
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 12, No. 1, pp. 255-268, February 2008
This paper is available online at http://www.tjm.nsysu.edu.tw/

SPACE-TIME APPROACH TO PERELMAN’S L-GEODESICS
AND AN ANALOGY BETWEEN PERELMAN’S REDUCED
VOLUME AND HUISKEN’S MONOTONICITY FORMULA

Sun-Chin Chu

Abstract. From the viewpoint of space-time geometry and the trick of space-
time track, the author would like to investigate the L-geodesics, Perelman’s
reduced volume and Huisken’s monotonicity formula.

1. INTRODUCTION

Perelman [5] introduces a new length (energy-like) functional for paths in the
space-times of solutions of the Ricci flow, called the L-length. As seen, the natu-
ralness of this functional can be justified by the space-time approach. At the end
of §6 in [5], Perelman also remarks that

“The first geometric interpretation of Hamilton’s Harnack expression
was found by Chow and Chu [C-Chu 1,2]; ...; our construction is, in a
certain sense, dual to theirs.
Our formula for the reduced volume resembles the expression in Huisken
monotonicity for the mean curvature flow [Hu]; ....”

This motivates the author to investigate the L-geodesics, Perelman’s reduced volume
and Huisken’s monotonicity formula [4] from the viewpoint of space-time geometry.

This paper is organized as follows. In section 2, for the reader’s convenience
we recall the definitions of the L-length, L-geodesics, L-geodesic equation, reduced
distance and reduced volume. In section 3, we relate Perelman’s L-geodesics and L-
geodesic equation to those defined with respect to the space-time connection defined
by (11) (see also Lemma 4.3 in [2]). In section 4, by the trick of space-time track
introduced in [2] we give an exact analogy between Perelman’s reduced volume and
Huisken’s monotonicity formula [4].
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2. BASIC DEFINITIONS

Let (N n, h (t)) , t ∈ (α, ω) , be a solution to the Ricci flow. From this we can
easily obtain a solution (N n, h (τ)) to the backward Ricci flow

∂

∂τ
h = 2 Rc

by reversing time. In particular, if ω < +∞, let τ � ω − t, so that (N , h (τ)) is a
solution to the backward Ricci flow on the time interval (0, ω − α) . 1

2.1. The L-length and the L-geodesic
We begin by motivating the definition of Perelman’s L-length for the Ricci flow

as a renormalization of the length with respect to Perelman’s potentially infinite
dimensional manifold (Ñ , h̃).

2.1.1. Potentially infinite Riemannian metric on space-time
Given N ∈ N, define a metric on Ñ � N n × SN × (0, T ) by

(1) h̃ � hijdxidxj + τhαβdyαdyβ +
(

N

2τ
+ R

)
dτ2,

where hαβ is the metric on SN of constant sectional curvature 1/ (2N ) and R

denotes the scalar curvature of the evolving metric h on N . Here we have used
the convention that

{
xi
}n

i=1
will denote coordinates on the N factor, {yα}N

α=1

coordinates on the SN factor, and x0 � τ. Latin indices i, j, k, . . . will be on
N , Greek indices α, β, γ, . . . will be on SN , and 0 represents the (minus) time
component. Choosing N large enough so that N

2τ + R > 0 implies that the metric
h̃ is Riemannian, i.e., positive-definite. In local coordinates,

(2) h̃ij = hij, h̃αβ = τhαβ, h̃00 =
N

2τ
+ R, h̃i0 = h̃iα = h̃α0 = 0.

Let γ̃(s) � (x(s), y(s), τ(s)) be a shortest geodesic, with respect to the metric
h̃, between points p � (x0, y0, 0) and q � (x1, y1, τq) ∈ Ñ . Since the fibers SN

pinch to a point as τ → 0, it is clear that the geodesic γ̃(s) is orthogonal to the fibers
SN . (To see this directly, take a sequence of geodesics from pk � (x0, y0, 1/k) to
q and pass to the limit as k → ∞.) Therefore it suffices to consider the manifold
N̄ � N × (0, T ) endowed with the Riemannian metric:

(3) h̄ � hijdxidxj +
(

N

2τ
+ R

)
dτ2.

