SPACE-TIME APPROACH TO PERELMAN'S \mathcal{L}-GEODESICS AND AN ANALOGY BETWEEN PERELMAN'S REDUCED VOLUME AND HUISKEN'S MONOTONICITY FORMULA

Sun-Chin Chu

Abstract

From the viewpoint of space-time geometry and the trick of spacetime track, the author would like to investigate the \mathcal{L}-geodesics, Perelman's reduced volume and Huisken's monotonicity formula.

1. Introduction

Perelman [5] introduces a new length (energy-like) functional for paths in the space-times of solutions of the Ricci flow, called the \mathcal{L}-length. As seen, the naturalness of this functional can be justified by the space-time approach. At the end of $\S 6$ in [5], Perelman also remarks that
"The first geometric interpretation of Hamilton's Harnack expression was found by Chow and Chu [C-Chu 1,2]; ...; our construction is, in a certain sense, dual to theirs.
Our formula for the reduced volume resembles the expression in Huisken monotonicity for the mean curvature flow [Hu];"

This motivates the author to investigate the \mathcal{L}-geodesics, Perelman's reduced volume and Huisken's monotonicity formula [4] from the viewpoint of space-time geometry.

This paper is organized as follows. In section 2, for the reader's convenience we recall the definitions of the \mathcal{L}-length, \mathcal{L}-geodesics, \mathcal{L}-geodesic equation, reduced distance and reduced volume. In section 3 , we relate Perelman's \mathcal{L}-geodesics and \mathcal{L} geodesic equation to those defined with respect to the space-time connection defined by (11) (see also Lemma 4.3 in [2]). In section 4, by the trick of space-time track introduced in [2] we give an exact analogy between Perelman's reduced volume and Huisken's monotonicity formula [4].

[^0]
2. Basic Definitions

Let $\left(\mathcal{N}^{n}, h(t)\right), t \in(\alpha, \omega)$, be a solution to the Ricci flow. From this we can easily obtain a solution $\left(\mathcal{N}^{n}, h(\tau)\right)$ to the backward Ricci flow

$$
\frac{\partial}{\partial \tau} h=2 \mathrm{Rc}
$$

by reversing time. In particular, if $\omega<+\infty$, let $\tau \doteqdot \omega-t$, so that $(\mathcal{N}, h(\tau))$ is a solution to the backward Ricci flow on the time interval $(0, \omega-\alpha)$. ${ }^{1}$

2.1. The \mathcal{L}-length and the \mathcal{L}-geodesic

We begin by motivating the definition of Perelman's \mathcal{L}-length for the Ricci flow as a renormalization of the length with respect to Perelman's potentially infinite dimensional manifold $(\widetilde{\mathcal{N}}, \tilde{h})$.

2.1.1. Potentially infinite Riemannian metric on space-time

Given $N \in \mathbb{N}$, define a metric on $\widetilde{\mathcal{N}} \doteqdot \mathcal{N}^{n} \times \mathcal{S}^{N} \times(0, T)$ by

$$
\begin{equation*}
\tilde{h} \doteqdot h_{i j} d x^{i} d x^{j}+\tau h_{\alpha \beta} d y^{\alpha} d y^{\beta}+\left(\frac{N}{2 \tau}+R\right) d \tau^{2} \tag{1}
\end{equation*}
$$

where $h_{\alpha \beta}$ is the metric on \mathcal{S}^{N} of constant sectional curvature $1 /(2 N)$ and R denotes the scalar curvature of the evolving metric h on \mathcal{N}. Here we have used the convention that $\left\{x^{i}\right\}_{i=1}^{n}$ will denote coordinates on the \mathcal{N} factor, $\left\{y^{\alpha}\right\}_{\alpha=1}^{N}$ coordinates on the \mathcal{S}^{N} factor, and $x^{0} \doteqdot \tau$. Latin indices i, j, k, \ldots will be on \mathcal{N}, Greek indices $\alpha, \beta, \gamma, \ldots$ will be on \mathcal{S}^{N}, and 0 represents the (minus) time component. Choosing N large enough so that $\frac{N}{2 \tau}+R>0$ implies that the metric \tilde{h} is Riemannian, i.e., positive-definite. In local coordinates,

$$
\begin{equation*}
\tilde{h}_{i j}=h_{i j}, \quad \tilde{h}_{\alpha \beta}=\tau h_{\alpha \beta}, \quad \tilde{h}_{00}=\frac{N}{2 \tau}+R, \quad \tilde{h}_{i 0}=\tilde{h}_{i \alpha}=\tilde{h}_{\alpha 0}=0 \tag{2}
\end{equation*}
$$

Let $\tilde{\gamma}(s) \doteqdot(x(s), y(s), \tau(s))$ be a shortest geodesic, with respect to the metric \tilde{h}, between points $p \doteqdot\left(x_{0}, y_{0}, 0\right)$ and $q \doteqdot\left(x_{1}, y_{1}, \tau_{q}\right) \in \widetilde{\mathcal{N}}$. Since the fibers \mathcal{S}^{N} pinch to a point as $\tau \rightarrow 0$, it is clear that the geodesic $\tilde{\gamma}(s)$ is orthogonal to the fibers \mathcal{S}^{N}. (To see this directly, take a sequence of geodesics from $p_{k} \doteqdot\left(x_{0}, y_{0}, 1 / k\right)$ to q and pass to the limit as $k \rightarrow \infty$.) Therefore it suffices to consider the manifold $\overline{\mathcal{N}} \doteqdot \mathcal{N} \times(0, T)$ endowed with the Riemannian metric:

$$
\begin{equation*}
\bar{h} \doteqdot h_{i j} d x^{i} d x^{j}+\left(\frac{N}{2 \tau}+R\right) d \tau^{2} \tag{3}
\end{equation*}
$$

