(b)\right)\right] \\
& =\left[\pi \circ\left(D_{2}(a)\right)\right] b+a\left[\pi \circ D_{2}(b)\right]
\end{aligned}
$$

The map $\pi \circ D_{2}$ is surjective. For all $a, b \in H$,

$$
\pi \circ D_{1}\left(\varepsilon_{s}(a) b\right)=\pi\left[D_{2}\left(\varepsilon_{s}(a) b\right)\right]=\pi\left[\varepsilon_{s}(a) D_{1}(b)\right]=\varepsilon_{s}(a)\left[\pi \circ D_{2}(b)\right]
$$

So (Γ, d) is B-type.
Assume that (Γ, d) is a B-type first order differential calculus. Then d is H_{s}-linear. For any $a 1_{1} \otimes S\left(1_{2}\right) b \in P_{3}(H \otimes H)$ and $c \in H$, define the map

$$
\pi^{\prime}: P_{1}(H \otimes H) \longrightarrow \Gamma, a 1_{1} \otimes S\left(1_{2}\right) b \longmapsto a 1_{1} d\left(S\left(1_{2}\right) b\right)
$$

Similar to Lemma 4.1.5, the map π^{\prime} is left and right H-linear. If $m \in \Gamma$, then there exist a and b in H such that $m=a d(b)$. It is easy to see that $a S\left(1_{1}\right) \otimes 1_{2} b-a b S\left(1_{1}\right) \otimes 1_{2} \in$ $P_{1}(H \otimes H)$ and $\pi^{\prime}\left(a S\left(1_{1}\right) \otimes 1_{2} b-a b S\left(1_{1}\right) \otimes 1_{2}\right)=a d(b)=m$. So π^{\prime} is surjective. Let $k e r \pi^{\prime}$ be the kernel of π^{\prime}. Then $P_{1}(H \otimes H) / k e r \pi^{\prime} \cong \Gamma$ as H-bimodules. For any $a \in H$, we obtain

$$
\pi^{\prime} \circ D_{1}(a)=\pi^{\prime}\left(S\left(1_{1}\right) \otimes 1_{2} a-a S\left(1_{1}\right) \otimes 1_{2}\right)=d(a)
$$

Lemma 4.3.6. Let H be a weak Hopf algebra. Then $P_{3}\left(H^{2}\right)$ is a left weak Hopf sub-bimodule of $P_{3}(H \otimes H)$.

Proof. For any $a 1_{1} \otimes S\left(1_{2}\right) b \in P_{3}\left(H^{2}\right)$, we have

$$
\begin{aligned}
& (m \otimes 1) \circ \rho_{R}\left(a 1_{1} \otimes S\left(1_{2}\right) b\right) \\
= & (m \otimes 1)\left(\left(a 1_{1}\right)_{1} \otimes\left(S\left(1_{2}\right) b\right)_{1} \otimes\left(a 1_{1}\right)_{2}\left(S\left(1_{2}\right) b\right)_{2}\right) \\
= & \Delta\left(a 1_{1} S\left(1_{2}\right) b\right)=0 .
\end{aligned}
$$

Thus $\rho_{R}\left(P_{3}\left(H^{2}\right)\right) \subset H \otimes P_{3}\left(H^{2}\right)$.
Theorem 4.3.7. Let H be a weak Hopf algebra. Then a first order differential calculus (Γ, d) is right-covariant if and only if there exists a right weak Hopf subbimodule $N \subset P_{1}\left(H^{2}\right)$ such that $\Gamma=P_{3}\left(H^{2}\right) / N$ and $d=\pi \circ D_{2}$, where π is the canonical epimorphism $P_{3}\left(H^{2}\right) \longrightarrow \Gamma$.

Proof. Here the notations are the same as in Lemma 4.2.5. First assume that N is a right weak Hopf sub-bimodule of $P_{3}\left(H^{2}\right)$. Then the map π is H-linear and right H-colinear. Moreover, $\left(D_{2} \otimes 1\right) \circ \Delta=\rho_{L} \circ D_{2}$. Using Example 4.2.4 and Lemma 4.2 .5 we only need to prove that $a \pi\left[D_{2}(b)\right]=0$ implies $a_{1} \pi\left[D_{2}\left(b_{1}\right)\right] \otimes a_{2} b_{2}=0$ for $a, b \in H$. If $a \pi\left[D_{2}(b)\right]=0$, then

$$
\begin{aligned}
a_{1} \pi\left[D_{2}\left(b_{1}\right)\right] \otimes a_{2} b_{2} & =\Delta(a)\left[(\pi \otimes 1)\left(D_{2}\left(b_{1}\right) \otimes b_{2}\right)\right] \\
& =\left(a_{1} \otimes a_{2}\right)\left[(\pi \otimes 1)\left(\rho_{R} \circ D_{2}(b)\right)\right] \\
& =\Delta(a)\left[\rho_{R} \circ \pi\left(\left(D_{2}(b)\right)\right]\right. \\
& =\rho_{R}\left[a\left(\pi \circ D_{2}(b)\right)\right]=0 .
\end{aligned}
$$