1We shall consider the case where α = −∞ (in which case we define ω − α � +∞.) On the other
hand, if ω = +∞ and α = −∞, we may simply take τ = −t. However, for the backward Ricci
flow we are not as interested in the case where ω = +∞ and α > −∞.
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Remark. The components of the Levi-Civita connection N ∇̃ of (N̄ , h̄) are
defined by

N ∇̃ ∂
∂xa

∂

∂xb
=

n∑
c=0

N Γ̃c
ab

∂

∂xc
,

where x0 = τ. By direct computation, we have that

N Γ̃k
ij = Γk

ij,

N Γ̃k
i0 = Rk

i ,

N Γ̃k
00 = −1

2
∇kR

and
N Γ̃0

ij = −
(

N

2τ
+ R

)−1

Rij,

N Γ̃0
i0 =

(
N

2τ
+ R

)−1 1
2
∇iR,

N Γ̃0
00 =

(
N

2τ
+ R

)−1 1
2

(
∂R

∂τ
+

R

τ

)
− 1

2τ
.

In particular, N Γ̃k
ab are independent of N, whereas

limN→∞ N Γ̃0
ij = 0,

limN→∞ N Γ̃0
i0 = 0,

limN→∞ N Γ̃0
00 = − 1

2τ .

For convenience, denote x(s) � γ(s). Now we use s = τ as the parameter of
the curve. Let γ̇ (τ) � dγ

dτ (τ) . The length of a path γ̄ (τ) � (γ(τ), τ) , with respect
to the metric h̄, is given by the following:

Length h̄ (γ̄)

=
∫ τq

0

√
N

2τ
+ R + |γ̇ (τ)|2dτ

=
∫ τq

0

√
N

2τ

√
1 +

2τ

N

(
R + |γ̇ (τ)|2

)
dτ

=
∫ τq

0

√
N

2τ

(
1 +

τ

N

(
R + |γ̇ (τ)|2

)
+ O

(
N−2

))
dτ

=
∫ τq

0

√
N

2τ
dτ +

∫ τq

0

√
τ

2N

(
R + |γ̇ (τ)|2

)
dτ +

∫ τq

0

√
1
2τ

O
(
N−3/2

)
dτ



258 Sun-Chin Chu

=
√

2Nτq +
1√
2N

∫ τq

0

√
τ
(
R + |γ̇ (τ)|2

)
dτ +

√
2τqO

(
N−3/2

)
.

The calculation indicates that as N → ∞, a shortest geodesic should approach a
minimizer of the following length functional:∫ τq

0

√
τ
(
R (γ (τ) , τ) + |γ̇ (τ)|2h(τ )

)
dτ.

Note that the functional only depends on the data of (N , h).
A natural geometry on space-time (in the sense of lengths, distances and geodesics)

is given by the following.

Definition. Let (N n, h (τ)) , τ ∈ (A, Ω) , be a solution to the backward
Ricci flow ∂

∂τ h = 2 Rc, and let γ : [τ1, τ2] → N be a piecewise C1-path, where
[τ1, τ2] ⊂ (A, Ω) and τ1 ≥ 0. The L-length of γ is defined by

(4) L (γ) � Lh (γ) �
∫ τ2

τ1

√
τ

(
R (γ (τ) , τ) +

∣∣∣∣dγ

dτ
(τ)
∣∣∣∣2
h(τ )

)
dτ.

It is clear that the L-length is defined only for paths defined on a subinterval of
the time interval where the solution to the backward Ricci flow exists.

Now that we have defined the L-length we may mimic basic Riemannian com-
parison geometry in the space-time setting for the Ricci flow. We compute the first
variation of the L-length and find the equation for the critical points of L (the L-
geodesic equation). We shall also compare this equation with the geodesic equation
for the space-time graph (with respect to a natural space-time connection) in Section
3.

