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BICOVARIANT DIFFERENTIAL CALCULI ON A WEAK HOPF ALGEBRA

Haixing Zhu*, Shuanhong Wang and Juzhen Chen

Abstract. Let H be a weak Hopf algebra with bijective antipode. In this paper we
follow Woronowicz’s fundamental method to characterize bicovariant differential
calculi on H . We show that there exists a 1-1 correspondence between bicovari-
ant differential calculi and some right ideals of H contained in kerεs such that
these ideals are right H-comodules with coadjoint maps, where εs is the source
map of H . This is a generalization of well-known Woronowicz’s theorem about
bicovariant differential calculi on quantum groups.

1. INTRODUCTION

Noncommutative geometry is the study of noncommutative algebras as if they were
algebras of functions on spaces which was initiated in [4] by Connes. An interesting
example of such noncommutative geometry was provided in the framework of quan-
tum groups (i.e., noncommutative and noncocommutative Hopf algebras). Based on
the ideas of Connes, Woronowicz [23] used the axiomatic method to introduce first
order differential calculi and investigated bicovariant differential calculi on quantum
groups. He showed that there exists a 1-1 correspondence between bicovariant differ-
ential calculi and some special right ideals of a quantum group, see [23]. Using this
correspondence, the classifications of bicovariant differential calculi of some quantum
groups have been carried out, for example, see [11, 12, 15, 20].

At the same time, when considering the solution of a quantum dynamical Yang-
Baxter equation, Felder [9] used the Faddeev-Reshetikhin-Takhtajan method to obtain
a certain algebra FU called the dynamical quantum group. However, FU is not a Hopf
algebra, but a Hopf algebroid in [13]. In general, to any dynamical twist in [1], one
can associate a Hopf algebroid, see [6, 8, 24]. In particular, for every dynamical twist
of a Hopf algebra H , by [6] one can obtain a dynamical quantum group FH , which is
called a weak Hopf algebra (special Hopf algebroid).
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Following Woronowicz’s axiomatic method, the notion of a differential calculus can
be easily defined on a dynamical quantum group. However, this kind of differential
calculi is a bit different from the case of Hopf algebras (for example, if we consider its
high order differential calculi, the tensor product must be over some subalgebra, not its
base field k, see [3]). So it is very necessary to investigate these differential calculi. In
this paper, we mainly focus on differential calculi on weak Hopf algebras. Although
a weak Hopf algebra is just a special Hopf algebroid, our theory is enough to cover
many important cases such as dynamical quantum groups [6], compact face algebras
[10] and weak Hopf ∗-algebras.

In [3], Chen and Wang generalized results in [18, 19] to weak Hopf algebras. For
example, they gave noncommutative differential calculus on weak smash product, and
also studied connections and high order differential calculi. Here our main goal is to
characterize bicovariant differential calculi of a weak Hopf algebra by a fundamental
method in [23].

Let H be a weak Hopf algebra with the target subalgebra Ht and the source
subalgebra Hs. We show that a bicovariant differential calculi on H must be both
Ht- and Hs-bilinear. This unexpected fact is a bit different from the case of Hopf
algebras. However, it explains why the high order differential calculi on a weak Hopf
algebra must be over some minimal weak Hopf algebra Hmin, see [3]. Although Ht-
and Hs-linearities appear, we still find some 1-1 correspondence between bicovariant
differential calculi and some special ideals. Similar to quantum groups, this result
provides us a possibility of the classifications of bicovariant differential calculi on a
compact face algebra and a dynamical quantum group obtained by a dynamical twist
of a Hopf algebra.

This paper is organized as follows. In Section 2 we recall the basic definitions and
results about weak Hopf algebras, weak Hopf bimodules and first order differential
calculi. Section 3 is devoted to some special Hopf bimodules. The investigation
of bicovariant differential calculi are carried out in Section 4. We first characterize
the Ht and Hs-linearities of first order differential calculi by several necessary and
sufficient conditions. Next we show that a left first order differential calculus is Ht-
bilinear while a right first order differential calculus is Hs-bilinear. Finally, we study
bicovariant differential calculi on weak Hopf algebras. Here is our main result:

Let H be a weak Hopf algebra with bijective antipode. Let εs be the source map
of H . Then there exists a 1-1 correspondence between bicovariant differential calculi
on H and some right ideals of H contained in kerεs such that these ideals are right
H-comodules with coadjoint maps.

It constitutes a generalization of the well-known Woronowicz’s theorem about bi-
covariant differential calculi on quantum groups, see [23, Thm 1.8].

2. BASIC DEFINITIONS AND RESULTS

Throughout this paper, k is a fixed field. Unless otherwise stated, unadorned tensor
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products will be over k. For a k-coalgebra, the coproduct will be denoted by Δ. We
adopt a Sweedler’s like notation e.g., Δ(a) = a(1) ⊗ a(2), see [21].

2.1. Weak Hopf algebras

For the basic definitions and properties of weak Hopf algebras, the reader is referred
to [2]. A weak Hopf algebra H is an k-algebra (H, m, μ) and a k-coalgebra (H, Δ, ε)
such that the following axioms hold:

• Δ(hk) = Δ(h)Δ(k),
• Δ2(1) = 11 ⊗ 121(1

′
) ⊗ 12

′ = 11 ⊗ 11
′12 ⊗ 12

′ ,

• ε(hkl) = ε(hk1)ε(k2l) = ε(hk2)ε(k1l),
• There exists a k-linear map S : H −→ H , called the antipode, satisfying

h1S(h2) = ε(11h)12, S(h1)h2 = 11ε(h12),
S(h) = S(h1)h2S(h3),

for all h, k, l ∈ H . We have idempotent maps εt, εs: H −→ H defined by

εt(h) = ε(11h)12, εs(h) = 11ε(h12).

Here εt (εs) is called the target map (source map), and its imagine Ht (Hs) is called
the target (source space), which can also be described as follows:

Ht = {h ∈ H | εt(h) = h} = {h ∈ H | Δ(h) = 11h ⊗ 12 = h11 ⊗ 12},
Hs = {h ∈ H | εs(h) = h} = {h ∈ H | Δ(h) = 11 ⊗ h12 = 11 ⊗ 12h}.

Let H be a weak Hopf algebra. There are the following equations:

h1 ⊗ h2S(h3) = 11h ⊗ 12,(2.1)

S(h1)h2 ⊗ h3 = 11 ⊗ h12,(2.2)

h1 ⊗ S(h2)h3 = h11 ⊗ S(12),(2.3)

h1S(h2) ⊗ h3 = S(11)⊗ 12h,(2.4)

ε(gεt(h)) = ε(gh) = ε(εs(g)h),(2.5)

y11 ⊗ S(12) = 11 ⊗ S(12)y,(2.6)

zS(11) ⊗ 12 = S(11) ⊗ 12z,(2.7)

for all g, h ∈ H, y ∈ Hs and z ∈ Ht. Moreover, S restricts to an anti-algebra
isomorphism Ht −→ Hs.

Remark.

(1) H is an ordinary Hopf algebra if and only if Δ(1) = 1 ⊗ 1 if and only if ε is a
homomorphism if and only if Ht = Hs = k.
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(2) The paragroups [17], the generalized Kac algebras in [25] and the face algebras
[10] are the important subclasses of weak Hopf algebras, respectively.

(3) By [6] for every dynamical twist of a Hopf algebra H , one can obtain a dynamical
quantum group FH , which is actually a weak Hopf algebra.

(4) There exists closely relations between representation categories of some special
weak Hopf algebras and (multi)fusion categories, for example, see [7].

(5) A weak Hopf algebra is a special Hopf algebroid, see [6, Sec. 2]. A finite
dimensional weak Hopf algebra is self-dual and its antipode is automatically
bijective.

In the sequel, a weak Hopf algebra always means a weak Hopf algebra with bijective
antipode.

2.2. Weak Hopf bimodules

Let H be a weak Hopf algebra. Following [22, 23] a left weak Hopf bimodule M
over H is an H-bimodule M with a left coaction denoted by ρL : M −→ H ⊗ M ,
such that is ρL is an H-bimodule map:

Δ(h)ρL(m) = ρL(hm) and ρL(m)Δ(h) = ρL(mh).

A right weak Hopf bimodule M over H is a bimodule M with a right coaction
denoted by ρL : M −→ M ⊗ H , such that is ρR is an H-bimodule map:

Δ(h)ρR(m) = ρR(hm) and ρR(m)Δ(h) = ρR(mh).

A weak Hopf bimodule M over H is both a left weak Hopf bimodule and a right
weak Hopf bimodule with left and right coactions, denoted by ρL and ρR, such that M is
also a bicomodule. We shall also use Sweedler’s notations, namely, ρR(v) = v(0)⊗v(1)

and ρL(v) = v(−1) ⊗ v(0) for all v ∈ V .
In particular, a vector space M is a right-right weak Hopf module if M is both a

right H-module and a right H-comodule such that

ρR(m · h) = m(0) · h(1) ⊗ m(1)h(2),

for all h ∈ H and m ∈ M . Similarly, one can define a left-left (left-right or right-left)
weak Hopf module. Let M be a left-left weak Hopf module. Let

coHM =
{

m ∈ M | ρL(m) = 1(1) ⊗ 1(2) · m
}

be the vector space of left coinvariants. It follows from [2] that coHM is a left
subcomodule of M and M ∼= H ⊗Hs

coHM . Similarly, one can define N coH to be
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the vector space of right coinvariants of a right-right weak Hopf module N and have
N coH ⊗Ht H ∼= N .

Let M be a left (right) weak Hopf bimodule over H . Assume that N is a left
(right) weak Hopf sub-bimodule of N . It is not hard to see that the factor space M/N
is naturally a left (right) weak Hopf bimodule over H .

2.3. First order differential calculi

Let A be an algebra with unity. Let Γ be a bimodule over A and d : A −→ Γ be a
k-linear map. By [23, Defn 1.1] (Γ, d) is called a first order differential calculus over
A if

(1) d(ab) = d(a)b + ad(b) for all a, b ∈ A;
(2) the map A ⊗ A −→ Γ, a ⊗ b �−→ ad(b) is surjective.

Two first order differential calculi (Γ, d) and (Γ′, d′) over A are said to be identical
if there exists a bimodule isomorphism i : Γ −→ Γ′ such that

i(d(a)) = d′(a) for all a ∈ A.

Denote by A2 the vector space {a⊗b ∈ A⊗A| ab = 0}. Then A2 is an A-bimodule
with the following structure

c(a ⊗ b) = ca ⊗ b, (a ⊗ b)c = a ⊗ bc,

for any a ⊗ b ∈ A2 and c ∈ A. Define D(b) = 1 ⊗ b − b ⊗ 1 for all b ∈ A. Then
(A2, D) is a first order differential calculus over A. There exists the following lemma
( see [23, Prop 1.1]):

(Γ, d) is a first order differential calculus over A if and only if there exists a sub-
bimodule N ⊂ A2 such that Γ = A2/N and d = π ◦ D, where π is the canonical
epimorphism A2 −→ Γ.