[^1]Remark. The components of the Levi-Civita connection ${ }^{N} \tilde{\nabla}$ of $(\overline{\mathcal{N}}, \bar{h})$ are defined by

$$
{ }^{N} \tilde{\nabla}_{\frac{\partial}{\partial x^{a}}} \frac{\partial}{\partial x^{b}}=\sum_{c=0}^{n}{ }^{N} \tilde{\Gamma}_{a b}^{c} \frac{\partial}{\partial x^{c}}
$$

where $x^{0}=\tau$. By direct computation, we have that

$$
\begin{aligned}
{ }^{N} \tilde{\Gamma}_{i j}^{k} & =\Gamma_{i j}^{k} \\
{ }^{N} \tilde{\Gamma}_{i 0}^{k} & =R_{i}^{k} \\
{ }^{N} \tilde{\Gamma}_{00}^{k} & =-\frac{1}{2} \nabla^{k} R
\end{aligned}
$$

and

$$
\begin{aligned}
& { }^{N} \tilde{\Gamma}_{i j}^{0}=-\left(\frac{N}{2 \tau}+R\right)^{-1} R_{i j}, \\
& { }^{N} \tilde{\Gamma}_{i 0}^{0}=\left(\frac{N}{2 \tau}+R\right)^{-1} \frac{1}{2} \nabla_{i} R \\
& { }^{N} \tilde{\Gamma}_{00}^{0}=\left(\frac{N}{2 \tau}+R\right)^{-1} \frac{1}{2}\left(\frac{\partial R}{\partial \tau}+\frac{R}{\tau}\right)-\frac{1}{2 \tau} .
\end{aligned}
$$

In particular, ${ }^{N} \tilde{\Gamma}_{a b}^{k}$ are independent of N, whereas

$$
\begin{aligned}
\lim _{N \rightarrow \infty}{ }^{N} \tilde{\Gamma}_{i j}^{0} & =0 \\
\lim _{N \rightarrow \infty}{ }^{N} \tilde{\Gamma}_{i 0}^{0} & =0 \\
\lim _{N \rightarrow \infty} & N \tilde{\Gamma}_{00}^{0}
\end{aligned}=-\frac{1}{2 \tau} .
$$

For convenience, denote $x(s) \doteqdot \gamma(s)$. Now we use $s=\tau$ as the parameter of the curve. Let $\dot{\gamma}(\tau) \doteqdot \frac{d \gamma}{d \tau}(\tau)$. The length of a path $\bar{\gamma}(\tau) \doteqdot(\gamma(\tau), \tau)$, with respect to the metric \bar{h}, is given by the following:

$$
\begin{aligned}
& \text { Length } \bar{h}(\bar{\gamma}) \\
& =\int_{0}^{\tau_{q}} \sqrt{\frac{N}{2 \tau}+R+|\dot{\gamma}(\tau)|^{2}} d \tau \\
& =\int_{0}^{\tau_{q}} \sqrt{\frac{N}{2 \tau}} \sqrt{1+\frac{2 \tau}{N}\left(R+|\dot{\gamma}(\tau)|^{2}\right)} d \tau \\
& =\int_{0}^{\tau_{q}} \sqrt{\frac{N}{2 \tau}}\left(1+\frac{\tau}{N}\left(R+|\dot{\gamma}(\tau)|^{2}\right)+O\left(N^{-2}\right)\right) d \tau \\
& =\int_{0}^{\tau_{q}} \sqrt{\frac{N}{2 \tau}} d \tau+\int_{0}^{\tau_{q}} \sqrt{\frac{\tau}{2 N}}\left(R+|\dot{\gamma}(\tau)|^{2}\right) d \tau+\int_{0}^{\tau_{q}} \sqrt{\frac{1}{2 \tau}} O\left(N^{-3 / 2}\right) d \tau
\end{aligned}
$$

$$
=\sqrt{2 N \tau_{q}}+\frac{1}{\sqrt{2 N}} \int_{0}^{\tau_{q}} \sqrt{\tau}\left(R+|\dot{\gamma}(\tau)|^{2}\right) d \tau+\sqrt{2 \tau_{q}} O\left(N^{-3 / 2}\right)
$$

The calculation indicates that as $N \rightarrow \infty$, a shortest geodesic should approach a minimizer of the following length functional:

$$
\int_{0}^{\tau_{q}} \sqrt{\tau}\left(R(\gamma(\tau), \tau)+|\dot{\gamma}(\tau)|_{h(\tau)}^{2}\right) d \tau
$$

Note that the functional only depends on the data of (\mathcal{N}, h).
A natural geometry on space-time (in the sense of lengths, distances and geodesics) is given by the following.

Definition. Let $\left(\mathcal{N}^{n}, h(\tau)\right), \tau \in(A, \Omega)$, be a solution to the backward Ricci flow $\frac{\partial}{\partial \tau} h=2 \mathrm{Rc}$, and let $\gamma:\left[\tau_{1}, \tau_{2}\right] \rightarrow \mathcal{N}$ be a piecewise C^{1}-path, where $\left[\tau_{1}, \tau_{2}\right] \subset(A, \Omega)$ and $\tau_{1} \geq 0$. The \mathcal{L}-length of γ is defined by

$$
\begin{equation*}
\mathcal{L}(\gamma) \doteqdot \mathcal{L}_{h}(\gamma) \doteqdot \int_{\tau_{1}}^{\tau_{2}} \sqrt{\tau}\left(R(\gamma(\tau), \tau)+\left|\frac{d \gamma}{d \tau}(\tau)\right|_{h(\tau)}^{2}\right) d \tau \tag{4}
\end{equation*}
$$

It is clear that the \mathcal{L}-length is defined only for paths defined on a subinterval of the time interval where the solution to the backward Ricci flow exists.

Now that we have defined the \mathcal{L}-length we may mimic basic Riemannian comparison geometry in the space-time setting for the Ricci flow. We compute the first variation of the \mathcal{L}-length and find the equation for the critical points of \mathcal{L} (the \mathcal{L} geodesic equation). We shall also compare this equation with the geodesic equation for the space-time graph (with respect to a natural space-time connection) in Section 3.