Assume that (Γ, d) is right-covariant. For $a 1_{1} \otimes 1 S(2) b \in k e r \pi^{\prime}$, we have $a_{1} d\left(b_{1}\right) \otimes$ $a_{2} b_{2}=0$. By Lemma 4.1.5, $a_{1} \pi^{\prime}\left(1_{1} \otimes S\left(1_{2}\right) b_{1}\right) \otimes a_{2} b_{2}=a_{1} \pi^{\prime}\left(b_{1} 1_{1} \otimes S\left(1_{2}\right)\right) \otimes a_{2} b_{2}$. Note that $c d(1)=0$ for any $c \in H$. We have $c 1_{1} \otimes S\left(1_{2}\right) \in$ ker π^{\prime}. So

$$
\left(\pi^{\prime} \otimes 1\right) \circ \rho_{R}\left(a 1_{1} \otimes S\left(1_{2}\right) b\right)=a_{1} \pi^{\prime}\left(b_{1} 1_{1} \otimes S\left(1_{2}\right)\right) \otimes a_{2} b_{2}=0
$$

So $\rho_{R}\left(k e r \pi^{\prime}\right) \subset k e r \pi^{\prime} \otimes H$. The rest is easy.
Proposition 4.3.8. Let (Γ, d) be a right-covariant first order differential calculus over H. Then there uniquely exists a linear map $\rho_{R}: \Gamma \longrightarrow \Gamma \otimes H$ such that $\left(\Gamma, \rho_{L}\right)$ is a right weak Hopf bimodule. Moreover, $(d \otimes 1) \circ \Delta=\rho_{R} \circ d$.

Proof. Straightforward.
Lemma 4.3.9. Let H be a weak Hopf algebra. Let $e=S^{2}\left(1_{1}\right) 1_{2}$ and $v=$ $1_{1} S^{2}\left(1_{2}\right)$. Then e and v are two idempotents in H with $\varepsilon_{s}(e)=1$ and $\varepsilon_{t}(v)=1$.

Proof. Note that $\varepsilon_{t}(a) \varepsilon_{s}(b)=\varepsilon_{s}(b) \varepsilon_{t}(a)$. We have

$$
\begin{aligned}
& \varepsilon_{s}(e)=\varepsilon_{s}\left(1_{2} S^{2}\left(1_{1}\right)\right)=\varepsilon_{s}\left(S\left(1_{2}\right) S^{2}\left(1_{1}\right)\right)=\varepsilon_{s}\left(S\left(1_{1}\right) 1_{2}\right)=1 \\
& e^{2}=S^{2}\left(1_{1}\right) 1_{2} S^{2}\left(1_{1}^{\prime}\right) 1_{2}^{\prime}=S^{2}\left(1_{1}\right) S^{2}\left(1_{1}^{\prime}\right) 1_{2} 1_{2}^{\prime}=S^{2}\left(1_{1}\right) 1_{2}=e
\end{aligned}
$$

Similarly, $v^{2}=v$.
By Lemma 4.3.9 there exists a Peirce left decomposition $H=e H \oplus(1-e) H$, where $e H$ is a right ideal in H. Consider a coadjoint map

$$
\lambda: H \longrightarrow H \otimes H, b \longmapsto b_{2} \otimes S\left(b_{1}\right) b_{3} .
$$

Lemma 4.3.10. Let H be a weak Hopf algebra and R a subspace of H. Then
(1) The following statements hold:
(i) $\lambda(e b)=\lambda(b), \forall b \in H$,
(ii) $\lambda(R) \subset R \otimes H \Longleftrightarrow \lambda(e R) \subset R \otimes H$,
(iii) $\lambda(R) \subset e R \otimes H \Longleftrightarrow \lambda(e R) \subset e R \otimes H ;$
(2) (R, λ) is a right H-comodule $\Longleftrightarrow R=e R \subset e H$ and $\lambda(R) \subset e R \otimes H$;
(3) If R is a right ideal in H, so is $e R$;
(4) If R is contained in $k e r \varepsilon_{s}$, so is $e R$.