3. WEAK HOPF BIMODULES

Let H be a weak Hopf algebra. In this section we will discuss some special weak
Hopf bimodules needed in next section.

3.1. Left weak Hopf bimodules

First consider a k-linear map:
ρL : H ⊗ H −→ H ⊗ H ⊗ H, a ⊗ b �−→ a1b1 ⊗ a2 ⊗ b2.

Lemma 3.1.1. Let H be a weak Hopf algebra. Then
ρL(a⊗ b) = a1b1 ⊗ a2S(11) ⊗ 12b2 = ρL(aS(11) ⊗ 12b), ∀ a ⊗ b ∈ H ⊗ H.

Proof. For all a ⊗ b ∈ H ⊗ H , we have
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ρL(a⊗ b) = a1S(12)1′1b1 ⊗ a2S(11) ⊗ 1′2b2

= a1S(12)1′1b1 ⊗ a2S(11) ⊗ S−1(S(1′2))b2

(2.6)
= a11′1b1 ⊗ a2S(11)⊗ S−1(S(1′2)S(12))b2

= a11′1b1 ⊗ a2S(11)⊗ 121′2b2

= a1b1 ⊗ a2S(11) ⊗ 12b2.

Moreover,
ρL(aS(11) ⊗ 12b) = (aS(11))1(12b)1 ⊗ (aS(11))2 ⊗ (12b)2

= a1S(11)12b1 ⊗ a2 ⊗ b2 = a1b1 ⊗ a2 ⊗ b2.

Similar to [23], consider the following two maps:
R1 : H ⊗ H −→ H ⊗ H, a ⊗ b �−→ ab1 ⊗ b2,

R2 : H ⊗ H −→ H ⊗ H, a ⊗ b �−→ aS(b1) ⊗ b2,

for all a ⊗ b ∈ H ⊗ H . Now we give some relationship between R1 and R2.

Lemma 3.1.2. Let H be a weak Hopf algebra. Then
R1R2R1 = R1, R2R1R2 = R2.

Proof. We compute as follows

R1R2R1(a ⊗ b) = R1R2(ab1 ⊗ b2) = R1(ab1S(b2) ⊗ b3)

= ab1S(b2)b3 ⊗ b4
(2.4)
= R1(a ⊗ b),

for all a ⊗ b ∈ H ⊗ H . Similarly R2R1R2 = R2 holds.

For the sake of convenience we introduce another two maps:

P1 = R2R1 : H ⊗ H −→ H ⊗ H, a ⊗ b �−→ aS(11) ⊗ 12b,

P2 = R1R2 : H ⊗ H −→ H ⊗ H, a ⊗ b �−→ a11 ⊗ b12.

It is easy to see P 2
1 = P1 and P 2

2 = P2. The following lemma is clear:

Lemma 3.1.3. Let H be a weak Hopf algebra. Then

(1) R1 is a bijective map from P1(H ⊗ H) to R1(H ⊗ H) with the inverse R2;
(2) R2 is a bijective map from P2(H ⊗ H) to R2(H ⊗ H) with the inverse R1.

Lemma 3.1.4. Let H be a weak Hopf algebra. Then P1(H ⊗ H) is a maximal
left H-comodule with the structure map ρL defined as above.

Proof. Note that for all a ⊗ b ∈ H ⊗ H ,

(1 ⊗ ρL) ◦ ρL(a ⊗ b) = a1b1 ⊗ a2b2 ⊗ a3 ⊗ b3 = (Δ ⊗ 1) ◦ ρL(a ⊗ b).
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Lemma 3.1.1 implies that (1⊗ρL) ◦ ρL(aS(11)⊗12b) = (Δ⊗1) ◦ ρL(aS(11)⊗12b).

(ε ⊗ 1) ◦ ρL(aS(11)⊗ 12b)

= ε(a1b1)a2S(11) ⊗ 12b2

= ε(a1εt(b1))a2S(11) ⊗ 12b2

(2.4)
= ε(a1S(1′1))a2S(11) ⊗ 121′2b

= ε(a1εt(1′1))a21′2S(11) ⊗ 12b

= ε(a11′1)a21′2S(11)⊗ 12b

= aS(11)⊗ 12b.

Suppose that (H ⊗H)′ is a subspace of H ⊗H such that ((H ⊗H)′, ρL) is a left
H-comodule. By Lemma 3.1.1 we have for any c ⊗ d ∈ (H ⊗ H)′,

c⊗ d = (ε⊗ 1) ◦ ρL(c⊗ d) = ε(c1d1)c2S(11)⊗ 12d2 = cS(11)⊗ 12d ∈ P1(H ⊗H).

Thus (H ⊗ H)′ is a subcomodule of P1(H ⊗ H).

Furthermore, P1(H ⊗ H) is a maximal left Hopf bimodule.

Proposition 3.1.5. Let H be a weak Hopf algebra. Then P1(H⊗H) is a maximal
left Hopf bimodule with the following structure:

ρL(a ⊗ b) = a1b1 ⊗ a2 ⊗ b2,

c(a ⊗ b) = ca ⊗ b,

(a ⊗ b)c = a ⊗ bc,

for all a ⊗ b ∈ P1(H ⊗ H) and c ∈ H .

Proof. This proof follows Lemma 3.1.4.

Proposition 3.1.6. Let H be a weak Hopf algebra. Then

{ S(c1) ⊗ c2 | ∀ c ∈ H } = coHP1(H ⊗ H).

Proof. For any S(c1) ⊗ c2, we have

S(c1) ⊗ c2 = S(11c1)⊗ 12c2 = S(c1)S(11) ⊗ 12c2 ∈ P1(H ⊗ H).

And S(c1)⊗ c2 is contained in coHP1(H ⊗ H) by the calculation:
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ρL(S(c1) ⊗ c2) = S(c2)c3 ⊗ S(c1)⊗ c4

= εs(c2)⊗ S(c1) ⊗ c3

(2.3)
= S(12) ⊗ S(c111)⊗ c2

= 11 ⊗ 12S(c1) ⊗ c2

= 11 ⊗ 12 · (S(c1) ⊗ c2).

Conversely, for any aS(11)⊗ 12b ∈ coHP1(H ⊗ H), we can get

ρL(aS(11) ⊗ 12b) = 1′1 ⊗ 1′2aS(11) ⊗ 12b.

Applying 1⊗ ε ⊗ 1 to two sides of the above,

aS(11)(12b)1 ⊗ (12b)2 = 1′1ε(1
′
2aS(11))⊗ 12b.

Applying R2 to two sides, by Lemma 3.1.3, on one hand,

aS(11) ⊗ 12b = 1′1ε(1
′
2aS(11))S((12b)1) ⊗ (12b)2.

On the other hand,

1′1ε(1
′
2aS(11))S((12b)1)⊗ (12b)2

= 1′1ε(1
′
2aS(11))S(12b1) ⊗ b2

= S(1′2)ε(S(1′1)aS(11))S(12b1) ⊗ b2

(2.7)
= S(121′′2b11′2ε(S(1′1)aS(1′′1)S(11))) ⊗ b2

= S(121′′2b11′2ε(11S
−1(aS(1′′1))1

′
1)) ⊗ b2

= S(εt(S−1(aS(1′′1))1
′
1)1

′′
2b11′2) ⊗ b2

= S((εt(S−1(aS(11))1′1)12b1′2)1) ⊗ ((εt(S−1(aS(11))1′1)12b1′2)2.

Let c′ = εt(S−1(aS(11))1′1)12b1′2. Then

aS(11)⊗12b = S(c′1)⊗c′2 ∈ { S(c1)⊗c2 | ∀ c ∈ H }.

Proposition 3.1.7. Let H be a weak Hopf algebra and M be a left weak Hopf
bimodule over H . Set

M ′ = {m ∈ M |m(−1) ⊗ m0 = 11 ⊗ m12},
M ′′ = {m ∈ M |m(−1) ⊗ m0 = 111′1 ⊗ 12m1′2}.

Then M ′′ ⊃ M ′ ⊃ coHM.
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Proof. Since M is a left weak Hopf bimodule, for any m ∈ M,

ρ(m) = ρ(1m1) = 11m(−1)1
′
1 ⊗ 12m01′2.

So M ′ ⊂ M ′′ and M ′′ ⊃ coHM . By [2] the map

p : M −→ coHM, p(m) = S(m(−1))m0

is a projection. For any m ∈ coHM, there exists m′ ∈ M such that m = S(m′
(−1))m

′
0.

So we have

m(−1) ⊗ m0 = 11 ⊗ 12m = 11 ⊗ 12S(m′
(−1))m

′
0

= 11 ⊗ 12S(1′1)S(m′
(−1))m

′
01

′
2

(2.7)
= 11 ⊗ S(1′1)S(m′

(−1))m
′
01

′
212

= 11 ⊗ S(m′
(−1))m

′
012

= 11 ⊗ m12.

Thus M ′ ⊃ coHM .

Corollary 3.1.8. Let H be a weak Hopf algebra. Then

P1(H ⊗ H)′′ = P1(H ⊗ H)′ = coHP1(H ⊗ H).

Proof. Similar to the proof of proposition 3.1.6, for any aS(11) ⊗ 12b ∈ P1(H ⊗
H)′′, we have

1′11
′′
1ε(1

′
2aS(11))S((12b1′′2)1) ⊗ (12b1′′2)2

= 1′11
′′
1ε(1

′
2aS(11))S(12b11′′2) ⊗ b2

= 1′11
′′
1S(1′′2)ε(1

′
2aS(11))S(12b1) ⊗ b2

= S(1′2)ε(S(1′1)aS(11))S(12b1) ⊗ b2

= S((εt(S−1(aS(11))1′1)12b1′2)1) ⊗ ((εt(S−1(aS(11))1′1)12b1′2)2.

Let c′ = εt(S−1(aS(11))1′1)12b1′2. We can get

aS(11) ⊗ 12b = S(c′1) ⊗ c′2 ∈ { S(c1)⊗ c2 | ∀c ∈ H }.

By proposition 3.1.6, aS(11)⊗12b ∈ coHP1(H⊗H). So P1(H⊗H)′′ ⊂ coHP1(H⊗
H). It follows from proposition 3.1.7 that P1(H⊗H)′′ = P1(H⊗H)′ = coHP1(H⊗
H).
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Corollary 3.1.9. Let H be a weak Hopf algebra and M be a left weak Hopf
sub-bimodule in P1(H ⊗ H). Then M ′′ = M ′ = coHM.