Let $\left(\mathcal{N}^{n}, h(\tau)\right), \tau \in(A, \Omega)$, be a solution to the backward Ricci flow. Consider a variation of the C^{2}-path $\gamma:\left[\tau_{1}, \tau_{2}\right] \rightarrow \mathcal{N}$; that is, let

$$
G:\left[\tau_{1}, \tau_{2}\right] \times(-\varepsilon, \varepsilon) \rightarrow \mathcal{N}
$$

be a C^{2}-map such that

$$
\left.G\right|_{\left[\tau_{1}, \tau_{2}\right] \times\{0\}}=\gamma .
$$

We say that a variation $G(\cdot, \cdot)$ of a C^{2}-path γ is C^{2} if $G\left(\frac{\sigma^{2}}{4}, s\right)$ is C^{2} in (σ, s). Define

$$
\left.\gamma_{s} \doteqdot G\right|_{\left[\tau_{1}, \tau_{2}\right] \times\{s\}}:\left[\tau_{1}, \tau_{2}\right] \rightarrow \mathcal{N} \text { for }-\varepsilon<s<\varepsilon
$$

Let

$$
X(\tau, s) \doteqdot \frac{\partial G}{\partial \tau}(\tau, s)=\frac{\partial \gamma_{s}}{\partial \tau}(\tau) \text { and } Y(\tau, s) \doteqdot \frac{\partial G}{\partial s}(\tau, s)=\frac{\partial \gamma_{s}}{\partial s}(\tau)
$$

be the tangent vector field and variation vector field along $\gamma_{s}(\tau)$, respectively. The first variation formula for \mathcal{L} is given by

Lemma. (Equation 7.1, Perelman [5]) Given a C^{2}-family of curves γ_{s} : $\left[\tau_{1}, \tau_{2}\right] \rightarrow \mathcal{N}$, the first variation of its \mathcal{L}-length is given by

$$
\begin{align*}
\frac{1}{2}\left(\delta_{Y} \mathcal{L}\right)\left(\gamma_{s}\right) \doteqdot & \frac{1}{2} \frac{d}{d s} \mathcal{L}\left(\gamma_{s}\right)=\left.\sqrt{\tau} Y \cdot X\right|_{\tau_{1}} ^{\tau_{2}} \\
& +\int_{\tau_{1}}^{\tau_{2}} \sqrt{\tau} Y \cdot\left(\frac{1}{2} \nabla R-\frac{1}{2 \tau} X-\nabla_{X} X-2 \operatorname{Rc}(X)\right) d \tau \tag{5}
\end{align*}
$$

where the covariant derivative ∇ is with respect to $h(\tau)$.
Proof. For a proof we refer the reader to [5].
The \mathcal{L}-first variation formula (5) leads us to the following.
Definition. If γ is a critical point of the \mathcal{L}-length functional among all C^{2}-paths with fixed endpoints, then γ is called an \mathcal{L}-geodesic.

It follows from the \mathcal{L}-first variation formula that a C^{2}-path $\gamma:\left[\tau_{1}, \tau_{2}\right] \rightarrow(\mathcal{N}, h)$ is an \mathcal{L}-geodesic if and only if it satisfies the \mathcal{L}-geodesic equation:

$$
\begin{equation*}
\nabla_{X} X-\frac{1}{2} \nabla R+2 \operatorname{Rc}(X)+\frac{1}{2 \tau} X=0 \tag{6}
\end{equation*}
$$

where $X(\tau) \doteqdot \frac{d \gamma}{d \tau}(\tau)$.
Remark. Let $(\mathcal{M}, g(\tau))$ be a complete solution to the backward Ricci flow with bounded sectional curvature. (1) Given a space-time point $\left(p, \tau_{1}\right) \in \mathcal{M} \times[0, T)$ and a tangent vector $V \in T_{p} \mathcal{M}$, there exists a unique \mathcal{L}-geodesic $\gamma:\left[\tau_{1}, T\right) \rightarrow \mathcal{M}$ with

$$
\lim _{\tau \rightarrow \tau_{1}} \sqrt{\tau} X(\tau)=V
$$

(2) Given two points $p, q \in \mathcal{M}$ and $0 \leq \tau_{1}<\tau_{2}<T$, there exists a smooth path $\gamma:\left[\tau_{1}, \tau_{2}\right] \rightarrow \mathcal{M}$ from p to q such that γ has the minimal \mathcal{L}-length among all such paths. Furthermore, all \mathcal{L}-length minimizing paths are smooth \mathcal{L}-geodesics. For more details, we refer the reader to $[3,6]$.

2.2. The reduced distance and the reduced volume

We motivate the definition of Perelman's reduced volume by computing the volume of geodesic spheres in the potentially infinite-dimensional manifold.

Let $p=\left(x_{0}, y_{0}, 0\right), \bar{\tau} \in(0, T)$, and

$$
B_{\tilde{g}}(p, \sqrt{2 N \bar{\tau}}) \subset \widetilde{\mathcal{M}} \doteqdot \mathcal{M} \times \mathcal{S}^{N} \times(0, T)
$$

denote the ball centered at p with radius $\sqrt{2 N \bar{\tau}}$ with respect to the metric:

$$
\tilde{g} \doteqdot g_{i j} d x^{i} d x^{j}+\tau g_{\alpha \beta} d y^{\alpha} d y^{\beta}+\left(\frac{N}{2 \tau}+R\right) d \tau^{2}
$$

where $g_{\alpha \beta}$ is the metric on \mathcal{S}^{N} of constant sectional curvature $1 /(2 N)$. For any point $w=\left(x, y, \tau_{w}\right) \in \partial B_{\tilde{g}}(p, \sqrt{2 N \bar{\tau}})$, because of the factor τ in $\tau g_{\alpha \beta} d y^{\alpha} d y^{\beta}$, we have

$$
\begin{aligned}
\sqrt{2 N \bar{\tau}} & =d_{\tilde{g}}(w, p)=d_{\tilde{g}}\left(\left(x, y, \tau_{w}\right),\left(x_{0}, y_{0}, 0\right)\right) \\
& =d_{\tilde{g}}\left(\left(x, y, \tau_{w}\right),\left(x_{0}, y, 0\right)\right)
\end{aligned}
$$