Let (N n, h (τ)) , τ ∈ (A, Ω) , be a solution to the backward Ricci flow. Consider
a variation of the C2-path γ : [τ1, τ2] → N ; that is, let

G : [τ1, τ2]× (−ε, ε) → N
be a C2-map such that

G|[τ1,τ2]×{0} = γ.

We say that a variation G (·, ·) of a C2-path γ is C2 if G
(

σ2

4 , s
)

is C2 in
(σ, s) . Define

γs � G|[τ1,τ2]×{s} : [τ1, τ2] → N for− ε < s < ε.

Let

X (τ, s) � ∂G

∂τ
(τ, s) =

∂γs

∂τ
(τ) and Y (τ, s) � ∂G

∂s
(τ, s) =

∂γs

∂s
(τ)
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be the tangent vector field and variation vector field along γs (τ) , respectively. The
first variation formula for L is given by

Lemma. (Equation 7.1, Perelman [5]) Given a C2-family of curves γs :
[τ1, τ2] → N , the first variation of its L-length is given by

(5)

1
2

(δY L) (γs) � 1
2

d

ds
L (γs) =

√
τY · X∣∣τ2

τ1

+
∫ τ2

τ1

√
τY ·

(
1
2
∇R − 1

2τ
X −∇XX − 2 Rc (X)

)
dτ,

where the covariant derivative ∇ is with respect to h (τ) .

Proof. For a proof we refer the reader to [5].

The L-first variation formula (5) leads us to the following.

Definition. If γ is a critical point of the L-length functional among all C2-paths
with fixed endpoints, then γ is called an L-geodesic.

It follows from the L-first variation formula that a C2-path γ : [τ1, τ2] → (N , h)
is an L-geodesic if and only if it satisfies the L-geodesic equation:

(6) ∇XX − 1
2
∇R + 2 Rc (X) +

1
2τ

X = 0,

where X (τ) � dγ
dτ (τ) .

Remark. Let (M, g(τ)) be a complete solution to the backward Ricci flow
with bounded sectional curvature. (1) Given a space-time point (p, τ1) ∈ M×[0, T )
and a tangent vector V ∈ TpM, there exists a unique L-geodesic γ : [τ1, T ) → M
with

lim
τ→τ1

√
τX(τ) = V.

(2) Given two points p, q ∈ M and 0 ≤ τ1 < τ2 < T , there exists a smooth path
γ : [τ1, τ2] → M from p to q such that γ has the minimal L-length among all such
paths. Furthermore, all L-length minimizing paths are smooth L-geodesics. For
more details, we refer the reader to [3, 6].

2.2. The reduced distance and the reduced volume
We motivate the definition of Perelman’s reduced volume by computing the

volume of geodesic spheres in the potentially infinite-dimensional manifold.
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Let p = (x0, y0, 0) , τ̄ ∈ (0, T ) , and

Bg̃

(
p,
√

2Nτ̄
)
⊂ M̃ � M×SN × (0, T )

denote the ball centered at p with radius
√

2Nτ̄ with respect to the metric:

g̃ � gijdxidxj + τgαβdyαdyβ +
(

N

2τ
+ R

)
dτ2,

where gαβ is the metric on SN of constant sectional curvature 1/ (2N ) . For any
point w = (x, y, τw) ∈ ∂Bg̃(p,

√
2Nτ̄), because of the factor τ in τgαβdyαdyβ, we

have √
2Nτ̄ = dg̃ (w, p) = dg̃ ((x, y, τw), (x0, y0, 0))

= dg̃ ((x, y, τw), (x0, y, 0)) .

Hence, letting γ (τ) � (γM (τ) , y, τ) , τ ∈ [0, τw] , with γ (0) = (x0, y, 0) and
γM (τw) = w, we have

(7)

√
2Nτ̄ = inf

γ
Length g̃ (γ)

= inf
γM

 1√
2N

∫ τw

0

√
τ
(
R + |γ̇M (τ)|2

)
dτ

+
√

2Nτw + O
(
N−3/2

)


=
√

2Nτw +
1√
2N

L(x, τw) + O
(
N−3/2

)
,

where
L(x, τw) � inf

γM

∫ τw

0

√
τ
(
R + |γ̇M (τ)|2

)
dτ

and the infimum is taken over γM : [0, τw] → M with γM (0) = x0 and γM (τw) =
x. Therefore for any w = (x, y, τw) ∈ ∂Bg̃(p,

√
2Nτ̄),

√
τw =

√
τ̄ − 1

2N
L(x, τw) + O

(
N−2

)
.