Proof. For any aS(11) ⊗ 12b ∈ M ′′ ⊂ P1(H ⊗ H)′′, if

ρL(aS(11)⊗ 12b) = 1′11
′′
1 ⊗ 1′2aS(11) ⊗ 12b1′′2,

similar to corollary 3.1.8, there exists an element c′ in H such that

c′ = εt(S−1(aS(11))1′1)12b1′2

and aS(11) ⊗ 12b = S(c′1) ⊗ c′2. We obtain

ρL(aS(11)⊗ 12b) = 1′11
′′
1 ⊗ 1′2aS(11) ⊗ 12b1′′2

= 1′11
′′
1 ⊗ 1′2S(c′1) ⊗ c′21

′′
2

= 1′11
′′
1 ⊗ 1′2S(11)S(c′1) ⊗ c′2121′′2

(2.7)
= 1′1 ⊗ 1′2S(c′1) ⊗ c′2

= 1′1 ⊗ 1′2aS(11) ⊗ 12b.

This implies that aS(11) ⊗ 12b ∈ coHM . So M ′′ ⊂ coHM . By proposition 3.1.6,
M ′′ = M ′ = coHM.

3.2. Right weak Hopf bimodules

In the subsection we will write down similar results in the case of right weak Hopf
bimodules. Some necessary details will also be given for the sake of completeness.

Now consider:

ρR : A ⊗ A −→ A ⊗ A ⊗ A, a ⊗ b �−→ a1 ⊗ b1 ⊗ a2b2.

Lemma 3.2.1. Let H be a weak Hopf algebra. Then there exists an equation:

ρR(a ⊗ b) = a111 ⊗ S(12)b1 ⊗ a2b2 = ρR(a11 ⊗ S(12)b), ∀ a, b ∈ H.

For any a ⊗ b ∈ H ⊗ H , define two maps

S1(a ⊗ b) = b1 ⊗ ab2, S2(a⊗ b) = bS−1(a2) ⊗ a1.

Lemma 3.2.2. Let H be a weak Hopf algebra. Then

S1S2S1 = S1, S2S1S2 = S2.

Proof. For all a ⊗ b ∈ H ⊗ H , we compute as follows
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S1S2S1(a ⊗ b) = S1S2(b1 ⊗ ab2) = S1(ab3S
−1(b2) ⊗ b1)

= b1 ⊗ ab3S
−1(b3)b2) = b1 ⊗ aS−1(S(b2)b3S(b4)))

= b1 ⊗ ab2 = S1(a ⊗ b).

Similarly, S2S1S2 = S2 holds.
By lemma 3.2.2, we can define two maps

P3 = S2S1 : A ⊗ A −→ A ⊗ A, a ⊗ b �−→ a11 ⊗ S(12)b ,

P4 = S1S2 : A ⊗ A −→ A ⊗ A, a ⊗ b �−→ 11a ⊗ 12b.

It is clear that P 2
3 = P3 and P 2

4 = P4.

Lemma 3.2.3. Let H be a weak Hopf algebra. Then
(1) S1 is a bijective map from P3(H ⊗ H) to S1(H ⊗ H) with the inverse S2;
(2) S2 is a bijective map from P4(H ⊗ H) to S2(H ⊗ H) with the inverse S1.

Lemma 3.2.4. Let H be a weak Hopf algebra. Then P3(H ⊗ H) is a maximal
right H-comodule with the structure map ρR defined as above.

Proposition 3.2.5. Let H be a weak Hopf algebra. Then P3(H⊗H) is a maximal
right Hopf bimodule with the following structure:

ρR(a ⊗ b) = a1 ⊗ b1 ⊗ a2b2,

c(a⊗ b) = ca⊗ b,

(a ⊗ b)c = a ⊗ bc.

for any a ⊗ b ∈ P3(H ⊗ H) and c ∈ H .

Proposition 3.2.6. Let H be a weak Hopf algebra. Then

{ S−1(c2) ⊗ c1 | ∀ c ∈ H } = P3(H ⊗ H)coH .

Proof. For any S−1(c2) ⊗ c1, we have

S−1(c2) ⊗ c1 = S−1(c2)S−1(12)⊗ 11c1 = S−1(c2)11 ⊗ S(12)c1 ∈ P3(H ⊗ H).

And S−1(c2) ⊗ c1 is contained in P3(H ⊗ H)coH by the calculation:

ρR(S−1(c2)⊗ c1) = S−1(c3)1 ⊗ c1 ⊗ S−1(c3)2c2

= S−1(c4) ⊗ c1 ⊗ S−1(c3)c2

= S−1(c4) ⊗ c1 ⊗ S−1(S(c2)c3)

(2.3)
= S−1(c2) ⊗ c111 ⊗ S−1(S(12))

= S−1(c2) ⊗ c111 ⊗ 12

= (S−1(c2)⊗ c1)11 ⊗ 12.
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Conversely, for any a11 ⊗ S(12)b ∈ P3(H ⊗ H)coH , we can get

ρR(a11 ⊗ S(12)b) = a11 ⊗ S(12)b1′1 ⊗ 1′2.

Applying S2 ◦ (ε ⊗ 1 ⊗ 1) to two sides of the above, we have

a11 ⊗ S(12)b = S2(ε(a11)S(12)b1′1 ⊗ 1′2).

Note that

S2(ε(a11)S(12)b1′1 ⊗ 1′2)

= S2(ε(a1′′1S(11))S(12)S(1′′2)b1
′
1 ⊗ 1′2)

= S2(ε(a1′′112)11S(1′′2)b1
′
1 ⊗ 1′2)

= S2(εs(a11)S(12)b1′1 ⊗ 1′2)

= 1′2S
−1((εs(a11)S(12)b1′1)2) ⊗ (εs(a11)S(12)b1′1)1

= 1′2S
−1((εs(a11)S(12)b)21′1) ⊗ (εs(a11)S(12)b)1

= 1′2S
−1(1′1)S

−1((εs(a11)S(12)b)2) ⊗ (εs(a11)S(12)b)1

= S−1((εs(a11)S(12)b)2)⊗ (εs(a11)S(12)b)1,

let c′ = εs(a11)S(12)b, then

a11⊗S(12)b = S−1(c′2)⊗c′1 ∈ { S−1(c2)⊗c1 | ∀c ∈ H }.

Proposition 3.2.7. Let H be a weak Hopf algebra and N be a right weak Hopf
bimodule over H . Set

N ′ = {m ∈ N |m(−1) ⊗ m0 = 11m ⊗ ·12},
N ′′ = {m ∈ N |m(−1) ⊗ m0 = 11m1′1 ⊗ 121′2}.

Then N ′′ ⊃ N ′ ⊃ N coH .

Proof. By [2] the map

p : N −→ N coH , p(m) = m0S(m(1))

is a projection. The rest is similar to the proof of proposition 3.1.7.

Corollary 3.2.8. Let H be a weak Hopf algebra. Then

P3(H ⊗ H)′′ = P3(H ⊗ H)′ = P3(H ⊗ H)coH .

Proof. Similar to corollary 3.1.8.
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Corollary 3.1.9. Let H be a weak Hopf algebra and N be a right weak Hopf
sub-bimodule in P3(H ⊗ H). Then N ′′ = N ′ = N coH .

Proof. Similar to corollary 3.1.9.

3.3. Weak Hopf bimodules

In the subsection we will investigate weak Hopf bimodules coming from H ⊗ H .

Lemma 3.3.1. Let H be a weak Hopf algebra. Then P1 ◦ P3 = P3 ◦ P1.

Proof. For all a ⊗ b ∈ H ⊗ H , we have

P1 ◦P3(a⊗ b) = a11S(1′1)⊗ 1′2S(12)b = aS(1′1)11 ⊗ S(12)1′2b = P3 ◦P1(a⊗ b).

Let P = P1 ◦ P3. Then P 2 = P.

Lemma 3.3.2. Let H be a weak Hopf algebra. Then P (H ⊗ H) is a maximal
weak Hopf bimodule with the following structure:

ρL(a ⊗ b) = a1b1 ⊗ a2 ⊗ b2,

ρR(a ⊗ b) = a1 ⊗ b1 ⊗ a2b2,

c(a⊗ b) = ca⊗ b,

(a ⊗ b)c = a ⊗ bc.

for any a ⊗ b ∈ P (H ⊗ H) and c ∈ H .

Proof. We first prove that P (H⊗H) is a left weak Hopf bimodule with the structure
map ρL. It only needs to check that (P (H⊗H), ρL) is a left H-subcomodule, namely,
ρL(P (H⊗H)) ⊂ H⊗P (H⊗H). Note that a⊗b = P (a⊗b) for all a⊗b ∈ P (H⊗H).
We have

ρL(a ⊗ b) = ρL(a11S(1′1) ⊗ 1′2S(12)b)

= (a11)1(S(12)b)1 ⊗ (a11)2S(1′1) ⊗ 1′2(S(12)b)2

= a1b1 ⊗ a211S(1′1) ⊗ 1′2S(12)b2 ∈ H ⊗ P (H ⊗ H).

Similarly, P (H ⊗ H) is a right weak Hopf bimodule with the structure map ρR.
Next we check (1⊗ ρR) ◦ ρL = (ρL ⊗ 1) ◦ ρR. By Lemma 3.1.1 and 3.2.1,

(1⊗ ρR) ◦ ρL(a ⊗ b)

= a1b1 ⊗ ρR(a2 ⊗ b2) = a1b1 ⊗ a2 ⊗ b2 ⊗ a3b3

= ρL(a1 ⊗ b1) ⊗ a2b2 = (ρL ⊗ 1) ◦ ρR(a ⊗ b).
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Now let M be any subspace of H⊗H . Assume that M with the structure as stated
is a weak Hopf bimodule. We prove M ⊂ P (H ⊗ H) as a weak Hopf bimodule. For
any c ⊗ d ∈ M , we have

c ⊗ d = (ε ⊗ 1) ◦ ρL(c ⊗ d)

= cS(11) ⊗ 12d

= (1⊗ ε) ◦ ρR(cS(11) ⊗ 12d)

= cS(11)1′1 ⊗ S(1′2)12d ∈ P (H ⊗ H).

Thus M ⊂ P (H ⊗ H).

Lemma 3.3.3. Let M be a left weak Hopf sub-bimodule of P1(H ⊗H) and N be
a right weak Hopf sub-bimodule of P3(H ⊗ H). Then

(1) If M1 is a left weak Hopf sub-bimodule of M , then P3(M1) is a left weak Hopf
sub-bimodule of P3(M);

(2) If N1 is a right weak Hopf sub-bimodule of N , then P1(N1) is a right weak
Hopf sub-bimodule of P1(N ).