Hence, letting $\gamma(\tau) \doteqdot\left(\gamma_{\mathcal{M}}(\tau), y, \tau\right), \tau \in\left[0, \tau_{w}\right]$, with $\gamma(0)=\left(x_{0}, y, 0\right)$ and $\gamma_{\mathcal{M}}\left(\tau_{w}\right)=w$, we have

$$
\begin{align*}
\sqrt{2 N \bar{\tau}} & =\inf _{\gamma} \text { Length }_{\tilde{g}}(\gamma) \\
& =\inf _{\gamma \mathcal{M}}\binom{\frac{1}{\sqrt{2 N}} \int_{0}^{\tau_{w}} \sqrt{\tau}\left(R+\left|\dot{\gamma}_{\mathcal{M}}(\tau)\right|^{2}\right) d \tau}{+\sqrt{2 N \tau_{w}}+O\left(N^{-3 / 2}\right)} \tag{7}\\
& =\sqrt{2 N \tau_{w}}+\frac{1}{\sqrt{2 N}} L\left(x, \tau_{w}\right)+O\left(N^{-3 / 2}\right),
\end{align*}
$$

where

$$
L\left(x, \tau_{w}\right) \doteqdot \inf _{\gamma_{\mathcal{M}}} \int_{0}^{\tau_{w}} \sqrt{\tau}\left(R+\left|\dot{\gamma}_{\mathcal{M}}(\tau)\right|^{2}\right) d \tau
$$

and the infimum is taken over $\gamma_{\mathcal{M}}:\left[0, \tau_{w}\right] \rightarrow \mathcal{M}$ with $\gamma_{\mathcal{M}}(0)=x_{0}$ and $\gamma_{\mathcal{M}}\left(\tau_{w}\right)=$ x. Therefore for any $w=\left(x, y, \tau_{w}\right) \in \partial B_{\tilde{g}}(p, \sqrt{2 N \bar{\tau}})$,

$$
\sqrt{\tau_{w}}=\sqrt{\bar{\tau}}-\frac{1}{2 N} L\left(x, \tau_{w}\right)+O\left(N^{-2}\right) .
$$

This implies that the geodesic sphere $\partial B_{\tilde{g}}(p, \sqrt{2 N \bar{\tau}})$, with respect to \tilde{g}, is $O\left(N^{-1}\right)$ close to the hypersurface $\mathcal{M} \times \mathcal{S}^{N} \times\{\bar{\tau}\}$.

Note that since the fibers \mathcal{S}^{N} pinch to a point as $\tau \rightarrow 0$, if $w=\left(x, y, \tau_{w}\right) \in$ $\partial B_{\tilde{g}}(p, \sqrt{2 N \bar{\tau}})$, then any point in $\{x\} \times \mathcal{S}^{N} \times\left\{\tau_{w}\right\}$ also lies on the sphere $\partial B_{\tilde{g}}(p$, $\sqrt{2 N \bar{\tau}})$. We have that the volume of $\partial B_{\tilde{g}}(p, \sqrt{2 N \bar{\tau}})$ is roughly (since the sphere
has small curvature for N large) the volume of the hypersurface $\mathcal{M} \times \mathcal{S}^{N} \times\{\bar{\tau}\}$ in $\widetilde{\mathcal{M}}$ and its volume can be computed as:

$$
\begin{aligned}
& \operatorname{Vol}_{\tilde{g}} \partial B_{\tilde{g}}(p, \sqrt{2 N \bar{\tau}}) \\
& \approx \int_{\partial B_{\tilde{g}}(p, \sqrt{2 N \bar{\tau}})} d \mu_{g_{\mathcal{M}}\left(\tau_{w}\right)}(x) \wedge \tau_{w}^{N / 2} d \mu_{\mathcal{S}^{N}}(y) \\
& \approx \operatorname{Vol}\left(\mathcal{S}^{N}, g_{\mathcal{S}^{N}}\right) \int_{\mathcal{M}}\left(\sqrt{\bar{\tau}}-\frac{1}{2 N} L\left(x, \tau_{w}\right)+O\left(N^{-2}\right)\right)^{N} d \mu_{g_{\mathcal{M}}(\bar{\tau})} \\
& \approx \omega_{N}(\sqrt{2 N \bar{\tau}})^{N} \int_{\mathcal{M}}\left(1-\frac{1}{2 N \sqrt{\bar{\tau}}} L(x, \bar{\tau})+O\left(N^{-2}\right)\right)^{N} d \mu_{g_{\mathcal{M}}(\bar{\tau})},
\end{aligned}
$$

where ω_{N} is the volume of the unit sphere \mathcal{S}^{N} (recall that $g_{\mathcal{S}^{N}}$ has constant sectional curvature $1 /(2 N)$, i.e., radius $\sqrt{2 N})$. We observe that

$$
\begin{aligned}
& \lim _{N \rightarrow \infty}\left(1-\frac{1}{2 N \sqrt{\bar{\tau}}} L(x, \bar{\tau})+O\left(N^{-2}\right)\right)^{N} \\
= & \lim _{N \rightarrow \infty}\left(1-\frac{1}{N} \frac{1}{2 \sqrt{\bar{\tau}}} L(x, \bar{\tau})\right)^{N} \\
= & e^{-\frac{1}{2 \sqrt{\tau}} L(x, \bar{\tau})} .
\end{aligned}
$$

For convenience, denote the quantity $\frac{1}{2 \sqrt{\bar{\tau}}} L(x, \bar{\tau})$ by the reduced distance ℓ, i.e.,

$$
\begin{equation*}
\ell(x, \bar{\tau}) \doteqdot \frac{1}{2 \sqrt{\bar{\tau}}} L(x, \bar{\tau}) . \tag{8}
\end{equation*}
$$

Therefore, we have

$$
\lim _{N \rightarrow \infty}\left(1-\frac{1}{2 N \sqrt{\bar{\tau}}} L(x, \bar{\tau})+O\left(N^{-2}\right)\right)^{N}=e^{-\ell(x, \bar{\tau})}
$$

It is easy to see that

$$
\begin{align*}
& \frac{\operatorname{Vol}_{\tilde{g}}\left(\partial B_{\tilde{g}}(p, \sqrt{2 N \bar{\tau}})\right)}{(\sqrt{2 N \bar{\tau}})^{N+n}} \tag{9}\\
& =(2 N)^{-n / 2} \omega_{N}\left(\int_{\mathcal{M}} \bar{\tau}^{-n / 2} e^{-\ell(x, \bar{\tau})} d \mu_{g_{\mathcal{M}}(\bar{\tau})}+O\left(N^{-1}\right)\right)
\end{align*}
$$

In particular, we obtain the geometric invariant

$$
\int_{\mathcal{M}} \bar{\tau}^{-n / 2} e^{-\ell(x, \bar{\tau})} d \mu_{g_{\mathcal{M}}(\bar{\tau})}
$$

for $\bar{\tau} \in(0, T)$.
Thus we are led to the following.