Proof. (1). For any $b \in H$, we first have

$$
\begin{aligned}
\lambda\left(S^{2}\left(1_{1}\right) 1_{2} b\right) & =\left(S^{2}\left(1_{1}\right) 1_{2} b\right)_{2} \otimes S\left(\left(S^{2}\left(1_{1}\right) 1_{2} b\right)_{1}\right)\left(S^{2}\left(1_{1}\right) 1_{2} b\right)_{3} \\
& =b_{2} \otimes S\left(1_{2} b_{1}\right) S^{2}\left(1_{1}\right) b_{3}=b_{2} \otimes S\left(b_{1}\right) S\left(1_{2}\right) S^{2}\left(1_{1}\right) b_{3} \\
& =b_{2} \otimes S\left(b_{1}\right) S\left(1_{2}\right) S^{2}\left(1_{1}\right) b_{3}=b_{2} \otimes S\left(b_{1}\right) b_{3}=\lambda(b)
\end{aligned}
$$

Part (ii) and (iii) follow from (i).
(2). For any $a \in H$, we have

$$
\begin{aligned}
(1 \otimes \varepsilon) \circ \lambda(b) & =b_{2} \varepsilon\left(S\left(b_{1}\right) b_{3}\right)=b_{2} \varepsilon\left(S\left(b_{1}\right) \varepsilon_{t}\left(b_{3}\right)\right)=1_{1} b_{2} \varepsilon\left(S\left(b_{1}\right) 1_{2}\right) \\
& =S\left(1_{2}\right) b_{2} \varepsilon\left(S\left(b_{1}\right) S\left(1_{1}\right)\right)=S\left(\varepsilon\left(1_{1} b_{1}\right) 1_{2}\right) b_{2}=e b
\end{aligned}
$$

If (R, λ) is a right H-comodule, then $\lambda(R) \subset R \otimes H$ and for any $a \in R$,

$$
a=(1 \otimes \varepsilon) \circ \lambda(a)=e a \in e R
$$

If $R \subset e H$ and $\lambda(R) \subset R \otimes H$, then $b=e b$ for all $b \in R$. So $(1 \otimes \varepsilon) \circ \lambda(b)=b$. The coassociativity is easy.
(3). Since R is a right ideal in H, then $R H \subset R$. So $e R H \subset e R$.
(4). If R is contained in $k e r \varepsilon_{s}$, then by Lemma 4.3.9,

$$
\varepsilon_{s}(e c)=\varepsilon_{s}\left(\varepsilon_{s}(e) c\right)=\varepsilon_{s}(1 c)=0
$$

for all $c \in R$. Thus $e R \subset k e r \varepsilon_{s}$.
Lemma 4.3.11. Let H be a weak Hopf algebra and R a subspace of H. Define the following sets:

$$
\begin{aligned}
& N_{2}(R)=P_{3}\left(R_{2}(H \otimes R)\right)=\left\{a S\left(b_{1}\right) 1_{1} \otimes S\left(1_{2}\right) b_{2} \mid a \otimes b \in H \otimes R\right\}, \\
& N_{2}^{\prime}(R)=R_{2}(H \otimes e R)=\left\{a S\left(b_{1}\right) \otimes b_{2} \mid a \otimes b \in H \otimes e R\right\}, \\
& N_{3}(R)=P_{1}\left(S_{2}(R \otimes H)\right)=\left\{b S^{-1}\left(a_{2}\right) S\left(1_{1}\right) \otimes 1_{2} a_{1} \mid a \otimes b \in R \otimes H\right\}, \\
& N_{3}^{\prime}(R)=S_{2}(e R \otimes H)=\left\{b S^{-1}\left(a_{2}\right) \otimes a_{1} \mid a \otimes b \in e R \otimes H\right\} .
\end{aligned}
$$

Then (1) $N_{2}(R)=N_{2}^{\prime}(R)$ and $N_{3}(R)=N_{3}^{\prime}(R)$;
(2) If $\lambda(R) \in R \otimes H$, then $N_{2}^{\prime}(R)=N_{3}^{\prime}(R)$;
(3) If R and R^{\prime} are two right ideals in H such that $N_{2}^{\prime}(R)=N_{3}^{\prime}\left(R^{\prime}\right)$, then $e R=e R^{\prime}$.