Proof. Assume that M1 is a left weak Hopf sub-bimodule of M . Note that
aS(1)⊗ 12b = a ⊗ b for all a ⊗ b ∈ M1. We have

ρL(P3(a ⊗ b)) = ρL(a11S(1′1) ⊗ 1′2S(12)b)

= a1b1 ⊗ a211S(1′1) ⊗ 1′2S(12)b2

= a1b1 ⊗ P3(a2S(1′1) ⊗ 1′2b2) ∈ H ⊗ P3(M1) ⊂ H ⊗ P3(M).

So P3(M1) is a left weak Hopf sub-comodule of P3(M). The rest is easy.
The second statement can be similarly proved.

4. BICOVARIANT DIFFERENTIAL CALCULI

Let H be a weak Hopf algebra with bijective antipode S. Let (Γ, d) be a first order
differential calculus over H . We first investigate the linearities of the map d.

Lemma 4.0.1. Let (Γ, d) be a first order differential calculus over H . Then for
a, b ∈ H , the following are equivalent:

(1) d(S(11))12 = 0,

(2) S(11)d(12) = 0,

(3) 111′1 ⊗ d(12)1′2 = 0,

(4) 111′1 ⊗ 12d(1′2) = 0,

(5) 11 ⊗ d(12) = 0,
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(6) d(Ht) = 0,

(7) d(εt(a)b) = εt(a)d(b),
(8) d(aεt(b)) = d(a)εt(b).

Proof. Since d(1) = d(1) + d(1) holds, then d(1) = 0. Note that d(1) =
d(S(11)12) = d(S(11))12 + S(11)d(12). We easily see that (1) is equivalent to (2).

For any a, b ∈ H , we have d(εt(a)b) = εt(a)d(b) + d(εt(a))b, which implies
that (6) =⇒ (7) is clear. If (7) holds, we get d(εt(a))b = 0. So (6) is obtained by
taking b = 1. Similarly, (6) is equivalent to (8).

(2) ⇐⇒ (6) : If (6) is true, so is (2) since 11 ⊗ 12 ∈ Hs ⊗ Ht. Note that

εt(a)S(11)d(12)
(2.7)
= S(11)d(12εt(a)) = S(11)d(12)εt(a) + S(11)12d(εt(a)).

If S(11)d(12) = 0, we have
0 = εt(a)S(11)d(12) = 0 + S(11)12d(εt(a)).

So d(εt(a)) = 0. Thus (6) holds.

(5) ⇐⇒ (6) : If d(Ht) = 0, then 11 ⊗ d(12) = 11 ⊗ d(εt(12)) = 0. Conversely, if
(5) is true, then

d(εt(a)) = ε(11a)d(12) = (ε ⊗ 1)[(11 ⊗ d(12))(a⊗ 1)] = 0.

(3) ⇐⇒ (6) : It is easy to see that (6) implies (3). Assume that (3) holds, i.e.,
111′1 ⊗ d(12)1′2 = 0. We have

0 = ε(111′1)d(12)1′2 = d(εt(11))12 = d(S(11))12,

which shows that (1) holds and so does (2). The statement (6) follows from (2).
Finally, we turn to check (4) ⇐⇒ (6) : It is obvious that (6) implies (4). Suppose

that 111′1 ⊗ 12d(1′2) = 0. We get
0 = ε(111′1)12d(1′2) = εt(11)d(12) = S(11)d(12).

This means that (2) holds and so does (6).

Lemma 4.0.2. (Γ, d) be a first order differential calculus over H . Then for
a, b ∈ H , the following are equivalent:

(1) d(11)S(12) = 0,

(2) 11d(S(12)) = 0,

(3) d(11)1′1 ⊗ 121′2 = 0,

(4) 11d(1′1)⊗ 121′2 = 0,

(5) d(11) ⊗ 12 = 0,

(6) d(Hs) = 0,

(7) d(εs(a)b) = εs(a)d(b),
(8) d(aεs(b)) = d(a)εs(b).
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Proof. Note that d(1) = d(11S(12)) = d(11)S(12) + 11d(S(12)), (1) ⇐⇒ (2)
holds. Similar to Lemma 4.1, (6) ⇐⇒ (7) ⇐⇒ (8) can be easily checked.

(2) ⇐⇒ (6) : If (6) is true, clearly, so is (2). If 11d(S(12)) = 0, for any a ∈ H ,
we have

εs(a)11d(S(12))
(2.6)
= 11d(S(12)εs(a))=11d(S(12))εs(a)+11S(12)d(εs(a))=d(εs(a)),

Note that εs(a)11d(S(12)) = 0. So (6) holds.

(5) ⇐⇒ (6) : If d(Hs) = 0, then d(11) ⊗ 12 = 0. Conversely, if (5) is true, then

d(εs(a)) = ε(a12)d(11) = (1 ⊗ ε)[(1⊗ a)(d(11) ⊗ 12)] = 0.

(3) ⇐⇒ (6) : That (6) implies (3) is easy. If (3) holds, we have

0 = d(11)1′1ε(121′2) = d(11)S(12).

This means that (1) holds. So does (2). Thus (6) follows from (2).
Similarly, (4) ⇐⇒ (6) holds.

The statements (7) and (8) in Lemma 4.0.1 (4.0.2) are equivalent to say that the
linear map d is left and right Ht(Hs)-linear, respectively. However, there really exists
the linear map d that is neither Ht-linear nor Hs-linear.

Lemma 4.0.3. Let H be a weak Hopf algebra. If 1ε(a) = εt(a) for all a ∈ H ,
then H is a Hopf algebra.

Proof. For any a ∈ H , if 1ε(a) = εt(a), we have

ε(ab) = ε(a11)ε(12b) = ε(aεt(11))ε(12b) = ε(a1ε(11))ε(12b) = ε(a)ε(b).

This means that ε is a algebra map and so H is an ordinary Hopf algebra.

Example 4.0.4. Let (H2, D) be a first order differential calculus over H as in
Subsection 2.3. Suppose that the map D is Ht-linear. We can get

D(εt(a)) = 1⊗ εt(a)− εt(a)⊗ 1 = 0.

This means that 1ε(a) = εt(a). By Lemma 4.0.3, H is an ordinary Hopf algebra.
Consequently, if H is a weak Hopf algebra (not a Hopf algebra), then the map D is
not Ht-linear; Similarly, D is not Hs-linear.

In the sequel, we will see that Woronowicz’s bicovariant differential calculi over
weak Hopf algebras must be Ht-bilinear and Hs-bilinear. This is very different from
bicovariant differential calculi over quantum groups.

4.1. Left-covariant first order differential calculi

In this subsection, we will discuss left-covariant first order differential calculus.
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Definition 4.1.1. Let (Γ, d) be a first order differential calculus over H . (Γ, d) is
called A-type if the linear map d is Ht-linear.

Definition 4.1.2. [23]. Let (Γ, d) be a first order differential calculus over H .
(Γ, d) is left-covariant if ad(b) = 0 implies that a1b1 ⊗ a2d(b2) = 0 for all a, b ∈ Γ.

Note that 1d(1) = 0. Then 111′1 ⊗ 12d(1′2) = 0. By Lemma 4.0.1, we have

Proposition 4.1.3. Let (Γ, d) be a left-covariant first order differential calculus
over H . Then (Γ, d) is A-type.

Example 4.1.4. Let P1(H2) = { aS(11) ⊗ 12b | a ⊗ b ∈ H2} and D1(a) =
S(11) ⊗ 12a − aS(11)⊗ 12 for all a ∈ H. Then (P1(H2), D1) is a left-covariant first
order differential calculus over H and so A-type. Moreover, (1⊗D1) ◦Δ = ρL ◦D1.

Proof. It is straightforward to check that P1(H2) is a submodule of H2. By
[23] (P1(H2), D1) is a first order differential calculus over H . It needs to show that
aD1(b) = 0 implies that a1b1 ⊗ a2D1(b2) = 0 for all a, b ∈ H.

Assume that aD1(b) = 0. We obtain aS(11)⊗ 12b = abS(11)⊗ 12. So

a1b1 ⊗ a2D1(b2) = a1b1 ⊗ a2S(11) ⊗ 12b2 − a1b1 ⊗ a2b2S(11) ⊗ 12

= ρL(aS(11) ⊗ 12b)− a1b11′1 ⊗ a2b21′2S(11)⊗ 12

= ρL(aS(11) ⊗ 12b)− a1b11′1 ⊗ a2b2S(11) ⊗ 121′2
= ρL(aS(11) ⊗ 12b)− ρL(abS(11) ⊗ 121)

= ρL(aS(11) ⊗ 12b − abS(11) ⊗ 121)

= 0.

Lemma 4.1.5. Let H be a weak Hopf algebra. Then a first order differential
calculus (Γ, d) is A-type if and only if there exists a sub-bimodule N ⊂ P1(H2)
such that Γ = P1(H2)/N and d = π ◦ D1, where π is the canonical epimorphism
P1(H2) −→ Γ.

Proof. Here we take a method in [23]. If N is a submodule of P1(H2), N is also
a submodule of H2. By [23] (Γ, d) is a first order differential calculus. Note that the
map π is H-linear. For all a, b ∈ H ,

π ◦ D1(ab) = π[(D1(a)b + aD1(b))]

= [π ◦ (D1(a))]b + a[π ◦ D1(b)].

The map π ◦ D1 is surjective. For all a, b ∈ H ,

π ◦ D1(εt(a)b) = π[D1(εt(a)b)] = π[εt(a)D1(b)] = εt(a)[π ◦ D1(b)].

So (Γ, d) is A-type.
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Conversely, assume that (Γ, d) is an A-type first order differential calculus. Namely,
d is Ht-linear. For any aS(11) ⊗ 12b ∈ P1(H ⊗ H) and c ∈ H , define a map

π′ : P1(H ⊗ H) −→ Γ, aS(11) ⊗ 12b �−→ aS(11)d(12b).

The H-linearity of the map π′ follows from the following:

c(aS(11)d(12b)) = caS(11)d(12b),

aS(11)d(12bc) = aS(11)d(12bc)

= aS(11)d(12)bc + aS(11)12d(b)c + aS(11)12b)d(c)

= aS(11)12d(b)c + aS(11)12b)d(c)

= aS(11)12d(b)c + aS(11)12bd(c)

= aS(11)12d(b)c = aS(11)d(12b)c.

If m ∈ Γ, then there exist a and b in H such that m = ad(b). Note that aS(11) ⊗
12b − abS(11) ⊗ 12 ∈ P1(H ⊗ H). We have

π′(aS(11) ⊗ 12b − abS(11)⊗ 12)

= π′(aS(11) ⊗ 12b) − π′(abS(11) ⊗ 12)

= aS(11)d(12b) − abS(11)d(12)

= aS(11)12d(b)− 0 = ad(b) = m.