Definition. Let $\left(\mathcal{M}^{n}, g(\tau)\right), \tau \in[0, T]$, be a complete solution to the backward Ricci flow with bounded curvature. The reduced volume functional is defined by

$$
\begin{equation*}
\tilde{V}(\tau) \doteqdot \int_{\mathcal{M}}(4 \pi \tau)^{-n / 2} e^{-\ell(x, \tau)} d \mu_{g(\tau)}(x) \tag{10}
\end{equation*}
$$

for $\tau \in(0, T)$.

3. SPACE-TIME APPROACH TO PERELMAN'S \mathcal{L}-GEODESIC EQUATION

We now compare the \mathcal{L}-geodesic equation for γ with the geodesic equation for the graph $\bar{\gamma}(\tau)=(\gamma(\tau), \tau)$ with respect to the following space-time connection (see also Lemma 4.3 in [1]):

$$
\begin{equation*}
\tilde{\Gamma}_{i j}^{k}=\Gamma_{i j}^{k}, \quad \tilde{\Gamma}_{i 0}^{k}=\tilde{\Gamma}_{0 i}^{k}=R_{i}^{k}, \quad \tilde{\Gamma}_{00}^{k}=-\frac{1}{2} \nabla^{k} R, \quad \tilde{\Gamma}_{00}^{0}=-\frac{1}{2 \tau} \tag{11}
\end{equation*}
$$

where $i, j, k \geq 1$ (above and below), and the rest of the components are zero. It is instructive to compare the Christoffel symbols $\tilde{\Gamma}$ above with the the symbols ${ }^{N} \tilde{\Gamma}$ of the Levi-Civita connection ${ }^{N} \tilde{\nabla}$ for the metric \bar{h} introduced in subsection 2.1. For $k \geq 1$, note that $\tilde{\Gamma}_{a b}^{k}={ }^{N} \tilde{\Gamma}_{a b}^{k}$ is independent of N, whereas $\tilde{\Gamma}_{a b}^{0}=\lim _{N \rightarrow \infty}{ }^{N} \tilde{\Gamma}_{a b}^{0}$ for all $a, b \geq 0$.

Let $\tau=\tau(\sigma) \doteqdot \sigma^{2} / 4$, i.e., $\sigma \doteqdot 2 \sqrt{\tau}$. We look for a geodesic, with respect to the space-time connection defined above, of the form

$$
\tilde{\beta}(\sigma) \doteqdot\left(\gamma(\tau(\sigma)), \sigma^{2} / 4\right)
$$

where $\gamma:\left[\tau_{1}, \tau_{2}\right] \rightarrow \mathcal{M}$ is a path. For convenience, let $\beta(\sigma) \doteqdot \gamma(\tau(\sigma)), \tilde{\beta}^{i} \doteqdot$ $x^{i} \circ \beta \doteqdot \beta^{i}$ for $i=1, \ldots, n$, and $\tilde{\beta}^{0} \doteqdot x^{0} \circ \tilde{\beta}$ (so that $\tilde{\beta}^{0}(\sigma)=\sigma^{2} / 4$).

The motivation for change of time-variable is given by the following.
Claim. If $\tilde{\beta}:[0, \bar{\sigma}] \rightarrow \mathcal{N} \times[0, T]$ is a geodesic, with respect to the connection $\tilde{\nabla}$, with $\tilde{\beta}^{0}(0)=0$ and $\frac{d \tilde{\beta}^{0}}{d \sigma}(\sigma) \neq 0$ for $\sigma>0$, then $\tilde{\beta}^{0}(\sigma)=A \sigma^{2}$ for some positive constant A.

Proof. If $\tilde{\beta}_{\tilde{\sim}}^{0}(\sigma)=\tau(\sigma)$, then the time-component of the geodesic equation with respect to $\tilde{\nabla}$ is:

$$
\begin{aligned}
0 & =\frac{d^{2} \tilde{\beta}^{0}}{d \sigma^{2}}+\sum_{0 \leq i, j \leq n}\left(\tilde{\Gamma}_{i j}^{0} \circ \tilde{\beta}\right) \frac{d \tilde{\beta}^{i}}{d \sigma} \frac{d \tilde{\beta}^{j}}{d \sigma} \\
& =\frac{d^{2} \tau}{d \sigma^{2}}-\frac{1}{2 \tau}\left(\frac{d \tau}{d \sigma}\right)^{2}
\end{aligned}
$$

since $\tilde{\Gamma}_{i j}^{0}=0$ when $i \geq 1$ or $j \geq 1$, and $\tilde{\Gamma}_{00}^{0}=-\frac{1}{2 \tau}$. Hence, assuming $\tau(\sigma)>0$ and $\frac{d \tau}{d \sigma}(\sigma)>0$ for $\sigma>0$, we have

$$
\frac{d}{d \sigma} \log \frac{d \tau}{d \sigma}=\frac{\frac{d^{2} \tau}{d \sigma^{2}}}{\frac{d \tau}{d \sigma}}=\frac{\frac{d \tau}{d \sigma}}{2 \tau}=\frac{d}{d \sigma} \log \sqrt{\tau}
$$

so that

$$
\frac{d \tau}{d \sigma}=C \sqrt{\tau}
$$

for some constant $C>0$. Since $\tau(0)=0$, we conclude

$$
\tau(\sigma)=C^{2} \sigma^{2} / 4
$$

By direct computation, we have

$$
\frac{d \beta^{k}}{d \sigma}=\frac{\sigma}{2} \frac{d \gamma^{k}}{d \tau}, \quad \frac{d \tilde{\beta}^{0}}{d \sigma}=\frac{\sigma}{2}
$$

and

$$
\begin{aligned}
\frac{d^{2} \beta^{k}}{d \sigma^{2}} & =\frac{d}{d \sigma}\left(\frac{\sigma}{2} \frac{d \gamma^{k}}{d \tau}(\tau(\sigma))\right) \\
& =\left(\frac{\sigma}{2}\right)^{2} \frac{d^{2} \gamma^{k}}{d \tau^{2}}(\tau(\sigma))+\frac{1}{2}\left(\frac{d \gamma^{k}}{d \tau}(\tau(\sigma))\right)
\end{aligned}
$$