Proof. (1). For any $b \in R$ and $a \in H$, we have

$$
\begin{aligned}
a S\left((e b)_{1}\right) \otimes(e b)_{2} & =a S\left(1_{2} b_{1}\right) \otimes S^{2}\left(1_{1}\right) b_{2} \\
& =a S\left(b_{1}\right) S\left(1_{2}\right) \otimes S^{2}\left(1_{1}\right) b_{2}=a S\left(b_{1}\right) 1_{1} \otimes S\left(1_{2}\right) b_{2}
\end{aligned}
$$

So $R_{2}(a \otimes e b)=P_{3}\left(R_{2}(a \otimes b)\right)$. For any $c \otimes d \in N_{2}(R)$, there exists $c^{\prime} \otimes d^{\prime} \in H \otimes R$, such that $c \otimes d=P_{3}\left(R_{2}\left(c^{\prime} \otimes d^{\prime}\right)\right)$. By $R_{2}(a \otimes e b)=P_{3}\left(R_{2}(a \otimes b)\right)$,

$$
c \otimes d=P_{3}\left(R_{2}\left(c^{\prime} \otimes d^{\prime}\right)\right)=R_{2}\left(c^{\prime} \otimes e d^{\prime}\right) \in N_{2}^{\prime}(R) .
$$

For any $f \otimes g \in N_{2}^{\prime}(R)$, there exists $f^{\prime} \otimes g^{\prime} \in H \otimes R$, such that $f \otimes g=R_{2}\left(f^{\prime} \otimes e g^{\prime}\right)$. By $R_{2}(a \otimes e b)=P_{3}\left(R_{2}(a \otimes b)\right)$, we get

$$
f \otimes g=R_{2}\left(f^{\prime} \otimes e g^{\prime}\right)=P_{3}\left(R_{2}\left(f^{\prime} \otimes g^{\prime}\right) \in N_{2}(R) .\right.
$$

For any $a^{\prime} \in R$ and $b^{\prime} \in H$,

$$
b^{\prime} S^{-1}\left(\left(e a^{\prime}\right)_{2}\right) \otimes\left(e a^{\prime}\right)_{1}=b S^{-1}\left(S^{2}\left(1_{1}\right) a_{2}^{\prime}\right) \otimes 1_{2} a_{1}=b S^{-1}\left(a_{2}^{\prime}\right) S\left(1_{1}\right) \otimes 1_{2} a_{1}
$$

So $S_{2}\left(e a^{\prime} \otimes b^{\prime}\right)=P_{1}\left(S_{2}\left(a^{\prime} \otimes b^{\prime}\right)\right)$. Similarly, $N_{3}(R)=N_{3}^{\prime}(R)$.
(2) Assume that $\lambda(R) \in R \otimes H$. For any $c \otimes d \in N_{2}^{\prime}(R)$, there exists $a \in H$ and $b \in e R$, such that $c \otimes d=a S\left(b_{1}\right) \otimes b_{2}$. Since $\lambda(R) \in R \otimes H$, we have $\lambda(b)=b_{2} \otimes S\left(b_{1}\right) b_{3} \in R \otimes R$ and so $b_{2} \otimes a S\left(b_{1}\right) b_{3} \in R \otimes H$. By (1) we get

$$
P_{1}\left(S_{2}\left(b_{2} \otimes a S\left(b_{1}\right) b_{3}\right)\right) \in N_{3}(R)=N_{3}^{\prime}(R) .
$$

At the same time, we have

$$
\begin{aligned}
c \otimes d & =a S\left(b_{1}\right) \otimes b_{2}=a S\left((e b)_{1}\right) \otimes(e b)_{2} \\
& =a S\left(b_{1}\right) 1_{1} \otimes S\left(1_{2}\right) b_{2} \\
& =P_{1}\left(a S\left(b_{1}\right) S^{-1}\left(1_{2}\right) \otimes 1_{1} b_{2}\right) \\
& =P_{1}\left(a S\left(b_{1}\right) S^{-1}\left(\varepsilon_{t}\left(b_{3}\right)\right) \otimes b_{2}\right) \\
& =P_{1}\left(a S\left(b_{1}\right) b_{3} S^{-1}\left(b_{2_{2}}\right) \otimes b_{2_{1}}\right) \\
& =P_{1}\left(S_{2}\left(b_{2} \otimes a S\left(b_{1}\right) b_{3}\right)\right),
\end{aligned}
$$

So we conclude that $N_{2}^{\prime}(R) \subset N_{3}^{\prime}(R)$.
For any $c^{\prime} \otimes d^{\prime} \in N_{3}^{\prime}(R)$, there exists $a^{\prime} \in e R$ and $b^{\prime} \in H$, such that $c^{\prime} \otimes d^{\prime}=$ $b^{\prime} S^{-1}\left(a_{2}^{\prime}\right) \otimes a_{1}^{\prime}$. Since $\lambda(R) \in R \otimes H$, we have $\lambda\left(a^{\prime}\right)=a_{2}^{\prime} \otimes S\left(a_{1}^{\prime}\right) a_{3}^{\prime} \in R \otimes H$ and so $b^{\prime} S^{-1}\left(S\left(a_{1}^{\prime}\right) a_{3}^{\prime}\right) \otimes a_{2}^{\prime} \in H \otimes R$. By (1), $P_{3}\left(R_{2}\left(b^{\prime} S^{-1}\left(S\left(a_{1}^{\prime}\right) a_{3}^{\prime}\right) \otimes a_{2}^{\prime}\right)\right) \in N_{2}(R)=$ $N_{2}^{\prime}(R)$. Similarly, we do the following computation:

$$
\begin{aligned}
c^{\prime} \otimes d^{\prime} & =b^{\prime} S^{-1}\left(\left(e a^{\prime}\right)_{2}\right) \otimes\left(e a^{\prime}\right)_{1} \\
& =b^{\prime} S^{-1}\left(S^{2}\left(1_{1}\right) a_{2}^{\prime}\right) \otimes 1_{2} a_{1}^{\prime} \\
& =b^{\prime} S^{-1}\left(a_{2}^{\prime}\right) S\left(1_{1}\right) \otimes 1_{2} a_{1}^{\prime} \\
& =P_{3}\left(b^{\prime} S^{-1}\left(a_{2}^{\prime}\right) S\left(1_{1}\right) \otimes 1_{2} a_{1}^{\prime}\right) \\
& =P_{3}\left(b^{\prime} S^{-1}\left(a_{4}^{\prime}\right) a_{1}^{\prime} S\left(a_{2}^{\prime}\right) \otimes a_{3}^{\prime}\right) \\
& =P_{3}\left(R_{2}\left(b^{\prime} S^{-1}\left(a_{3}^{\prime}\right) a_{1}^{\prime} \otimes a_{2}^{\prime}\right)\right) \\
& =P_{3}\left(R_{2}\left(b^{\prime} S^{-1}\left(S\left(a_{1}^{\prime}\right) a_{3}^{\prime}\right) \otimes a_{2}^{\prime}\right)\right),
\end{aligned}
$$

So $N_{3}^{\prime}(R) \subset N_{2}^{\prime}(R)$ also holds.
(3) Let R and R^{\prime} be two right ideals in H such that $N_{2}^{\prime}(R)=N_{3}^{\prime}\left(R^{\prime}\right)$. By Lemma 4.3.10 (3), $e R$ and $e R^{\prime}$ are also two right ideals in H. By $N_{2}^{\prime}(R)=N_{3}^{\prime}\left(R^{\prime}\right)$, for $a \in e R$, then $S\left(b_{1}\right) \otimes b_{2} \in N_{2}^{\prime}(R)$ and $S\left(b_{1}\right) \otimes b_{2} \in N_{3}^{\prime}(R)$. So there exist $a^{\prime} \in e R^{\prime}$ and $b^{\prime} \in H$ such that

$$
S\left(b_{1}\right) \otimes b_{2}=b^{\prime} S^{-1}\left(a_{2}^{\prime}\right) \otimes a_{1}^{\prime} .
$$

Applying $\varepsilon \otimes 1$ to the two sides, we can get

$$
\begin{aligned}
b & =\varepsilon\left(S\left(b_{1}\right)\right) b_{2}=\varepsilon\left(b^{\prime} S^{-1}\left(a_{2}^{\prime}\right)\right) a_{1}^{\prime}=\varepsilon\left(a_{2}^{\prime} S\left(b^{\prime}\right)\right) a_{1}^{\prime}=\varepsilon\left(\varepsilon_{s}\left(a_{2}^{\prime}\right) S\left(b^{\prime}\right)\right) a_{1}^{\prime} \\
& =\varepsilon\left(S\left(1_{2}\right) S\left(b^{\prime}\right)\right) a^{\prime} 1_{1}=\varepsilon\left(b^{\prime} 1_{2}\right) a^{\prime} 1_{1}=a^{\prime} \varepsilon_{s}\left(b^{\prime}\right) \in e R^{\prime} .
\end{aligned}
$$

Conversely, for any $a^{\prime} \in e R^{\prime}$, there exist $a \in H$ and $b \in e R$, such that

$$
a S\left(b_{1}\right) \otimes b_{2}=S^{-1}\left(a_{2}^{\prime}\right) \otimes a_{1}^{\prime} .
$$

Similarly, we compute as follows:

$$
\begin{aligned}
a^{\prime} & =\varepsilon\left(S^{-1}\left(a_{2}^{\prime}\right)\right) a_{1}^{\prime}=\varepsilon\left(a S\left(b_{1}\right)\right) b_{2}=\varepsilon\left(b_{1} S^{-1}(a)\right) b_{2} \\
& =\varepsilon\left(\varepsilon_{s}\left(b_{1}\right) S^{-1}(a)\right) b_{2}=\varepsilon\left(1_{1} S^{-1}(a)\right) b 1_{2}=b \varepsilon_{t}\left(S^{-1}(a)\right) \in e R
\end{aligned}
$$