This implies that the geodesic sphere ∂Bg̃

(
p,
√

2Nτ̄
)

, with respect to g̃, is O(N−1)-
close to the hypersurface M×SN × {τ̄}.

Note that since the fibers SN pinch to a point as τ → 0, if w = (x, y, τw) ∈
∂Bg̃(p,

√
2Nτ̄), then any point in {x}×SN ×{τw} also lies on the sphere ∂Bg̃ (p,√

2Nτ̄
)

. We have that the volume of ∂Bg̃

(
p,
√

2Nτ̄
)

is roughly (since the sphere
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has small curvature for N large) the volume of the hypersurface M×SN ×{τ̄} in
M̃ and its volume can be computed as:

Volg̃ ∂Bg̃

(
p,
√

2Nτ̄
)

≈
∫

∂Bg̃(p,
√

2Nτ̄)
dµgM(τw) (x) ∧ τN/2

w dµSN (y)

≈ Vol(SN , gSN )
∫
M

(√
τ̄ − 1

2N
L(x, τw) + O(N−2)

)N

dµgM(τ̄ )

≈ ωN

(√
2Nτ̄

)N
∫
M

(
1 − 1

2N
√

τ̄
L(x, τ̄) + O(N−2)

)N

dµgM(τ̄ ),

where ωN is the volume of the unit sphere SN (recall that gSN has constant sectional
curvature 1/ (2N ) , i.e., radius

√
2N ). We observe that

lim
N→∞

(
1− 1

2N
√

τ̄
L(x, τ̄) + O(N−2)

)N

= lim
N→∞

(
1− 1

N

1
2
√

τ̄
L(x, τ̄)

)N

= e
− 1

2
√

τ̄
L(x,τ̄)

.

For convenience, denote the quantity 1
2
√

τ̄
L(x, τ̄) by the reduced distance 
, i.e.,

(8) 
(x, τ̄) � 1
2
√

τ̄
L(x, τ̄).

Therefore, we have

lim
N→∞

(
1− 1

2N
√

τ̄
L(x, τ̄) + O(N−2)

)N

= e−�(x,τ̄).

It is easy to see that

(9)

Volg̃
(
∂Bg̃

(
p,
√

2Nτ̄
))

(√
2Nτ̄

)N+n

= (2N )−n/2 ωN

(∫
M

τ̄−n/2e−�(x,τ̄)dµgM(τ̄ ) + O(N−1)
)

.

In particular, we obtain the geometric invariant∫
M

τ̄−n/2e−�(x,τ̄ )dµgM(τ̄)
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for τ̄ ∈ (0, T ) .

Thus we are led to the following.

Definition. Let (Mn, g (τ)) , τ ∈ [0, T ] , be a complete solution to the back-
ward Ricci flow with bounded curvature. The reduced volume functional is defined
by

(10) Ṽ (τ) �
∫
M

(4πτ)−n/2 e−�(x,τ )dµg(τ ) (x)

for τ ∈ (0, T ) .

3. SPACE-TIME APPROACH TO PERELMAN’S L-GEODESIC EQUATION

We now compare the L-geodesic equation for γ with the geodesic equation for
the graph γ̄ (τ) = (γ (τ) , τ) with respect to the following space-time connection
(see also Lemma 4.3 in [1]):

(11) Γ̃k
ij = Γk

ij , Γ̃k
i0 = Γ̃k

0i = Rk
i , Γ̃k

00 = −1
2
∇kR, Γ̃0

00 = − 1
2τ

,

where i, j, k ≥ 1 (above and below), and the rest of the components are zero. It is
instructive to compare the Christoffel symbols Γ̃ above with the the symbols N Γ̃ of
the Levi-Civita connection N∇̃ for the metric h̄ introduced in subsection 2.1. For
k ≥ 1, note that Γ̃k

ab = N Γ̃k
ab is independent of N, whereas Γ̃0

ab = limN→∞ N Γ̃0
ab

for all a, b ≥ 0.