We justify the change of variables from τ to σ via the geodesic equation with respect to $\tilde{\Gamma}$ by showing the time-component of $\tilde{\beta}$ satisfies the geodesic equation:

$$
\begin{aligned}
\frac{d^{2} \tilde{\beta}^{0}}{d \sigma^{2}}+\sum_{0 \leq i, j \leq n}\left(\tilde{\Gamma}_{i j}^{0} \circ \tilde{\beta}\right) \frac{d \tilde{\beta}^{i}}{d \sigma} \frac{d \tilde{\beta}^{j}}{d \sigma} & =\frac{d^{2}}{d \sigma^{2}}\left(\sigma^{2} / 4\right)+\tilde{\Gamma}_{00}^{0}(\tilde{\beta}(\sigma))(\sigma / 2)^{2} \\
& =\frac{1}{2}-\frac{1}{2\left(\sigma^{2} / 4\right)}(\sigma / 2)^{2}=0
\end{aligned}
$$

(This last equation justifies defining the time-component of $\tilde{\beta}(\sigma)$ as $\sigma^{2} / 4$, and in particular, the change of variables $\sigma=2 \sqrt{\tau}$.) For the space components, the geodesic equation with respect to $\tilde{\Gamma}$ says that for $k=1, \ldots, n$,

$$
\begin{aligned}
0 & =\frac{d^{2} \tilde{\beta}^{k}}{d \sigma^{2}}+\sum_{0 \leq i, j \leq n} \tilde{\Gamma}_{i j}^{k} \frac{d \tilde{\beta}^{i}}{d \sigma} \frac{d \tilde{\beta}^{j}}{d \sigma} \\
& =\frac{d^{2} \beta^{k}}{d \sigma^{2}}+\sum_{1 \leq i, j \leq n} \Gamma_{i j}^{k} \frac{d \beta^{i}}{d \sigma} \frac{d \beta^{j}}{d \sigma}+2 \sum_{1 \leq i \leq n} \tilde{\Gamma}_{i 0}^{k} \frac{d \beta^{i}}{d \sigma} \frac{d \tilde{\beta}^{0}}{d \sigma}+\tilde{\Gamma}_{00}^{k} \frac{d \tilde{\beta}^{0}}{d \sigma} \frac{d \tilde{\beta}^{0}}{d \sigma}
\end{aligned}
$$

This is equivalent to:

$$
\begin{aligned}
0= & \left(\frac{\sigma}{2}\right)^{2} \frac{d^{2} \gamma^{k}}{d \tau^{2}}(\tau(\sigma))+\sum_{1 \leq i, j \leq n} \Gamma_{i j}^{k}\left(\frac{\sigma}{2} \frac{d \gamma^{i}}{d \tau}(\tau(\sigma))\right)\left(\frac{\sigma}{2} \frac{d \gamma^{j}}{d \tau}(\tau(\sigma))\right) \\
& +\frac{1}{2}\left(\frac{d \gamma^{k}}{d \tau}(\tau(\sigma))\right)+2 \sum_{1 \leq i \leq n} R_{i}^{k}\left(\frac{\sigma}{2} \frac{d \gamma^{i}}{d \tau}(\tau(\sigma))\right)\left(\frac{\sigma}{2}\right)-\frac{1}{2}\left(\frac{\sigma}{2}\right)^{2} \nabla^{k} R
\end{aligned}
$$

which, after dividing by $\tau=\sigma^{2} / 4$, implies

$$
\begin{aligned}
0= & \frac{d^{2} \gamma^{k}}{d \tau^{2}}(\tau(\sigma))+\sum_{1 \leq i, j \leq n} \Gamma_{i j}^{k} \frac{d \gamma^{i}}{d \tau}(\tau(\sigma)) \frac{d \gamma^{j}}{d \tau}(\tau(\sigma))+\frac{1}{2 \tau}\left(\frac{d \gamma^{k}}{d \tau}(\tau(\sigma))\right) \\
& +2 \sum_{1 \leq i \leq n} R_{i}^{k} \frac{d \gamma^{i}}{d \tau}(\tau(\sigma))-\frac{1}{2} \nabla^{k} R
\end{aligned}
$$

That is, in invariant notation and with $X \doteqdot \frac{d \gamma}{d \tau}$, we have

$$
\nabla_{X} X-\frac{1}{2} \nabla R+2 \operatorname{Rc}(X)+\frac{1}{2 \tau} X=0
$$

which is the same as (6). Thus \mathcal{L}-geodesics correspond to geodesics defined with respect to the space-time connection. In particular, $\gamma(\tau)$ is an \mathcal{L}-geodesic if and only if $\beta(\sigma) \doteqdot \gamma\left(\sigma^{2} / 4\right)$ is a geodesic with respect the space-time connection $\tilde{\nabla}$. Since $\tilde{\Gamma}_{a b}^{c}=\lim _{N \rightarrow \infty} N \tilde{\Gamma}_{a b}^{c}$, we also conclude that the Riemannian geodesic equation for the metric \bar{h} on $\mathcal{N}^{n} \times(0, T)$ (defined in subsection 2.1) limits to the $\sigma=2 \sqrt{\tau}$ reparametrization of the \mathcal{L}-geodesic equation as $N \rightarrow \infty$.