So π′ is surjective. Let kerπ′ be the kernel of π′. As an H-bimodule, we have
P1(H ⊗ H)/kerπ′ ∼= Γ. For any a ∈ H ,

π′ ◦ D1(a) = π′(S(11) ⊗ 12a − aS(11) ⊗ 12)

= S(11)d(12a) − aS(11)d(12) = d(a).

Lemma 4.1.6. Let H be a weak Hopf algebra. Then P1(H2) is a left weak Hopf
sub-bimodule of P1(H ⊗ H).

Proof. For any aS(11) ⊗ 12b ∈ P1(H2), we have

(1 ⊗ m) ◦ ρL(aS(11) ⊗ 12b)

= (1 ⊗ m)((aS(11))1(12b)1 ⊗ (aS(11))2 ⊗ (12b)2)

= (aS(11))1(12b)1 ⊗ (aS(11))2(12b)2

= (aS(11))1(12b)1 ⊗ (aS(11))2(12b)2

= Δ(aS(11)12b) = 0.

This means ρL(P1(H2)) ⊂ H ⊗ P1(H2). The rest follows Proposition 3.1.6.
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Theorem 4.1.7. Let H be a weak Hopf algebra. Then the first order differential
calculus (Γ, d) is left-covariant if and only if there exists a left weak Hopf sub-bimodule
N ⊂ P1(H2) such that Γ = P1(H2)/N and d = π ◦ D1, where π is the canonical
epimorphism P1(H2) −→ Γ.

Proof. Here the notations is the same as in Lemma 4.1.5. First assume that N
is a left weak Hopf sub-bimodule of P1(H2). Then the map π is H-linear and left
H-colinear. By Example 4.1.4, (1⊗D1) ◦Δ = ρL ◦D1. Since Lemma 4.1.5 holds, it
remains to prove that aπ[D1(b)] = 0 implies a1b1 ⊗ a2π[D1(b2)] = 0 for all a, b ∈ H .
If aπ[D1(b)] = 0, we can get

a1b1 ⊗ a2π[D1(b2)] = (a1 ⊗ a2)(b1 ⊗ π(D1(b2)))

= (a1 ⊗ a2)[(1⊗ π)(b1 ⊗ D1(b2))]

= (a1 ⊗ a2)[(1⊗ π)(ρL ◦ D1(b))]

= (a1 ⊗ a2)[(1⊗ π) ◦ ρL(D1(b))]

= Δ(a)[ρL ◦ π((D1(b))]

= ρL[a(π ◦ D1(b))] = 0.

Conversely, suppose that (Γ, d) is left-covariant. For all aS(11) ⊗ 12b ∈ kerπ′,
we have a1b1 ⊗ a2d(b2) = 0. By Lemma 4.1.5, a1b1 ⊗ a2π

′(S(11)⊗ 12b2) = a1b1 ⊗
a2π

′(b2S(11) ⊗ 12). Since cd(1) = 0 for any c ∈ H, then cS(11)⊗ 12 ∈ kerπ′. So

(1 ⊗ π′) ◦ ρL(aS(11) ⊗ 12b) = a1b1 ⊗ a2π
′(b2S(11) ⊗ 12) = 0.

This means that ρL(kerπ′) ⊂ H ⊗ kerπ′. The other axioms on a left weak Hopf
bimodule are easily checked.

Proposition 4.1.8. Let (Γ, d) be a left-covariant first order differential calculus
over H . Then there uniquely exists a linear map ρL : Γ −→ H ⊗Γ such that (Γ, ρL)
is a left weak Hopf bimodule. Moreover, (1 ⊗ d) ◦Δ = ρL ◦ d.

Proof. Straightforward.

Lemma 4.1.9. Let H be a weak Hopf algebra. Then

{ S(c1) ⊗ c2 | ∀ c ∈ kerεs } = coHP1(H2).

Proof. For any c ∈ kerεs, we have S(c1)c2 = εs(c) = 0 and

S(c1) ⊗ c2 = S(c1)S(11) ⊗ 12c2 ∈ P1(H2) ⊂ P1(H ⊗ H).

It follows from Lemma 4.1.6 and Proposition 3.1.6 that S(c1) ⊗ c2 ∈ coHP1(H2).
Conversely, for any S(c1) ⊗ c2 ∈ coHP1(H2), we have 0 = S(c1)c2 = εs(c).
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Lemma 4.1.10. Let R be a right ideal of H such that R is contained in kerεs.
Let N = R2(H ⊗R) = { aS(b1)⊗ b2| a⊗ b ∈ H ⊗R }. Then N is a left weak Hopf
sub-bimodule of P1(H2). Moreover, coHN = { S(b1) ⊗ b2| b ∈ R }.

Proof. We first check that N is a subspace of P1(H2). For any a⊗b ∈ H ⊗R, we
have a⊗ b ∈ H ⊗ kerεs and so aεs(b) = 0. Since aS(b1)⊗ b2 = aS(b1)S(11)⊗ 12b2

and aS(b1)b2 = aεs(b) = 0, then N ⊆ P1(H2).
Next we show that N is a sub-bimodule of P1(H2). For any c ∈ H and aS(b1)⊗

b2 ∈ N , we have

c(aS(b1) ⊗ b2) = caS(b1) ⊗ b2, (aS(b1) ⊗ b2)c = aS(b1) ⊗ b2c.

Note that a⊗ b ∈ H ⊗R. we get ca⊗ b ∈ H ⊗ R and caS(b1)⊗ b2 ∈ N. Since R is
a right ideal, ac1 ⊗ bc2 is an element in H ⊗ R. Now compute as follows:

ac1S(b1c2) ⊗ b2c3 = aεt(c1)S(b1)⊗ b2c2 = aS(11)S(b1)⊗ b212c = aS(b1) ⊗ b2c.

So (aS(b1) ⊗ b2)c = aS(b1) ⊗ b2c ∈ N. Thus N is a sub-bimodule.
Now we verify that N is a sub-comodule of P1(H2). For any a⊗ b ∈ H ⊗ R, we

have a1 ⊗ a2 ⊗ b ∈ H ⊗ H ⊗ R and

ρL(aS(b1) ⊗ b2) = a1S(b1)1b2 ⊗ a2S(b1)2 ⊗ b3

= a1S(b2)b3 ⊗ a2S(b1) ⊗ b4

= a1εs(b2) ⊗ a2S(b1) ⊗ b3

= a1S(12) ⊗ a2S(b111)⊗ b2

= a1 ⊗ a2S(b1) ⊗ b2.

So ρL(N ) ∈ H⊗N. The other axioms on left weak Hopf modules are straightforward.
Finally we prove that coHN = { S(b1) ⊗ b2| b ∈ R }. Clearly, { S(b1) ⊗ b2| b ∈

R } ⊂ N . Using Lemma 3.1.6 we get { S(b1)⊗ b2| b ∈ R } ⊂ coHN. Conversely, by
Lemma 3.1.6, for any S(c1)⊗ c2 ∈ coHN, we need to check that c lies in R. Note that
there exists a ∈ H and b ∈ R such that S(c1) ⊗ c2 = aS(b1) ⊗ b2. We have

c = ε(aS(b1))b2 = ε(εs(b1)S−1(a))b2 = ε(11S
−1(a))b12 = bεt(S−1(a)).

Then c ∈ R since R is a right ideal in H .

Lemma 4.1.11. Let N be a left weak Hopf sub-bimodule of P1(H2). Then there
exists a right ideal R in H , R ⊂ kerεs such that

N = R2(H ⊗ R) = { aS(b1) ⊗ b2| a ⊗ b ∈ H ⊗ R }.

Proof. Note that coHN ⊂ coHP1(H2). Define a subspace

R := { c ∈ kerεs |S(c1) ⊗ c2 ∈ coHN }.
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We first show that R is a right ideal in H . Clearly, R is a subspace of kerεs. Since
coHN is a H-sub-comodule, we have for any c ∈ R and b ∈ H,

ρL(S((cb)1) ⊗ (cb)2) = ρL(S(b1)S(c1)⊗ c2b2))

= S(b2)S(c1)1c2b3 ⊗ S(b1)S(c1)2 ⊗ c3b4

= S(b2)b3 ⊗ S(b1)S(c1) ⊗ c2b4

= S(12) ⊗ S(b111)S(c1)⊗ c2b3

= 11 ⊗ 12S(b1)S(c1) ⊗ c2b3

= 11 ⊗ 12S((cb)1)⊗ (cb)2,

which means S((cb)1) ⊗ (cb)2 ∈ coHN . So cb ∈ R.

Next we check that N ⊂ R2(H⊗R). By [2] if M is a left-left weak Hopf module,
there exists a projection p : M −→ coHM, p(m) = S(m(−1))m(0). Additionally, for
any m ∈ M, we have

m = ε(11m(−1))12m(0) = ε(11m(−1))12m(0) = m(−1)S(m(0)(−1)
)m(0)(0)

.

So there exists a ∈ H and m′ ∈ coHM such that m = am′. Thus N ⊂ R2(H ⊗ R).
Now we verify that R2(H⊗R) ⊂ N. Since N is a left weak Hopf sub-bimodule of

P1(H2) and coHN is a subcomodule of N , we have S(c1)⊗c2 ∈ N . So aS(c1)⊗c2 ∈
N for all c ∈ R and a ∈ H . Therefore, R2(H ⊗ R) is contained in N .

Proposition 4.1.12. Let H be a weak Hopf algebra. Then N is a left weak Hopf
sub-bimodule of P1(H2) if and only if there exists a right ideal R in H , R ⊂ kerεs

such that N = R2(H ⊗ R) = {aS(b1) ⊗ b2| a ⊗ b ∈ H ⊗ R}.
Proof. Following Lemma 4.1.10 and 4.1.11.
Similar to Theorem 1.5 in [23], all left-covariant differential calculi over weak

Hopf algebras are characterized as follows:

Theorem 4.1.13. Let H be a weak Hopf algebra. Then the first order differential
calculus (Γ, d) is left-covariant if and only if there exists a right ideal R in H , R ⊂
kerεs such that Γ = P1(H2)/N and d = π ◦ D1, where N = R2(H ⊗ R) and π is
the canonical epimorphism P1(H2) −→ Γ.

Proof. Following Theorem 4.1.7 and Proposition 4.1.12.

4.2. Right-covariant first order differential calculi

Here we will consider right-covariant first order differential calculi by a similar
way. Some details of some proofs will also by given for the sake of completeness.

Definition 4.2.1. Let (Γ, d) be a first order differential calculus over H . (Γ, d) is
called B-type if the linear map d is Hs-linear.
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Definition 4.2.2. [23]. Let (Γ, d) be a first order differential calculus over H .
(Γ, d) is called right-covariant if ad(b) = 0 implies that a1d(b1)⊗ a2b2 = 0.