Let τ = τ(σ) � σ2/4, i.e., σ � 2
√

τ . We look for a geodesic, with respect to
the space-time connection defined above, of the form

β̃(σ) � (γ(τ(σ)), σ2/4),

where γ : [τ1, τ2] → M is a path. For convenience, let β(σ) � γ(τ(σ)), β̃i �
xi ◦ β � βi for i = 1, . . . , n, and β̃0 � x0 ◦ β̃ (so that β̃0 (σ) = σ2/4).

The motivation for change of time-variable is given by the following.

Claim. If β̃ : [0, σ̄] → N × [0, T ] is a geodesic, with respect to the connection
∇̃, with β̃0 (0) = 0 and dβ̃0

dσ (σ) �= 0 for σ > 0, then β̃0 (σ) = Aσ2 for some
positive constant A.

Proof. If β̃0 (σ) = τ (σ) , then the time-component of the geodesic equation
with respect to ∇̃ is:



Space-time Approach to Perelman’s L-Geodesics and Reduced Volume 263

0 =
d2β̃0

dσ2
+

∑
0≤i,j≤n

(
Γ̃0

ij ◦ β̃
) dβ̃i

dσ

dβ̃j

dσ

=
d2τ

dσ2
− 1

2τ

(
dτ

dσ

)2

since Γ̃0
ij = 0 when i ≥ 1 or j ≥ 1, and Γ̃0

00 = − 1
2τ . Hence, assuming τ (σ) > 0

and dτ
dσ (σ) > 0 for σ > 0, we have

d

dσ
log

dτ

dσ
=

d2τ
dσ2

dτ
dσ

=
dτ
dσ

2τ
=

d

dσ
log

√
τ ,

so that
dτ

dσ
= C

√
τ

for some constant C > 0. Since τ (0) = 0, we conclude

τ (σ) = C2σ2/4.

By direct computation, we have

dβk

dσ
=

σ

2
dγk

dτ
,

dβ̃0

dσ
=

σ

2
,

and
d2βk

dσ2
=

d

dσ

(
σ

2
dγk

dτ
(τ(σ))

)
=
(σ

2

)2 d2γk

dτ2
(τ(σ)) +

1
2

(
dγk

dτ
(τ(σ))

)
.

We justify the change of variables from τ to σ via the geodesic equation with respect
to Γ̃ by showing the time-component of β̃ satisfies the geodesic equation:

d2β̃0

dσ2
+

∑
0≤i,j≤n

(
Γ̃0

ij ◦ β̃
) dβ̃i

dσ

dβ̃j

dσ
=

d2

dσ2

(
σ2/4

)
+ Γ̃0

00

(
β̃ (σ)

)
(σ/2)2

=
1
2
− 1

2 (σ2/4)
(σ/2)2 = 0.

(This last equation justifies defining the time-component of β̃ (σ) as σ2/4, and
in particular, the change of variables σ = 2

√
τ .) For the space components, the

geodesic equation with respect to Γ̃ says that for k = 1, ..., n,

0 =
d2β̃k

dσ2
+

∑
0≤i,j≤n

Γ̃k
ij

dβ̃i

dσ

dβ̃j

dσ

=
d2βk

dσ2
+

∑
1≤i,j≤n

Γk
ij

dβi

dσ

dβj

dσ
+ 2

∑
1≤i≤n

Γ̃k
i0

dβi

dσ

dβ̃0

dσ
+ Γ̃k

00

dβ̃0

dσ

dβ̃0

dσ
.
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This is equivalent to:

0 =
(σ

2

)2 d2γk

dτ2
(τ(σ)) +

∑
1≤i,j≤n

Γk
ij

(
σ

2
dγi

dτ
(τ(σ))

)(
σ

2
dγj

dτ
(τ(σ))