4. An Analogue Between Perelman's Reduced Volume and Huisken's Monotonicity Formula

Given a 1-parameter family of metrics $g(t), t \in \mathcal{I}$, on a manifold M^{n} and functions $\beta(t): M^{n} \rightarrow \mathbb{R}$, we define the metric g_{β} on $\tilde{M}^{n+1} \doteqdot M^{n} \times \mathcal{I}$ by (see [2])

$$
g_{\beta}(x, t) \doteqdot g(x, t)+\beta^{2}(x, t) d t^{2}
$$

We consider the family of hypersurfaces given by the time slices $M_{t} \doteqdot M^{n} \times\{t\} \subset$ \tilde{M}^{n+1}. A choice of unit normal vector field to M_{t} is

$$
\nu \doteqdot-\frac{1}{\beta} \frac{\partial}{\partial t}
$$

The hypersurfaces M_{t} parametrized by the maps $X_{t}: M^{n} \rightarrow \tilde{M}^{n+1}$ defined by $X_{t}(x) \doteqdot(x, t)$ are evolving by the flow

$$
\frac{\partial}{\partial t} X_{t}=-\beta \nu
$$

This implies the metrics are evolving by

$$
\frac{\partial}{\partial t} g_{i j}=-2 \beta h_{i j}
$$

where $h_{i j}$ is the second fundamental form of $M_{t} \subset \tilde{M}^{n+1}$. One way of seeing this formula is from

$$
\frac{1}{\beta} h_{i j}=\left(\Gamma_{\beta}\right)_{i j}^{0}=-\frac{1}{2}\left(g_{\beta}\right)^{00} \frac{\partial}{\partial x^{0}}\left(g_{\beta}\right)_{i j}=-\frac{1}{2 \beta^{2}} \frac{\partial}{\partial t} g_{i j}
$$

where $x^{0}=t$. Hence

$$
\begin{equation*}
\beta h_{i j}=R_{i j} . \tag{12}
\end{equation*}
$$

Consider the special case where $\beta(t)^{2}=R(t)$ is the scalar curvature of $g(t)$. Tracing (12) we get $\beta H=R$ so that $\beta=H$ and the hypersurfaces M_{t} satisfy the mean curvature flow: $\frac{\partial}{\partial t} X_{t}=-H \nu$.

Now we consider the more general setting of hypersurfaces evolving in a Riemannian manifold. Given $\left(P^{n+1}, g\right)$, let $X_{t}: M^{n} \rightarrow P^{n+1}, t \in \mathcal{I}$, parametrize a 1-parameter family of hypersurfaces $M_{t}=X_{t}\left(M^{n}\right)$ evolving in their normal directions

$$
\frac{\partial}{\partial t} X_{t}=-\beta \nu
$$

where $\beta(t): M^{n} \rightarrow \mathbb{R}$ are arbitrary functions. We consider the product metric $g+N d t^{2}$ on $P^{n+1} \times \mathcal{I}$. The space-time track is defined by

$$
\tilde{M}^{n+1} \doteqdot\left\{(x, t): x \in M_{t}, t \in \mathcal{I}\right\} \subset P^{n+1} \times \mathcal{I} .
$$

We parametrize this by the map

$$
\tilde{X}: M^{n} \times \mathcal{I} \rightarrow P^{n+1} \times \mathcal{I}
$$

defined by

$$
\tilde{X}(p, t) \doteqdot\left(X_{t}(p), t\right) .
$$

Let ${ }^{N} \hat{g}$ denote the induced metric on \tilde{M}^{n+1}. Its components

$$
N_{\hat{g}_{a b}} \doteqdot\left\langle\frac{\partial \tilde{X}}{\partial x^{a}}, \frac{\partial \tilde{X}}{\partial x^{b}}\right\rangle_{g+N d t^{2}}=\left\langle\frac{\partial X_{t}}{\partial x^{a}}, \frac{\partial X_{t}}{\partial x^{b}}\right\rangle_{g}+N \delta_{a 0} \delta_{b 0},
$$

where $a, b \geq 0$ are given by

$$
{ }^{N} \hat{g}_{i j}=g_{i j}, \quad N \hat{g}_{i 0}=0, \quad{ }^{N} \hat{g}_{00}=\beta^{2}+N,
$$

where $i, j \geq 1$.
Now, following Perelman, we renormalize length function associated to the metric (similar to what we did in section 2) on $M^{n} \times \mathcal{J}$ (we switch from \mathcal{I} to \mathcal{J} when we consider the time parameter to be τ instead of t)

$$
N_{\breve{g}}(x, \tau) \doteqdot g(x, \tau)+\left(\beta^{2}(x, \tau)+\frac{N}{2 \tau}\right) d \tau^{2}
$$

where $\frac{d \tau}{d t}=-1$ and $g(\tau)=g(t(\tau))$ is the pulled back metric on M^{n} by X_{τ} of the induced metric on $M_{\tau} \doteqdot X_{\tau}\left(M^{n}\right) \subset P^{n+1}$. We may also think of this metric as defined on an open subset of P^{n+1} by pushing forward by the diffeomorphism $(x, \tau) \mapsto X_{\tau}(x)$. Let $\gamma:\left[0, \tau_{0}\right] \rightarrow M^{n}$ be a path and define the path $\bar{\gamma}:\left[0, \tau_{0}\right] \rightarrow$ P^{n+1} by

$$
\bar{\gamma}(\tau) \doteqdot X_{\tau}(\gamma(\tau)) \in M_{\tau}
$$

so that $(\gamma(\tau), \tau) \in M^{n} \times \mathcal{J}$ corresponds to the point $\bar{\gamma}(\tau) \in M_{\tau} \subset P^{n+1}$. We have

$$
\mathrm{L}_{\left({ }^{N} \breve{g}\right)}(\bar{\gamma})=\int_{0}^{\tau_{0}}\left(\left|\frac{d \gamma}{d \tau}\right|_{g(\tau)}^{2}+\beta^{2}+\frac{N}{2 \tau}\right)^{1 / 2} d \tau
$$