Proposition 4.2.3. Let (Γ, d) be a left-covariant first order differential calculus
over H . Then (Γ, d) is B-type.

Proof. The proof follows from Lemma 4.0.2.

Example 4.2.4. Let P3(H2) = { a11 ⊗ S(12)b | a ⊗ b ∈ H2} and D2(a) =
11⊗S(12)a−a11⊗S(12), for any a ∈ H. Then (P3(H2), D2) is a right-covariant first
order differential calculus over H and so B-type. Moreover, (D2 ⊗ 1) ◦Δ = ρR ◦D2.

Proof. Similar to Example 4.1.4.

Lemma 4.2.5. Let H be a weak Hopf algebra. Then a first order differential
calculus (Γ, d) is B-type if and only if there exists a sub-bimodule N ⊂ P3(H2)
such that Γ = P3(H2)/N and d = π ◦ D2, where π is the canonical epimorphism
P3(H2) −→ Γ.

Proof. If N is a submodule of P3(H2), then by [23] (Γ, d) is a first order differential
calculus. Note that the map π is H-linear. We have for all a, b ∈ H ,

π ◦ D2(ab) = π[(D2(a)b + aD2(b))] = [π ◦ (D2(a))]b + a[π ◦ D2(b)].

The map π ◦ D2 is surjective. For all a, b ∈ H ,

π ◦ D1(εs(a)b) = π[D2(εs(a)b)] = π[εs(a)D1(b)] = εs(a)[π ◦ D2(b)].

So (Γ, d) is B-type.
Conversely, assume that (Γ, d) is a B-type first order differential calculus. Namely,

d is Hs-linear. For any a11 ⊗ S(12)b ∈ P3(H ⊗ H) and c ∈ H , define a map

π′ : P1(H ⊗ H) −→ Γ, a11 ⊗ S(12)b �−→ a11d(S(12)b).

Similar to Lemma 4.1.5, the map π′ is left and right H-linear. If m ∈ Γ, then there exist
a and b in H such that m = ad(b). Note that aS(11)⊗12b−abS(11)⊗12 ∈ P1(H⊗H).
We have

π′(aS(11) ⊗ 12b − abS(11) ⊗ 12) = ad(b) = m.

So π′ is surjective. Let kerπ′ be the kernel of π′. Then P1(H ⊗H)/kerπ′ ∼= Γ as an
H-bimodule. Thus

π′ ◦D1(a) = π′(S(11)⊗12a−aS(11)⊗12) = d(a).

Lemma 4.2.6. Let H be a weak Hopf algebra. Then P3(H2) is a left weak Hopf
sub-bimodule of P3(H ⊗ H).
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Proof. For any a11 ⊗ S(12)b ∈ P3(H2), we have

(m ⊗ 1) ◦ ρR(a11 ⊗ S(12)b)

= (m ⊗ 1)((a11)1 ⊗ (S(12)b)1 ⊗ (a11)2(S(12)b)2)

= Δ(a11S(12)b) = 0.

Thus ρR(P3(H2)) ⊂ H ⊗ P3(H2).

Theorem 4.2.7. Let H be a weak Hopf algebra. Then a first order differential
calculus (Γ, d) is right-covariant if and only if there exists a right weak Hopf sub-
bimodule N ⊂ P1(H2) such that Γ = P3(H2)/N and d = π ◦ D2, where π is the
canonical epimorphism P3(H2) −→ Γ.

Proof. Here the notations are the same as in Lemma 4.2.5. First assume that
N is a right weak Hopf sub-bimodule of P3(H2). Then the map π is H-linear and
right H-colinear. By Example 4.2.4 and Lemma 4.2.5, we only need to prove that
aπ[D2(b)] = 0 implies a1π[D2(b1)]⊗ a2b2 = 0 for a, b ∈ H . If aπ[D2(b)] = 0, then

a1π[D2(b1)] ⊗ a2b2 = Δ(a)[(π ⊗ 1)(D2(b1) ⊗ b2)]

= (a1 ⊗ a2)[(π ⊗ 1)(ρR ◦ D2(b))]

= Δ(a)[ρR ◦ π((D2(b))]

= ρR[a(π ◦ D2(b))] = 0.

Assume that (Γ, d) is right-covariant. We have a1d(b1) ⊗ a2b2 = 0 for any a11 ⊗
1S(2)b ∈ kerπ′. By Lemma 4.1.5,

a1π
′(11 ⊗ S(12)b1)⊗ a2b2 = a1π

′(b111 ⊗ S(12))⊗ a2b2.

Note that cd(1) = 0 for any c ∈ H. We have c11 ⊗ S(12) ∈ kerπ′. So we get

(π′ ⊗ 1) ◦ ρR(a11 ⊗ S(12)b) = a1π
′(b111 ⊗ S(12)) ⊗ a2b2 = 0.

So ρR(kerπ′) ⊂ kerπ′ ⊗ H. The rest is easy.

Proposition 4.2.8. Let (Γ, d) be a right-covariant first order differential calculus
over H . Then there uniquely exists a linear map ρR : Γ −→ Γ⊗H such that (Γ, ρL)
is a right weak Hopf bimodule. Moreover, (d⊗ 1) ◦ Δ = ρR ◦ d.

Proof. Straightforward.

Lemma 4.2.9. Let H be a weak Hopf algebra. Then

{ S−1(c2)⊗ c1 | ∀ c ∈ kerεs } = P3(H2)coH .
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Proof. For any c ∈ kerεs, we have S−1(c2)c1 = S−1(εs(c)) = 0 and

S−1(c2) ⊗ c1 = S−1(c2)S−1(12) ⊗ 11c1 = S−1(c2)11 ⊗ S(12)c1.

Lemma 4.2.6 and Proposition 3.2.6 imply that S−1(c2) ⊗ c1 ∈ P3(H2)coH .

For any S−1(c2) ⊗ c1 ∈ P3(H2)coH , it is easy to see that εs(c) = 0.

Lemma 4.2.10. Let R be a right ideal of H such that R is contained in kerεs.
Let N = S2(R ⊗ H) = { bS−1(a2) ⊗ a1| a ⊗ b ∈ R ⊗ H }. Then N is a right weak
Hopf sub-bimodule of P3(H2). Moreover, N coH = {S−1(a2) ⊗ a1| a ∈ R}.

Proof. We first check that N is a subspace of P3(H2). For any a ⊗ b ∈ R ⊗ H ,
a⊗S(b) ∈ R⊗H . So εs(a)S(b) = 0. Since bS−1(a2)⊗a1 = bS−1(a2)11⊗S(12)a1

and bS−1(a2)a1 = S−1(S(a1)a2S(b)) = S−1(εs(a)S(b)) = 0, we get N ⊆ P1(H2).
Next we prove that N is a sub-bimodule of P1(H2). In fact

c(bS−1(a2) ⊗ a1) = cbS−1(a2) ⊗ a1, (bS−1(a2) ⊗ a1)c = bS−1(a2)⊗ a1c,

where c ∈ H and bS−1(a2) ⊗ a1 ∈ N . Note that a ⊗ b ∈ R ⊗ H . We have that
a⊗ cb ∈ H ⊗R and cbS−1(a2)⊗ a1 ∈ N. We easily get that ac1 ⊗ bc2 lies in R ⊗H
since R is a right ideal. Then bS−1(a2) ⊗ a1c is an element in N since

bc3S
−1(a2c2) ⊗ a1c1 = bS−1(a2εt(c2)) ⊗ a1c1 = bS−1(a2) ⊗ a1c.

Now we verify that N is a sub-comodule of P1(H2). For any a⊗ b ∈ R ⊗ H , we
have a ⊗ b1 ⊗ b2 ∈ R ⊗ H ⊗ H and

ρR(bS−1(a2) ⊗ a1) = b1S
−1(a3)1 ⊗ a1 ⊗ b2S

−1(a3)2a2

= b1S
−1(a4) ⊗ a1 ⊗ b2S

−1(a3)a2

= b1S
−1(a3) ⊗ a1 ⊗ b2S

−1(εs(a2))

= b1S
−1(a212) ⊗ a1 ⊗ b2S

−1(11)

= b1S
−1(a2) ⊗ a1 ⊗ b2.

So ρR(N ) ⊂ N ⊗ H. The rest is similar to Lemma 4.1.10.

Lemma 4.2.11. Let N be a right weak Hopf sub-bimodule of P1(H2). Then there
exists a right ideal R in H , R ⊂ kerεs such that

N = S2(R ⊗ H) = { bS−1(a2) ⊗ a1| a ⊗ b ∈ R ⊗ H }.

Proof. Note that N coH ⊂ P3(H2)coH . Define a space

R = { c ∈ kerεs |S−1(c2) ⊗ c1 ∈ N coH }.
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We first check that R is a right ideal in H . Clearly, R is a subspace of kerεs. Note
that N coH is a H-sub-comodule. We have for any c ∈ R and b ∈ H,

ρR(S−1((cb)2) ⊗ (cb)1)

= ρR(S−1(b2)S−1(c2)⊗ c1b1))

= S−1(b4)S−1(c4)⊗ c1b1 ⊗ S−1(b3)S−1(c3)c2b2

= S−1(b4)S−1(c3)⊗ c1b1 ⊗ S−1(εs(c2)b3)b2

= S−1(b4)S−1(c3)⊗ c111b1 ⊗ S−1(S(12)b3)b2

= S−1(b4)S−1(c2)⊗ c1b1 ⊗ S−1(S(b2)b3)

= S−1(b2)S−1(c2)⊗ c1b111 ⊗ 12

= S−1(cb)2)⊗ (cb)111 ⊗ 12,

So S−1((cb)2)⊗ (cb)1 ∈ N coH . Thus cb ∈ R.

Now we show that N ⊂ R2(H ⊗ R). By [2] if M is a right-right weak Hopf
module, there exists a projection p : N −→ N coH , p(n) = n(0)S(n(1)). Additionally,
for any n ∈ N, we have

n = ε(n(1)12)n(0)11 = ε(11n(−1))12n(0) = n(0)(0)S(n(0)(1))n(1),

so there exists a ∈ H and n′ ∈ N coH such that n = an′. So N ⊂ S2(R⊗H) is clear.
Finally, we verify that S2(R⊗H) ⊂ N. Since N is a left weak Hopf sub-bimodule

of P3(H2) and N coH is a subcomodule of N , we have S−1(c2) ⊗ c1 ∈ N for any
c ∈ R, and a ∈ H . So aS−1(c2) ⊗ c1 ∈ N. Therefore, S2(R ⊗ H) is contained in N.

Proposition 4.2.12. Let H be a weak Hopf algebra. Then N is a left weak Hopf
sub-bimodule of P3(H2) if and only if there exists a right ideal R in H , R ⊂ kerεs

such that N = S2(R ⊗ H) = { bS−1(a2) ⊗ a1| a ⊗ b ∈ R ⊗ H }.
Proof. Following Lemma 4.2.10 and 4.2.11.