)
+

1
2

(
dγk

dτ
(τ(σ))

)
+ 2

∑
1≤i≤n

Rk
i

(
σ

2
dγi

dτ
(τ(σ))

)(σ

2

)
− 1

2

(σ

2

)2 ∇kR,

which, after dividing by τ = σ2/4, implies

0 =
d2γk

dτ2
(τ(σ)) +

∑
1≤i,j≤n

Γk
ij

dγi

dτ
(τ(σ))

dγj

dτ
(τ(σ)) +

1
2τ

(
dγk

dτ
(τ(σ))

)
+2

∑
1≤i≤n

Rk
i

dγi

dτ
(τ(σ))− 1

2
∇kR.

That is, in invariant notation and with X � dγ
dτ , we have

∇XX − 1
2
∇R + 2 Rc(X) +

1
2τ

X = 0,

which is the same as (6). Thus L-geodesics correspond to geodesics defined with
respect to the space-time connection. In particular, γ (τ) is an L-geodesic if and only
if β (σ) � γ

(
σ2/4

)
is a geodesic with respect the space-time connection ∇̃. Since

Γ̃c
ab = limN→∞ N Γ̃c

ab, we also conclude that the Riemannian geodesic equation for
the metric h̄ on Nn × (0, T ) (defined in subsection 2.1) limits to the σ = 2

√
τ

reparametrization of the L-geodesic equation as N → ∞.

4. AN ANALOGUE BETWEEN PERELMAN’S REDUCED VOLUME AND HUISKEN’S

MONOTONICITY FORMULA

Given a 1-parameter family of metrics g (t) , t ∈ I, on a manifold Mn and
functions β (t) : Mn → R, we define the metric gβ on M̃n+1 � Mn × I by (see
[2])

gβ (x, t) � g (x, t) + β2 (x, t) dt2.

We consider the family of hypersurfaces given by the time slices Mt � Mn×{t} ⊂
M̃n+1. A choice of unit normal vector field to Mt is

ν � − 1
β

∂

∂t
.

The hypersurfaces Mt parametrized by the maps Xt : Mn → M̃n+1 defined by
Xt (x) � (x, t) are evolving by the flow

∂

∂t
Xt = −βν.



Space-time Approach to Perelman’s L-Geodesics and Reduced Volume 265

This implies the metrics are evolving by

∂

∂t
gij = −2βhij ,

where hij is the second fundamental form of Mt ⊂ M̃n+1. One way of seeing this
formula is from

1
β

hij = (Γβ)0ij = −1
2

(gβ)00 ∂

∂x0
(gβ)ij = − 1

2β2

∂

∂t
gij,

where x0 = t. Hence

(12) βhij = Rij.

Consider the special case where β (t)2 = R (t) is the scalar curvature of g (t) .
Tracing (12) we get βH = R so that β = H and the hypersurfaces Mt satisfy the
mean curvature flow: ∂

∂tXt = −Hν.
Now we consider the more general setting of hypersurfaces evolving in a Rie-

mannian manifold. Given
(
Pn+1, g

)
, let Xt : Mn → Pn+1, t ∈ I, parametrize

a 1-parameter family of hypersurfaces Mt = Xt (Mn) evolving in their normal
directions

∂

∂t
Xt = −βν,

where β (t) : Mn → R are arbitrary functions. We consider the product metric
g + Ndt2 on Pn+1 × I. The space-time track is defined by

M̃n+1 � {(x, t) : x ∈ Mt, t ∈ I} ⊂ Pn+1 × I.

We parametrize this by the map

X̃ : Mn × I → Pn+1 × I

defined by
X̃ (p, t) � (Xt (p) , t) .

Let N ĝ denote the induced metric on M̃n+1. Its components

N ĝab �
〈

∂X̃

∂xa
,
∂X̃

∂xb

〉
g+Ndt2

=
〈

∂Xt

∂xa
,
∂Xt

∂xb

〉
g

+ Nδa0δb0,

where a, b ≥ 0 are given by

N ĝij = gij,
N ĝi0 = 0, N ĝ00 = β2 + N,
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where i, j ≥ 1.