Again, motivated by carrying out the expansion of $\mathrm{L}_{\left({ }^{N} \breve{g}\right)}(\bar{\gamma})$ in powers of N, and considering highest order non-trivial term, we define the \mathcal{L}-length of γ by

$$
\begin{aligned}
\mathcal{L}(\gamma) & \doteqdot \int_{0}^{\tau_{0}} \sqrt{\tau}\left(\left|\frac{d \gamma}{d \tau}(\tau)\right|_{g(\tau)}^{2}+\beta^{2}(\gamma(\tau), \tau)\right) d \tau \\
& =\int_{0}^{\tau_{0}} \sqrt{\tau}\left|\frac{d \bar{\gamma}}{d \tau}(\tau)\right|_{g}^{2} d \tau
\end{aligned}
$$

(The equality holds since $\iota^{*} g=g_{\beta}$, where $\iota: M^{n} \times \mathcal{J} \rightarrow P^{n+1}$ is defined by $\iota(x, \tau) \doteqdot X_{\tau}(x)$.) Making the change of variables $\sigma=2 \sqrt{\tau}$, we have

$$
\mathcal{L}(\gamma)=\int_{0}^{2 \sqrt{\tau_{0}}}\left|\frac{d \bar{\gamma}}{d \tau}(\sigma)\right|_{g}^{2} d \sigma
$$

This is the energy of the path $\bar{\gamma}(\sigma)$ and assuming that $\tau_{0}, \gamma(0)=p$ and $\gamma\left(\tau_{0}\right)=q$ are fixed, $\mathcal{L}(\gamma)$ is minimized by a constant speed geodesic and

$$
\breve{L}\left(q, \tau_{0}\right) \doteqdot \inf _{\gamma} \mathcal{L}(\gamma)=\frac{d_{g}(p, q)^{2}}{2 \sqrt{\tau_{0}}}
$$

Let $\breve{\ell}\left(q, \tau_{0}\right) \doteqdot \frac{1}{2 \sqrt{\tau_{0}}} \breve{L}\left(q, \tau_{0}\right)$. Then

$$
\breve{\ell}\left(q, \tau_{0}\right)=\frac{d_{g}(p, q)^{2}}{4 \tau_{0}}
$$

Recall that Perelman's reduced volume for a solution to the backward Ricci flow is defined by

$$
\begin{equation*}
\tilde{V}(\tau) \doteqdot \int_{M}(4 \pi \tau)^{-n / 2} e^{-\ell(x, \tau)} d \mu_{g(\tau)}(x), \tag{10}
\end{equation*}
$$

where ℓ is defined in (8). From the above considerations, we see that Huisken's monotonicity formula for the mean curvature flow (see [4]) is the analogue of the monotonicity of $\tilde{V}(\tau)$. In particular, if $P^{n+1}=\mathbb{R}^{n+1}$, then Huisken's monotone quantity is

$$
\int_{X_{t}}(4 \pi \tau)^{-n / 2} e^{-\frac{|x|^{2}}{4 \tau}} d \mu=\int_{M^{n}}(4 \pi \tau)^{-n / 2} e^{-\breve{\ell}} d \mu .
$$

Remark. The above can perhaps be seen more clearly and simply in the case of a fixed Riemannian metric g on a manifold M^{n}. Define on $M \times \mathcal{J}$, where \mathcal{J} is an interval, the metric

$$
{ }^{N_{g}}(x, \tau) \doteqdot g(x)+\frac{N}{2 \tau} d \tau^{2} .
$$

Then given $\gamma:\left[\tau_{1}, \tau_{2}\right] \rightarrow M^{n}$, the length of $\tilde{\gamma}:\left[\tau_{1}, \tau_{2}\right] \rightarrow M^{n} \times \mathcal{J}$ defined by $\tilde{\gamma}(\tau) \doteqdot(\gamma(\tau), \tau)$ is

$$
\begin{aligned}
\mathrm{L}_{\left({ }_{(N)}^{g}\right)}(\tilde{\gamma}) & =\int_{\tau_{1}}^{\tau_{2}}\left(\left|\frac{d \gamma}{d \tau}\right|_{g(\tau)}^{2}+\frac{N}{2 \tau}\right)^{1 / 2} d \tau \\
& =\sqrt{N}\left(\sqrt{2 \tau_{2}}-\sqrt{2 \tau_{1}}\right)+\frac{1}{\sqrt{2 N}} \int_{\tau_{1}}^{\tau_{2}} \sqrt{\tau}\left|\frac{d \gamma}{d \tau}\right|_{g(\tau)}^{2} d \tau+O\left(N^{-3 / 2}\right)
\end{aligned}
$$

Acknowledgment

The author would like to thank the Center for Theoretical Sciences in Taiwan for the support in the summer of 2004.

References

1. B. Chow and S.-C. Chu, A geometric interpretation of Hamilton's Harnack inequality for the Ricci flow, Math. Res. Lett. 2 (1995), 701-718.
2. B. Chow and S.-C. Chu, Spacetime formulation of Harnack inequalities for curvature flows of hypersurfaces, J. Geom. Anal., 11 (2001), 219-231.
3. B. Chow, P. Lu and L. Ni, Hamilton's Ricci flow, Graduate Studies in Mathematics, Vol. 77, AMS, 2006.
4. G. Huisken, Asymptotic behavior for singularities of the mean curvature flow, J. Diff. Geom., 31(1) (1990), 285-299.
5. G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv:math.DG/0211159.
6. B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo and L. Ni, The Ricci flow: Techniques and Applications, Mathematical Surveys and Monographs, Vol. 135, AMS, 2007.

Sun-Chin Chu
Department of Mathematics
National Chung Cheng University
Chia-Yi 621, Taiwan
E-mail: scchu@math.ccu.edu.tw

[^0]: Received November 20, 2006, accepted December 4, 2006.
 Communicated by Shu-Cheng Chang.
 2000 Mathematics Subject Classification: 53C44, 58 J35.
 Key words and phrases: Space-time, \mathcal{L}-Geodesic, Reduced volume, Monotonicity formula.

[^1]: ${ }^{1}$ We shall consider the case where $\alpha=-\infty$ (in which case we define $\omega-\alpha \doteqdot+\infty$.) On the other hand, if $\omega=+\infty$ and $\alpha=-\infty$, we may simply take $\tau=-t$. However, for the backward Ricci flow we are not as interested in the case where $\omega=+\infty$ and $\alpha>-\infty$.