Using Theorem 4.2.7 and Proposition 4.2.12, Theorem 1.6 of Woronowicz (1989)
has been generalized to the case of weak Hopf algebra.

Theorem 4.2.13. Let H be a weak Hopf algebra. Then a first order differential
calculus (Γ, d) is right-covariant if and only if there exists a right ideal R in H ,
R ⊂ kerεs such that Γ = P3(H2)/N and d = π ◦D2, where N = S2(R ⊗H) and π

is the canonical epimorphism P3(H2) −→ Γ.

4.3. Bicovariant differential calculi

In this subsection, we will investigate bicovariant differential calculus by Woronow-
icz’s fundamental method.
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Definition 4.3.1. Let (Γ, d) be a first order differential calculus over H . (Γ, d) is
called C-type if it is Ht and Hs−linear.

Definition 4.3.2. [23]. Let (Γ, d) be a first order differential calculus over H .
(Γ, d) is called bicovariant if it is left-covariant and right-covariant.

Proposition 4.3.3. Let (Γ, d) be a bicovariant first order differential calculus over
H . Then (Γ, d) is C-type.

Proof. Following Proposition 4.1.3 and 4.2.3.

Example 4.3.4. Let P (H2) = { a11S(1′1)⊗1′2S(12)b | a⊗b ∈ H2} and D3(a) =
11S(1′1) ⊗ 1′2S(12)a − a11S(1′1) ⊗ 1′2S(12) for all a ∈ H. Then (P (H2), D3) is a
bicovariant first order differential calculus over H and so C-type.

Proof. Following Lemma 3.3.2, Example 4.1.4 and Example 4.2.4.

Lemma 4.3.5. Let H be a weak Hopf algebra. Then a first order differential
calculus (Γ, d) is C-type if and only if there exists a sub-bimodule N ⊂ P (H2)
such that Γ = P (H2)/N and d = π ◦ D3, where π is the canonical epimorphism
P (H2) −→ Γ.

Proof. If N is a submodule of P3(H2), then by [23] (Γ, d) is a first order differential
calculus. Note that the map π is H-linear. For all a, b ∈ H ,

π ◦ D2(ab) = π[(D2(a)b + aD2(b))]

= [π ◦ (D2(a))]b + a[π ◦ D2(b)].

The map π ◦ D2 is surjective. For all a, b ∈ H ,

π ◦ D1(εs(a)b) = π[D2(εs(a)b)] = π[εs(a)D1(b)] = εs(a)[π ◦ D2(b)].

So (Γ, d) is B-type.
Assume that (Γ, d) is a B-type first order differential calculus. Then d is Hs-linear.

For any a11 ⊗ S(12)b ∈ P3(H ⊗ H) and c ∈ H , define the map

π′ : P1(H ⊗ H) −→ Γ, a11 ⊗ S(12)b �−→ a11d(S(12)b).

Similar to Lemma 4.1.5, the map π′ is left and right H-linear. If m ∈ Γ, then there exist
a and b in H such that m = ad(b). It is easy to see that aS(11)⊗12b−abS(11)⊗12 ∈
P1(H ⊗ H) and π′(aS(11) ⊗ 12b − abS(11) ⊗ 12) = ad(b) = m. So π′ is surjective.
Let kerπ′ be the kernel of π′. Then P1(H ⊗H)/kerπ′ ∼= Γ as H-bimodules. For any
a ∈ H , we obtain

π′ ◦D1(a) = π′(S(11)⊗12a−aS(11)⊗12) = d(a).
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Lemma 4.3.6. Let H be a weak Hopf algebra. Then P3(H2) is a left weak Hopf
sub-bimodule of P3(H ⊗ H).

Proof. For any a11 ⊗ S(12)b ∈ P3(H2), we have

(m ⊗ 1) ◦ ρR(a11 ⊗ S(12)b)

= (m ⊗ 1)((a11)1 ⊗ (S(12)b)1 ⊗ (a11)2(S(12)b)2)

= Δ(a11S(12)b) = 0.

Thus ρR(P3(H2)) ⊂ H ⊗ P3(H2).

Theorem 4.3.7. Let H be a weak Hopf algebra. Then a first order differential
calculus (Γ, d) is right-covariant if and only if there exists a right weak Hopf sub-
bimodule N ⊂ P1(H2) such that Γ = P3(H2)/N and d = π ◦ D2, where π is the
canonical epimorphism P3(H2) −→ Γ.

Proof. Here the notations are the same as in Lemma 4.2.5. First assume that N

is a right weak Hopf sub-bimodule of P3(H2). Then the map π is H-linear and right
H-colinear. Moreover, , (D2 ⊗ 1) ◦ Δ = ρL ◦ D2. Using Example 4.2.4 and Lemma
4.2.5 we only need to prove that aπ[D2(b)] = 0 implies a1π[D2(b1)] ⊗ a2b2 = 0 for
a, b ∈ H . If aπ[D2(b)] = 0, then

a1π[D2(b1)] ⊗ a2b2 = Δ(a)[(π ⊗ 1)(D2(b1) ⊗ b2)]

= (a1 ⊗ a2)[(π ⊗ 1)(ρR ◦ D2(b))]

= Δ(a)[ρR ◦ π((D2(b))]

= ρR[a(π ◦ D2(b))] = 0.

Assume that (Γ, d) is right-covariant. For a11⊗1S(2)b ∈ kerπ′, we have a1d(b1)⊗
a2b2 = 0. By Lemma 4.1.5, a1π

′(11⊗S(12)b1)⊗a2b2 = a1π
′(b111 ⊗S(12))⊗a2b2.

Note that cd(1) = 0 for any c ∈ H. We have c11 ⊗ S(12) ∈ kerπ′. So

(π′ ⊗ 1) ◦ ρR(a11 ⊗ S(12)b) = a1π
′(b111 ⊗ S(12)) ⊗ a2b2 = 0.

So ρR(kerπ′) ⊂ kerπ′ ⊗ H. The rest is easy.

Proposition 4.3.8. Let (Γ, d) be a right-covariant first order differential calculus
over H . Then there uniquely exists a linear map ρR : Γ −→ Γ⊗H such that (Γ, ρL)
is a right weak Hopf bimodule. Moreover, (d⊗ 1) ◦ Δ = ρR ◦ d.

Proof. Straightforward.

Lemma 4.3.9. Let H be a weak Hopf algebra. Let e = S2(11)12 and v =
11S

2(12). Then e and v are two idempotents in H with εs(e) = 1 and εt(v) = 1.
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Proof. Note that εt(a)εs(b) = εs(b)εt(a). We have

εs(e) = εs(12S
2(11)) = εs(S(12)S2(11)) = εs(S(11)12) = 1,

e2 = S2(11)12S
2(1′1)1

′
2 = S2(11)S2(1′1)121′2 = S2(11)12 = e.

Similarly, v2 = v.

By Lemma 4.3.9 there exists a Peirce left decomposition H = eH ⊕ (1 − e)H ,
where eH is a right ideal in H . Consider a coadjoint map

λ : H −→ H ⊗ H, b �−→ b2 ⊗ S(b1)b3.

Lemma 4.3.10. Let H be a weak Hopf algebra and R a subspace of H . Then

(1) The following statements hold:

(i) λ(eb) = λ(b), ∀ b ∈ H,

(ii) λ(R) ⊂ R ⊗ H ⇐⇒ λ(eR) ⊂ R ⊗ H,

(iii) λ(R) ⊂ eR ⊗ H ⇐⇒ λ(eR) ⊂ eR ⊗ H ;

(2) (R, λ) is a right H-comodule ⇐⇒ R = eR ⊂ eH and λ(R) ⊂ eR ⊗ H;
(3) If R is a right ideal in H , so is eR;
(4) If R is contained in kerεs, so is eR.

Proof. (1). For any b ∈ H , we first have

λ(S2(11)12b) = (S2(11)12b)2 ⊗ S((S2(11)12b)1)(S2(11)12b)3

= b2 ⊗ S(12b1)S2(11)b3 = b2 ⊗ S(b1)S(12)S2(11)b3

= b2 ⊗ S(b1)S(12)S2(11)b3 = b2 ⊗ S(b1)b3 = λ(b).

Part (ii) and (iii) follow from (i).
(2). For any a ∈ H, we have

(1⊗ ε) ◦ λ(b) = b2ε(S(b1)b3) = b2ε(S(b1)εt(b3)) = 11b2ε(S(b1)12)

= S(12)b2ε(S(b1)S(11)) = S(ε(11b1)12)b2 = eb.

If (R, λ) is a right H-comodule, then λ(R) ⊂ R ⊗ H and for any a ∈ R,

a = (1⊗ ε) ◦ λ(a) = ea ∈ eR.

If R ⊂ eH and λ(R) ⊂ R⊗H , then b = eb for all b ∈ R. So (1⊗ ε) ◦ λ(b) = b. The
coassociativity is easy.
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(3). Since R is a right ideal in H , then RH ⊂ R. So eRH ⊂ eR.
(4). If R is contained in kerεs, then by Lemma 4.3.9,

εs(ec) = εs(εs(e)c) = εs(1c) = 0

for all c ∈ R. Thus eR ⊂ kerεs.

Lemma 4.3.11. Let H be a weak Hopf algebra and R a subspace of H . Define
the following sets:

N2(R) = P3(R2(H ⊗ R)) = { aS(b1)11 ⊗ S(12)b2| a ⊗ b ∈ H ⊗ R },
N ′

2(R) = R2(H ⊗ eR) = { aS(b1) ⊗ b2| a ⊗ b ∈ H ⊗ eR },
N3(R) = P1(S2(R ⊗ H)) = { bS−1(a2)S(11) ⊗ 12a1| a ⊗ b ∈ R ⊗ H },
N ′

3(R) = S2(eR ⊗ H) = { bS−1(a2) ⊗ a1| a ⊗ b ∈ eR ⊗ H }.
Then (1) N2(R) = N ′

2(R) and N3(R) = N ′
3(R);

(2) If λ(R) ∈ R ⊗ H , then N ′
2(R) = N ′

3(R);
(3) If R and R′ are two right ideals in H such that N ′

2(R) = N ′
3(R

′), then
eR = eR′.

Proof. (1). For any b ∈ R and a ∈ H , we have

aS((eb)1) ⊗ (eb)2 = aS(12b1) ⊗ S2(11)b2

= aS(b1)S(12) ⊗ S2(11)b2 = aS(b1)11 ⊗ S(12)b2.