Now, following Perelman, we renormalize length function associated to the
metric (similar to what we did in section 2) on M n × J (we switch from I to J
when we consider the time parameter to be τ instead of t)

N ğ (x, τ) � g (x, τ) +
(

β2 (x, τ) +
N

2τ

)
dτ2,

where dτ
dt = −1 and g (τ) = g (t (τ)) is the pulled back metric on M n by Xτ of

the induced metric on Mτ � Xτ (Mn) ⊂ Pn+1. We may also think of this metric
as defined on an open subset of P n+1 by pushing forward by the diffeomorphism
(x, τ) → Xτ (x) . Let γ : [0, τ0] → Mn be a path and define the path γ̄ : [0, τ0] →
Pn+1 by

γ̄ (τ) � Xτ (γ (τ)) ∈ Mτ

so that (γ (τ) , τ) ∈ Mn × J corresponds to the point γ̄ (τ) ∈ Mτ ⊂ Pn+1. We
have

L (N ğ) (γ̄) =
∫ τ0

0

(∣∣∣∣dγ

dτ

∣∣∣∣2
g(τ )

+ β2 +
N

2τ

)1/2

dτ.

Again, motivated by carrying out the expansion of L(N ğ) (γ̄) in powers of N, and
considering highest order non-trivial term, we define the L-length of γ by

L (γ) �
∫ τ0

0

√
τ

(∣∣∣∣dγ

dτ
(τ)
∣∣∣∣2
g(τ )

+ β2 (γ (τ) , τ)

)
dτ

=
∫ τ0

0

√
τ

∣∣∣∣dγ̄

dτ
(τ)
∣∣∣∣2
g

dτ.

(The equality holds since ι∗g = gβ, where ι : Mn × J → Pn+1 is defined by
ι (x, τ) � Xτ (x) .) Making the change of variables σ = 2

√
τ , we have

L (γ) =
∫ 2

√
τ0

0

∣∣∣∣dγ̄

dτ
(σ)
∣∣∣∣2
g

dσ.

This is the energy of the path γ̄ (σ) and assuming that τ0, γ (0) = p and γ (τ0) = q

are fixed, L (γ) is minimized by a constant speed geodesic and

L̆ (q, τ0) � inf
γ
L (γ) =

dg (p, q)2

2
√

τ0
.

Let 
̆ (q, τ0) � 1
2
√

τ0
L̆ (q, τ0) . Then


̆ (q, τ0) =
dg (p, q)2

4τ0
.
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Recall that Perelman’s reduced volume for a solution to the backward Ricci
flow is defined by

(10) Ṽ (τ) �
∫

M
(4πτ)−n/2 e−�(x,τ )dµg(τ ) (x) ,

where 
 is defined in (8). From the above considerations, we see that Huisken’s
monotonicity formula for the mean curvature flow (see [4]) is the analogue of the
monotonicity of Ṽ (τ) . In particular, if Pn+1 = R

n+1, then Huisken’s monotone
quantity is ∫

Xt

(4πτ)−n/2 e−
|x|2
4τ dµ =

∫
Mn

(4πτ)−n/2 e−�̆dµ.

Remark. The above can perhaps be seen more clearly and simply in the case
of a fixed Riemannian metric g on a manifold Mn. Define on M ×J , where J is
an interval, the metric

N g̊ (x, τ) � g (x) +
N

2τ
dτ2.

Then given γ : [τ1, τ2] → Mn, the length of γ̃ : [τ1, τ2] → Mn × J defined by
γ̃ (τ) � (γ (τ) , τ) is

L (N g̊) (γ̃) =
∫ τ2

τ1

(∣∣∣∣dγ

dτ

∣∣∣∣2
g(τ )

+
N

2τ

)1/2

dτ

=
√

N
(√

2τ2 −
√

2τ1

)
+

1√
2N

∫ τ2

τ1

√
τ

∣∣∣∣dγ

dτ

∣∣∣∣2
g(τ )

dτ + O
(
N−3/2

)
.
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