Lemma 4.3.12. Let H be a weak Hopf algebra. Let

$$
N_{4}=\left\{S\left(b_{1}\right) \otimes b_{2} \mid b \in e H\right\}, N_{5}=\lambda(e H)=\left\{b_{2} \otimes S\left(b_{1}\right) b_{3} \mid b \in e H\right\}
$$

Then S_{1} is a bijective map from N_{4} to N_{5}.
Proof. It is clear that $S_{1}\left(S\left(b_{1}\right) \otimes b_{2}\right)=b_{2} \otimes S\left(b_{1}\right) b_{3}$ for any $b \in e H$. We show that S_{2} is the inverse of S_{1}. Note that

$$
\begin{aligned}
S_{2}\left(b_{2} \otimes S\left(b_{1}\right) b_{3}\right) & =S\left(b_{1}\right) b_{4} S^{-1}\left(b_{3}\right) \otimes b_{2}=S\left(b_{1}\right) S^{-1}\left(\varepsilon_{t}\left(b_{3}\right)\right) \otimes b_{2} \\
& =S\left(b_{1}\right) S^{-1}\left(1_{2}\right) \otimes 1_{1} b_{2}=S\left(1_{2} b_{1}\right) \otimes S^{2}\left(1_{1}\right) b_{2} \\
& =S\left((e b)_{1}\right) \otimes(e b)_{2}=S\left(b_{1}\right) \otimes b_{2}
\end{aligned}
$$

So $S_{2} \circ S_{1}=I d_{N_{4}}$. Similarly, $S_{1} \circ S_{2}=I d_{N_{5}}$.
Lemma 4.3.13. Let R be a right ideal R in $H, R \subset k e r \varepsilon_{s}$ such that (R, λ) is a right H-comodule. Let $N=S_{2}(R \otimes H)=\left\{b S^{-1}\left(a_{2}\right) \otimes a_{1} \mid a \otimes b \in R \otimes H\right\}$. Then N is a weak Hopf sub-bimodule of $P\left(H^{2}\right)$.

Proof. Since (R, λ) is a right H-comodule, then by Lemma 4.3.10 (2) $R=e R \subset$ $e H$ and $\lambda(R) \subset e R \otimes H$. By Lemma 4.3.11 (3),

$$
\left\{a S\left(b_{1}\right) \otimes b_{2} \mid a \otimes b \in H \otimes R\right\}=\left\{b S^{-1}\left(a_{2}\right) \otimes a_{1} \mid a \otimes b \in R \otimes H\right\}=N
$$

So $N \subset P\left(H^{2}\right)$. By Lemma 4.1.10 (4.2.10), $\left(N, \rho_{L}\right)\left(\left(N, \rho_{R}\right)\right)$ is a left (right) weak Hopf sub-bimodule $P_{1}\left(H^{2}\right)\left(\left(P_{3}\left(H^{2}\right)\right)\right.$. Using Lemma 3.3.3, $\left(N, \rho_{L}\right)\left(\left(N, \rho_{R}\right)\right)$ is a left (right) weak Hopf sub-bimodule of $P\left(H^{2}\right)$. It follows from Lemma 3.3.2 that $\left(1 \otimes \rho_{R}\right) \circ \rho_{L}=\left(\rho_{L} \otimes 1\right) \circ \rho_{R}$.

Lemma 4.3.14. Let N be a weak Hopf sub-bimodule of $P\left(H^{2}\right)$. Then there exists a right ideal R in $H, R \subset k e r \varepsilon_{s}$ such that (R, λ) is a right H-comodule and $N=S_{2}(R \otimes H)=\left\{b S^{-1}\left(a_{2}\right) \otimes a_{1} \mid a \otimes b \in R \otimes H\right\}$.