So R2(a⊗eb) = P3(R2(a⊗b)). For any c⊗d ∈ N2(R), there exists c′⊗d′ ∈ H⊗R,
such that c ⊗ d = P3(R2(c′ ⊗ d′)). By R2(a⊗ eb) = P3(R2(a⊗ b)),

c ⊗ d = P3(R2(c′ ⊗ d′)) = R2(c′ ⊗ ed′) ∈ N ′
2(R).

For any f ⊗ g ∈ N ′
2(R), there exists f ′⊗ g′ ∈ H ⊗R, such that f ⊗ g = R2(f ′⊗ eg′).

By R2(a ⊗ eb) = P3(R2(a ⊗ b)), we get

f ⊗ g = R2(f ′ ⊗ eg′) = P3(R2(f ′ ⊗ g′) ∈ N2(R).

For any a′ ∈ R and b′ ∈ H ,

b′S−1((ea′)2) ⊗ (ea′)1 = bS−1(S2(11)a′2)⊗ 12a1 = bS−1(a′2)S(11)⊗ 12a1.

So S2(ea′ ⊗ b′) = P1(S2(a′ ⊗ b′)). Similarly, N3(R) = N ′
3(R).

(2) Assume that λ(R) ∈ R ⊗ H . For any c ⊗ d ∈ N ′
2(R), there exists a ∈ H

and b ∈ eR, such that c ⊗ d = aS(b1) ⊗ b2. Since λ(R) ∈ R ⊗ H , we have
λ(b) = b2 ⊗ S(b1)b3 ∈ R ⊗ R and so b2 ⊗ aS(b1)b3 ∈ R ⊗ H . By (1) we get

P1(S2(b2 ⊗ aS(b1)b3)) ∈ N3(R) = N ′
3(R).



1708 Haixing Zhu, Shuanhong Wang and Juzhen Chen

At the same time, we have

c ⊗ d = aS(b1)⊗ b2 = aS((eb)1)⊗ (eb)2

= aS(b1)11 ⊗ S(12)b2

= P1(aS(b1)S−1(12)⊗ 11b2)

= P1(aS(b1)S−1(εt(b3)) ⊗ b2)

= P1(aS(b1)b3S
−1(b22) ⊗ b21)

= P1(S2(b2 ⊗ aS(b1)b3)),

So we conclude that N ′
2(R) ⊂ N ′

3(R).
For any c′ ⊗ d′ ∈ N ′

3(R), there exists a′ ∈ eR and b′ ∈ H , such that c′ ⊗ d′ =
b′S−1(a′2) ⊗ a′1. Since λ(R) ∈ R ⊗ H , we have λ(a′) = a′2 ⊗ S(a′1)a

′
3 ∈ R ⊗ H and

so b′S−1(S(a′1)a′3)⊗a′2 ∈ H ⊗R. By (1), P3(R2(b′S−1(S(a′1)a′3)⊗a′2)) ∈ N2(R) =
N ′

2(R). Similarly, we do the following computation:

c′ ⊗ d′ = b′S−1((ea′)2) ⊗ (ea′)1

= b′S−1(S2(11)a′2) ⊗ 12a
′
1

= b′S−1(a′2)S(11) ⊗ 12a
′
1

= P3(b′S−1(a′2)S(11) ⊗ 12a
′
1)

= P3(b′S−1(a′4)a
′
1S(a′2) ⊗ a′3)

= P3(R2(b′S−1(a′3)a
′
1 ⊗ a′2))

= P3(R2(b′S−1(S(a′1)a
′
3) ⊗ a′2)),

So N ′
3(R) ⊂ N ′

2(R) also holds.
(3) Let R and R′ be two right ideals in H such that N ′

2(R) = N ′
3(R

′). By Lemma
4.3.10 (3), eR and eR′ are also two right ideals in H . By N ′

2(R) = N ′
3(R

′), for
a ∈ eR, then S(b1) ⊗ b2 ∈ N ′

2(R) and S(b1) ⊗ b2 ∈ N ′
3(R). So there exist a′ ∈ eR′

and b′ ∈ H such that
S(b1)⊗ b2 = b′S−1(a′2) ⊗ a′1.

Applying ε ⊗ 1 to the two sides, we can get

b = ε(S(b1))b2 = ε(b′S−1(a′2))a
′
1 = ε(a′2S(b′))a′1 = ε(εs(a′2)S(b′))a′1

= ε(S(12)S(b′))a′11 = ε(b′12)a′11 = a′εs(b′) ∈ eR′.

Conversely, for any a′ ∈ eR′, there exist a ∈ H and b ∈ eR, such that

aS(b1) ⊗ b2 = S−1(a′2) ⊗ a′1.

Similarly, we compute as follows:
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a′ = ε(S−1(a′2))a
′
1 = ε(aS(b1))b2 = ε(b1S

−1(a))b2

= ε(εs(b1)S−1(a))b2 = ε(11S
−1(a))b12 = bεt(S−1(a)) ∈ eR.

Lemma 4.3.12. Let H be a weak Hopf algebra. Let

N4 = { S(b1) ⊗ b2| b ∈ eH }, N5 = λ(eH) = { b2 ⊗ S(b1)b3| b ∈ eH }.
Then S1 is a bijective map from N4 to N5.

Proof. It is clear that S1(S(b1) ⊗ b2) = b2 ⊗ S(b1)b3 for any b ∈ eH . We show
that S2 is the inverse of S1. Note that

S2(b2 ⊗ S(b1)b3) = S(b1)b4S
−1(b3)⊗ b2 = S(b1)S−1(εt(b3))⊗ b2

= S(b1)S−1(12)⊗ 11b2 = S(12b1) ⊗ S2(11)b2

= S((eb)1)⊗ (eb)2 = S(b1)⊗ b2.

So S2 ◦ S1 = IdN4. Similarly, S1 ◦ S2 = IdN5 .

Lemma 4.3.13. Let R be a right ideal R in H , R ⊂ kerεs such that (R, λ) is a
right H-comodule. Let N = S2(R⊗H) = { bS−1(a2)⊗ a1| a⊗ b ∈ R ⊗H }. Then
N is a weak Hopf sub-bimodule of P (H2).

Proof. Since (R, λ) is a right H-comodule, then by Lemma 4.3.10 (2) R = eR ⊂
eH and λ(R) ⊂ eR ⊗ H. By Lemma 4.3.11 (3),

{ aS(b1) ⊗ b2| a ⊗ b ∈ H ⊗ R } = { bS−1(a2)⊗ a1| a ⊗ b ∈ R ⊗ H } = N.

So N ⊂ P (H2). By Lemma 4.1.10 (4.2.10), (N, ρL) ((N, ρR)) is a left ( right) weak
Hopf sub-bimodule P1(H2) ((P3(H2)). Using Lemma 3.3.3, (N, ρL) ((N, ρR)) is a
left ( right) weak Hopf sub-bimodule of P (H2). It follows from Lemma 3.3.2 that
(1⊗ ρR) ◦ ρL = (ρL ⊗ 1) ◦ ρR.

Lemma 4.3.14. Let N be a weak Hopf sub-bimodule of P (H2). Then there
exists a right ideal R in H , R ⊂ kerεs such that (R, λ) is a right H-comodule and
N = S2(R ⊗ H) = {bS−1(a2) ⊗ a1| a ⊗ b ∈ R ⊗ H}.

Proof. Since N is a weak Hopf sub-bimodule of P (H2) ⊂ P1(H2), by Lemma
4.1.11, there exists a right ideal R′′ in H , R′′ ⊂ kerεs such that

N = R2(H ⊗ R′′) = {aS(b1) ⊗ b2| a ⊗ b ∈ H ⊗ R′′}.
Similarly, there exists a right ideal R′ in H , R′ ⊂ kerεs such that

N = S2(R′ ⊗ H) = {bS−1(a2) ⊗ a1| a ⊗ b ∈ R′ ⊗ H}.
Using Lemma 4.3.11 (3), eR′′ = eR′ and
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N = S2(eR′ ⊗ H) = {bS−1(a2) ⊗ a1| a ⊗ b ∈ eR′ ⊗ H}.
Following Lemma 4.3.10 , eR′ is a right ideal in H , eR′ ⊂ kerεs and e2R′ = eR′ ⊂
eH. For any b ∈ eR′, S(b1) ⊗ b2 ∈ N. Then exists a′ ∈ eR′ and b′ ∈ H , such that

S(b1) ⊗ b2 = b′S−1(a′2) ⊗ a′1.

On one hand, using Lemma 4.3.12 λ(b) = S1(S(b1) ⊗ b2). On the other hand,

S1(b′S−1(a′2) ⊗ a′1) = a′1 ⊗ b′S−1(a′3)a
′
2 = a′11 ⊗ b′12 ∈ eR′ ⊗ H.

So λ(b) = S1(S(b1) ⊗ b2) = a′11 ⊗ b′12 ∈ eR′ ⊗ H . Then λ(eR′) ⊂ eR′ ⊗ H . It
follows from Lemma 4.3.10 that (eR′, λ) is a right H-comodule.

Now let R := eR′. Consequently, R is what we need.

Proposition 4.3.15. Let H be a weak Hopf algebra. Then N is a left weak Hopf
sub-bimodule of P (H2) if and only if there exists a right ideal R in H , R ⊂ kerεs

such that (R, λ) is a right H-comodule and

N = S2(R ⊗ H) = {bS−1(a2)⊗ a1| a ⊗ b ∈ R ⊗ H}.

Proof. The proof follows from Lemma 4.3.13 and 4.3.14.

Applying Theorem 4.3.7 and Proposition 4.3.15, we obtain our main result, which
is a generalization of well-known Woronowicz’s theorem about bicovariant differential
calculi on quantum groups (see [23, Thm 1.8]).

Theorem 4.3.16. Let H be a weak Hopf algebra with bijective antipode. Then a
first order differential calculus (Γ, d) is bicovariant if and only if there exists a right
ideal R in H , R ⊂ kerεs such that (R, λ) is a right H-comodule, Γ = P3(H2)/N and
d = π ◦D2, where N = S2(R⊗H) and π is the canonical epimorphism P3(H2) −→
Γ.

In other word, we have a 1-1 correspondence between bicovariant differential calculi
and some special ideals of H :

Corollary 4.3.17. Let H be a weak Hopf algebra with bijective antipode. Let εs

be the source map of H . Then there exists a 1-1 correspondence between bicovariant
differential calculi and some right ideals of H contained in kerεs such that these
ideals are right H-comodules with a coadjoint map.

Remark 4.3.18. Theorem 4.3.16 means that well-known Woronowicz’s theorem
about bicovariant differential calculi is still valid in the case of compact face algebras
and dynamical quantum groups obtained by dynamical twists of quantum groups. So
we can take some methods used in the case of quantum groups to carry out a similar
investigation of bicovariant differential calculi on these dynamical quantum groups.
The study of this direction is our ongoing program.
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