Proof. Since N is a weak Hopf sub-bimodule of $P\left(H^{2}\right) \subset P_{1}\left(H^{2}\right)$, by Lemma 4.1.11, there exists a right ideal $R^{\prime \prime}$ in $H, R^{\prime \prime} \subset \operatorname{ker} \varepsilon_{s}$ such that

$$
N=R_{2}\left(H \otimes R^{\prime \prime}\right)=\left\{a S\left(b_{1}\right) \otimes b_{2} \mid a \otimes b \in H \otimes R^{\prime \prime}\right\}
$$

Similarly, there exists a right ideal R^{\prime} in $H, R^{\prime} \subset k e r \varepsilon_{s}$ such that

$$
N=S_{2}\left(R^{\prime} \otimes H\right)=\left\{b S^{-1}\left(a_{2}\right) \otimes a_{1} \mid a \otimes b \in R^{\prime} \otimes H\right\}
$$

Using Lemma 4.3.11 (3), $e R^{\prime \prime}=e R^{\prime}$ and

$$
N=S_{2}\left(e R^{\prime} \otimes H\right)=\left\{b S^{-1}\left(a_{2}\right) \otimes a_{1} \mid a \otimes b \in e R^{\prime} \otimes H\right\} .
$$

Following Lemma 4.3.10, $e R^{\prime}$ is a right ideal in $H, e R^{\prime} \subset k e r \varepsilon_{s}$ and $e^{2} R^{\prime}=e R^{\prime} \subset$ $e H$. For any $b \in e R^{\prime}, S\left(b_{1}\right) \otimes b_{2} \in N$. Then exists $a^{\prime} \in e R^{\prime}$ and $b^{\prime} \in H$, such that

$$
S\left(b_{1}\right) \otimes b_{2}=b^{\prime} S^{-1}\left(a_{2}^{\prime}\right) \otimes a_{1}^{\prime} .
$$

On one hand, using Lemma 4.3.12 $\lambda(b)=S_{1}\left(S\left(b_{1}\right) \otimes b_{2}\right)$. On the other hand,

$$
S_{1}\left(b^{\prime} S^{-1}\left(a_{2}^{\prime}\right) \otimes a_{1}^{\prime}\right)=a_{1}^{\prime} \otimes b^{\prime} S^{-1}\left(a_{3}^{\prime}\right) a_{2}^{\prime}=a^{\prime} 1_{1} \otimes b^{\prime} 1_{2} \in e R^{\prime} \otimes H
$$

So $\lambda(b)=S_{1}\left(S\left(b_{1}\right) \otimes b_{2}\right)=a^{\prime} 1_{1} \otimes b^{\prime} 1_{2} \in e R^{\prime} \otimes H$. Then $\lambda\left(e R^{\prime}\right) \subset e R^{\prime} \otimes H$. It follows from Lemma 4.3.10 that ($e R^{\prime}, \lambda$) is a right H-comodule.

Now let $R:=e R^{\prime}$. Consequently, R is what we need.
Proposition 4.3.15. Let H be a weak Hopf algebra. Then N is a left weak Hopf sub-bimodule of $P\left(H^{2}\right)$ if and only if there exists a right ideal R in $H, R \subset k e r \varepsilon_{s}$ such that (R, λ) is a right H-comodule and

$$
N=S_{2}(R \otimes H)=\left\{b S^{-1}\left(a_{2}\right) \otimes a_{1} \mid a \otimes b \in R \otimes H\right\}
$$

Proof. The proof follows from Lemma 4.3.13 and 4.3.14.
Applying Theorem 4.3.7 and Proposition 4.3.15, we obtain our main result, which is a generalization of well-known Woronowicz's theorem about bicovariant differential calculi on quantum groups (see [23, Thm 1.8]).

Theorem 4.3.16. Let H be a weak Hopf algebra with bijective antipode. Then a first order differential calculus (Γ, d) is bicovariant if and only if there exists a right ideal R in $H, R \subset \operatorname{ker}_{s}$ such that (R, λ) is a right H-comodule, $\Gamma=P_{3}\left(H^{2}\right) / N$ and $d=\pi \circ D_{2}$, where $N=S_{2}(R \otimes H)$ and π is the canonical epimorphism $P_{3}\left(H^{2}\right) \longrightarrow$ Γ.

In other word, we have a 1-1 correspondence between bicovariant differential calculi and some special ideals of H :

Corollary 4.3.17. Let H be a weak Hopf algebra with bijective antipode. Let ε_{s} be the source map of H. Then there exists a 1-1 correspondence between bicovariant differential calculi and some right ideals of H contained in $k e r \varepsilon_{s}$ such that these ideals are right H-comodules with a coadjoint map.

Remark 4.3.18. Theorem 4.3.16 means that well-known Woronowicz's theorem about bicovariant differential calculi is still valid in the case of compact face algebras and dynamical quantum groups obtained by dynamical twists of quantum groups. So we can take some methods used in the case of quantum groups to carry out a similar investigation of bicovariant differential calculi on these dynamical quantum groups. The study of this direction is our ongoing program.

Acknowledgment

The main result of this paper was presented in the Hopf-Galois Workshop in VUB, Jan. 2010. The first author thanks Prof. S. Caenepeel for his warm hospitality, and Prof. A. Van Deale for his useful comments. H. Zhu was partially supported by the NSF (Grant No. 11301266 and No. 11301269), and the NSF of Jiangsu Province (Grant No. BK20130665). S. Wang was partially supported by the NSF (Grant No. 11371088). J. Chen was partially supported by the NSF for colleges and universities in Jiangsu Province (Grant No.11KJB110004).

References

1. O. Babelon, Universal exchange algebra for Bloch waves and Liouville theory, Comm. Math. Phys., 139 (1991), 619-643.
2. G. Böhm, F. Nill and K. Szlachanyi, Weak Hopf algebras I. Integral theory and C^{*} structure, J. Algebra, 221 (1999), 385-438.
3. J. Z. Chen and S. H. Wang, Differential calculi on quantum groupoids, Comm. in Algebra, 36(10) (2008), 3792-3819.
4. A. Connes, C*-algèbres et géométrie différentielle, C. R. Acad. Sci. Paris A, 290 (1980), 599-604.
5. A. Connes, Noncommutative Geometry, London: Academic Press, 1994.
6. P. Etingof and D. Nikshych, Dynamical quantum groups at roots of 1, Duke Math. J., 108 (2001), 135-168.
7. P. Etingof, D. Nikshych and V. Ostrik, On fusion categories, Ann. of Math. (2), 162(2) (2005), 581-642.
8. P. Etingof and A. Varchenko, Exchange dynamical quantum groups, Comm. Math. Phys., 205 (1999), 19-52.
9. G. Felder, Elliptic quantum groups, XIth International Congress of Mathematical Physics (1994), 211-218, Internat. Press, Cambridge, 1995.
10. T. Hayashi, Quantum group symmetry of partition functions of IRF models and its application to Jones index theory, Comm. Math. Phys., 157(2) (1993), 331-345.
11. I. Heckenberger and K. Schmüdgen, Classification of bicovariant differential calculi on the quantum groups $S L_{q}(n+1)$ and $S p_{q}(n+1)$, J. Reine Angew. Math., 502 (1998), 141-162.
12. I. Heckenberger, Classification of left-covariant differential calculi on the quantum group $S L_{q}(2)$, J. Algebra, 237 (2001), 203-237.
13. J.-H. Lu, Hopf algebroids and quantum groupoids, Internat. J. Math., 7 (1996), 47-70.
14. S. Majid, Foundations of Quantum Group Theory, Cambridge Univ. Press, 1995.
15. S. Majid, Classification of bicovariant differential calculi, Journal of Geometry and Physics, 25 (1998), 119-140.
16. F. Nill, Axioms of weak bialgebras, ArXiv:math.QA/9805104 (1998).
17. A. Ocneanu, Quantized groups, string algebras and Galois theory for algebras, Operator Algebras and Applications, Vol. 2. London Math. Soc. Lecture Note Ser., 136, Cambridge Univ. Press, 1988.
18. M. J. Pflaum and P. Schauenburg, Differential calculi on noncommutative bundles, Z. Phys. C, 76 (1997), 733-744.
19. P. Schauenburg, Differential-graded Hopf algebra and quantum group differential calculi, J. Algebra, 180 (1996), 239-286.
20. K. Schmidgen and A. Schüler, Classification of bicovariant differential calculi on quantum groups of Type A, B, C and D, Commun. Math. Phys., 167 (1995), 635-670.
21. M. E. Sweedler, Hopf Algebras, Benjamin, New York, 1969.
22. S. H. Wang and H. X. Zhu, On braided Lie structures of algebras in the categories of weak Hopf bimodules, Algebra Colloq, 17(4) (2010), 685-698.
23. S. L. Woronowicz, Differential calculus on compact matrix pseudogroups (quantum groups), Comm. Math. Phys., 122 (1989), 125-170.
24. P. Xu, Quantum groupoids, Commun. Math. Phys., 216 (2001), 539-581.
25. T. Yamanouchi, Duality for generalized Kac algebras and a characterization of finite groupoid algebras, J. Algebra, 163 (1994), 9-50.

Haixing Zhu
College of Economics and Management
Nanjing Forestry University
Nanjing 210037
P. R. China

E-mail: zhuhaixing@163.com
Shuanhong Wang
Department of Mathematics
Southeast University
Nanjing 210096
P. R. China

Juzhen Chen
College of Science
Nanjing Forestry University
Nanjing 210037
P. R. China

[^0]: Received November 17, 2013, accepted March 10, 2014.
 Communicated by Ruibin Zhang.
 2010 Mathematics Subject Classification: 16T05, 57 T 05.
 Key words and phrases: Weak Hopf algebra, Quantum groupoid, Bicovariant differential calculus.
 *Corresponding author.

